高中数学第二章数列2.1.1数列的概念与通项公式练习(含解析)新人教A版必修5
高中数学第二章数列2.1.1数列的概念与通项公式课件新人教A版必修
解析:(1)该数列的第 10 项 a10=21× 0+102=53. (2)令 an=194,即n2+n2=194,解得 n=7. 所以194是数列中的项,且是数列的第 7 项.
|素养提升|
1.与集合中元素的性质相比较,数列中的项也有三个性质 (1)确定性:一个数在不在数列中,即一个数是不是数列中 的项是确定的. (2)可重复性:数列中的数可以重复出现. (3)有序性:一个数列不仅与构成数列的“数”有关,而且 与这些数的排列次序也有关.
跟踪训练 2 根据以下数列的前 4 项写出数列的一个通项 公式.
(1)2×1 4,3×1 5,4×1 6,5×1 7; (2)-3,7,-15,31; (3)2,6,2,6.
解析:(1)均是分式且分子均为 1,分母均是两因数的积,第 一个因数是项数加上 1,第二个因数比第一个因数大 2,
所以 an=n+11n+3. (2)正负相间,且负号在奇数项,故可用(-1)n 来表示符号, 各项的绝对值恰是 2 的整数(项数加 1)次幂减 1,所以 an=(- 1)n(2n+1-1). (3)此数列为摆动数列,一般求两数的平均数2+2 6=4,而 2 =4-2,6=4+2,中间符号用(-1)n 来表示.
【课标要求】 1.通过实例,了解数列的概念. 2.掌握数列的两种分类,能对具体数列作出判断. 3.理解数列通项公式的概念,能根据数列的前几项写出数列 的通项公式. 4.能根据数列的通项公式研究数列中有关项的问题.
自主学习 基础认识
|新知预习|
1.数列的概念 按照一定顺序排列的一列数称为数列.数列中的每一个数叫 做这个数列的项.数列的一般形式可以写成 a1,a2,a3,…,an,…, 简记为{an}.
解析:由
an=2
高中数学第二章等比数列第1课时等比数列的概念与通项公式达标检测含解析新人教A版必修5
新人教A 版高中数学必修5:等比数列的概念与通项公式A 级 基础巩固一、选择题1.下列数列为等比数列的是( ) A .0,0,0,0,… B .22,42,62,82,…C .q -1,(q -1)2,(q -1)3,(q -1)4,… D .1a ,1a 2,1a 3,1a4,…解析:A 选项中,由于等比数列中的各项都不为0,所以该数列不是等比数列;B 选项中,4222≠6242,所以该数列不是等比数列;C 选项中,当q =1时,数列为0,0,0,…,不是等比数列;D 选项中的数列是首项为1a ,公比为1a的等比数列,故选D.答案:D2.(多选)已知等比数列{a n }中,满足a 1=1,公比q =-2,则( ) A .数列{2a n +a n +1}是等比数列 B .数列{a n +1-a n }是等比数列 C .数列{a n a n +1}是等比数列 D .数列{log 2|a n |}是递减数列解析:因为{a n }是等比数列,所以a n +1=-2a n ,2a n +a n +1=0,故A 项错.a n =a 1·q n -1=(-1)n -1·2n -1,a n +1=(-1)n ·2n ,于是a n +1-a n =(-1)n·2n-(-1)n -1·2n -1=3(-2)n -1,故{a n +1-a n }是等比数列,故B 项正确.a n a n +1=(-1)n -1·2n -1·(-1)n ·2n =(-2)2n -1,故C 项正确.log 2|a n |=log 22n -1=n -1,是递增数列,故D 项错.答案:BC3.已知等比数列{a n }的前三项依次为a -1,a +1,a +4, 则a n =( )A .4×⎝ ⎛⎭⎪⎫32nB .4×⎝ ⎛⎭⎪⎫32n -1C .4×⎝ ⎛⎭⎪⎫23nD .4×⎝ ⎛⎭⎪⎫23n -1解析:由题意得(a +1)2=(a -1)(a +4),解得a =5, 故a 1=4,a 2=6,所以q =32,a n =4×⎝ ⎛⎭⎪⎫32n -1.答案:B4.在数列{a n }中,对任意n ∈N *,都有a n +1-2a n =0,则2a 1+a 22a 3+a 4的值为( )A.14B.13C.12D.1解析:a 2=2a 1,a 3=2a 2=4a 1,a 4=8a 1, 所以2a 1+a 22a 3+a 4=4a 116a 1=14.答案:A5.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-5B .-15C .5D .15解析:因为log 3a n +1=log 3a n +1,所以a n +1=3a n , 又a n ≠0.所以数列{a n }是以3为公比的等比数列. 所以a 2+a 4+a 6=a 2(1+q 2+q 4)=9.所以a 5+a 7+a 9=a 5(1+q 2+q 4)=a 2q 3·(1+q 2+q 4)=35. 所以log 1335=-5.答案:A 二、填空题6.等比数列{a n }中,a 4=2,a 5=4,则数列{lg a n }的通项公式为____________.解析:因为a 5=a 4q ,所以q =2,所以a 1=a 4q 3=14,所以a n =14·2n -1=2n -3,所以lg a n =(n -3)lg 2.答案:lg a n =(n -3)lg 27.在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________. 解析:因为a 8=a 2q 6,a 6=a 2q 4,a 4=a 2q 2,所以由a 8=a 6+2a 4得a 2q 6=a 2q 4+2a 2q 2,消去a 2q 2,得到关于q 2的一元二次方程(q 2)2-q 2-2=0,解得q 2=2,q 2=-1(舍去),所以a 6=a 2q 4=1×22=4.答案:48.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则a 2-a 1b 2的值为________.解析:因为-1,a 1,a 2,-4成等差数列,设公差为d , 则a 2-a 1=d =13[(-4)-(-1)]=-1,因为-1,b 1,b 2,b 3,-4成等比数列, 所以b 22=(-1)×(-4)=4, 所以b 2=±2.若设公比为q ,则b 2=(-1)q 2, 所以b 2<0,所以b 2=-2, 所以a 2-a 1b 2=-1-2=12. 答案:12三、解答题9.在等比数列{a n }中. (1)已知a 1=3,q =-2,求a 6; (2)已知a 3=20,a 6=160,求a n . 解:(1)由等比数列的通项公式得,a 6=3×(-2)6-1=-96.(2)设等比数列的公比为q ,那么⎩⎪⎨⎪⎧a 1q 2=20,a 1q 5=160,解得⎩⎪⎨⎪⎧q =2,a 1=5.所以a n =a 1qn -1=5×2n -1.10.在各项均为负数的数列{a n }中,已知2a n =3a n +1,且a 2·a 5=827.(1)求证:{a n }是等比数列,并求出其通项. (2)试问-1681是这个等比数列中的项吗?如果是,指明是第几项;如果不是,请说明理由.(1)证明:因为2a n =3a n +1, 所以a n +1a n =23. 又因为数列{a n }的各项均为负数, 所以a 1≠0,所以数列{a n }是以23为公比的等比数列.所以a n =a 1·q n -1=a 1·⎝ ⎛⎭⎪⎫23n -1.所以a 2=a 1·⎝ ⎛⎭⎪⎫232-1=23a 1, a 5=a 1·⎝ ⎛⎭⎪⎫235-1=1681a 1,又因为a 2·a 5=23a 1·1681a 1=827,所以a 21=94.又因为a 1<0,所以a 1=-32.所以a n =⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫23n -1=-⎝ ⎛⎭⎪⎫23n -2(n ∈N *).(2)解:令a n =-⎝ ⎛⎭⎪⎫23n -2=-1681,则n -2=4,n =6∈N *,所以-1681是这个等比数列中的项,且是第6项.B 级 能力提升1.(多选)已知数列{a n }是公比为q (q ≠1)的等比数列,则以下一定是等比数列的是( )A .{2a n }B .{a 2n } C .{a n +1·a n }D .{a n +1+a n }解析:因为数列{a n }是公比为q (q ≠1)的等比数列,则a n +1a n=q , 对于A 项,2a n +12a n=2a n +1-a n ,因为a n +1-a n 不是常数,故A 项错误.对于B 项,a 2n +1a 2n =⎝ ⎛⎭⎪⎫a n +1a n 2=q 2,因为q 2为常数,故B 项正确.对于C 项,a n +2·a n +1a n +1·a n =a n +2a n +1·a n +1a n=q 2,因为q 2为常数,故C 项正确.对于D 项,若a n +1+a n =0,即q =-1时,该数列不是等比数列,故D 项错误. 答案:BC2.已知等比数列{a n }为递增数列,a 1=-2,且3(a n +a n +2)= 10a n +1,则公比q =________.解析:因为等比数列{a n }为递增数列,且a 1=-2<0, 所以0<q <1,又因为3(a n +a n +2)=10a n +1,两边同除a n , 可得3(1+q 2)=10q ,即3q 2-10q +3=0,解得q =3或q =13.而0<q <1,所以q =13.答案:133.设关于x 的二次方程a n x 2-a n +1x +1=0(n =1,2,3,…)有两根α和β,且满足6α-2αβ+6β=3.(1)试用a n 表示a n +1;(2)求证:⎩⎨⎧⎭⎬⎫a n -23是等比数列;(3)当a 1=76时,求数列{a n }的通项公式及项的最大值.(1)解:根据根与系数的关系,得⎩⎪⎨⎪⎧α+β=an +1a n,αβ=1an.代入题设条件6(α+β)-2αβ=3, 得6a n +1a n -2a n=3.所以a n +1=12a n +13.(2)证明:因为a n +1=12a n +13,所以a n +1-23=12⎝⎛⎭⎪⎫a n -23.若a n =23,则方程a n x 2-a n +1x +1=0可化为23x 2-23x +1=0,即2x 2-2x +3=0.此时Δ=(-2)2-4×2×3<0, 所以a n ≠23,即a n -23≠0.所以数列⎩⎨⎧⎭⎬⎫a n -23是以12为公比的等比数列.(3)解:当a 1=76时,a 1-23=12,所以数列⎩⎨⎧⎭⎬⎫a n -23是以首项为12,公比为12的等比数列.所以a n -23=12×⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n, 所以a n =23+⎝ ⎛⎭⎪⎫12n,n =1,2,3,…,即数列{a n }的通项公式为a n =23+⎝ ⎛⎭⎪⎫12n,n =1,2,3,….由函数y =⎝ ⎛⎭⎪⎫12x在(0,+∞)上单调递减知,当n =1时,a n 的值最大,即最大值为a 1=76.。
2021年高中数学 2.2.1等差数列的概念与通项公式练习 新人教A版必修5
2021年高中数学 2.2.1等差数列的概念与通项公式练习新人教A版必修5►基础梳理1.(1)等差数列的定义:____________________.定义的数学式表示为__________________________.(2)判断下列数列是不是等差数列.①2,4,6,8,10;②1,3,5,8,9,10.2.(1)首项为a1公差为d的等差数列{a n}的通项公式为____________.(2)写出下列数列的通项公式:①2,4,6,8,10;②0,5,10,15,20,….3.(1)等差中项的定义:______________________.(2)求下列各组数的等差中项:①2,4;②-3,9.4.(1)等差数列当公差______时,为递增数列;当公差______时,为递减数列.(2)判断下列数列是递增还是递减数列.①等差数列3,0,-3,…;②数列{a n}的通项公式为:a n=2n-100(n∈N*).5.等差数列的图象的特点是________________.基础梳理1.(1)从第二项起,每一项与它前一项的差等于同一个常数a n-a n-1=d (与n无关的常数),n≥2,n∈N*(2)①是②不是2.(1)a n=a1+(n-1)d,n∈N*(2)①a n=2n,n=1,2,3,4,5②a n=5n-5,n∈N*3.(1)如果a,A,b成等差数列,则A叫a与b的等差中项(2)①所求等差中项为3 ②所求等差中项为34.(1)d>0 d<0(2)①递减数列②递增数列5.一条直线上的一群孤立点►自测自评1.下列数列不是等差数列的是( )A.a-d,a,a+dB.2,4,6,…,2(n-1),2nC.m,m+n,m+2n,2m+n(m≠2n)D.数列{a n}满足a n-1=a n-12(n∈N*,n>1)2.等差数列a-2d,a,a+2d,…的通项公式是( )A.a n=a+(n-1)d B.a n=a+(n-3)dC.a n=a+2(n-2)d D.a n=a+2nd3.已知数列{a n}对任意的n∈N*,点P n(n,a n)都在直线y=2x+1上,则{a n}为( ) A.公差为2的等差数列B.公差为1的等差数列C.公差为-2的等差数列D.非等差数列自测自评1.解析:利用定义判断,知A,B,D是等差数列;对于C,m+n-m=n,(2m+n)-(m+2n)=m-n,且n≠m-n,∴该数列不是等差数列.故选C.答案:C2.解析:数列的首项为a-2d,公差为2d,∴a n=(a-2d)+(n-1)·2d=a+2(n-2)d.答案:C3.A►基础达标1.有穷等差数列5,8,11,…,3n+11(n∈N*)的项数是( )A.n B.3n+11C.n+4 D.n+31.解析:在3n+11中令n=1,结果为14,它是这个数列的第4项,前面还有5,8,11三项,故这个数列的项数为n+3.故选D.答案:D2.若{a n }是等差数列,则由下列关系确定的数列{b n }也一定是等差数列的是( )A .b n =a 2nB .b n =a n +n 2C .b n =a n +a n +1D .b n =na n2.解析:{a n }是等差数列,设a n +1-a n =d ,则数列b n =a n +a n +1满足:b n +1-b n =(a n +1+a n +2)-(a n +a n +1)=a n +2-a n =2d .故选C.答案:C3.已知a =13+2,b =13-2,则a ,b 的等差中项为( ) A. 3 B. 2 C.13 D.123.解析:a ,b 的等差中项为12×⎝ ⎛⎭⎪⎫13+2+13-2=12×(3-2+3+2)= 3. 答案:A4.下面数列中,是等差数列的有( )①4,5,6,7,8,… ②3,0,-3,0,-6,… ③0,0,0,0,…④110,210,310,410,… A .1个 B .2个C .3个D .4个4.C5.在数列{a n }中,a 1=2,2a n +1=2a n +1,则a 101的值是( )A .49B .50C .5D .525.解析:由2a n +1=2a n +1得a n +1-a n =12, ∴{a n }是等差数列,且公差为d =12,又a 1=2, ∴a 101=a 1+(101-1)d =2+100×12=52.故选D. 答案:D►巩固提高6.若x ≠y ,且两个数列:x ,a 1,a 2,y 和x ,b 1,b 2,b 3,y 各成等差数列,那么a 2-a 1b 2-b 1=( )A.34B.43C.23D .不能确定 6.解析:a 2-a 1=13(y -x ),b 2-b 1=14(y -x ), ∴a 2-a 1b 2-b 1=43.故选B. 答案:B7.已知函数f (x )=2x ,等差数列{a n }的公差为 2.若f (a 2+a 4+a 6+a 8+a 10)=4,则log 2[f (a 1)·f (a 2)·f (a 3)·…·f (a 10)]=________.7.解析:∵f (a 2+a 4+a 6+a 8+a 10)=2a 2+a 4+a 6+a 8+a 10=4,∴a 2+a 4+a 6+a 8+a 10=2.又∵a 1+a 3+a 5+a 7+a 9=(a 2-d )+(a 4-d )+…+(a 10-d )=2-5d =-8,∴a 1+a 2+…+a 10=2+(-8)=-6.∴log 2[f (a 1)·f (a 2)·…·f (a 10)]=log 2(2a 1+a 2+…+a 10)=a 1+a 2+…+a 10=-6. 答案:-68.已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4,则a n =________.8.解析:利用等差数列的通项公式求解.设等差数列公差为d ,则由a 3=a 22-4,得1+2d =(1+d )2-4,∴d 2=4,∴d =±2.由于该数列为递增数列,∴d =2.∴a n =1+(n -1)×2=2n -1(n ∈N *).答案:2n -1(n ∈N *)9.有四个数成等差数列,它们的平方和等于276,第一个数与第四个数之积比第二个数与第三个数之积少32,求这四个数.9.解析:设四个数依次为a -3d ,a -d ,a +d ,a +3d ,∴⎩⎪⎨⎪⎧(a -3d )2+(a -d )2+(a +d )2+(a +3d )2=276,(a -d )(a +d )-(a -3d )(a +3d )=32. ∴⎩⎪⎨⎪⎧a 2+5d 2=69,d 2=4.∴a =±7,d =±2. ∴所求的四个数依次为:1,5,9,13或13,9,5,1或-13,-9,-5,-1或-1,-5,-9,-13.10.已知函数f (x )=x ax +b(a ,b 为常数,a ≠0)满足f (2)=1,且f (x )=x 有唯一解. (1)求f (x )的表达式;(2)若数列{x n }由x n =f (x n -1)(n ≥2,n ∈N *)且x 1=1.①求证:数列⎩⎨⎧⎭⎬⎫1x n 是等差数列; ②求数列{x n }的通项公式.10.(1)解析:由f (2)=1,得22a +b=1,即2a +b =2. 由f (x )=x ,得x ax +b=x ,即ax 2+(b -1)x =0有唯一解, ∴Δ=(b -1)2=0,∴b =1.∴a =12. ∴f (x )=2x x +2. (2)①证明:当n ≥2时,x n =f (x n -1)=2x n -1x n -1+2. 又x 1=1>0,∴x n >0,即x n ≠0.∴1x n =x n -1+22x n -1=1x n -1+12,即1x n -1x n -1=12. 故数列⎩⎨⎧⎭⎬⎫1x n 是首项为1,公差为12的等差数列. ②解析:由①得1x n =1+12(n -1)=n +12, ∴x n =2n +1(n ∈N *).1.用好等差数列的定义与掌握好等差数列的通项公式是关键,写数列通项公式时注意n 的取值范围.2.注意等差数列与一次函数间的关系,如自测自评中第3题.3.题设中有三个数成等差数列时,一般设这三个数为a -d 、a 、a +d .若五个数成等差一般设为a -2d 、a -d 、a 、a +d 、a +2d .有时也直接设为等差数的通项形式,具体问题具体分析,设的目的是便于计算,要灵活选择设的方法.4.等差中项有广泛应用,要准确理解其含义.5.证明数列为等差数列的方法有:定义法、通项公式法、等差中项法.K29753 7439 琹35196 897C 襼.D27967 6D3F 洿40023 9C57 鱗34218 85AA 薪}l !I24395 5F4B 彋E。
2020_2021学年高中数学第二章数列2.1.1数列的概念与通项公式课件新人教A版必修5
数列
2.1 数列的概念与简单表示法
第1课时 数列的概念与通项公式
[目标] 1.知道数列的定义,理解数列的顺序性;2.知道数列 的几种分类;3.知道数列是特殊的函数,体会数列的项与序号间 的关系,并能根据数列的前几项写出数列的通项公式.
[重点] 数列的定义,根据数列的前几项写出数列的通项公 式.
[变式训练 3] 黑、白两种颜色的正六边形地面砖按下图的 规律拼成若干个图案,则第 n 个图案中有白色地面砖 4n+2 块.
解析:第 1 个图案中有白色地面砖 6 块,第 2 个图案中有白 色地面砖 10 块,第 3 个图案中有白色地面砖 14 块,…,后一个 图案总比前一个图案多 4 块白色地面砖,从而第 n 个图案中有 4n +2 块白色地面砖.
(3)证明:∵an=33nn-+21=3n3+n+1-1 3=1-3n3+1, 又 n∈N*,∴0<3n3+1<1, ∴0<an<1. 即数列中的各项都在区间(0,1)内.
1.数列的通项公式给出了第 n 项 an 与它的位置序号 n 之间的 关系,只要用序号代替公式中的 n,就可以求出数列的相应项.,2. 判断某数值是否为该数列的项,需先假定它是数列中的项,列方 程求解.若方程的解为正整数,则该数值是数列中的项;若方程 无解或解不是正整数,则该数值不是此数列的项.
[分析] 通过题中给出的图形计数,探索项与项数 n 的关系, 猜想通项公式求解,或者根据图形变化规律,将小石子的个数逐 个写出,直到第 10 个.
[解析] 方法一(计数探规律):三角形数依次为: 1,3,6,10,15,…;从第 2 项起,规律为:3=1+2(第 2 个);6=1 +2+3(第 3 个);10=1+2+3+4(第 4 个);…;第 10 个三角形 数为:1+2+3+4+…+10=55.
高中数学 第二章 数列 2.4.1 等比数列的概念及通项公式练习 新人教A版必修5-新人教A版高一必
第1课时等比数列的概念及通项公式课后篇巩固探究A组1.若a,b,c成等差数列,则一定()A.是等差数列B.是等比数列C.既是等差数列也是等比数列D.既不是等差数列也不是等比数列解析因为a,b,c成等差数列,所以2b=a+c,于是,所以一定是等比数列.答案B2.在等比数列{a n}中,a2 017=-8a2 014,则公比q等于()A.2B.-2C.±2D.解析由a2 017=-8a2 014,得a1q2 016=-8a1q2 013,所以q3=-8,故q=-2.答案B3.在等比数列{a n}中,a n>0,且a2=1-a1,a4=9-a3,则a4+a5的值为()A.16B.27C.36D.81解析由a2=1-a1,a4=9-a3,得a1+a2=1,a4+a3=9.设公比为q,则q2==9.因为a n>0,所以q=3,于是a4+a5=(a1+a2)q3=27.答案B4.已知等差数列{a n}的公差为2,若a1,a3,a4成等比数列,则a2=()A.-4B.-6C.-8D.-10解析∵a4=a1+6,a3=a1+4,a1,a3,a4成等比数列,∴=a1·a4,即(a1+4)2=a1·(a1+6),解得a1=-8,∴a2=a1+2=-6.故选B.答案B5.已知数列{a n}的前n项和为S n,a1=1,S n=2a n+1,则S n=()A.2n-1B.C.D.解析由S n=2a n+1,得S n=2(S n+1-S n),即2S n+1=3S n,.又S1=a1=1,所以S n=,故选B.答案B6.已知等比数列{a n},a3=3,a10=384,则该数列的通项a n=.解析设公比为q.∵=q7==27,∴q=2.∴a n=a3q n-3=3·2n-3.答案3·2n-37.在数列{a n}中,已知a1=3,且对任意正整数n都有2a n+1-a n=0,则a n=.解析由2a n+1-a n=0,得,所以数列{a n}是等比数列,公比为.因为a1=3,所以a n=3·.答案3·8.在等比数列{a n}中,若a1=,q=2,则a4与a8的等比中项是.解析依题意,得a6=a1q5=×25=4,而a4与a8的等比中项是±a6,故a4与a8的等比中项是±4.答案±49.导学号04994040已知数列{a n}是等差数列,且a2=3,a4+3a5=56.若log2b n=a n.(1)求证:数列{b n}是等比数列;(2)求数列{b n}的通项公式.(1)证明由log2b n=a n,得b n=.因为数列{a n}是等差数列,不妨设公差为d,则=2d,2d是与n无关的常数,所以数列{b n}是等比数列.(2)解由已知,得解得于是b1=2-1=,公比q=2d=24=16,所以数列{b n}的通项公式b n=·16n-1.10.已知数列{a n}满足a1=,且a n+1=a n+(n∈N*).(1)求证:是等比数列;(2)求数列{a n}的通项公式.(1)证明∵a n+1=a n+,∴a n+1-a n+.∴.∴是首项为,公比为的等比数列.(2)解∵a n-,∴a n=.B组1.若a,b,c成等差数列,而a+1,b,c和a,b,c+2都分别成等比数列,则b的值为()A.16B.15C.14D.12解析依题意,得解得答案D2.在等比数列{a n}中,a1=1,公比|q|≠1.若a m=a1a2a3a4a5,则m等于()A.9B.10C.11D.12解析∵a m=a1a2a3a4a5=q·q2·q3·q4=q10=1×q10,∴m=11.答案C3.已知等比数列{a n},各项都是正数,且a1,a3,2a2成等差数列,则=()A.3+2B.1-C.1+D.3-2解析由a1,a3,2a2成等差数列,得a3=a1+2a2.在等比数列{a n}中,有a1q2=a1+2a1q,即q2=1+2q,得q=1+或1-(舍去),所以=q2=(1+)2=3+2.答案A4.已知-7,a1,a2,-1四个实数成等差数列,-4,b1,b2,b3,-1五个实数成等比数列,则=. 解析由题意,得a2-a1==2,=(-4)×(-1)=4.又b2是等比数列中的第3项,所以b2与第1项同号,即b2=-2,所以=-1.答案-15.已知一个等比数列的各项均为正数,且它的任何一项都等于它的后面两项的和,则它的公比q=.解析依题意,得a n=a n+1+a n+2,所以a n=a n q+a n q2.因为a n>0,所以q2+q-1=0,解得q=(q=舍去).答案6.若数列a1,,…,,…是首项为1,公比为-的等比数列,则a5=.解析由题意,得=(-)n-1(n≥2),所以=-=(-)2,=(-)3,=(-)4,将上面的四个式子两边分别相乘,得=(-)1+2+3+4=32.又a1=1,所以a5=32.答案327.已知数列{a n}满足S n=4a n-1(n∈N*),求证:数列{a n}是等比数列,并求出其通项公式.解依题意,得当n≥2时,S n-1=4a n-1-1,所以a n=S n-S n-1=(4a n-1)-(4a n-1-1),即3a n=4a n-1,所以,故数列{a n}是公比为的等比数列.因为S1=4a1-1,即a1=4a1-1,所以a1=,故数列{a n}的通项公式是a n=.8.导学号04994041已知数列{a n}的前n项和S n=2a n+1,(1)求证:{a n}是等比数列,并求出其通项公式;(2)设b n=a n+1+2a n,求证:数列{b n}是等比数列.证明(1)∵S n=2a n+1,∴S n+1=2a n+1+1,S n+1-S n=a n+1=(2a n+1+1)-(2a n+1)=2a n+1-2a n,∴a n+1=2a n.由已知及上式可知a n≠0.∴由=2知{a n}是等比数列.由a1=S1=2a1+1,得a1=-1,∴a n=-2n-1.(2)由(1)知,a n=-2n-1,∴b n=a n+1+2a n=-2n-2×2n-1=-2×2n=-2n+1=-4×2n-1.∴数列{b n}是等比数列.。
高中数学第二章数列2.2.1等差数列的概念与通项公式教材分析新人教A版必修5
高中数学第二章数列2.2.1等差数列的概念与通项公式教材分析新人教A版必修5
等差数列的观点及通项公式教材剖析
本节课主要研究等差数列的观点、通项公式及其应用,是本章的要点内容之一。
而所处章节《数列》又是高中数学的重要内容,而且在实质生活中有着宽泛的应用,它起着承上启下的
作用。
一方面 , 数列与前方学习的函数等知识有亲密的联系 ; 另一方面 , 学习数列又为进一步学习数列的极限等内容作好了准备。
同时也是培育学生数学能力的优秀题材。
学习数列要常常察看、剖析、概括、猜想,还要综合运用前方的知识解决数列中的一些问题。
等差数列是学生研究特别数列的开始,它对后续内容的学习,不论在知识上,仍是在方法上都拥有踊跃的意义。
课后反省
1.从生活中的数列模型导入,有助于发挥学生学习的主动性,加强学生学习数列的兴趣.在研
究的过程中,学生经过剖析、察看,概括出等差数列定义,而后由定义导出通项公式,加强了由
详细到抽象,由特别到一般的思想过程,有助于提升学生剖析问题和解决问题的能力.
2.环环相扣、简短了然、要点突出,指引剖析仔细、到位、适量.如:判断某数列能否成等
差数列,这是促使观点理解的好素材;别的,用方程的思想指导等差数列基本量的运算等等.学生在经历过程中,加深了对观点的理解和稳固.。
2022年高中数学第二章数列1-1数列的概念与简单表示法练习含解析新人教A版必修
课时训练5 数列的概念与简单表示法一、数列的概念及分类1.下列叙述正确的是( )A.数列1,3,5,7与7,5,3,1是相同的数列B.数列0,1,2,3,…可以表示为{n}C.数列0,1,0,1,…是常数列D.数列{n n+1}是递增数列答案:D解析:数列中的项是有序的,故A错;B中通项为{n-1};C中数列为摆动数列,故选D.2.数列5,4,3,m,…是递减数列,则m的取值范围是( )A.(-∞,3)B.(-∞,2)C.(1,+∞)D.(2,+∞)答案:A解析:依据递减数列的定义,只要后面的项比它的前一项小即可,所以m的取值范围是(-∞,3).3.下列四个数列中,既是无穷数列又是递增数列的是( )A.1,12,13,14,…B.sinπ7,sin2π7,sin3π7,…C.-1,-12,-14,-18,…D.1,√2,√3,…,√21答案:C4.下面的数列中,哪些是递增数列、递减数列、常数列、摆动数列?(1)1,2,3,4,5,6,7,…;(2)10,8,6,4,…;(3)1,0,1,0,1,0,…;(4)a,a,a,a,….解:(1)递增数列,因为从第2项起,每一项都大于它的前一项;(2)递减数列,因为从第2项起,每一项都小于它的前一项;(3)摆动数列,因为从第2项起,数列中有些项大于它的前一项,有些项小于它的前一项;(4)常数列.二、数列的通项公式及应用5.(2015河南南阳高二期中,1)已知数列√5,√11,√17,√23,√29,…,则5√5是它的第( )项.A.19B.20C.21D.22答案:C解析:数列√5,√11,√17,√23,√29,…中的各项可变形为√5,√5+6,√5+2×6,√5+3×6,√5+4×6,…,∴通项公式为a n=√5+6(n-1)=√6n-1,令√6n-1 =5√5,得n=21.故选C.6.把1,3,6,10,15,21,…这些数叫做三角形数,这是因为这些数目的点可以排成一个正三角形(如图).则第7个三角形数是( )A.27B.28C.29D.30答案:B解析:由已知从第二项起,每一项与前一项的差是这一项的项数,即a2-a1=2,a3-a2=3,a4-a3=4,a5-a4=5,以此规律得a6-a5=6,∴a7-a6=7.∴a7=7+a6=7+6+a5=13+15=28.7.数列{a n}的通项公式a n=则√10-3是此数列的第 项.√n+√n+1答案:9√n+1−√n,解析:a n=√n+√n+1令n=9,则a 9=√10−√9=√10-3.∴√10-3是数列中第9项.8.已知数列的通项公式为a n =2n 2-n.(1)求这个数列的第8项,第10项;(2)试问:45是否是{a n }中的项?3是否是{a n }中的项?解:(1)∵a n =2n 2-n ,∴当n=8时,a 8=2×82-8=120;当n=10时,a 10=2×102-10=190.(2)a n =2n 2-n ,令a n =45,则有2n 2-n-45=0,解得n=5或n=-92(舍去),∴45是该数列的第5项.令a n =3,则有2n 2-n-3=0.该方程不存在正整数解,故3不是该数列中的项.9.写出数列的一个通项公式,使它的前几项分别是下列各数.(1)a ,b ,a ,b ,…;(2)22-12,32-13,42-14,52-15,…;(3)-11×2,12×3,-13×4,14×5,…;(4)12,2,92,8,252,….解:(1)数列的奇数项为a ,偶数项为b ,因此通项公式可用分段形式来表示,记为a n ={a ,n ,为奇数b ,n ,为偶数也可记为a n =a +b 2+(-1)n+1·a -b 2.(2)这个数列的前4项分别为22-12,32-13,42-14,52-15,其分母都是序号n加上1,分子都是分母的平方减去1,故a n=(n+1)2-1n+1.(3)这个数列的前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,故a n=(-1)nn(n+1).(4)该数列的项中有的是分数,有的是整数,将各项都统一成分数为12,42,92,162,252,…,观察可知各项分母都是2,分子都是序号的平方,所以a n=n 22.(建议用时:30分钟) 1.数列√2,√5,2√2,√11,…,则2√5是该数列的( )A.第6项B.第7项C.第10项D.第11项答案:B解析:由a n=√3n-1=2√5,解得n=7.2.数列0,13,12,35,23,…的通项公式为( )A.a n=n-2n B.a n=n-1nC.a n=n-1n+1D.a n=n-2n+2答案:C解析:原数列可变形为02,13,24,35,46,…,∴a n =n -1n +1.3.已知数列的通项公式a n ={3n +1,n ,为奇数2n -2,n ,为偶数则a 2a 3等于( )A.70B.28C.20D.8答案:C解析:由a n ={3n +1,n ,为奇数2n -2,n ,为偶数得a 2a 3=2×10=20.∴选C.4.已知数列{a n }满足:a 1>0,a n +1a n =12,则数列{a n }是( )A.递增数列B.递减数列C.摆动数列D.不确定答案:B解析:由已知数列各项为正,且从第二项起每一项是前一项的12,则数列{a n }是递减数列.5.在数列1,2,2,3,3,3,4,4,4,4,…中,第25项为( )A.2B.6C.7D.8答案:C解析:数字为1的有1个,数字为2的有2个,数字为3的有3个,∴按照此规律.当数字为6时,共有1+2+3+4+5+6=21项,当数字为7时,共有1+2+3+4+5+6+7=28项.∴第25项为7.6.已知数列{a n },a n =a n +m (a<0,n ∈N *),满足a 1=2,a 2=4,则a 3= .答案:2解析:∵{2=a +m ,4=a 2+m ,∴{a =-1,m =3,∴a n =(-1)n +3,∴a 3=(-1)3+3=2.7.下列叙述中正确的为 .①数列a n=2是常数列;②数列{(-1)n·1n}是摆动数列;③数列{n2n+1}是递增数列;④若数列{a n}是递增数列,则数列{a n a n+1}也是递增数列.答案:①②③解析:①中每一项均为2,是常数列.②中项的符号由(-1)n调整,是摆动数列.③n2n+1可变形为12+1n,为递增数列.④中若a n=n-3,则a n a n+1=(n-3)(n-2)=n2-5n+6,不是递增数列.8.黑白两种颜色的正六边形地面砖按下图的规律拼成若干个图案,则第n个图案中有白色地面砖 块.答案:4n+2解析:第1个图案有白色地面砖6块,第2个图案有10块,第3个图案有14块,可以看出每个图案较前一个图案多4块白色的地面砖.∴第n个图案有6+4(n-1)=(4n+2)(块).9.根据数列的前几项,写出下列各数列的一个通项公式:(1)45,12,411,27,…;(2)1,3,6,10,15,…;(3)7,77,777,….分析:(1)注意前4项中有两项的分子为4,不妨把分子统一为4,即为45,48,411,414,…,于是它们的分母依次相差3,因而有a n=43n+2.(2)注意6=2×3,10=2×5,15=3×5,规律还不明显,再把各项的分子和分母都乘以2,即1×2 2,2×32,3×42,4×52,5×62,…,因而有a n=n(n+1)2.(3)把各项除以7,得1,11,111,…,再乘以9,得9,99,999,…,因而有a n=79(10n-1).解:(1)a n=43n+2;(2)a n=n(n+1)2;(3)a n=79(10n-1).10.已知数列{a n}的通项公式a n=n+6n.(1)求a10.(2)5350是否是这个数列中的项?(3)这个数列中有多少整数项?(4)是否有等于序号的项?若有,求出该项;若没有,说明理由.解:(1)a10=10+610= 8 5.(2)令n+6n =5350,得n=100,故5350是这个数列的第100项.(3)∵a n=1+6n,∴当n=1,2,3,6时,a n为整数,故这个数列中有4项是整数项.(4)令n+6n=n得n2-n-6=0,解得n=3或n=-2(舍去),故该数列中有等于序号的项,即a3=3.。
人教A版数学必修五2.1 数列的概念与简单表示法-数列的通项公式(二)——利用Sn与an关系求通项公
1.已知数列{an}的前 n 项和 Sn 2n2 n 1,求 an 2.已知数列{an}的前 n 项和 Sn 1 3n ,求 an
答案 第1题
4 n 1 an 4n 1 n 2
第2题
an 2 3n1, n N
隐藏 Sn ,求 an
【例 2】已知数列{an}中, a1 2a2 2n1an n2 n ,求 an
(2)由(1)
1 Sn
2n ,
Sn
1 2n
,nN
(又回到了类型一)
①当
n
1 时,
a1
S1
1 2
②当 n 2 时, an Sn Sn1
人教A版数学必修五2.1 数列的概念与简单表示法-数列的 通项公 式(二 )—— 利用Sn 与an关 系求通 项公式 课件【精品】
1 1 2n 2n 2
1 2n2 2n
n2 n (n 1)2 (n 1) 2n 对于 bn 2n ,当 n 1 时, b1 2
所以: bn 2n, n N
又 bn 2n1 an , 则2n1 an 2n
所以: an
n 2n2
,n N
处理方法
换元转换为类型一
3. 已知数列{an}中, a1 3a2 (2n 1)an n(n 1)(n 2) ,求 an
(1)求 an :与类型一的处理方法一样,消去 Sn ,
得到 an 与 an1 的递推关系,再求 an
(2)求 Sn :消去 an ,得到 Sn 与 Sn1 的递推关系,
进而求出 Sn
人教A版数学必修五2.1 数列的概念与简单表示法-数列的 通项公 式(二 )—— 利用Sn 与an关 系求通 项公式 课件【精品】
1 1 2 0即 1 1 2
高中数学第二章数列2.1.1数列的概念与通项公式课时作业含解析新人教A版必修52020082111
第二章 数列课时作业7 数列的概念与通项公式时间:45分钟——基础巩固类——一、选择题1.已知数列{a n }的通项公式为a n =1+(-1)n +12(n ∈N *),则该数列的前四项依次为( A )A .1,0,1,0B .0,1,0,1 C.12,0,12,0 D .2,0,2,0解析:把n =1,2,3,4代入通项公式计算即可.2.已知数列{a n }前三项分别为-1,0,1,下列各式:①a n =n -2;②a n =(-1)n -12;③a n=(n -2)5;④a n =(n -2)+(n -1)(n -2)(n -3).其中能作为数列{a n }的通项公式的有( C )A .1个B .2个C .3个D .4个解析:把n =1,2,3代入各通项公式进入检验.3.已知数列的通项公式a n =⎩⎪⎨⎪⎧3n +1,n 为奇数,2n -2,n 为偶数,则a 2a 3等于( C )A .70B .28C .20D .8解析:把a n =⎩⎪⎨⎪⎧3n +1, n 为奇数2n -2, n 为偶数,得a 2a 3=2×10=20.故选C.4.在数列1,2,7,10,13,…中,219是这个数列的( C ) A .第16项 B .第24项 C .第26项 D .第28项 解析:数列各项可化为1,3×1+1,3×2+1,3×3+1,3×4+1,…,故a n =3n -2(n ∈N *),由3n -2=219可得n =26,即219是这个数列的第26项.5.已知数列{a n }的通项公式为a n =n2n -1,按项的变化趋势,该数列是( B )A .递增数列B .递减数列C .摆动数列D .常数列解析:∵a n +1-a n =n +12n +1-n2n -1=-1(2n +1)(2n -1)<0,n ∈N *,∴a n +1<a n .故该数列是递减数列.6.数列{a n }的通项公式为a n =3n 2-28n ,则数列{a n }各项中最小项是( B ) A .第4项 B .第5项 C .第6项 D .第7项解析:当n =143时,a n 最小;又n ∈N *,故n =5时,a n =3n 2-28n 最小.二、填空题7.已知数列{a n },a n =a n +m (a <0,n ∈N *),满足a 1=2,a 2=4,则a 3=2.解析:∵⎩⎪⎨⎪⎧ 2=a +m ,4=a 2+m ,∴⎩⎪⎨⎪⎧a =-1,m =3.∴a n =(-1)n +3.∴a 3=(-1)3+3=2.8.已知数列{a n }的前4项为11,102,1 003,10 004,…,则它的一个通项公式为a n =10n+n .解析:由于11=10+1,102=102+2, 1 003=103+3,10 004=104+4,…, 所以该数列的一个通项公式是a n =10n +n .9.如图是一系列有机物的结构简图,图中的“小黑点”表示原子,两黑点间的“短线”表示化学键,按图中结构第n 个图有化学键5n +1个.解析:每个结构简图去掉最左边的一个化学键后,每个环上都有5个化学键,故第n 个结构简图有5n +1个化学键.三、解答题10.根据数列的前几项,写出下面各数列的一个通项公式: (1)45,12,411,27,…; (2)23,-1,107,-179,2611,…; (3)1,3,6,10,15,…;(4)7,77,777,….解:(1)注意前4项中有两项的分子为4,不妨把分子统一为4,即为45,48,411,414,…,于是它们的分母依次相差3,因而有a n =43n +2.(2)数列可写为23,-55,107,-179,2611,…,奇数项为正,偶数项为负,且分母是奇数,分子是n 2+1,所以它的一个通项公式可写为(-1)n +1n 2+12n +1.(3)注意6=2×3,10=2×5,15=3×5,规律还不明显,再把各项的分子和分母都乘以2,即1×22,2×32,3×42,4×52,5×62,…,因而有a n =n (n +1)2.(4)把各项除以7,得1,11,111,…,再乘以9,得9,99,999,…,因而有a n =79(10n -1).11.根据数列的通项公式,用列表法和图象法表示下列数列(n ≤5且n ∈N *). (1)a n =(-1)n +2; (2)a n =n +1n.解:用列表法分别表示出这两个数列.n 1 2 3 4 5 a n =(-1)n +2 1 3 1 3 1 a n =n +1n232435465它们的图象如图(1)(2)所示.——能力提升类——12.在数列1,2,2,3,3,3,4,4,4,4,…中,第25项为( C ) A .2 B .6 C .7 D .8解析:∵已知数列中数字为1的有1项,数字为2的有2项,数字为3的有3项,∴按照此规律.当数字为6时,共有1+2+3+4+5+6=21项,当数字为7时,共有1+2+3+4+5+6+7=28项.∴第25项为7.13.下列叙述中正确的个数为( C )①数列a n =2是常数列;②数列⎩⎨⎧⎭⎬⎫(-1)n ·1n 是摆动数列;③数列⎩⎨⎧⎭⎬⎫n 2n +1是递增数列;④若数列{a n }是递增数列,则数列{a n ·a n +1}也是递增数列.A .1个B .2个C .3个D .4个解析:①②③正确,④是错误的,④中若a n =n -3,则a n a n +1=(n -3)(n -2)=n 2-5n +6,它不是递增数列.14.已知数列{a n }的通项公式是a n =n 2-8n +12,那么该数列中为负数的项一共有3项. 解析:令a n =n 2-8n +12<0,解得2<n <6,又因为n ∈N *,所以n =3,4,5,一共有3项. 15.已知数列{a n }的通项公式a n =n +6n .(1)求a 10.(2)5350是否是这个数列中的项? (3)这个数列中有多少整数项?(4)是否有等于序号的项?若有,求出该项;若没有,说明理由. 解:(1)a 10=10+610=85.(2)令n +6n =5350,得n =100.故5350是这个数列的第100项.(3)∵a n =1+6n ,∴当n =1,2,3,6时,a n 为整数.故这个数列中有4项是整数项. (4)令n +6n=n 得n 2-n -6=0, 解得n =3或n =-2(舍去).故该数列中有等于序号的项,即a 3=3.。
高中数学 第二章 数列 2.4 等比数列(第1课时)等比数列的概念及通项公式巩固提升(含解析)新人教
第1课时 等比数列的概念及通项公式[学生用书P105(单独成册)][A 基础达标]1.在数列{a n }中,若a n +1=3a n ,a 1=2,则a 4为( ) A .108 B.54 C .36D .18解析:选B.因为a n +1=3a n ,所以数列{a n }是公比为3的等比数列,则a 4=33a 1=54. 2.在等比数列{a n }中,a 1=18,q =2,则a 4与a 8的等比中项为( )A .±4 B.4 C .±14D .14解析:选A.由题意得(±a 6)2=a 4a 8,因为a 1=18,q =2,所以a 4与a 8的等比中项为±a 6=±4.3.如果-1,a ,b ,c ,-9成等比数列,那么( ) A .b =3,ac =9 B.b =-3,ac =9 C .b =3,ac =-9D .b =-3,ac =-9解析:选B.因为b 是-1,-9的等比中项,所以b 2=9,b =±3. 又等比数列奇数项符号相同,得b <0,故b =-3, 而b 又是a ,c 的等比中项, 故b 2=ac ,即ac =9.4.(2019·丰台高二检测)数列{a n }是公差不为0的等差数列,且a 1,a 3,a 7为等比数列{b n }的连续三项,则数列{b n }的公比为( )A. 2B.4 C .2D .12解析:选C.因为a 1,a 3,a 7为等比数列{b n }中的连续三项,所以a 23=a 1a 7,设{a n }的公差为d ,则d ≠0,所以(a 1+2d )2=a 1(a 1+6d ),所以a 1=2d ,所以公比q =a 3a 1=4d 2d=2.5.若正项数列{a n }满足a 1=2,a 2n +1-3a n +1a n -4a 2n =0,则{a n }的通项公式a n =( ) A .22n -1B.2nC .22n +1D .22n -3解析:选A.由a 2n +1-3a n +1a n -4a 2n =0,得(a n +1-4a n )·(a n +1+a n )=0.又{a n }是正项数列,所以a n +1-4a n =0,a n +1a n=4.由等比数列的定义知数列{a n }是以2为首项,4为公比的等比数列.由等比数列的通项公式,得a n =2×4n -1=22n -1.故选A.6.下面四个数列:①1,1,2,4,8,16,32,64;②在数列{a n }中,已知a 2a 1=2,a 3a 2=2; ③常数列a ,a ,…,a ,…; ④在数列{a n }中,a n +1a n=q (q ≠0),其中n ∈N *. 其中一定是等比数列的有________.解析:①不符合“每一项与它的前一项的比等于同一常数”,故不是等比数列. ②不一定是等比数列.当{a n }只有3项时,{a n }是等比数列;当{a n }的项数超过3时,不一定符合.③不一定.若常数列是各项都为0的数列,它就不是等比数列;当常数列各项不为0时,是等比数列.④等比数列的定义用式子的形式表示:在数列{a n }中,对任意n ∈N *,有a n +1a n=q (q ≠0),那么{a n }是等比数列.答案:④7.若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________. 解析:设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .因为a 1=b 1=-1,a 4=b 4=8,所以⎩⎪⎨⎪⎧-1+3d =8,-1·q 3=8,所以⎩⎪⎨⎪⎧d =3,q =-2. 所以a 2=2,b 2=2.所以a 2b 2=22=1.答案:18.等比数列{a n }中,若a 2a 5=2a 3,a 4与a 6的等差中项为54,则a 1=________.解析:设等比数列{a n }的公比为q , 因为a 2a 5=2a 3,所以a 21q 5=2a 1q 2,化简得a 1q 3=2=a 4. 因为a 4与a 6的等差中项为54,所以a 4+a 6=2×54,所以a 4(1+q 2)=52.所以q 2=14,解得q =±12.则a 1×⎝ ⎛⎭⎪⎫±18=2,解得a 1=±16. 答案:±169.在等比数列{a n }中,a 3=32,a 5=8. (1)求数列{a n }的通项公式a n ; (2)若a n =12,求n .解:(1)因为a 5=a 1q 4=a 3q 2,所以q 2=a 5a 3=14.所以q =±12.当q =12时,a n =a 1q n -1=a 1q 2·q n -3=a 3q n -3=32×⎝ ⎛⎭⎪⎫12n -3=28-n ;当q =-12时,a n =a 1q n -1=a 1q 2·q n -3=a 3q n -3=32×⎝ ⎛⎭⎪⎫-12n -3.所以a n =28-n或a n =32×⎝ ⎛⎭⎪⎫-12n -3.(2)当a n =12时,即28-n=12或32×⎝ ⎛⎭⎪⎫-12n -3=12,解得n =9.10.已知等比数列{a n }为递增数列,且a 25=a 10,2(a n +a n -2)=5a n -1,求数列{a n }的通项公式.解:设数列{a n }的公比为q . 因为a 25=a 10,2(a n +a n -2)=5a n -1,所以⎩⎪⎨⎪⎧a 21·q 8=a 1·q 9①2(q 2+1)=5q ②, 由①,得a 1=q , 由②,得q =2或q =12,又数列{a n }为递增数列,所以a 1=q =2,所以a n =2n.[B 能力提升]11.在数列{a n }中,已知a 1=1,a n +1=2a n +1,则a n =( ) A .2n-1 B.2n -1-1C .2n -1D .2(n -1)解析:选A.等式两边同时加1,得a n +1+1=2(a n +1),所以数列{a n +1}是以a 1+1=2为首项,q =2为公比的等比数列,所以a n +1=2×2n -1=2n ,所以a n =2n-1.12.已知等比数列{a n }的各项均为正数,公比q ≠1,ka 1a 2·…·a k =a 11,则k =( ) A .12 B.15 C .18D .21解析:选D.ka 1a 2·…·a k =a 1q 1+2+3+…+(k -1)k=a 1q k -12=a 1q 10,因为a 1>0,q ≠1,所以k -12=10,所以k =21,故选D.13.已知数列{a n }是等差数列,且a 2=3,a 4+3a 5=56,若log 2b n =a n . (1)求证:数列{b n }是等比数列; (2)求数列{b n }的通项公式.解:(1)证明:由log 2b n =a n ,得b n =2a n .因为数列{a n }是等差数列,不妨设公差为d ,则b n b n -1=2a n 2a n -1=2a n -a n -1=2d ,2d 是与n 无关的常数, 所以数列{b n }是等比数列.(2)由已知,得⎩⎪⎨⎪⎧a 1+d =3,a 1+3d +3(a 1+4d )=56,解得⎩⎪⎨⎪⎧a 1=-1,d =4,于是b 1=2-1=12,公比q =2d =24=16,所以数列{b n }的通项公式b n =12·16n -1=24n -5.14.(选做题)已知数列{a n }的前n 项和为S n ,a n =3S n +1(n ∈N *). (1)求a 1,a 2;(2)求数列{a n }的通项公式.解:(1)由题意,知a 1=3S 1+1,即a 1=3a 1+1, 所以a 1=-12.又a 2=3S 2+1,即a 2=3(a 1+a 2)+1,解得a 2=14.(2)由a n =3S n +1,① 得a n -1=3S n -1+1(n ≥2),② 由①-②,得a n -a n -1=3(S n -S n -1)=3a n ,得a n a n -1=-12,所以数列{a n }是首项为-12,公比为-12的等比数列,所以a n =⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫-12n -1=⎝ ⎛⎭⎪⎫-12n.。
高中数学 第二章 数列 2.1 数列的概念与简单表示素材 新人教A版必修5(2021年最新整理)
高中数学第二章数列2.1 数列的概念与简单表示素材新人教A版必修5 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第二章数列2.1 数列的概念与简单表示素材新人教A版必修5)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第二章数列2.1 数列的概念与简单表示素材新人教A版必修5的全部内容。
数列的概念与简单表示素材国际象棋数列的故事传说西塔发明了国际象棋而使国王十分高兴,他决定要重赏西塔,西塔说:“我不要你的重赏,陛下,只要你在我的棋盘上赏一些麦子就行了.在棋盘的第1个格子里放1粒,在第2个格子里放2粒,在第3个格子里放4粒,在第4个格子里放8粒,依此类推,以后每一个格子里放的麦粒数都是前一个格子里放的麦粒数的2倍,直到放满第64个格子就行了”。
区区小数,几粒麦子,这有何难,“来人",国王令人如数付给西塔.计数麦粒的工作开始了,第一格内放1粒,第二格内放2粒,第三格内放22粒,…还没有到第二十格,一袋麦子已经空了.一袋又一袋的麦子被扛到国王面前来.但是,麦粒数一格接一格飞快增长着,国王很快就看出,即便拿出全国的粮食,也兑现不了他对西塔的诺言.原来,所需麦粒总数为:18 446 744 073 709 551 615.这些麦子究竟有多少?打个比方,如果造一个仓库来放这些麦子,仓库高4公尺,宽10公尺,那么仓库的长度就要等于地球到太阳的距离的两倍.而要生产这么多的麦子,全世界要两千年.尽管国家非常富有,但要这样多的麦子他是怎么也拿不出来的.这么一来,国王就欠了西塔好大一笔债.。
高中数学第二章数列2.2.1等差数列的概念及通项公式练习新人教A版必修5
第 1 课时等差数列的观点及通项公式课后篇稳固研究A 组1 .已知等差数列 {a n}的首项 1 2,公差3, 则数列 { n} 的通项公式为 ()a =d=aA. a =3n- 1B. a =2n+1n nC.a n=2n+3D. a n=3n+2分析 a =a1+( n- 1) d=2+( n- 1)·3=3n- 1.n答案 A2 .若△的三个内角 , ,成等差数列 , 则 cos() () ABC A B C A+C=A. B. C.- D. -分析由于 A, B, C成等差数列,所以 A+C=2B. 又由于 A+B+C=π,所以 A+C= ,故cos( A+C) =-.答案 C3.在等差数列 { a n} 中 , 已知a1=, a4+a5=, a k=33, 则k=()A.50B.49C.48D.47分析设等差数列 { a n} 的公差为d,∵ a1=, a4+a5=, ∴2a1+7d=, 解得d=, 则n(1)×, 则k=33, 解得k=50.a =+ n-a=答案 A4.在等差数列 { a n} 中 , a1=8, a5=2, 若在相邻两项之间各插入一个数, 使之成等差数列 , 则新等差数列的公差为()A. B. - C. - D.-1分析设原等差数列的公差为d ,则842, 解得d=-, 所以新等差数列的公差为-.+ d=答案 B5.若 { a n} 为等差数列 , 则以下数列仍为等差数列的有()①{ |a | }; ②{ a1-a};③{ pa +q}(p, q 为常数);④{2 a +n} .n n+n n nA.1 个B.2 个C.3 个D.4 个分析设,n则 a n+1-a n=k,故②为常数列,也是等差数列 ;pa n +q=p( kn+b) +q=pkn+( pb+q),故③为等差数列 ;2a n+n=2( kn+b) +n=(2 k+1) n+2b,故④为等差数列 ;①不必定为等差数列, 如a n=2n- 4, 则 { |a n| } 的前 4 项为 2,0,2,4,明显{|a n|}不是等差数列.答案 C6.- 401 是等差数列- 5, - 9, - 13, ⋯中的第.分析等差数列的首-5,公差 -4. -401是数列的第n , - 401=- 5- 4( n- 1),解得n=100.答案 1007 .已知和 2n的等差中是 4,2 和n的等差中是 5,和n的等差中是.m m m分析由意 , 得①+②,得3(m+n)=18,6,和n 的等差中3∴m+n=∴m= .答案 38.正数列 { a } 足 : a =1, a =2,2* a =.( n∈N , n≥2),n127分析因2( n∈N* , n≥2),所以数列 { } 是以=1首,以 d==4- 1=3公差的等差数列, 所以=1+3( n- 1) =3n- 2,所以 a n=, n≥1.所以 a7=.答案9.在等差数列 { a n} 中 , a1=23, 公差d整数 , 若a6>0, a7<0.(1)求公差 d 的;(2)求通 a n.解 (1) 因 { a n} 是等差数列 , a1=23, a6>0, a7<0,所以解得 - <d<-.又公差 d 整数,所以 d=- 4.(2)因等差数列 { a n} 的首 23, 公差- 4,所以通 a n=23- 4( n- 1) =- 4n+27.10.学号 04994028 已知数列 { n}, 1 1,n+1 2 n 2na a = a = a + .(1)b n=, 明 : 数列 { b n} 是等差数列 ;(2) 求数列 { a n} 的通公式.n解 (1) 由于 a n+1=2a n +2 ,所以+1,所以=1, n ∈ N * .又由于 b n =, 所以 b n+1-b n =1.所以数列 { b n } 是等差数列 , 其首项 (2) 由 (1) 知 b n =1+( n- 1) ×1=n ,n- 1n- 1所以 a n =2 b n =n ·2 .b 1=a 1=1, 公差为 1. B 组1. 已知等差数列的前 4 项分别是 a , x , b ,2 x , 则等于 ( ) A.B.C.D.分析依题意,得 解得,故 .答案 C2. 以下命题正确的选项是 ()A. 若 a , b , c 成等差数列 , 则 a 2 , b 2, c 2 成等差数列B. 若 a , b , c 成等差数列 , 则 log a ,log b ,log 2c 成等差数列2 2C.若 a , b , c 成等差数列 , 则 a+2, b+2, c+2 成等差数列D.若,, c 成等差数列 , 则 2a ,2 b ,2 c 成等差数列a b分析 由于 a , b , c 为等差数列 , 所以 2b=a+c , 所以 2( b+2) =( a+2) +( c+2), 故 a+2, b+2, c+2 成等差数列 .答案 C3. 已知数列 { a n }, a 3=2, a 7=1, 若为等差数列 , 则 a 11=( )A .B .C .1D .2分析 由已知可得是等差数列 的第 3 项和第 7 项 , 故其公差 d=,由此可得+(11 - 7) d=+4×, 解得 a =.11答案 A4. 已知 { a } 是公差为 d 的等差数列 , 若 3a =a +a +a +12, 则 d=.n6 3 4 5分析 3a 6=a 3+a 4+a 5+12? 3( a 1+5d ) =a 1+2d+a 1+3d+a 1+4d+12? 6d=12, 解得 d=2.答案 25. 已知直角三角形的三条边的长度成等差数列 , 则它们长度的比等于 .分析个直角三角形的三分,,, 依据勾股定理 , 得(a-d) 22()2, 解得a-d a a+d+a = a+da=4d,于是个直角三角形的三分是3d,4 d,5 d, 即个直角三角形的三的比是3∶4∶5.答案 3∶4∶56.已知数列 { a n}, a1=1, a2=, 且( n≥2),a n=.分析∵,∴数列是等差数列,公差d=.∴+( n- 1) d=1+ ( n- 1) =.∴a n=.答案7.已知等差数列{ a n}:3,7,11,15,⋯.(1)求等差数列 { a n} 的通公式.(2)135,4b+19( b∈N*)是数列{ a n}中的?假如,是第几?(3)若 a m, a t( m, t ∈N*)是数列{ a n}中的, 2a m+3a t是数列{ a n}中的?假如,是第几?解 (1) 等差数列 { a n} 的公差 d.依意 , 得a1=3, d=7- 3=4,故 a n=3+4( n- 1) =4n- 1.(2) 令a n=4n- 1=135, 解得n=34,故 135 是数列 { a n} 的第 34 .∵4b+19=4( b+5) - 1, 且b∈ N* ,∴4b+19 是数列 { a n} 的第 ( b+5).(3)∵a m, a t是数列{ a n}中的,∴a m=4m-1, a t =4t- 1,∴2a +3at =2(4 m-1) +3(4 t- 1) =4(2 m+3t- 1) - 1.m∵2m+3t- 1∈ N* ,23是数列 {a}的第(2 31).t nm8.学号 04994029 在数列 { a n} 中, a1=1,3 a n a n- 1+a n-a n- 1=0( n≥2, n∈ N* ) .(1)明 : 数列是等差数列;(2)求数列 { a n} 的通公式 ;(3)若λa n+≥λ 随意的n≥2恒建立,求数λ 的取范.(1)明由 3a n a n- 1+a n-a n- 1=0( n≥2),整理得=3( n≥2),所以数列是以 1 首 ,3 公差的等差数列. (2) 解由 (1) 可得=1+3( n- 1) =3n- 2,所以 a n=.(3)解λa n+≥λ 随意的n≥2恒建立,即+3n- 2≥λ随意的 n≥2恒建立,整理 , 得λ≤随意的n≥2恒建立 .令f ( ),f( 1)( )3. n =n+ -f n == -因 n≥2,所以 f ( n+1) -f ( n) >0,即 f (2) <f (3) <f (4) <⋯,所以 f (2)最小 .又 f (2) =, 所以λ≤,所以数λ 的取范.。
高中数学第二章数列2.1数列的概念与简单表示法第二课时数列的性质和递推公式课件新人教A版必修5
当 an1 >1 时,数列{an}是递减数列. an
对于任意 n(n∈N*),若 an≠0,则当 an1 =1 时,数列{an}是常数列. an
(2)利用数列的图象直观地判断.
5.周期数列的概念 对于摆动数列-1,1,-1,1,-1,1,-1,1,…,我们视察后可以发现,数列的项1,1 重 复 出 现 , 用 公 式 表 示 为 an=an+2. 若 记 f(n)=an, 则 可 以 表 示 为 f(n)= f(n+2),即数列中的项循环出现,我们称此类数列为周期数列. 周期数列的递推公式的一般情势为an+k=an(n∈N*,k∈N*,k≥2),如数列1,2, 3,1,2,3,1,2,3,…是周期为3的周期数列,满足an+3=an(n∈N*). 6.判断周期数列的方法 要判断一个数列是否具有周期性或求解一个周期数列,主要方法是通过递推 公式求出数列的若干项,视察得到规律或由递推公式直接发现规律.
解:(1)因为 an+1-an= 1 = 1 - 1 ,所以 a2-a1= 1 =1- 1 ;
n(n 1) n n 1
1 2 2
a3-a2= 1 = 1 - 1 ;a4-a3= 1 = 1 - 1 ;
23 2 3
34 3 4
…
an-an-1= 1 = 1 - 1 ; (n 1)n n 1 n
以上各式累加得,an-a1=1- 1 + 1 - 1 +…+ 1 - 1 =1- 1 .所以 an+1=1- 1 ,所以 an=- 1 .
②作商法:即作商 an1 (务必要确定 an 的符号)后与 1 比较对于任意 n(n∈N*),若 an>0, an
则当 an1 >1 时,数列{an}是递增数列; an
高中数学第二章数列2.4.1等比数列的概念及通项公式练习(含解析)新人教A版必修5
第13课时等比数列的概念及通项公式知识点一等比数列的定义1.数列m,m,m,…一定( )A.是等差数列,但不是等比数列B.是等比数列,但不是等差数列C.是等差数列,但不一定是等比数列D.既是等差数列,又是等比数列答案 C解析当m=0时,数列是等差数列,但不是等比数列;当m≠0时,数列既是等差数列,又是等比数列.故选C.2.若正数a,b,c依次成公比大于1的等比数列,则当x>1 时,log a x,log b x,log c x( ) A.依次成等差数列B.依次成等比数列C.各项的倒数依次成等差数列D.各项的倒数依次成等比数列答案 C解析1log a x+1log c x=log x a+log x c=log x(ac)=log x b2=2log x b=2log b x,∴1log a x,1log b x,1log c x成等差数列.知识点二等比数列的通项公式3.一批设备价值a万元,由于使用磨损,每年比上一年价值降低b%,则n年后这批设备的价值为( )A.na(1-b%) B.a(1-nb%)C.a(1-b%)n D.a[1-(b%)n]答案 C解析依题意可知第一年后的价值为a(1-b%),第二年后的价值为a(1-b%)2,依此类推形成首项为a(1-b%),公比为1-b%的等比数列,则可知n年后这批设备的价值为a(1-b %)n .故选C .4.在等比数列{a n }中,a n >0,且a 2=1-a 1,a 4=9-a 3,则a 4+a 5的值为( ) A .16 B .27 C .36 D .81 答案 B解析 由已知,得⎩⎪⎨⎪⎧a 1+a 2=1,a 3+a 4=9.∴q 2(a 1+a 2)=9,∴q 2=9.∵a n >0,∴q =3. ∴a 4+a 5=q (a 3+a 4)=3×9=27.知识点三 等比数列的证明5.已知数列{a n }的首项a 1=t >0,a n +1=3a n 2a n +1,n ∈N *,若t =35,求证1a n-1是等比数列并求出{a n }的通项公式.解 由题意知a n >0,1a n +1=2a n +13a n , 1a n +1=13a n +23, 1a n +1-1=131a n -1,1a 1-1=23, 所以数列1a n -1是首项为23,公比为13的等比数列.1a n -1=2313n -1=23n ,a n =3n3n +2.知识点四 等比中项及应用6.已知一等比数列的前三项依次为x ,2x +2,3x +3,那么-1312是此数列的第________项( )A .2B .4C .6D .8 答案 B解析 由x ,2x +2,3x +3成等比数列,可知(2x +2)2=x (3x +3),解得x =-1或-4,又当x =-1时,2x +2=0,这与等比数列的定义相矛盾.∴x =-4.∴该数列是首项为-4,公比为32的等比数列,其通项a n =-4×32n -1,由-4×32n -1=-1312,得n =4.7.若互不相等的实数a ,b ,c 成等差数列,a 是b ,c 的等比中项,且a +3b +c =10,则a 的值是( )A .1B .-1C .-3D .-4 答案 D解析 由题意,得⎩⎪⎨⎪⎧2b =a +c ,a 2=bc ,a +3b +c =10,解得a =-4,b =2,c =8.8.在等比数列{a n }中,若a 4a 5a 6=27,则a 3与a 7的等比中项是________. 答案 ±3解析 由等比中项的定义知a 25=a 4a 6,∴a 35=27. ∴a 5=3,∴a 1q 4=3,∴a 3a 7=a 21q 8=32,因此a 3与a 7的等比中项是±3.易错点一 忽略对等比中项符号的讨论9.若1,x ,y ,z ,16这五个数成等比数列,则y 的值为( ) A .4 B .-4 C .±4 D.2易错分析 对于本题的求解,若仅注意到y 是1与16的等比中项,会很快得出y 2=16,进一步得出y =±4,从而导致错解.答案 A解析 由于⎩⎪⎨⎪⎧x 2=1·y ,y 2=1×16⇒y =4,故选A .易错点二 忽略等比数列中公比可正可负10.已知一个等比数列的前4项之积为116,第2项与第3项的和为2,则这个等比数列的公比为________.易错分析 本题易错设四个数分别为a q 3,a q,aq ,aq 3公比为q 2相当于规定了这个等比数列各项要么同正,要么同负而错算出公比为3±22.答案 3±22或-5±2 6解析 设这4个数为a ,aq ,aq 2,aq 3(其中aq ≠0),由题意得⎩⎪⎨⎪⎧a ·aq ·aq 2·aq 3=116,aq +aq 2=2,所以⎩⎪⎨⎪⎧a 2q 3=±14,a 2q +q 22=2.所以a 2q 3a 2q +q 22=±18, 整理得q 2-6q +1=0或q 2+10q +1=0, 解得q =3±22或q =-5±26.一、选择题1.若等比数列{a n }满足a n a n +1=16n,则公比为( ) A .2 B .4 C .8 D .16 答案 B解析 由a n a n +1=16n ,知a 1a 2=16,a 2a 3=162,后式除以前式得q 2=16,∴q =±4.∵a 1a 2=a 21q =16>0,∴q >0,∴q =4.2.在数列{a n }中,a 1=1,点(a n ,a n +1)在直线y =2x 上,则a 4的值为( ) A .7 B .8 C .9 D .16 答案 B解析 ∵点(a n ,a n +1)在直线y =2x 上,∴a n +1=2a n .∵a 1=1≠0,∴a n ≠0.∴{a n }是首项为1,公比为2的等比数列,∴a 4=1×23=8.3.已知等比数列a 1,a 2,…a 8各项为正,且公比q ≠1,则( ) A .a 1+a 8=a 4+a 5 B .a 1+a 8<a 4+a 5 C .a 1+a 8>a 4+a 5D .a 1+a 8与a 4+a 5大小关系不能确定 答案 C解析 由题意可知,a 1>0,q >0,a 1+a 8-a 4-a 5=a 1(1+q 7-q 3-q 4)=a 1[1-q 3-q 4(1-q 3)]=a 1[(1-q 3)(1-q 4)]>0.∴a 1+a 8>a 4+a 5.故选C .4.一个数分别加上20,50,100后得到的三个数成等比数列,其公比为( ) A .53 B .43 C .32 D .12 答案 A解析 设这个数为x ,则(50+x )2=(20+x )·(100+x ),解得x =25.∴这三个数分别为45,75,125,公比q 为7545=53.5.在如下表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,则a +b +c 的值为( )A .1B .2C .3D .98答案 D解析 按题意要求,每一横行成等差数列,每一纵列成等比数列填表如图,故a =12,b =38,c =14,则a +b +c =98.故选D .二、填空题6.一个直角三角形的三边成等比数列,则较小锐角的正弦值是________. 答案5-12解析 设该直角三角形的三边分别为a ,aq ,aq 2(q >1),则(aq 2)2=(aq )2+a 2,∴q 2=5+12.较小锐角记为θ,则sin θ=1q 2=5-12. 7.我国古代数学著作《九章算术》有如下问题:“今有人持金出五关,前关二税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金几何”其意思为“今有人持金出五关,第1关收税金12,第2关收税金13,第3关收税金14,第4关收税金15,第5关收税金16,5关所收税金之和,恰好1斤重,设这个人原本持金为x ,按此规律通过第8关”,则第8关需收税金为________.答案172x 解析 第1关收税金:12x ;第2关收税金:13⎝ ⎛⎭⎪⎫1-12x =12×3x ;第3关收税金:14⎝ ⎛⎭⎪⎫1-12-16x =13×4x ;…,可得第8关收税金:18×9x ,即172x . 8.各项均为正数的等比数列{a n }中,a 2-a 1=1.当a 3取最小值时,数列{a n }的通项公式a n =________.答案 2n -1解析 设等比数列的公比为q (q >0), 由a 2-a 1=1,得a 1(q -1)=1,所以a 1=1q -1. a 3=a 1q 2=q 2q -1=1-1q 2+1q(q >0), 而-1q 2+1q =-⎝ ⎛⎭⎪⎫1q -122+14, ①当q =2时①式有最大值14,所以当q =2时a 3有最小值4. 此时a 1=1q -1=12-1=1. 所以数列{a n }的通项公式a n =2n -1.故答案为2n -1.三、解答题9.等比数列{a n }中,已知a 1=2,a 4=16. (1)求数列{a n }的通项公式;(2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .解 (1)设{a n }的公比为q , 由已知得16=2q 3,解得q =2, ∴a n =a 1qn -1=2n.(2)由(1)得a 3=8,a 5=32,则b 3=8,b 5=32,设{b n }的公差为d ,则有⎩⎪⎨⎪⎧b 1+2d =8,b 1+4d =32,解得⎩⎪⎨⎪⎧b 1=-16,d =12.从而b n =-16+12(n -1)=12n -28, ∴数列{b n }的前n 项和S n =n -16+12n -2=6n 2-22n .10.数列{a n }满足a 1=-1,且a n =3a n -1-2n +3(n =2,3,…). (1)求a 2,a 3,并证明数列{a n -n }是等比数列; (2)求a n .解 (1)a 2=3a 1-2×2+3=-4,a 3=3a 2-2×3+3=-15.下面证明{a n -n }是等比数列: 证明:由a n =3a n -1-2n +3可得a n -n =3[a n -1-(n -1)],因为a 1-1=-2≠0,所以a n -n ≠0, 所以a n +1-n +a n -n=3a n -n ++3-n +a n -n=3a n -3na n -n=3(n =1,2,3,…). 又a 1-1=-2,所以{a n -n }是以-2为首项,3为公比的等比数列. (2)由(1)知a n -n =-2·3n -1,所以a n =n -2·3n -1.。
【高中数学】新人教A版高二第 1 课时 数列的概念与表示(练习题)
新人教A版高二第 1 课时数列的概念与表示(1212)1.数列−1,3,−5,7,−9,…的一个通项公式为()A.a n=2n−1B.a n=(−1)n(2n−1)C.a n=(−1)n(1−2n)D.a n=(−1)n+1(2n−1)2.数列13,14,15,…,1n,…的第11项是()A.110B.111C.112D.1133.数列2,6,12,20,…的第6项是()A.42B.56C.90D.724.已知n∈N∗,给出4个表达式:①a n={0,n为奇数,1,n为偶数;②a n=1+(−1)n2;③a n=1+cosnπ2;④a n=|sin nπ2|.其中能作为数列:0,1,0,1,0,1,0,1,⋯的通项公式的是()A.①②③B.①②④C.②③④D.①③④5.数列{a n}的通项公式为a n=−58+16n−n2,则()A.{a n}是递增数列B.{a n}是递减数列C.{a n}先增后减,有最大值D.{a n}先减后增,有最小值6.已知a n=n2+n,那么()A.0是数列中的项B.20是数列中的项C.3是数列中的项D.930不是数列中的项7.已知数列{a n}的通项公式为a n=n2−kn,且{a n}为递增数列,则k的取值范围是()A.(−∞,2]B.(−∞,3)C.(−∞,2)D.(−∞,3]8.已知数列{a n}的前4项分别为−12,34,−58,716,则数列{a n}的通项公式是()A.a n=2n−12n B.a n=(−1)n·(2n−1)2nC.a n=2n+12n D.a n=(−1)n·(2n+1)2n9.已知数列{a n}的通项公式为a n=(−1)n(2n−1),则a5=.10.若数列{a n}的通项满足a nn=n−2,那么15是这个数列的第项. 11.已知数列{a n}的通项公式为a n=19−2n,则使a n>0成立的正整数n的最大值为.12.已知对任意的正整数n,都有a n=n2+λn成立.若数列{a n}是递增数列,则实数λ的取值范围是.13.写出下列数列的一个通项公式.(1)0.9,0.99,0.999,0.9999,…;(2)112,245,3910,41617,…;(3)12,34,78,1516,…;(4)3,5,9,17,….14.根据数列{a n}的通项公式,写出数列的前5项,并用图象表示出来.(1)a n=3+(−1)n2;(2)a n=sin(n+1)π2+1.15.已知f(x)={(2a−1)x+4(x⩽1),a x(x>1),数列{a n}(n∈N∗)满足a n=f(n),且{a n}是递增数列,则a的取值范围是()A.(1,+∞)B.(12,+∞) C.(1,3) D.(3,+∞)16.如图所示,有一个n(n⩾2)行n+1列的士兵方阵.(1)写出一个数列,用它表示当n分别为2,3,4,5,6,…时方阵中的士兵人数;(2)说出(1)中数列的第5项与第6项表示的意义,并求a5,a6;(3)若把(1)中的数列记为{a n},求该数列的通项公式;(4)在(3)的数列{a n}中,求a10,并说明a10所表示的实际意义.参考答案1.【答案】:B【解析】:因为数列1,3,5,7,9,…的通项公式为a n=2n−1,由题中数列的奇数项为负,得所求数列的通项公式为a n=(−1)n(2n−1).故选B.2.【答案】:D【解析】:由题意可归纳出所给数列的通项公式为a n=1n+2,所以a11=113.故选 D.3.【答案】:A【解析】:因为2=1×2,6=2×3,12=3×4,20=4×5,…,所以所给数列的第6项为6×7=42.故选A.4.【答案】:A【解析】:①②③逐一写出均为0,1,0,1,0,1,⋯,满足题意,④逐一写出为1,0,1,0,1,0,1,⋯,不满足题意,故选A.5.【答案】:C【解析】:a n=−(n−8)2+6是关于n的二次函数,其图象开口向下.则当n⩽8时,{a n}是递增数列,当n>8时,{a n}是递减数列,当n=8时,a n取得最大值.故选 C.6.【答案】:B【解析】:令n2+n=0,解得n=0或n=−1,因为n∈N∗,所以0不是数列中的项,故选项A错误;令n2+n=20,解得n=4或n=−5(舍),则a4=20,故选项B正确;令n2+n=3,易知该方程无有理数根,则3不是数列中的项,故选项C错误;令n2+n=930,解得n=30或n=−31(舍),则a30=930,即930是数列中的项,故选项D错误.故选 B.7.【答案】:B【解析】:a n+1−a n=(n+1)2−k(n+1)−n2+kn=2n+1−k,因为{a n}为递增数列,所以应满足a n+1−a n>0恒成立,即2n+1−k>0恒成立,即k<2n+1恒成立,又n∈N∗,所以(2n+1)min=3,所以k<3.故选B.8.【答案】:B【解析】:观察数列{a n}的前4项,可知分母为2n,分子是奇数,为2n−1,同时符号正负相间,可用(−1)n表示,所以a n=(−1)n·(2n−1)2n.故选 B.9.【答案】:−9【解析】:令n=5,可得a5=−9.10.【答案】:5【解析】:由a nn =n−2可知an=n2−2n,令n2−2n=15,解得n=5(负值舍去),则15是这个数列的第5项.11.【答案】:9【解析】:由a n=19−2n>0,得n<192,因为n∈N∗,所以n⩽9,则满足题意的正整数n的最大值为9.12.【答案】:λ>−3【解析】:∵数列{a n}是递增数列,∴a n+1−a n=(n+1)2+λ(n+1)−n2−λn=2n+1+λ>0对任意的正整数n恒成立,即λ>−2n−1对任意的正整数n恒成立,∴λ>−3.13(1)【答案】0.9=1−0.1=1−10−1,0.99=1−10−2,0.999=1−10−3,0.9999=1−10−4,故a n=1−10−n(n∈N∗).(2)【答案】112=1+112+1,245=2+2222+1,3910=3+3232+1,41617=4+4242+1,故a n=n+n2n2+1(n∈N∗).(3)【答案】12=21−121=1−121,3 4=22−122=1−122,7 8=23−123=1−123,15 16=24−124=1−124,故a n=2n−12n =1−12n(n∈N∗).(4)【答案】3=1+2,5=1+22,9=1+23,17=1+24,故a n=1+2n(n∈N∗).14(1)【答案】a1=3+(−1)12=1,a2=3+(−1)22=2,a3=1,a4=2,a5=1.图象如图①所示.(2)【答案】a1=sin(1+1)π2+1=sinπ+1=1,a2=sin (2+1)π2+1=0,a3=sin (3+1)π2+1=1,a4=sin (4+1)π2+1=2,a5=sin(5+1)π2+1=1. 图像如图②所示.15.【答案】:D【解析】:因为{a n}是递增数列,所以{a>1,a2>2a−1+4,解得a>3,则a的取值范围是(3,+∞).故选 D.16(1)【答案】当n=2时,表示士兵方阵为2行3列,人数为6;当n=3时,表示士兵方阵为3行4列,人数为12.依此类推.故所求数列为6,12,20,30,42,….(2)【答案】方阵的行数比数列的序号大1,因此第5项表示6行7列方阵中的士兵人数,第6项表示7行8列方阵中的士兵人数,故a5=42,a6=56.(3)【答案】由(1)知该数列的前4项分别为6=2×3,12=3×4,20=4×5,30=5×6,因此a n=(n+1)(n+2).(4)【答案】由(3)知a10=11×12=132,a10表示11行12列方阵中的士兵的人数.。
2019_2020版高中数学第二章数列2.2.1等差数列的概念及通项公式课件新人教A版必修
(2)a1=1,a2=a1+3,a3=a2+3=a1+2×3,…,an=a1+(n-1)·3.
2.填空: 等差数列的通项公式 以a1为首项,d为公差的等差数列{an}的通项公式为an=a1+(n-1)d.
即 b=-12+7=3.同理 a 是-1 和 b 的等差中项,c 是 b 和 7 的等差中项,所
以 a=-12+������=1,c=3+27=5.故 a,b,c 的值分别为 1,3,5.
反思感悟等差中项的应用策略
1.求两个数 x,y 的等差中项,根据等差中项的定义得 A=������+2������. 2.证明三项成等差数列,只需证明中间一项为两边两项的等差中项 即可,即若 a,b,c 成等差数列,则 a+c=2b;反之,若 a+c=2b,则 a,b,c 成等 差数列.
一二三
二、等差中项
【问题思考】
1.在下面两个数之间,插入一个怎样的数,这三个数就可以构成等差
数列?插入的数唯一吗?
(1)2,
,6;(2)10,
,-30;(3)9,
,9.
提示插入的数分别是4,-10,9,插入的数是唯一的.
2.填空: 由三个数a,A,b组成的等差数列可以看成最简单的等差数列.这时 ,A叫做a与b的等差中项.这三个数满足关系式2A=a+b.
2.2 等差数列
第1课时 等差数列的概念 及通项公式
课标阐释
思维脉络
1.理解等差数列的概念,理解
等差中项的概念.
等差数列的概念及通项公式
2.掌握等差数列的通项公式, 能运用公式解决相关问题. 3.掌握等差数列的判断与证
高中数学新人教A版必修5 第二章 2.1 第二课时 数列的通项公式与递推公式
第二课时数列的通项公式与递推公式预习课本P30~31,思考并完成以下问题(1)什么叫数列的递推公式?(2)由数列的递推公式能否求出数列的项?[新知初探]数列的递推公式定义:如果已知数列的第1项(或前几项),且从第2项(或某一项)开始的任一项a n与它的前一项a n-1(或前几项)(n≥2)间的关系可以用一个公式表示,那么这个公式叫做这个数列的递推公式.[点睛](1)与所有的数列不一定都有通项公式一样,并不是所有的数列都有递推公式.(2)递推公式也是给出数列的一种重要方法,递推公式和通项公式一样都是关于项数n 的恒等式,用符合要求的正整数依次去替换n,就可以求出数列的各项.(3)递推公式通过赋值逐项求出数列的项,直至求出数列的任何一项和所需的项.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)根据通项公式可以求出数列的任意一项()(2)有些数列可能不存在最大项()(3)递推公式是表示数列的一种方法()(4)所有的数列都有递推公式()解析:(1)正确.只需将项数n代入即可求得任意项.(2)正确.对于无穷递增数列,是不存在最大项的.(3)正确.递推公式也是给出数列的一种重要方法.(4)错误.不是所有的数列都有递推公式.例如2精确到1,0.1,0.01,0.001,…的近似值排列成一列数:1,1.4,1.41,1.414,…就没有递推公式.答案:(1)√(2)√(3)√(4)×2.符合递推关系式a n=2a n-1的数列是()A.1,2,3,4,…B.1,2,2,22,…C.2,2,2,2,… D .0,2,2,22,…解析:选B B 中从第二项起,后一项是前一项的2倍,符合递推公式a n =2a n -1. 3.数列{a n }中,a n +1=a n +2-a n ,a 1=2,a 2=5,则a 5=( ) A .-3 B .-11 C .-5D .19解析:选D 由a n +1=a n +2-a n ,得a n +2=a n +a n +1, 则a 3=a 1+a 2=7,a 4=a 2+a 3=12,a 5=a 3+a 4=19. 4.已知a 1=1,a n =1+1a n -1(n ≥2),则a 5=________.解析:由a 1=1,a n =1+1a n -1,得a 2=2,a 3=32,a 4=53,a 5=85.答案:85由递推公式求数列的项[典例] 数列{a n }中,a 1=1,a 2=3,a 2n +1-a n a n +2=(-1)n,求{a n }的前5项.[解] 由a 2n +1-a n a n +2=(-1)n,得a n +2=a 2n +1-(-1)na n,又∵a 1=1,a 2=3,∴a 3=a 22-(-1)1a 1=32+11=10,a 4=a 23-(-1)2a 2=102-13=33,a 5=a 24-(-1)3a 3=332+110=109.∴数列{a n }的前5项为1,3,10,33,109.由递推公式求数列的项的方法(1)根据递推公式写出数列的前几项,首先要弄清楚公式中各部分的关系,依次代入计算即可.(2)若知道的是首项,通常将所给公式整理成用前面的项表示后面的项的形式.(3)若知道的是末项,通常将所给公式整理成用后面的项表示前面的项的形式. [活学活用]已知数列{a n }满足a n +1=⎩⎨⎧2a n,0≤a n<12,2a n-1,12≤a n<1,若a 1=67,则a 2 018=________.解析:计算得a 2=2a 1-1=57,a 3=2a 2-1=37,a 4=2a 3=67.故数列{a n }是以3为周期的周期数列,又因为2 018=672×3+2,所以a 2 018=a 2=57.答案:57由递推公式求通项公式题点一:累加法求通项公式1.已知数列{a n }满足a 1=-1,a n +1=a n +1n (n +1),n ∈N *,求数列的通项公式a n .解:∵a n +1-a n =1n (n +1),∴a 2-a 1=11×2;a 3-a 2=12×3;a 4-a 3=13×4;…a n -a n -1=1(n -1)n; 以上各式累加得,a n -a 1=11×2+12×3+…+1(n -1)n=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1-1n =1-1n. ∴a n +1=1-1n ,∴a n =-1n (n ≥2).又∵n =1时,a 1=-1,符合上式,∴a n =-1n .题点二:累乘法求通项公式2.设数列{a n }中,a 1=1,a n =⎝⎛⎭⎫1-1n a n -1(n ≥2),求数列的通项公式a n . 解:∵a 1=1,a n =⎝⎛⎭⎫1-1n a n -1(n ≥2),∴an a n -1=n -1n , a n =a n a n -1×a n -1a n -2×a n -2a n -3×…×a 3a 2×a 2a 1×a 1=n -1n ×n -2n -1×n -3n -2×…×23×12×1=1n . 又∵n =1时,a 1=1,符合上式,∴a n =1n .由数列的递推公式求通项公式时,若递推关系为a n +1=a n +f (n )或a n +1=g (n )·a n ,则可以分别通过累加或累乘法求得通项公式,即:(1)累加法:当a n =a n -1+f (n )时,常用a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1求通项公式.(2)累乘法:当a n a n -1=g (n )时,常用a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1求通项公式.数列的最大、最小项问题[典例] 已知数列{a n }的通项公式是a n =()n +1·⎝⎛⎭⎫1011n ,试问该数列有没有最大项?若有,求出最大项和最大项的序号;若没有,请说明理由.[解] 法一:a n +1-a n=(n +2)⎝⎛⎭⎫1011n +1-(n +1)⎝⎛⎭⎫1011n =(9-n )⎝⎛⎭⎫1011n11, 当n <9时,a n +1-a n >0,即a n +1>a n ; 当n =9时,a n +1-a n =0,即a n +1=a n ; 当n >9时,a n +1-a n <0,即a n +1<a n . 则a 1<a 2<a 3<…<a 9=a 10>a 11>a 12>…,故数列{a n }有最大项,为第9项和第10项,且a 9=a 10=10×⎝⎛⎭⎫10119.法二:根据题意,令⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1,(n >1)即⎩⎨⎧n ×⎝⎛⎭⎫1011n -1≤(n +1)⎝⎛⎭⎫1011n ,(n +1)⎝⎛⎭⎫1011n≥(n +2)⎝⎛⎭⎫1011n +1,(n >1)解得9≤n ≤10.又n ∈N *,则n =9或n =10.故数列{a n }有最大项,为第9项和第10项,且a 9=a 10=10×⎝⎛⎭⎫10119.(1)由于数列是特殊的函数,所以可以用研究函数的思想方法来研究数列的相关性质,如单调性、最大值、最小值等,此时要注意数列的定义域为正整数集或其有限子集{1,2,…,n }这一条件.(2)可以利用不等式组⎩⎪⎨⎪⎧ a n -1≤a n ,a n ≥a n +1,(n >1)找到数列的最大项;利用不等式组⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1,(n >1)找到数列的最小项.[活学活用]数列{a n }的通项公式为a n =3n 2-28n ,则数列{a n }各项中最小项是( ) A .第4项 B .第5项 C .第6项D .第7项解析:选B a n =3n 2-28n =3⎝⎛⎭⎫n -1432-1963, 当n =143时,a n 最小,又n ∈N *, 故n =5时,a n =3n 2-28n 最小.层级一 学业水平达标1.已知数列{a n }的首项为a 1=1,且满足a n +1=12a n +12n ,则此数列的第4项是( )A .1 B.12 C.34D.58解析:选B 由a 1=1,∴a 2=12a 1+12=1,依此类推a 4=12.2.在递减数列{a n }中,a n =kn (k 为常数),则实数k 的取值范围是( ) A .R B .(0,+∞) C .(-∞,0)D .(-∞,0]解析:选C ∵{a n }是递减数列, ∴a n +1-a n =k (n +1)-kn =k <0.3.数列{a n }中,a 1=1,对所有的n ≥2,都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5等于( ) A.259 B.2516 C.6116 D.3115 解析:选C 由题意a 1a 2a 3=32,a 1a 2=22, a 1a 2a 3a 4a 5=52,a 1a 2a 3a 4=42,则a 3=3222=94,a 5=5242=2516.故a 3+a 5=6116.4.已知数列{a n }满足要求a 1=1,a n +1=2a n +1,则a 5等于( ) A .15 B .16 C .31D .32 解析:选C ∵数列{a n }满足a 1=1,a n +1=2a n +1,∴a 2=2×1+1=3,a 3=2×3+1=7,a 4=2×7+1=15,a 5=2×15+1=31.5.由1,3,5,…,2n -1,…构成数列{a n },数列{b n }满足b 1=2,当n ≥2时,b n =a b n -1,则b 6的值是( )A .9B .17C .33D .65解析:选C ∵b n =a b n -1,∴b 2=a b 1=a 2=3,b 3=a b 2=a 3=5,b 4=a b 3=a 5=9,b 5=a b 4=a 9=17,b 6=a b 5=a 17=33.6.已知数列{a n }满足a 1=23,a n +1=n n +1a n,得a n =________.解析:由条件知a n +1a n=nn +1,分别令n =1,2,3,…,n -1,代入上式得n -1个等式,即a 2a 1·a 3a 2·a 4a 3·…·a n a n -1=12×23×34×…×n -1n ⇒a n a 1=1n .又∵a 1=23,∴a n =23n .答案:23n7.数列{a n }的通项公式为a n =n 2-6n ,则它最小项的值是________. 解析:a n =n 2-6n =(n -3)2-9,∴当n =3时,a n 取得最小值-9. 答案:-98.已知数列{a n },a n =b n +m (b <0,n ∈N *),满足a 1=2,a 2=4,则a 3=________.解析:∵⎩⎪⎨⎪⎧ 2=b +m ,4=b 2+m ,∴⎩⎪⎨⎪⎧b =-1,m =3.∴a n =(-1)n +3,∴a 3=(-1)3+3=2. 答案:29.根据下列条件,写出数列的前四项,并归纳猜想它的通项公式. (1)a 1=0,a n +1=a n +2n -1(n ∈N *); (2)a 1=1,a n +1=a n +a nn +1(n ∈N *);(3)a 1=2,a 2=3,a n +2=3a n +1-2a n (n ∈N *). 解:(1)a 1=0,a 2=1,a 3=4,a 4=9.猜想a n =(n -1)2. (2)a 1=1,a 2=32,a 3=42,a 4=52.猜想a n =n +12.(3)a 1=2,a 2=3,a 3=5,a 4=9.猜想a n =2n -1+1.10.已知函数f (x )=x -1x .数列{a n }满足f (a n )=-2n ,且a n >0.求数列{a n }的通项公式. 解:∵f (x )=x -1x ,∴f (a n )=a n -1a n,∵f (a n )=-2n .∴a n -1a n=-2n ,即a 2n +2na n -1=0.∴a n =-n ±n 2+1.∵a n >0,∴a n =n 2+1-n .层级二 应试能力达标1.若数列{a n }满足a n +1=4a n +34(n ∈N *),且a 1=1,则a 17=( ) A .13 B .14 C .15D .16解析:选A 由a n +1=4a n +34⇒a n +1-a n =34,a 17=a 1+(a 2-a 1)+(a 3-a 2)+…+(a 17-a 16)=1+34×16=13,故选A.2.在数列{a n }中,a 1=2,a n +1=a n +lg ⎝⎛⎭⎫1+1n ,则a n =( ) A .2+lg n B .2+(n -1)lg n C .2+n lg nD .1+n +lg n解析:选A 由a n +1=a n +lg ⎝⎛⎭⎫1+1n ⇒a n +1-a n =lg ⎝⎛⎭⎫1+1n ,那么a n =a 1+(a 2-a 1)+…+(a n -a n -1)=2+lg 2+lg 32+lg 43+…+lg n n -1=2+lg (2×32×43×…×n n -1)=2+lg n .3.已知数列{a n },a n =-2n 2+λn ,若该数列是递减数列,则实数λ的取值范围是( ) A .(-∞,3] B .(-∞,4] C .(-∞,5)D .(-∞,6)解析:选D 依题意,a n +1-a n =-2(2n +1)+λ<0,即λ<2(2n +1)对任意的n ∈N *恒成立.注意到当n ∈N *时,2(2n +1)的最小值是6,因此λ<6,即λ的取值范围是(-∞,6).4.已知函数f (x )=⎩⎪⎨⎪⎧x +12,x ≤12,2x -1,12<x <1,x -1,x ≥1,若数列{a n }满足a 1=73,a n +1=f (a n ),n ∈N *,则a 2 017+a 2 018等于( )A .4 B.32 C.76D.116解析:选B a 2=f ⎝⎛⎭⎫73=73-1=43; a 3=f ⎝⎛⎭⎫43=43-1=13; a 4=f ⎝⎛⎭⎫13=13+12=56; a 5=f ⎝⎛⎭⎫56=2×56-1=23;a 6=f ⎝⎛⎭⎫23=2×23-1=13; 即从a 3开始数列{a n }是以3为周期的周期数列. ∴a 2 017+a 2 018=a 4+a 5=32.故选B.5.若数列{a n }满足(n -1)a n =(n +1)a n -1,且a 1=1,则a 100=________. 解析:由(n -1)a n =(n +1)a n -1⇒a n a n -1=n +1n -1,则a 100=a 1·a 2a 1·a 3a 2·…·a 100a 99=1×31×42×…×10199=5 050.答案:5 0506.已知数列{a n }满足:a 1=m (m 为正整数),a n +1=⎩⎪⎨⎪⎧a n 2,a n 为偶数,3a n +1,a n 为奇数.若a 6=1,则m 所有可能的取值为________.解析:若a 5为奇数,则3a 5+1=1,a 5=0(舍去). 若a 5为偶数,则a 52=1,a 5=2.若a 4为奇数,则3a 4+1=2,a 4=13(舍去).若a 4为偶数,则a 42=2,a 4=4.若a 3为奇数,则3a 3+1=4,a 3=1,则a 2=2,a 1=4. 若a 3为偶数,则a 32=4,a 3=8.若a 2为奇数,则3a 2+1=8,a 2=73(舍去).若a 2为偶数,则a 22=8,a 2=16.若a 1为奇数,则3a 1+1=16,a 1=5. 若a 1为偶数,则a 12=16,a 1=32.答案:4,5,327.已知数列{a n }的通项公式为a n =n 22n (n ∈N *),则这个数列是否存在最大项?若存在,请求出最大项;若不存在,请说明理由.解:存在最大项.理由:a 1=12,a 2=2222=1,a 3=3223=98,a 4=4224=1,a 5=5225=2532,….∵当n ≥3时,a n +1a n=(n +1)22n +1×2n n 2=(n +1)22n 2=12⎝⎛⎭⎫1+1n 2<1,∴a n+1<a n,即n≥3时,{a n}是递减数列.又∵a1<a3,a2<a3,∴a n≤a3=9 8.∴当n=3时,a3=98为这个数列的最大项.8.已知数列{a n}满足a1=12,a n a n-1=a n-1-a n(n≥2),求数列{a n}的通项公式.解:∵a n a n-1=a n-1-a n,∴1a n-1a n-1=1.∴1a n=1a1+⎝⎛⎭⎫1a2-1a1+⎝⎛⎭⎫1a3-1a2+…+⎝⎛⎭⎫1a n-1a n-1=2+1+1+…+1(n-1)个1=n+1.∴1a n=n+1,∴a n=1n+1(n≥2).又∵n=1时,a1=12,符合上式,∴a n=1n+1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学第二章数列2.1.1数列的概念与通项公式练习(含解析)新人教A 版必修5知识点一 根据数列的前几项求通项公式1.数列-1,3,-7,15,…的一个通项公式可以是( ) A .a n =(-1)n ·(2n-1) B .a n =(-1)n·(2n -1) C .a n =(-1)n +1·(2n-1) D .a n =(-1)n +1·(2n -1)答案 A解析 数列各项正、负交替,故可用(-1)n 来调节,又1=21-1,3=22-1,7=23-1,15=24-1,…,所以通项公式为a n =(-1)n ·(2n-1).2.根据数列的前4项,写出下列数列的一个通项公式. (1)0.9,0.99,0.999,0.9999,…; (2)112,245,3910,41617,…;(3)12,34,78,1516,…; (4)3,5,9,17,…. 解 (1)0.9=1-0.1=1-10-1,0.99=1-10-2,0.999=1-10-3,0.9999=1-10-4,故a n =1-10-n(n ∈N *).(2)112=1+112+1,245=2+2222+1,3910=3+3232+1,41617=4+4242+1,故a n =n +n2n 2+1(n ∈N *).(3)12=21-121=1-121,34=22-122=1-122, 78=23-123=1-123,1516=24-124=1-124, 故a n =2n-12n =1-12n (n ∈N *).(4)3=1+2,5=1+22,9=1+23,17=1+24, 故a n =1+2n(n ∈N *).知识点二 数列通项公式的应用3.数列23,45,67,89,…的第10项是( )A .1617B .1819C .2021D .2223 答案 C解析 由题意知数列的通项公式是a n =2n 2n +1,∴a 10=2×102×10+1=2021.故选C .4.若数列a n =1n +1+1n +2+ (12),则a 5-a 4=( ) A .110 B .-110 C .190 D .1990 答案 C解析 依题意知,a 5-a 4=15+1+15+2+…+12×5-14+1+14+2+…+12×4=19+110-15=190.故选C . 5.已知数列3,3,15,21,33,…,32n -1,…,则9是这个数列的( )A .第12项B .第13项C .第14项D .第15项 答案 C解析 依题意,该数列的通项公式为a n =32n -1.令a n =9,得n =14,故选C .6.已知数列{a n }的通项公式,a n =⎩⎪⎨⎪⎧3n -1n 为奇数,2n -2n 为偶数,则a 2a 3的值是( )A .70B .28C .20D .16 答案 D解析 a 2=2×2-2=2,a 3=3×3-1=8,a 2a 3=16.故选D .知识点三 数列的单调性7.已知数列{a n }的通项公式是a n =2nn +1,那么这个数列是( ) A .递增数列 B .递减数列 C .摆动数列 D .常数列 答案 A 解析 a n =2n n +1=2-2n +1单调递增.故选A . 8.已知数列{a n }满足a 1<0,a n +1a n=2(n ∈N *),则数列{a n }是________数列(填“递增”或“递减”).答案 递减解析 由已知a 1<0,a n +1=2a n (n ∈N *),得a n <0(n ∈N *).又a n +1-a n =2a n -a n =a n <0,所以{a n }是递减数列.易错点一 忽视数列与函数的区别9.设函数f (x )=⎩⎪⎨⎪⎧3-a x -3,x ≤7,a x -6,x >7,数列{a n }满足a n =f (n ),n ∈N *,且数列{a n }是递增数列,则实数a 的取值范围是________.易错分析 本题易错把数列单调递增等同于所在函数递增,忽视二者区别错算出a ∈⎝ ⎛⎭⎪⎫94,3,事实上数列单调递增,所在函数不一定单调.答案 (2,3)解析 由题意,得点(n ,a n )分布在分段函数f (x )=⎩⎪⎨⎪⎧3-a x -3,x ≤7,a x -6,x >7的图象上.因此当3-a >0时,a 1<a 2<a 3<…<a 7; 当a >1时,a 8<a 9<a 10<…; 为使数列{a n }递增还需a 7<a 8. 故实数a 满足条件⎩⎪⎨⎪⎧3-a >0,a >1,f 7<f 8,解得2<a <3,故实数a 的取值范围是(2,3).易错点二 审题不细心,忽略细节10.已知数列{a n }的通项公式为a n =-2n 2+21n ,则该数列中的数值最大的项是( ) A .第5项 B .第6项C .第4项或第5项D .第5项或第6项易错分析 本题易不注意n =5和n =6,哪一个距离n =214更近而错选D .答案 A解析 a n =-2⎝⎛⎭⎪⎫n -2142+4418,因为n ∈N *,5<214<6,且a 5=55,a 6=54,所以数值最大的项为第5项.故选A .一、选择题1.下列说法正确的是( )A .数列1,-2,3,-4,…是一个摆动数列B .数列-2,3,6,8可以表示为{-2,3,6,8}C .{a n }和a n 是相同的概念D .每一个数列的通项公式都是唯一确定的 答案 A解析 对于A ,摆动数列是指从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列,故A 正确;数列与数集是不同的,故B 错误;{a n }和a n 是不同的概念,{a n }表示数列a 1,a 2,a 3,…,a n ,…,而a n 表示的是这个数列的第n 项,故C 错误;每一个数列的通项公式并不都是唯一确定的,故D 错误.故选A .2.数列7,9,11,…,2n -1的项数是( ) A .n -3 B .n -2 C .n -1 D .n 答案 A解析 数列通项公式为2n +5,而2n -1=2(n -3)+5,所以项数为n -3.故选A . 3.已知数列{a n }的前四项分别为1,0,1,0,则下列通项公式可以作为数列{a n }的通项公式的个数有( )①a n =12[1+(-1)n +1] ②a n =sin 2n π2 ③a n =1-cos n π2 ④a n =⎩⎪⎨⎪⎧1n 为奇数,0n 为偶数⑤a n =12[1+(-1)n +1]+(n -1)(n -2)A .1个B .2个C .3个D .4个 答案 D解析 要判别某一公式不是数列的通项公式,只要把适当的n 代入a n ,其不满足即可,若要确定它是通项公式,必须加以一定的说明.由三角公式知,②③实质相同,容易验证前四项均符合;①④前四项显然符合,对于⑤,将n =3代入不符合.所以有4个可作为数列{a n }的通项公式.4.数列-13×5,25×7,-37×9,49×11,…的通项公式a n 为( )A .(-1)n +112n +12n +3B .(-1)n +1n2n +12n +3 C .(-1)n12n +12n +3 D .(-1)nn2n +12n +3答案 D解析 观察式子的分子为1,2,3,4,…,n ,…,分母为3×5,5×7,7×9,…,(2n +1)(2n +3),…,而且正负间隔,故通项公式a n =(-1)nn2n +12n +3.5.设a n =1n +1+1n +2+1n +3+ (12)(n ∈N *),那么a n +1-a n 等于( ) A .12n +1 B .12n +2C .12n +1+12n +2D .12n +1-12n +2 答案 D 解析 ∵a n =1n +1+1n +2+1n +3+…+12n, ∴a n +1=1n +2+1n +3+…+12n +12n +1+12n +2, ∴a n +1-a n =12n +1+12n +2-1n +1=12n +1-12n +2. 二、填空题6.已知一组数1,1,2,3,5,8,x ,21,34,55,按这组数的规律,x 应为________. 答案 13解析 由题意得1+1=2,1+2=3,2+3=5,3+5=8.∴x =5+8=13.7.23,415,635,863,1099,…的一个通项公式是________. 答案 a n =2n 2n -12n +1解析23=21×3,415=2×23×5,635=2×35×7,863=2×47×9,1099=2×59×11,…,∴a n =2n 2n -12n +1.8.数列{a n }满足a n =n -2014n -2015,若a p 最大,a q 最小,则p +q =________.答案 89 解析 a n =n -2014n -2015=1+2015-2014n -2015.由于44<2015<45,则当n ≤44时,a n =1-2015-20142015-n<1且递减;当n ≥45时,a n =1+2015-2014n -2015>1且递减.所以a 44最小,a 45最大,即p =45,q =44,故p +q =45+44=89. 三、解答题9.已知数列a n =⎩⎪⎨⎪⎧n -1,n 为奇数,n ,n 为偶数,试求a 1+a 100和a 1-a 2+a 3-a 4+…+a 99-a 100的值.解 ∵a 1=1-1=0,a 100=100.∴a 1+a 100=100. 又a 1=0,a 3=2,a 5=4,…,a 99=98,而a 2=2,a 4=4,a 6=6,…,a 98=98,a 100=100, ∴a 1-a 2+a 3-a 4+…+a 99-a 100 =0-2+2-4+4-…+98-100 =-100.10.数列{a n }中,a n =n 2n 2+1.(1)求数列的第7项;(2)求证:此数列的各项都在区间(0,1)内; (3)区间13,23内有无数列的项?若有,有几项?解 (1)a 7=7272+1=4950.(2)证明:∵a n =n 2n 2+1=1-1n 2+1, ∴0<a n <1,故数列的各项都在区间(0,1)内. (3)∵13<n 2n 2+1<23,∴12<n 2<2. 又n ∈N *,∴n =1,即在区间13,23内有且只有一项a 1.。