人教版初中数学八年级上册期末专题复习及练习

合集下载

人教版八年级上册数学 期末复习综合练习题

人教版八年级上册数学     期末复习综合练习题

人教版八年级上册数学期末复习综合练习题一.选择题1.在△ABC中,AB=5,AC=3,AD为BC边的中线,则AD的长x的取值范围()A.5≤x≤8 B.4≤x≤7 C.1<x<4 D.2.若a,b,c是△ABC三边的长,化简:|a+b﹣c|+|b﹣a﹣c|﹣|c﹣a﹣b|=()A.a+b﹣c B.b﹣a+c C.a﹣b+c D.2a﹣b+c3.如图,四边形纸片ABCD中,∠A=65°,∠B=85°,将纸片折叠,使C,D落在AB边上的C′,D′处,折痕为MN,则∠AMD′+∠BNC′=()A.60°B.70°C.80°D.85°4.若a2+(m﹣3)a+4是一个完全平方式,则m的值应是()A.1或5 B.1 C.7或﹣1 D.﹣15.如图,P是△ABC的三条角平分线的交点,连接PA、PB、PC,若△PAB、△PBC、△PAC的面积分别为S1、S2、S3,则S1()S2+S3.A.>B.=C.<D.无法确定6.如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点F、G,若FG=2,ED=6,则DB+EC 的值为()A.3 B.4 C.5 D.97.关于x的分式方程﹣=1有增根,则﹣的值为()A.B.﹣C.﹣1 D.﹣38.若a满足a2=1,则分式的值为()A.﹣1 B.﹣C.0 D.9.如图,AD为等腰△ABC的高,其中∠ACB=50°,AC=BC,E,F分别为线段AD,AC上的动点,且AE =CF,当BF+CE取最小值时,∠AFB的度数为()A.75°B.90°C.95°D.105°10.如图,△ABE和△ADC是△ABC分别沿着AB、AC边翻折180°形成的,若∠BAC:∠ABC:∠BCA=26:7:3,则∠α的度数为()A.100°B.90°C.85°D.80°11.如图,在六边形ABCDEF中,∠A+∠F+∠E+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P度数为()A.α﹣180°B.360°﹣αC.180°﹣αD.α﹣360°12.如图,已知Rt△OAB,∠OAB=50°,∠AOB=90°,O点与坐标系原点重合,若点P在x轴上,且△APB是等腰三角形,则点P的坐标可能有()个.A.1个B.2个C.3个D.4个13.如图,△ABC中,D为BC的中点,点E为BA延长线上一点,DF⊥DE交射线AC于点F,连接EF,则BE+CF与EF的大小关系为()A.BE+CF<EF B.BE+CF=EFC.BE+CF>EF D.以上都有可能14.如图,等腰△ABC中,AB=AC=10,BC=16,△ABD是等边三角形,点P是∠BAC的角平分线上一动点,连接PC、PD,则PC+PD的最小值为()A.8 B.10 C.12 D.1615.如图所示,在等边△ABC中,点D、E、F分别在边BC、AB,AC上,则线段DE+DF的最小值是()A.BC边上高的长B.线段EF的长度C.BC边的长度D.以上都不对二.填空题16.如图,六边形ABCDEF内部有一点G,连接BG,DG.若∠1+∠2+∠3+∠4+∠5=440°,则∠BGD的大小为.17.如图,在△ABC中(AC>AB),AC=2BC,BC边上的中线AD把△ABC的周长分成60cm和40cm两部分,则边AC的长为.18.若n为正整数,且x2n=4,则(3x3n)2﹣4•(x2)2n的值是.19.因式分解:﹣8ax2+16axy﹣8ay2=.20.若16x2+1+k(k为含x的单项式)是一个完全平方式,则满足条件的k为.21.如果a2﹣9b2=4,那么(a+3b)2(a﹣3b)2的值是.22.如图,△ABC的外角∠MBC和∠NCB的平分线BP、CP相交于点P,PE⊥BC于E且PE=3cm,若△ABC 的周长为14cm,S△BPC=7.5cm2,则△ABC的面积为cm2.23.已知点A,B的坐标分别为(2,2),(2,4),O是原点,以A,B,P为顶点的三角形与△ABO全等,写出所有符合条件的点P的坐标:.24.已知,在△ABC中,E在AC上,连接BE,在BE上取点D,使AC=BD,延长CD交AB于点K,AF⊥CK 于F,若ED=CE,FC=3FD=3,则DK=.25.已知x,y,z满足x﹣y﹣z=0,2x+3y﹣7z=0,且z≠0,则的值是.26.如图,在△ABC中,AB=AC,D、E是△ABC内两点.AD平分∠BAC,∠EBC=∠E=60°,若BE=7cm,DE=3cm,则BC=cm.27.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的平分线.若E是AC上一点且BE⊥AC,P是AD上的动点,则PC+PE的最小值是.28.商场销售某种商品,1月份销售了若干件,共获利润30000元,2月份把这种商品的单价降低了0.4元,但销售量比1月份增加了5000件,从而获得的利润比1月份多2000元,求调价前每件商品的利润是多少元?解:设调价前每件商品的利润是x元,可列出方程.29.已知x,y,z都是整数,且x>y,x2+z2=5,z2+y2=13.(1)x2﹣y2的值是.(2)++的值是.30.如图,等腰△ABC的底边BC的长为2,面积为5,腰AC的垂直平分线EF分别交边AC,AB于点E,F.若点D为BC边中点,M为线段EF上一动点,则DM+CM的最小值为.三.解答题31.计算:(x+2)(4x﹣3)﹣(2x﹣1)2.32.把下列各式因式分解.(1)﹣x2﹣4y2+4xy (2)9(m+n)2﹣(m﹣n)2(3)(a2+4)2﹣16a2 (4)a(x﹣3)+2b(x﹣3)33.计算:(1)a 2a−1−a−1 (2)a+2a−2⋅aa2+2a34.解分式方程:(1)3x +6x−1−x+5x2−x=0 (2)2−xx−3+13−x=135.先化简,再求值(1),其中a与2,4构成△ABC的三边,且a为整数.(2),若﹣3<x≤1,请你选取一个合适的x的整数值,求出原式的值.36.某数学老师在讲因式分解时,为了提高同学们的思维能力,他补充了一道这样的题:对多项式(a2+4a+2)(a2+4a+6)+4进行因式分解,有个学生解答过程如下:解:设a2+4a=b原式=(b+2)(b+6)+4…第一步=b2+8b+16…第二步=(b+4)2…第三步=(a2+4a+4)2…第四步根据以上解答过程回答下列问题:(1)该同学第二步到第三步运用了因式分解的哪种方法?(填选项).A.提取公因式 B.平方差公式C.两数和的完全平方公式 D.两数差的完全平方公式(2)对第四步的结果继续因式分解得到结果为.(3)请你模仿以上方法对多项式(x2﹣6x)(x2﹣6x+18)+81进行因式分解.37.如图,某社区在一块长和宽分别为(x+2y)m,(2x+y)m的长方形空地上划出两块大小相同的边长为ym的正方形区域种植花草(数据如图所示,单位:m)(阴影部分).(1)用含x,y的式子表示休闲广场的面积并化简;(2)若|y﹣5|+(x﹣2)2=0,请计算休闲广场的面积.38.“垃圾分一分,环境美十分”.某校为积极响应有关垃圾分类的号召,从百货商场购进了A,B两种品牌的垃圾桶作为可回收垃圾桶和其他垃圾桶.已知B品牌垃圾桶比A品牌垃圾桶每个贵50元,用4000元购买A品牌垃圾桶的数量是用3000元购买B品牌垃圾桶数量的2倍.(1)求购买一个A品牌、一个B品牌的垃圾桶各需多少元?(2)若该中学决定再次准备用不超过6000元购进A,B两种品牌垃圾桶共50个,恰逢百货商场对两种品牌垃圾桶的售价进行调整:A品牌按第一次购买时售价的九折出售,B品牌比第一次购买时售价提高了20%,那么该学校此次最多可购买多少个B品牌垃圾桶?39.母亲节前夕,某花店购进康乃馨和百合两种鲜花,销售过程中发现康乃馨比百合销量大,店主决定将百合每枝降价2元促销,降价后100元可购买百合的数量是原来可购买百合数量的倍.(1)试问:降价后每枝百合的售价是多少元?(2)根据销售情况,店主用不多于1000元的资金再次购进两种鲜花共180枝,康乃馨进价为6元/枝,百合的进价是5元/枝.试问至少需要购进多少枝百合?40.已知,如图,在四边形ABCD中,BC>BA,∠A+∠C=180°,DE⊥BC,BD平分∠ABC,试说明AD=DC.41.如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于点Q,PQ=3,PE=1.(1)求证:AD=BE;(2)求AD的长.42.如图,AP,CP分别是△ABC外角∠MAC和∠NCA的平分线,它们交于点P.求证:BP为∠MBN的平分线.43.已知:如图,∠MON=90°,点A、B分别在射线OM、ON上移动(不与点O重合),AC平分∠MAB,AC的反向延长线与∠ABO的平分线相交于点D.(1)当∠ABO=70°时、∠D的度数是多少?(2)随着点A、B的移动,试问∠D的大小是否变化?请说出你的理由.44.【问题背景】在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且∠EAF =60°,试探究图1中线段BE、EF、FD之间的数量关系.【初步探索】琪琪同学认为:延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,则可得到BE、EF、FD之间的数量关系是.【探索延伸】在四边形ABCD中如图2,AB=AD,∠B+∠D=180°,E、F分别是BC、CD上的点,∠EAF=∠BAD,上述结论是否仍然成立?说明理由.【结论运用】如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角(∠EOF)为70°,试求此时两舰艇之间的距离.45.在△DEF中,DE=DF,点B在EF边上,且∠EBD=60°,C是射线BD上的一个动点(不与点B重合,且BC≠BE),在射线BE上截取BA=BC,连接AC.(1)当点C在线段BD上时,①若点C与点D重合,请根据题意补全图1,并直接写出线段AE与BF的数量关系为;②如图2,若点C不与点D重合,请证明AE=BF+CD;(2)当点C在线段BD的延长线上时,用等式表示线段AE,BF,CD之间的数量关系(直接写出结果,不需要证明).。

人教版八年级上册数学 期末常考题型复习卷。含答案

人教版八年级上册数学 期末常考题型复习卷。含答案

人教版八年级上册数学期末常考题型复习卷。

含答案2020年人教版八年级上册数学期末常考题型复卷一、选择题1.下列长度的三条线段能组成三角形的是()A。

1,1,2B。

4,4,9C。

3,4,5D。

6,16,82.下列图形中对称轴的条数小于 3 的是()A.B.C.D.3.目前世界上刻度最小的标尺是钻石标尺,它的最小刻度为 0.2nm(其中 1nm=10^(-9)m),用科学记数法表示这个最小刻度(单位:m),结果是()A。

2×10^(-8)mB。

2×10^(-9)mC。

2×10^(-10)mD。

2×10^(-11)m4.下列计算错误的是()A。

a^2·a=a^3B。

(ab)^2=a^2b^2C。

(a^2)^3=a^6D。

-a+2a=-2a5.已知△ABC≌△A1B1C1,若∠C=60°,则∠C1 的度数为()A。

50°B。

60°C。

70°D。

120°6.一副三角板如图方式摆放,BM 平分∠ABD,DM 平分∠BDC,则∠BMD 的度数为()A。

102°B。

107.5°C。

112.5°D。

115°7.如图,在△ABC 中,AB 的垂直平分线 DE 交 AB 于点D,交 AC 于点 E,且 AC=15cm,△BCE 的周长等于 25cm,则 BC 的长度等于()A。

5cmB。

10cmC。

15cmD。

20cm8.如图,△ABC 的三边 AB、BC、CA 长分别是 10、15、20.其三条角平分线交于点 O,将△ABC 分为三个三角形,S△ABO:S△BCO:S△CAO 等于()A。

1:1:1B。

1:2:3C。

2:3:4D。

3:4:59.要使 (6x-m)(3x+1) 的结果不含 x 的一次项,则 m 的值等于()A。

2B。

3C。

4D。

510.若 x+y=1 且 xy=-2,则代数式 (1-x)(1-y) 的值等于()A。

2021-2022学年新人教版八年级上学期期末数学复习复习卷(一)(含答案解析)

2021-2022学年新人教版八年级上学期期末数学复习复习卷(一)(含答案解析)

2021-2022学年新人教版八年级上学期期末数学复习复习卷(一)一、选择题(本大题共10小题,共30.0分)1.已知等腰三角形的两条边长分别为4和8,则它的周长为()A. 16B. 20C. 16或20D. 142.从图中的四张印有汽车品牌标志图案的卡片中任取一张,取出印有汽车品牌标志的图案是轴对称图形的卡片的概率是()A. 14B. 12C. 34D. 13.若2x 2+1与4x 2−2x−5互为相反数,则x为A. −1或B. 1或C. 1或D. 1或4.10.如图,在ΔABC中,∠ABC的平分线与三角形的外角∠ACE的平分线交于点D,则∠A与∠D的关系为A. ∠A+∠D=90°B. ∠A=2∠DC. 2∠A+∠D=180°D. 以上都不对5.若x2+bx+c=(x+5)(x−3),其中b、c为常数,则点P(b,c)关于y轴对称的点的坐标是()A. (−2,−15)B. (2,15)C. (−2,15)D. (2,−15)6.若2x+3y−2=0,则4x×8y+5的值为()A. 2B. 8C. 7D. 97.如图,正方形ABCD和正方形EFGO的边长都是1,正方形EFGO绕点O旋转时,两个正方形重叠部分的面积是()A. 14B. 12C. 13D. 不能确定8.已知x+1x =4,则x2x4+x2+1=()A. 10B. 15C. 110D. 1159.某车间原计划小时生产一批零件,后来每小时多生产件,用了小时不但完成了任务,而且还多生产件.设原计划每小时生产个零件,则所列方程为()A. B.C. D.10.如图,DB=DC,∠BAC=∠BDC=120°,DM⊥AC,E为BA延长线上的点,∠BAC的角平分线交BC于N,∠ABC的外角平分线交CA的延长线于点P,连接PN交AB于K,连接CK,则下列结论正确的是()①∠ABD=∠ACD;②DA平分∠EAC;③当点A在DB左侧运动时,AC+ABAM为定值;④∠CKN=30°A. ①③④B. ②③④C. ①②④D. ①②③二、填空题(本大题共8小题,共24.0分)11.如图,小明从P点出发,沿直线前进5米后向右转α,接着沿直线前进5米,再向右转α,…,照这样走下去,第一次回到出发地点P时,一共走了120米,则α的度数是______.12.因式分解:x2(a−b)+4(b−a)=______.13.由于自然环境的日益恶化,我们赖以生存的空气质量正在悄悄地变化.净化的空气的单位体积质量为0.00124g/cm3,将它用科学记数表示为______g/cm3.14.已知等腰三角形的周长为80,腰长为x,底边长为y.请写出y关于x的函数解析式,并求出定义域______.15.如图所示,已知AB=DC,要得到△ABC≌△DCB,还需加一个条件是______ .(一个即可)16.如图,在面积为4的等边三角形ABC中,AD是BC边上的高,点E、F是AD上的两点,则图中阴影部分的面积是______ .17.如果二次三项式x2+kx+49是一个整式的平方,则k的值是______.18.若关于x的不等式组{6x+4+a>03x2−1≤x2+2有4个整数解,且关于y的分式方程ay−1−21−y=1的解为正数,则满足条件所有整数a的值之和为______三、计算题(本大题共1小题,共6.0分)19.解分式方程(1)xx−1−31−x=3(2)x−3x−2+1=32−x.四、解答题(本大题共7小题,共60.0分)20.在△ABC中,AB=CB,∠ABC=90°,E为CB延长线上一点,点F在AB上,且AE=CF.(1)求证:Rt△ABE≌Rt△CBF;(2)若∠CAE=60°,求∠ACF的度数.21.如图,在平面直角坐标系xOy中,△ABC三个顶点坐标分别为A(−2,4),B(−2,1),C(−5,2).(1)请画出△ABC关于x轴对称的△A1B1C1.(2)以原点O为位似中心,在第一象限画出△A1B1C1的位似图形△A2B2C2,相似比为1:2.22. 先化简,再求值:(1−1x+1)÷x 2−xx 2−2x+1,其中x =√2−1.23. 2019年1月重庆潮童时装周在重庆渝北举行了八场走秀,云集了八大国内外潮童品牌,不仅为大家带来了一场品牌走秀盛会,更让人们将目光转移到了00后、10后童模群体身上,开启服装新秀潮流某大型商场抓住这次商机购进A 、B 两款新童装进行试销售该商场用6000元购买A 款童装,用9000元购买B 款童装,且每件A 款童装进价与每件B 款童装进价相同,购买A 款童装的数量比B 款童装的数量少20件,若该商场本次以每件A 款童装按进价加价100元进行销售,每件B 款童装按进价加价60%进行销售,全部销售完. (1)求购进A 、B 两款童装各多少件?(2)春节期间该商场按上次进价又购进与上一次一样数量的A 、B 两款童装,并展开了降价促销活动,在促销期间,该商场将每件A 款童装按进价提高(m +10)%进行销售,每件B 款童装按上次售价降低13m%销售.结果全部销售完后销售利润比上次利润少了3040元,求m 的值.24. 如图,在△ABC 中,AB =AC ,AM 平分∠BAC ,交BC 于点M ,D 为AC 上一点,延长AB 到点E ,使CD =BE ,连接DE ,交BC 于点F ,过点D 作DH//AB ,交BC 于点H ,G 是CH 的中点. (1)求证:DF =EF .(2)试判断GH ,HF ,BC 之间的数量关系,并说明理由.25.如图,在△ABC中,∠BAD=∠DAC,DF⊥AB,DM⊥AC,AB=16cm,AF=10cm,AC=14cm,动点E以2cm/s的速度从A点向B点运动,动点G以1cm/s的速度从C点向A点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为t(s).=______;(1)求:AM=______cm,S△ABDS△ACD(2)求证:在运动过程中,无论t取何值,都有S△AED=2S△DGC;(3)当t取何值时,△DFE与△DMG全等.26.如图,在平面坐标系中,点A、点B分别在x轴、y轴的正半轴上,且OA=OB,另有两点C(a,b)和D(b,−a)(a、b均大于0);(1)连接OD、OC、CD,请判断△OCD的形状为______(不需要证明);(2)连接CO、CB、CA,若CB=1,CO=2,CA=3,求∠OCB的度数;(3)若点E在线段OA上,且AE=2,CE=5,AC=√41,动点P以每秒2个单位的速度从点E出发沿射线EO方向运动,运动时间为t秒,在点P的运动过程中,△APC能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.参考答案及解析1.答案:B解析:解:若4为腰,8为底边,此时4+4=8,不能构成三角形,故4不能为腰;若4为底边,8为腰,此时三角形的三边分别为4,8,8,周长为4+8+8=20,综上三角形的周长为20.故选:B.因为等腰三角形的腰与底边不确定,故以4为底边和腰两种情况考虑:若4为腰,则另外一腰也为4,底边就为8,根据4+4=8,不符合三角形的两边之和大于第三边,即不能构成三角形;若4为底边,腰长为8,符合构成三角形的条件,求出此时三角形的周长即可.此题考查了等腰三角形的性质,以及三条线段构成三角形的条件,利用了分类讨论的数学思想,由等腰三角形的底边与腰长不确定,故分两种情况考虑,同时根据三角形的两边之和大于第三边,舍去不能构成三角形的情况.2.答案:B解析:解:这4个汽车标志中,是轴对称图形的有2个,所以从这4张印有汽车品牌标志图案的卡片中任取一张,是轴对称图形的卡片的概率是24=12,故选:B.根据概率的意义求解即可.本题考查概率公式,轴对称图形,掌握轴对称图形和概率的意义是正确解答的关键.3.答案:B解析:解:根据与互为相反数可以得到+=0化简得:因式分解得:(3x+2)(x−1)=0解得:.故答案为:B.4.答案:B解析:解析:本题考查的是三角形角平分线的定义和三角形外角的性质,属于中等题目,解决问题的关键是根据角平分线的定义及三角形的外角性质可表示出∠A与∠D,从而不难发现两者的数量关系.∵∠ABC的平分线交∠ACE的平分线于点D,∴∠ABC=2∠DBC,∠ACE=2∠DCE,∵∠DCE是△BCD的外角,∴∠D=∠DCE−∠DBE,∵∠ACE是△ABC的外角,∠A=∠ACE−∠ABC=2∠DCE−2∠DBE=2(∠DCE−∠DBE),∴∠A=2∠D.故选B.5.答案:A解析:解:∵x2+bx+c=(x+5)(x−3),∴x2+bx+c=x2+2x−15,∴b=2,c=−15,则点P(2,−15)关于y轴对称的点的坐标是:(−2,−5).故选:A.直接多项式乘法得出b,c的值,再利用关于y轴对称点的性质得出答案.此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.6.答案:D解析:解:原式=22x+23y+5=22x+3y+5,∵2x+3y=2,∴原式=4+5=9,故选:D.根据幂的运算法则即可求出答案.本题考查整式运算,解题的关键是熟练整式的运算法则,本题属于基础题型.7.答案:A解析:本题考查了正方形的性质,旋转的性质,全等三角形的性质和判定等知识,能推出四边形OMBN的面积等于三角形BOC的面积是解此题的关键.根据正方形的性质得出OB=OC,∠OBA=∠OCB=45°,∠BOC=∠EOG=90°,推出∠BON=∠MOC,证出△OBN≌△OCM.解:∵四边形ABCD和四边形OEFG都是正方形,∴OB=OC,∠OBC=∠OCB=45°,∠BOC=∠EOG=90°,∴∠BON+∠BOM=∠MOC+∠BOM=90°∴∠BON=∠MOC.在△OBN与△OCM中,{∠OBN=∠OCM OB=OC∠BON=∠COM,∴△OBN≌△OCM(ASA),∴S△OBN=S△OCM,∴S四边形OMBN =S△OBC=14S正方形ABCD=14×1×1=14.故选:A.8.答案:D 解析:本题主要考查分式的值,条件分式求值是较难的一种题型,在解答时应从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径.由x+1x =4得x2+1x2=14,代入原式=1x2+1+1x2计算可得.解:∵x+1x=4,∴x2+2+1x2=16,则x2+1x2=14,∴原式=1x2+1+1x2=114+1=115,故选:D.9.答案:A解析:10.答案:C解析:解:如图,∵∠BAC=∠BDC=120°,∴A,B,C,D四点共圆,DB=DC,作四边形ABCD的外接圆⊙O,∴∠ABD=∠ACD,故①正确,作DN⊥AE于N.∵DM⊥AC,∴∠DMC=∠DNB=90°,∵∠DCM=∠DBN,DC=DB,∴△DMC≌△DNB(AAS),∴DM=DN,BN=CM,∵DN⊥AE,DM⊥AC,∴DA平分∠EAC,故②正确,∵∠DNA=∠DMA=90°,AD=AD,DN=DM,∴AN=AM,∴AC+AB=BN−AN+AM+CM=2CM,∴AC+ABAM =2CMAM≠定值,故③错误,作KG⊥AP于G,KH⊥AN于H,延长AN,在AN上取一点J,使得KJ=KC.∵∠BAC=120°,AN平分∠BAC,∴∠PAB=∠BAN=60°,∴KG=KH,∵∠KGC=∠KHJ=90°,KJ=KC,KH=KG,∴Rt△KHJ≌Rt△KGC(HL),∴∠HKJ=∠GKC,∴∠CKJ=∠KGH=∠AKG+∠AHK=30°+30°=60°,∵KJ=KC,∴△KJC是等边三角形,∴∠KCJ=∠KJC=∠CKJ=60°,作PT⊥JA交JA的延长线于T,PR⊥CB于R,PW⊥AB于W,KL⊥BC于L.∵BP平分∠ABR,PA平分∠TAB,∴PE=PW,PW=PT,∴PR=PT,∵PR⊥NR,PT⊥NT,∴PN平分∠RNT,∵KH⊥NT,KL⊥NR,∴KL=KH,∵KH=KG,∴KL=KG,∵KL⊥CL,KG⊥CG,∴∠KCG=∠KCL=∠NJK,∵∠KCJ=∠KJC,∴∠NCJ=∠NJC,∴NC=NJ,∵KN=KN,AC=KJ,∴∠NKC=∠NKJ=30°,故④正确.故选:C.①正确.利用圆周角定理证明即可.②正确,构造全等三角形解决问题即可.③错误,作DN⊥AE于N.证明△ADN≌△ADM(HL),推出AN=AM,推出AC+AB=BN−AN+AM+CM=2CM,推出AC+ABAM =2CMAM≠定值.④正确.作KG⊥AP于G,KH⊥AN于H,延长AN,在AN上取一点J,使得KJ=KC.作PT⊥JA交JA的延长线于T,PR⊥CB于R,PW⊥AB于W,KL⊥BC于L.想办法证明△KCJ是等边三角形,证明△KNC≌△KNJ(SSS)即可解决问题.本题属于三角形综合题,考查了圆周角定理,角平分线的性质定理,全等三角形的判定和性质,等边三角形的判定和性质等知识,解题的关键是学会添加辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.11.答案:15°解析:解:向左转的次数120÷5=24(次),则左转的角度是360°÷24=15°.故答案是:15°.根据共走了120米,每前进5米左转一次可求得左转的次数,则已知多边形的边数,再根据外角和计算左转的角度.本题考查了多边形的计算,正确理解多边形的外角和是360°是关键.12.答案:(a−b)(x+2)(x−2)解析:解:x2(a−b)+4(b−a)=(a−b)(x2−4)=(a−b)(x+2)(x−2).故答案为:(a−b)(x+2)(x−2).先提取公因式(a−b),再根据平方差公式进行二次分解即可求得答案.本题考查了提公因式法,公式法分解因式.注意提取公因式后利用平方差公式进行二次分解,注意分解要彻底.13.答案:1.24×10−3解析:解:0.00124g/cm3,将它用科学记数表示为1.24×10−3,故答案为:1.24×10−3.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.答案:y=80−2x(20<x<40)解析:解:由题意得:80=2x+y∴可得:y=80−2x,根据三角形两边之和大于第三边,两边之差小于第三边可得:y<2x,2x<80,∴可得20<x<40,故答案为:y=80−2x(20<x<40).根据周长等于三边之和可得出y和x的关系式,再由三边关系可得出x的取值范围.此题主要考查了等腰三角形的性质,根据实际问题列一次函数关系式,根据题意得出正确等量关系是解题关键.15.答案:AC=DB解析:解:添加条件为:AC=DB.在△ABC和△DCB中,{AB=DC AC=DB BC=CB,∴△ABC≌△DCB(SSS).故答案为:AC=DB.可以添加条件,满足SSS或SAS判定定理.本题考查了全等三角形的判定,解答本题的关键是掌握全等三角形的判定定理.16.答案:2√3解析:解:∵AD是等边三角形的高,∴AD是线段BC的垂直平分线,BD=12BC=12×4=2,∴BE=CE,BF=CF,EF=EF,∴△EBF≌△ECF,∴S阴影=S△ABD,∴AD=AB⋅sin∠ABD=4×√32=2√3,∴S阴影=12BD⋅AD=12×2×2√3=2√3.故答案为:2√3.根据AD是等边三角形的高可知,AD是线段BC的垂直平分线,由线段垂直平分线的性质及三角形全等的判定定理可求出△EBF≌△ECF,故阴影部分的面积等于△ABD的面积,由锐角三角函数的定义可求出AD的长,再由三角形的面积公式即可求解.本题考查的是等边三角形的性质,即等边三角形底边上的高、垂直平分线及顶角的角平分线三线合一.17.答案:±14解析:解:∵二次三项式x2+kx+49是一个整式的平方,∴kx=±2×7x,解得k=±14.故答案为:±14.先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.18.答案:27解析:解:原不等式组的解集为−4−a6<x≤3,有4个整数解,所以−2<−4−a6≤−1解得2≤a<8.原分式方程的解为y=a+3,因为原分式方程的解为正数,所以y>0,即a+3>0,解得a>−3,所以2≤a<8.所以满足条件所有整数a的值之和为2+3+4+5+6+7=27.故答案为27.先解不等式组确定a的取值范围,再解分式方程,解为正数从而确定a的取值范围,即可得所有满足条件的整数a的和.本题考查了不等式组的整数解、分式方程,解决本题的关键是根据不等式组的整数解确定a的取值范围.19.答案:解:(1)去分母得:x+3=3x−3,解得:x=3,经检验x=3是分式方程的解;(2)去分母得:x−3+x−2=−3,解得:x=1,经检验x=1是分式方程的解.解析:两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.答案:证明:(1)在Rt△ABE和Rt△CBF中,∵{AE=CFAB=CB,∴Rt△ABE≌Rt△CBF(HL);解:(2)∵在△ABC中,AB=CB,∠ABC=90°,∴∠ACB=∠CAB=45°,∴∠BAE=∠CAE−∠CAB=15°.又由(1)知,Rt△ABE≌Rt△CBF,∴∠BAE=∠BCF=15°,∴∠ACF=∠ACB−∠BCF=30°,即∠ACF的度数是30°.解析:本题考查了全等三角形的判定与性质,等腰三角形的性质有关知识,(1)在Rt△ABE和Rt△CBF中,由于AB=CB,AE=CF,利用HL可证Rt△ABE≌Rt△CBF;(2)由等腰直角三角形的性质易求∠BAE=∠CAE−∠CAB=15°.利用(1)中全等三角形的对应角相等得到∠BAE=∠BCF=15°,则∠ACF=∠ACB−∠BCF=30°.即∠ACF的度数是30°.21.答案:解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求.解析:(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置进而得出答案.本题考查了轴对称变换、位似变换等知识,根据题意得出对应点位置是解题关键.22.答案:解:原式=x+1−1x+1⋅(x−1)2 x(x−1)=x−1x+1,当x=√2−1时,原式=√2−1−1√2−1+1=√2−2√2=1−√2.解析:先把括号内通分和除法运算化为乘法运算,再约分得到原式=x−1x+1,然后把x的值代入计算即可.本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.23.答案:解:(1)设购进A款童装x件,则购进B款童装(x+20)件,依题意,得:6000x =9000x+20,解得:x=40,经检验,x=40是所列分式方程的解,且符合题意,∴x+20=60.答:购进A款童装40件,购进B款童装60件.(2)A、B两款童装的进价为6000÷40=150(元).依题意,得:(150+100)×40+150×(1+60%)×60−150[1+(m+10)%]×40−150×(1+ 60%)(1−13m%)×60=3040,整理,得:12m−360=0,解得:m=30.答:m的值为30.解析:(1)设购进A款童装x件,则购进B款童装(x+20)件,根据单价=总价÷数量结合每件A款童装进价与每件B款童装进价相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)利用单价=总价÷数量可求出A、B两款童装的进价,再由总价=单价×数量结合第二次全部销售完后销售总额比第一次少了3040元,即可得出关于m的一元一次方程,解之即可得出结论.本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.24.答案:证明:(1)∵AB=AC,∴∠C=∠ABC,∵DH//AB,∴∠DHC=∠ABC,∠DHF=∠EBF,∴DH=DC,∵DC=BE,∴DH=BE,在△DHF和△EBF中,{∠DHF=∠EBF ∠DFH=∠EFB DH=BE,∴△DHF≌△EBF(AAS),∴DF=EF.(2)结论:GH+HF=12BC.理由:∵△DGF≌△EBF,∴FH=BF,∵CG=GH,∴GH+FH=12CH+12BH=12(CH+BH)=12BC.解析:(1)欲证明DF=EF,只要证明△DHF≌△EBF即可.(2)结论:GH+HF=12BC.只要证明FH=FB,由CG=GH,由此即可解决问题.本题考查全等三角形的判定和性质、平行线的性质、等腰三角形的性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,属于基础题,中考常考题型.25.答案:10 87解析:(1)解:∵∠BAD =∠DAC ,DF ⊥AB ,DM ⊥AC ,∴DF =DM ,在Rt △ADF 和Rt △ADM 中,{DF =DM AD =AD, ∴Rt △ADF≌Rt △ADM(HL)∴AM =AF =10cm ,S △ABDS △ACD =12×AB×DF 12×AC×DM =1614=87,故答案为:10;87;(2)证明:由题意得,AE =2t ,CG =t ,则S △AED =12×AE ×DF =t ⋅DF ,S △DGC =12×CG ×DM =12t ⋅DM ,∵DF =DM ,∴S △AED =2S △DGC ;(3)解:∵AM =AF =10,∴CM =14−10=4,当点G 在线段CM 上时,∵DF =DM ,∴FE =MG 时,△DFE≌△DMG ,即10−2t =4−t ,解得,t =6(不合题意),当点G 在线段AM 上时,∵DF =DM ,∴FE =MG 时,△DFE≌△DMG ,即2t −10=t −4,解得,t =6,则当t =6时,△DFE 与△DMG 全等.(1)证明Rt △ADF≌Rt △ADM ,根据全等三角形的性质得到AM =AF =10cm ,根据三角形的面积公式求出S △ABDS △ACD ;(2)分别用t表示出S△AED和2S△DGC,即可证明;(3)分点G在线段CM上、点G在线段AM上两种情况,根据全等三角形的性质列式计算即可.本题考查的是全等三角形的判定和性质、角平分线的性质、三角形的面积计算,掌握角平分线的性质定理、全等三角形的判定定理和性质定理是解题的关键.26.答案:(1)等腰直角三角形;(2)如图2,连接DA.在△OCB与△ODA中,∵{OB=OA∠BOC=∠AOD=90°−∠COA OC=OD,∴△OCB≌△ODA(SAS),∴AD=CB=1,∠OCB=∠ODA.∵OC=OD=2,∴CD=2√2.∵AD2+CD2=1+8=9,AC2=9,∴AD2+CD2=AC2,∴∠ADC=90°,∴∠OCB=∠ODA=90°+45°=135°;(3)△APC能成为等腰三角形,如图3,过点C作CF⊥OA于点F,设EF =x ,则CF 2=CE 2−EF 2=52−x 2=25−x 2, 又∵CF 2=AC 2−AF 2=(√41)2−(2+x)2, ∴25−x 2=(√41)2−(2+x)2,解得:x =3,即EF =3,CF =4,①当AP =PC 时,PC =AP =2+2t , ∵AF =5,∴PF =5−(2+2t)=−2t +3,由PF 2+CF 2=PC 2得(3−2t)2+42=(2+2t)2, 解得t =2120;②当AP =AC 时,2+2t =√41,解得t =√41−22;③当AC =PC 时,AP =2AF ,即2+2t =10, 解得t =4;综上,当t =2120或t =√41−22或t =4时,△APC 是等腰三角形. 解析:解:(1)△OCD 是等腰直角三角形,如图1,过C 点、D 点向x 轴、y 轴作垂线,垂足分别为M 、N .∵C(a,b),D(b,−a)(a、b均大于0),∴OM=ON=a,CM=DN=b,∴△OCM≌△ODN(SAS),∴∠COM=∠DON.∵∠DON+∠MOD=90°,∴∠COM+∠MOD=90°,∵OC=OD=√a2+b2,∴△COD是等腰直角三角形,故答案为:等腰直角三角形;(2)见答案;(3)见答案.(1)过C点、D点向x轴、y轴作垂线,运用勾股定理计算,结合全等可证;(2)连接DA,证△OCB≌△ODA(SAS),可得AD=CB=1,而OC=OD=2,故CD=2√2,根据勾股定理逆定理可证∠ADC=90°,易得∠OCB=∠ODA=135°;(3)作CF⊥OA,设EF=x,由勾股定理得CF2=CE2−EF=25−x2,CF2=AC2−AF2=(√41)2−(2+x)2,从而求出x=3,即可知EF=3,CF=4,再分AP=AC、AP=PC、AC=PC分别计算可得.本题是三角形的综合问题,考查了全等三角形、等腰直角三角形的判定与性质,勾股定理,有一定难度.准确作出辅助线是解题的关键.。

最新人教版八年级上册数学期末专题复习题汇总(共19页 附答案)

最新人教版八年级上册数学期末专题复习题汇总(共19页 附答案)

最新人教版八年级上册数学期末专题复习题汇总(共19页附答案)目录专题1 三角形专题2 全等三角形专题3 轴对称专题4 整式的乘法与因式分解专题5 分式专题1 三角形1.[2016·衡阳期末]如图12,AC⊥BC,CD⊥AB,DE⊥BC,垂足分别为C,D,E,则下列说法不正确的是( )图12A.AC是△ABC的高B.DE是△BCD的高C.DE是△ABE的高D.AD是△ACD的高2.[2016春·成安县期末]现有两根木棒,它们的长分别是40 cm 和50 cm,若要钉成一个三角形木架,则下列四根木棒应选取( )A.10 cm的木棒 B.40 cm的木棒C.90 cm的木棒 D.100 cm的木棒3.[2016·秦淮期末]一个多边形的内角和等于1 080°,这个多边形是__ __边形.4.[2016·东港期末]如图13,Rt△ABC中,∠C=90°,AE,BD分别是∠BAC,∠ABC 的角平分线,则∠DEA=__ _.图135.[2016·德惠期末]如图14,在△ABC中,∠A=45°,直线l与边AB,AC分别交于点M,N,则∠1+∠2的度数是__ __.图146.[2016·当涂县期中]如图15,已知∠B=33°,∠BAC=83°,∠C=30°,求∠BDC 的度数.图15第6题答图7.[2016·浦东期末]如图16,在△ABC 中,AD ⊥BC ,垂足为点D ,∠C =2∠1,∠2=12∠1,求∠B 的度数.图168.[2016·吴中区校级期末]如图17,∠AOB =90°,点C ,D 分别在射线OA ,OB 上,CE 是∠ACD 的平分线,CE 的反向延长线与∠CDO 的平分线交于点F .(1)如图17(1),当∠OCD =50°时,试求∠F 的度数.(2)如图17(2),当C ,D 在射线OA ,OB 上任意移动时(不与点O 重合),∠F 的大小是否变化?若变化,请说明理由;若不变化,求出∠F .图179.已知:如图18,△ABC 中,M 为BC 的中点,DM ⊥ME ,MD 交AB 于D ,ME 交AC 于E . 求证:BD +CE >DE .图18参考答案【题型归类】1.A 2.D 3.D 4.略 5.C 6.∠B =50° 7.∠EAD =50° 8.120° 9.61° 10.(1)∠EAD =12° (2)∠G =12x °11.C 12.这个多边形的边数是7. 【过关训练】1.C 2.B 3.八 4.45° 5.225° 6.∠BDC =146° 7.∠B =75°8.(1)∠F =45° (2)不变化,∠F =45°. 9.略期末复习·专题2 全等三角形专题2 全等三角形1.[2016秋·金坛市期中]如图19,△ABC≌△AEF,则∠EAC等于( )图19A.∠ACB B.∠CAFC.∠BAF D.∠BAC2.[2016·成安期末]在△ABC和△A′B′C′中,已知∠A=∠A′,AB=A′B′,下面判断错误的是( )A.若添加条件AC=A′C′,则△ABC≌△A′B′C′B.若添加条件BC=B′C′,则△ABC≌△A′B′C′C.若添加条件∠B=∠B′,则△ABC≌△A′B′C′D.若添加条件∠C=∠C′,则△ABC≌△A′B′C′3.[2016·宝应县月考]①有两边和一角对应相等的两个三角形全等;②斜边和一条直角边对应相等的两个直角三角形全等;③有三角对应相等的两个直角三角形全等;④有两角和其中一角的对边对应相等的两个三角形全等.上述判断正确的是__ _.4.[2016·重庆期中]如图20,将两根钢条AB,CD的中点O连在一起,使AB,CD可以绕点O自由转动,就做成一个测量工件,则AC的长等于内槽宽BD,其中△OBD≌△OAC的判定方法是__ __(用字母表示).图205.[2016·衡阳]如图21,A,C,D,B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.图216.[2015·滨湖区校级二模]如图22,∠BAC=∠CDB=90°,请你从下列条件中任选一个,使得△BAC≌△CDB,并证明.图22①AB=DC;②AC=DB;③∠ABC=∠DCB;④∠ACB=∠DBC.7.[2016秋·武昌区校级期中]证明:如果两个三角形有两条边和其中一边上的中线对应相等,那么这两个三角形全等.(提示:先分清已知和求证,然后画出图形,再结合图形用数学符号表示已知和求证)解:已知:△ABC和△DEF中,AB=DE,BC=EF,AM是△ABC的中线,DN是△DEF的中线,AM=DN.求证:△ABC≌△DEF.8.[2016·济南期末]如图23,D是等腰△ABC底边BC上一点,它到两腰AB,AC的距离分别为DE,DF,当D点在什么位置时,DE=DF?并加以证明.图239.[2016·金堂期末]如图24,已知△ABC,点D,F分别为线段AC,AB上两点,连接BD,CF交于点E.(1)若BD⊥AC,CF⊥AB,如图24(1)所示,试说明∠BAC+∠BEC=180°;(2)若BD平分∠ABC,CF平分∠ACB,如图24(2)所示,试说明此时∠BAC与∠BEC的数量关系;(3)在(2)的条件下,若∠BAC=60°,试说明:EF=ED.图24 参考答案【题型归类】 1.A 2.C 3.D4.(1)△AFD ≌△CEB ,△ABC ≌△CDA ,△ABE ≌△CDF (2)略 5.略 6.略 7.略 8.A 9.C 10.略 11.B 12.D13.(1)图中其他的全等三角形为:△ACD ≌△AEB ,△DCF ≌△BEF (2)略 【过关训练】1.C 2.B 3.②④ 4.SAS 5.略 6.略 7.略 8.当D 为BC 的中点时,DE =DF ,证明略. 9.(1)略 (2)∠BEC =90°+12∠BAC (3)略期末复习·专题3 轴对称专题3 轴对称1.[2016·济宁二模]如图19,有四个交通标志图,其中是轴对称图形的有( )图19A.0个 B.1个 C.2个 D.3个2.[2016·双柏模拟]若等腰三角形的一个内角是40°,则它的顶角是( )A.100° B.40°C.40°或100° D.60°3.如图20,直线l是四边形ABCD的对称轴,若AD∥BC,有下列结论:①AB∥CD;②AB =AD;③BO=CO;④BD平分∠ABC.其中正确的有_ __(填序号).图204.[2016·潜江月考]如图21,在△ABC中,∠ACB=90°,∠A=30°,CD⊥AB,AB=8,则BC=__ __,∠BCD=__ __,BD=__ __.图215.如图22,∠ACB=90°,AC=AD,DE⊥AB,求证:△CDE是等腰三角形.图226.如图23,△ABC中,AB=AC,D为BC上一点,过点D作DE∥AB交AC于点E.图23(1)求证:∠C=∠CDE.(2)若∠A=60°,试判断△DEC的形状,并说明理由.7.[2016·滕州期末]如图24,在△ABC中,AB的垂直平分线MN交AB于点D,交AC 于点E,且AC=15 cm,△BCE的周长等于25 cm.图24(1)求BC的长;(2)若∠A=36°,并且AB=AC,求证:BC=BE.8.[2016春·潮州校级期中]如图25,△ABC中,AB=AC,∠ABC,∠ACB的平分线相交于点O,过点O作EF∥BC分别交AB,AC于E,F.图25求证:EF=BE+CF.9.[2016春·威海期末]在△ABC中,AB=AC,∠BAC=120°,AD⊥BC,垂足为G,且AD=AB,∠EDF=60°,其两边分别交边AB,AC于点E,F.(1)连接BD,求证:△ABD是等边三角形;(2)求证:BE=AF.图26参考答案【题型归类】1.A2.(1)(-4,-2) (4,2) (2)略(3)略3.B 4.(1)∠BDC=60°(2)AC=95.略 6.C 7.∠CDE=20°8.59.(1)略(2)∠BAD的度数是60°或30°. 10.60°11.(1)30°(2)略12.6 13.PE=2 cm【过关训练】1.B 2.C 3.①②④ 4.4 30° 25.略 6.(1)略(2)△DEC是等边三角形,理由略.7.(1)BC=10 cm (2)略8.略9.(1)略(2)略期末复习·专题4 整式的乘法与因式分解专题4整式的乘法与因式分解1.[2016·沈阳]下列计算正确的是( )A.x4+x4=2x8B.x3·x2=x6C.(x2y)3=x6y3D.(x-y)(y-x)=x2-y22.[2016·深圳期中]李老师做了个长方形教具,其中一边长为2a+b,另一边长为a -b,则该长方形的面积为( )A.6a+b B.2a2-ab-b2C.3a D.10a-b3.[2016·香坊期末]在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图1(1)),把余下的部分拼成一个长方形(如图1(2)),根据两个图形中阴影部分的面积相等,可以验证的等式是( )A.(a+b)2=a2+2ab+b2B.(a-b)2=a2-2ab+b2C.(a+2b)(a-b)=a2+ab-2b2D.a2-b2=(a+b)(a-b)图14.[2016·北仑一模]已知a+b=ab,则(a-1)(b-1)=__ __.5.[2016·长春模拟]先将2x(a-2)-y(2-a)因式分解,再求值,其中a=0.5,x=1.5,y=-2.6.[2016·泰州期末]计算: (1)(π-2 018)0-⎝ ⎛⎭⎪⎫13-2+|-4|;(2)4(a +2)(a +1)-7(a +3)(a -3).7.[2016·宁波]化简求值:(x +1)(x -1)+x (3-x ),其中x =2.8.[2016·安陆模拟]先化简,再求值:(x -2)2-(2x +1)(2x -1)+4x (x +1),其中x = 2.9.[2016春·滁州期末]如图2(1)所示,边长为a 的正方形中有一个边长为b 的小正方形,图2(2)是由图2(1)中的阴影部分拼成的一个长方形.(1)设图2(1)中阴影部分面积为S 1,图2(2)中阴影部分面积为S 2,请直接用含a ,b 的代数式表示S1,S2.(2)请写出上述过程所揭示的乘法公式.(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+1.图2参考答案【题型归类】1.B 2.a9b12x6y33.(1)a2+b(2)a2b 4.A5.(1)7x4-13x2y2-24y4(2)-15x2-y2+10xy 6.m=3 n=17.(1)24 (2)26 (3)208.(1)9 991 (2)10 4049.x2-2xy+y2+1 4 10.611.D 12.B13.(1)-3x(x-y)2(2)4(4a+b)(a+4b)(3)5xy(x-2y)(3x+y)14.(2n+1)2-(2n-1)2=8n【过关训练】1.C 2.B 3.D 4.1 5.(a -2)(2x +y ) -1.5 6.(1)-4 (2)-3a 2+12a +71 7.3x -1 5 8.x 2+5 79.(1)S 1=a 2-b 2S 2=(a +b )(a -b ) (2)(a +b )(a -b )=a 2-b 2(3)216期末复习·专题5 分式专题5 分式1.[2016·埇桥期末]几个同学包租一辆面包车去旅游,面包车的租价为180元,后来又增加了两名同学,租车价不变,结果每个同学比原来少分摊了3元车费.若设原计划参加旅游的同学共有x 人,则根据题可列方程( )A.180x -180x +2=3B.180x +2-180x =3C.180x -180x +3=2 D.180x +3-180x=2 2.[2016春·相城区期末]若分式方程x x -4=2+ax -4有增根,则a 的值为( )A .4B .2C .1D .0【解析】 方程去分母得x =2(x -4)+a ,解得x =8-a ,由分式方程有增根,得到x =4,即8-a =4,则a =4.3.[2016·泸州]分式方程4x -3-1x=0的根是__ __. 4.[2016·咸宁]a ,b 互为倒数,代数式a 2+2ab +b 2a +b ÷⎝ ⎛⎭⎪⎫1a +1b 的值为_ __.5.[2016·咸宁]端午节那天,“味美早餐店”的粽子打9折出售,小红的妈妈去该店买粽子花了54元钱,比平时多买了3个,平时每个粽子卖多少元?设平时每个粽子卖x 元,则可列方程为_ __.6.化简: (1)[2016·南京]aa -1-3a -1a 2-1. (2)[2016·十堰]x 2-4x +4x 2-4+x -2x 2+2x+2.7.[2016·绍兴]解方程:xx -1+21-x=4.8.[2016·贺州]若关于x 的分式方程2x -a x -2=12的解为非负数,则a 的取值范围是( )A .a ≥1B .a >1C .a ≥1且a ≠4 D.a >1且a ≠4 9.[2016·江西]先化简,再求值:⎝ ⎛⎭⎪⎫2x +3+13-x ÷x x 2-9,其中x =6.10.[2016·南岗区模拟]某镇道路改造工程由甲、乙两工程队合作20天可完成.甲工程队单独施工完成此项工程的天数是乙工程队单独施工完成此项工程的天数的2倍.(1)甲、乙两工程队单独完成此项工程各需要多少天?(2)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?参考答案【题型归类】 1.B 2.B 3.D4.a 5.a 2+1a 2-16.22 7.a b68.D 9.0 10.C 11.A12.(1)x =23 (2)原方程无解.13.D 14.A15.(1)打折前每支笔的售价是4元. (2)最多购买50支笔. 【过关训练】1.A 2.A 3.-1 4.1 5.54x =540.9x-3 6.(1)a -1a +1 (2)3x 2+3x -2x (x +2) 7.x =238.C 9.x -9x -1310.(1)甲工程队单独施工完成此项工程的天数为60天,乙工程队单独施工完成此项工程的天数为30天.(2)甲工程队至少要单独施工36天.。

人教版八年级数学上册期末考试综合复习练习题(含答案)

人教版八年级数学上册期末考试综合复习练习题(含答案)

人教版八年级数学上册期末考试综合复习练习题(含答案)一、选择题(本题共10个小题,每小题3分,共 30分。

下列各题,每小题只有一个选项符合题意。

)1. 下面四个图形中,是轴对称图形的是( ) A. B. C. D.2. 熔喷布,俗称口罩的“心脏”,是口罩中间的过滤层,能过滤细菌,阻止病菌传播.经测量,医用外科口罩的熔喷布厚度约为0.000156米,将0.000156用科学记数法表示应为( )A. 30.15610-⨯B. 31.5610-⨯C. 41.5610-⨯D. 415.610-⨯3. 下列计算正确的是( )A. x •x 3=x 4B. x 4+x 4=x 8C. (x 2)3=x 5D. x ﹣1=﹣x 4. 若分式224x x +-有意义,则x 的取值范围是( ) A. x ≠2 B. x ≠±2 C. x ≠﹣2 D. x ≥﹣25. 已知正多边形的一个内角是135°,则这个正多边形的边数是( )A. 3B. 4C. 6D. 86. 若点A (﹣3,a )与B (b ,2)关于x 轴对称,则点M (a ,b )所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 如图,已知∠ABD =∠BAC ,添加下列条件还不能判定△ABC ≌△BAD 的依据是( )A. AC =BDB. ∠DAB =∠CBAC. ∠C =∠DD. BC =AD8. 计算a ﹣2b 2•(a 2b ﹣2)﹣2正确的结果是( ) A. 66a b B. 66b a C. a 6b 6 D. 661a b9. 如图,等边ABC ∆的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点,若2AE =,当EF CF +取得最小值时,则ECF ∠的度数为( )A. 15︒B. 22.5︒C. 30D. 45︒10. 瓜达尔港是我国实施“一带一路”战略构想的重要一步,为了增进中巴友谊,促进全球经济一体化发展,我国施工队预计把距离港口420km 的普通公路升级成同等长度的高速公路,升级后汽车行驶的平均速度比原来提高50%,行驶时间缩短2h ,那么汽车原来的平均速度为( )A. 80km/hB. 75km/hC. 70km/hD. 65km/h二.填空题(共5题,总计 15分)11. 分解因式:5x 4﹣5x 2=________________.12. 若4,8x y a b ==,则232x y -可表示为________(用含a 、b 的代数式表示).13. 若△ABC ≌△DEF ,△ABC 的周长为100,AB =30,DF =25,则BC 为 ________.14. 如图,DE AB ⊥于E ,AD 平分BAC ∠,BD DC =,10AC =cm ,6AB =cm ,则AE =______.15. 如图,△ABC 中,∠BAC =60°,∠BAC 的平分线AD 与边BC 的垂直平分线MD 相交于D ,DE ⊥AB 交AB 的延长线于E ,DF ⊥AC 于F ,现有下列结论:①DE =DF ;②DE +DF =AD ;③DM 平分∠EDF ;④AB +AC =2AE ;其中正确的有________.(填写序号)三.解答题(共8题,总计75分)16. (1)计算:()32(2)32x x x x ---; (2)分解因式:229()()6()x x y y y x xy y x ---+-;17. 先化简,再求值:221x 4x 41x 1x 1-+⎛⎫-÷ ⎪--⎝⎭,其中x=3.18. 如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).(1)在图中作出关于y 轴对称的111A B C △.(2)写出点111,,A B C 的坐标(直接写答案).(3)111A B C △的面积为___________19. 如图,已知BF ⊥AC 于F ,CE ⊥AB 于E ,BF 交CE 于D ,且BD =CD ,求证:点D 在∠BAC 的平分线上.20. 如图,直线m 是中BC 边的垂直平分线,点P 是直线m 上的一动点,若6AB =,4AC =,7BC =.(1)求PA PB +的最小值,并说明理由.(2)求APC △周长的最小值.21. [阅读理解]我们常将一些公式变形,以简化运算过程.如:可以把公式“()2222a b a ab b +=++”变形成()2222a b a b ab +=+-或()()2222ab a b a b =+-+等形式,问题:若x 满足()()203010x x --=,求()()222030x x -+-的值. 我们可以作如下解答;设20a x =-,30b x =-,则()()203010x x ab --==, 即:()()2030203010a b x x +=-+-=-=-.所以()()()()222222203021021080x x a b a b ab -+-=+=+-=--⨯=. 请根据你对上述内容的理解,解答下列问题:(1)若x 满足()()807010x x --=-,求()()228070x x -+-的值. (2)若x 满足()()22202020174051x x -+-=,求()()20202017x x --的值.22. 一水果店主分两批购进某一种水果,第一批所用资金为2400元,因天气原因,水果涨价,第二批所用资金是2700元,但由于第二批单价比第一批单价每箱多10元,以致购买的数量比第一批少25%.(1)该水果店主购进第一批这种水果的单价是多少元?(2)该水果店主计两批水果的售价均定为每箱40元,实际销售时按计划无损耗售完第一批后,发现第二批水果品质不如第一批,于是该店主将售价下降a %销售,结果还是出现了20%的损耗,但这两批水果销售完后仍赚了不低于1716元,求a 的最大值.23. 如图,已知和均为等腰三角形,AB AC =,AD AE =,将这两个三角形放置在一起,使点B ,D ,E 在同一直线上,连接CE .(1)如图1,若50ABC ACB ADE AED ∠=∠=∠=∠=︒,求证:BAD CAE ≌;(2)在(1)的条件下,求BEC ∠的度数;拓广探索:(3)如图2,若120CAB EAD ∠=∠=︒,4BD =,CF 为BAD 中BE 边上的高,请直接写出BEC ∠的度数和EF 的长度。

2022年新人教版初中八年级数学上册《填空题》期末专项复习(附参考答案)

2022年新人教版初中八年级数学上册《填空题》期末专项复习(附参考答案)

2022年新人教版初中八年级数学上册《填空题》期末专项复习一、填空题(共60小题)1.(2022秋•北仑区期中)在△ABC中,∠A=35°,∠B=75°,则∠C=.2.(2022秋•西湖区校级期中)已知三角形两边的长分别为1和6,第边长为整数,则该三角形周长为.3.(2022秋•广安区校级期中)如图,∠ACD是△ABC的外角,若∠ACD=120°,∠A=70°,则∠B=.4.(2022秋•贵州期中)如图,x=°.5.(2022秋•大连期中)如图,△ABC的角平分线BD,CE交于点O,∠A=60°,则∠BOC=°.6.(2022秋•甘井子区期中)直角三角形中两个锐角的差为60°,则较小的锐角度数是.7.(2022秋•莱州市期中)如图所示,△ABC中,AC边上的高线是线段.8.(2022秋•双柏县期中)在△ABC中,∠B=35°,△ABC的外角∠ACM等于110°,则∠A的度数是.9.(2022秋•天门期中)如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠K =.10.(2022秋•东海县期中)小明同学将几种三角形的关系整理如图,请帮他在括号内填上一个适当的条件是.11.(2022秋•西城区校级期中)如图,AD是△ABC的中线,△ABD的周长比△ADC的周长小2,且AB=5,则AC=.12.(2022秋•沙洋县期中)若一个多边形的外角和是其内角和的2,则这个多边5形是边形.13.(2022秋•通山县期中)如图,△ABC≌△ADE,∠B=86°,∠BAC=24°,那么∠AED=.14.(2022秋•宾阳县期中)如图,在△ABC≌△EDC,点D落在AB上,且∠B=60°,则∠EDA=.15.(2022秋•扬州期中)如图,∠AOB=60°,OC平分∠AOB,点P在OC上,PD⊥OA于D,OP=6cm,点E是射线OB上的动点,则PE的最小值为cm.16.(2022秋•邗江区期中)如图,△ABC中,∠C=90°,∠BAC的平分线AD 交BC于点D.BC=10,BD=7,点E在AB上,连接DE.则DE的最小值为.17.(2022秋•沙洋县期中)如图,将一个45度角的直角三角板放在直角坐标系点C处,三角板两直角边落在x轴,y轴的点A,B处,已知点C(3,3),则OA+OB的值为.18.(2022秋•拱墅区期中)如图,直线l上有三个边长分别为a,b,c的正方形,则有a2+c2b2(填“>”或“<”或“=”).19.(2022秋•江汉区月考)如图,D为Rt△ABC中斜边BC上的一点,且BD=AB,过D作BC的垂线,交AC于E.若AE=6cm,则DE的长为cm.20.(2022秋•龙华区校级期中)如图,CA平分∠DCB,CB=CD,DA的延长线交BC于点E,若∠EAC=46°,则∠BAE的度数为.21.(2022秋•启东市期中)如图,点I为△ABC的三个内角的角平分线的交点,AC=4,BC=6,AB=5,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为.22.(2022秋•孝义市期中)如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是∠DAB的平分线,这样做的依据是.23.(2022秋•孝义市期中)如图,小张同学拿着老师的等腰直角三角尺,摆放在两摞长方体教具之间,∠ACB=90°,AC=BC,若每个小长方体教具高度均为4cm,则两摞长方体教具之间的距离DE的长为cm.24.(2022秋•天宁区校级月考)如图,射线OC是∠AOB的角平分线,D是射线OC上一点,DP⊥OA于点P,DP=5,若点Q是射线OB上一点,OQ=4,则△ODQ的面积是.25.(2022秋•新北区期中)如图,在△ABC中,∠C=90°,AE=DE.若∠CED =72°,则∠B=°.26.(2022秋•五峰县期中)如图,在△ABC中,BC的垂直平分线DE分别交AB、BC于点D和点E,AB=12,△ACD的周长为21,则AC=.27.(2022秋•乾安县期中)已知点A(a,2022)与点B(2023,b)关于x轴对称,则a+b的值为.28.(2022秋•乾安县期中)如图,已知△ABC是等边三角形,点O是BC上任意一点,OE,OF分别与两边垂直,等边三角形的高为2,则OE+OF的值为.29.(2022秋•慈溪市期中)如图,在△ABC中,AB=2cm,AC=3cm,BC的垂直平分线l与AC相交于点D,则△ABD的周长为cm.30.(2022秋•鄞州区期中)已知△ABC是等腰三角形.若∠A=80°,则△ABC 的顶角度数是.31.(2022秋•邗江区期中)如图,在等腰△ABC中,AB=AC,图中阴影部分的面积60,AD是BC边上的高,点E,F是AD上的任意两点,则△ABC的面积是.32.(2022秋•东莞市校级期中)如图,在△ABC中,AB=AC,BC=4,△ABC 的面积为20,AB的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则BM+DM的最小值为.33.(2022秋•桐乡市期中)在△ABC中,∠B=40°,D为边BC上一点,将三角形沿AD 折叠,使AC 落在边AB 上,点C 与点E 重合,若△BDE 为直角三角形,则∠C 的度数为 .34.(2022秋•宝安区校级期中)如图,在△ABC 中,AB =4,AC =8,DE 是BC 的垂直平分线,且BD ⊥AB ,则CD = .35.(2022秋•兴宁区校级期中)如图,五个全等的等腰三角形拼成内外两个正五边形,则∠BAC 的度数为 °.36.(2022秋•房县期中)若x •x a •x b •x c =x 2023,则a +b +c = . 37.(2022秋•黄浦区期中)分解因式:x 3﹣4x 2+x = .38.(2022秋•龙华区校级期中)计算(23)2023×(−32)2022的结果是 . 39.(2022秋•黄浦区期中)计算:(2a ﹣b )(b +2a )= . 40.(2022秋•黄浦区期中)计算:(3x ﹣2)(x +2)= . 41.(2022秋•黄浦区期中)计算:(﹣a 2)3•(﹣a 3)2= .42.(2022秋•南沙区校级期中)已知x −1x =3,那么多项式x 3﹣2x 2﹣4x +5的值是 .43.(2022秋•铁西区期中)当x =﹣1时,ax 2+bx +1=﹣3,则(a ﹣b +2)(3﹣a +b )= .44.(2022秋•招远市期中)已知a 2﹣3a +1=0,则a 3﹣a 2﹣5a +2024= .45.(2022秋•浦东新区期中)若a=(﹣1)2022,b=2021×2023﹣20222,c=82022×(﹣0.125)2023,则a、b、c的大小关系是(用“>”连接).46.(2022秋•闵行区校级期中)计算:4x4÷6x=.47.(2022秋•东城区校级期中)有两块总面积相等的场地,左边场地为正方形,由四部分构成,各部分的面积数据如图所示,右边场地为长方形,长为2(a+b),则宽为.48.(2022秋•西湖区校级期中)如果分式x2−9x+3的值为零,那么x=.49.(2022秋•锦江区校级月考)若关于x的分式方程xx−3+k3−x=4有增根,则k=.50.(2022秋•浦东新区校级期中)已知x2﹣3x﹣1=0,则x4+1x4=.51.(2022秋•招远市期中)已知关于x的方程2x+mx−2=4的解是正数,则m的取值范围为.52.(2022秋•贵港期中)若分式x−2x+2的值存在,则x的取值应满足.53.(2022秋•临武县校级期中)化简:3−x9−6x+x2=;x2x−y−y2x−y=.54.(2022秋•岳阳县期中)若方程x−1x−2=ax−2有增根,则a的值为.55.(2022秋•诸城市期中)定义一种运算☆,规则为a☆b=1a +1b,根据这个规则,若x☆(x+1)=32x,则x=.56.(2022秋•蓬安县期中)若2a+8a+1的值为整数,则正整数a的值为.57.(2022秋•新宁县校级月考)用科学记数法表示:﹣3105000=;0.000305=.58.(2022秋•旌阳区校级月考)若a+b=√5,则a4+a2b2+b4a2+ab+b2+3ab=.59.(2022春•青羊区校级月考)若关于x的不等式组{2x−b≥0x+a≤0的解集为3≤x≤4,则代数式a+ba−b的值为.60.(2022秋•张店区期中)通过对《分式与分式方程》一章的学习,我们知道用分式方程解决实际问题的一般步骤:请根据所给分式方程1400x −14002.8x=9,联系生活实际,编写一个能通过列出此分式方程进行解决的实际问题:.(要求题目完整,题意清楚,不要求解方程)参考答案一、填空题(共60小题)1.70°2.133.50°4.605.1206.15°7.BH8.75°9.540°10.∠B=60°(答案不唯一)11.712.七13.70°14.60°15.616.317.618.=19.620.88°21.522.SSS23.2824.1025.5426.927.128.229.530.20°或80°31.12032.1033.90°或130°34.335.3636.202237.x(x2﹣4x+1)38.2339.4a2﹣b240.3x2+4x﹣4 41.﹣a1242.643.﹣14 44.202245.a>c>b46.23x347.12a+12b48.349.350.11951.m>﹣8且m≠﹣4 52.x≠﹣253.13−x;x+y54.155.156.1,2,557.﹣3.105×106;3.05×10﹣458.559.−1560.(某工厂安排甲、乙两人分别生产1400个零件的任务,乙每天生产的零件个数是甲每天生产的零件个数的2.8倍,且乙比甲提前9天完成任务,求甲、乙每天各生产多少个零件?(答案不唯一)。

人教版八年级上册数学期末复习必刷练习题精选汇编(含答案解析)

人教版八年级上册数学期末复习必刷练习题精选汇编(含答案解析)

人教版八年级上册数学期末复习必刷练习题精选汇编1.数学活动课上,小云和小王在讨论张老师出示的一道代数式求值问题:已知实数a,b同时满足a2+2a=b+2,b2+2b=a+2,求代数式的值.结合他们的对话,请解答下列问题:(1)当a=b时,a的值是.(2)当a≠b时,代数式的值是.2.先化简,再求值:(1)已知分式,其中a=3,b=;(2)已知,求的值.(3),其中.(4),其中x从0,1,2,3四个数中适当选取.(5)已知+=4,则求值.3.已知实数a满足a2﹣3a+1=0,求下列各式的值:(1)a+的值;(2)(a+)2的值;(3)a2+的值;(4)a4+的值;(5)(a﹣)2的值;(6)的值;(7)的值;(8)的值.4.我们知道对于一个图形,通过不同的方法计算图形的面积时,可以得到一个数学等式例如由图1可以得到a2+3ab+2b2=(a+2b)(a+b)请回答下列问题.(1)写出图2中所表示的数学等式是;(2)如图3,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有x,y的式子表示).(3)通过上述的等量关系,我们可知当两个正数的和一定时,它们的差的绝对值越小,则积越(填“大“或“小“);当两个正数的积一定时,它们的差的绝对值越小,则和越(填“大”或“小”).5.已知点A在x轴正半轴上,以OA为边作等边△OAB,A(x,0),其中x是方程﹣=的解.(1)求点A的坐标;(2)如图1,点C在y轴正半轴上,以AC为边在第一象限内作等边△ACD,连DB并延长交y轴于点E,求∠BEO的度数;(3)如图2,若点F为x轴正半轴上一动点,点F在点A的右边,连FB,以FB为边在第一象限内作等边△FBG,连GA并延长交y轴于点H,当点F运动时,GH﹣AF的值是否发生变化?若不变,求其值;若变化,求出其变化的范围.6.如图,在平面直角坐标系中,已知A(a,0)、B(0,b)分别在坐标轴的正半轴上.(1)如图1,若a、b满足(a﹣4)2+=0,以B为直角顶点,AB为直角边在第一象限内作等腰直角△ABC,则点C的坐标是;(2)如图2,若a=b,点D是OA的延长线上一点,以D为直角顶点,BD为直角边在第一象限作等腰直角△BDE,连接AE,求证:∠ABD=∠AED;(3)如图3,设AB=c,∠ABO的平分线过点D(2,﹣2),直接写出a﹣b+c的值.7.在平面直角坐标系中,点A(a,0),点B(0,b),已知a、b满足(a+4)2+b2+8b+16=0.(1)点A的坐标为,点B的坐标为;(2)如图1,点E为线段OB上一点,连接AE,过A作AF⊥AE,且AF=AE,连接BF 交x轴于点D,若点D(﹣1,0),求点E的坐标;(3)在(2)的条件下,如图2,过E作EH⊥OB交AB于H,点M是射线EH上一点(点M不在线段EH上),连接MO,作∠MON=45°,ON交线段BA的延长线于点N,连接MN,探究线段MN与OM的关系,并说明理由.8.如图1,在平面直角坐标系中,A、B坐标为(6,0)、(0,6),P为线段AB上的一点(1)如图1,若S△AOP=12,求P的坐标(2)如图2,若P为AB的中点,点M、N分别是OA、OB边上的动点,点M从顶点A、点N从顶点O同时出发,且它们的速度都为1cm/s,则在M、N运动的过程中,线段PM、PN之间有何关系?并证明(3)如图3,若P为线段AB上异于A、B的任意一点,过B点作BD⊥OP,交OP、OA 分别与F、D两点,E为OA上一点,且∠PEA=∠BDO,试判断线段OD与AE的数量关系,并说明理由.9.已知:Rt△ABC和Rt△ADE中,AB=AC,AE=AD,∠BAC=∠EAD=90°.(1)如图1,∠BAE=α,直接写出∠DFC的度数为.(用α表示)(2)如图2,四边形BCED的面积为8,求CD长;(3)点G是CE的中点,H为BD和AG的交点,AG=9,HG=2,求△AEC的面积.10.在平面直角坐标系xOy中,已知点A的坐标为(﹣2,0).(1)如图1,当点B的坐标为(0,﹣4)时,则△AOB的面积是;(2)如图2,在(1)的条件下,过点A作AC⊥AB,且使AC=AB,求第三象限内的点C的坐标;(3)如图3,P为y轴负半轴上一点,过点P作PD⊥P A,且使PD=P A,过第四象限内的点D作DE⊥x轴于E,试判断OP﹣DE的值是否发生变化?若不发生变化,请求其值;若发生变化,请说明理由.11.(1)已知x﹣y=3,y﹣z=1,求x2+y2+z2﹣xy﹣yz﹣xz的值.(2)已知P=2x2﹣4x﹣1,Q=x2﹣6x﹣6,比较P与Q的大小.(3)设x、y为实数,求式子4x2﹣2xy+y2﹣12x+13的最小值.12.我们已学完全平方公式:a2±2ab+b2=(a±b)2,观察下列式子:x2+4x+2=(x2+4x+4)﹣2=(x+2)2﹣2,∵(x+2)2≥0,∴x2+4x+2=(x+2)2﹣2≥﹣2,原式有最小值是﹣2;﹣x2+2x﹣3=﹣(x2﹣2x+1)﹣2=﹣(x﹣1)2﹣2,∵﹣(x﹣1)2≤0,∴﹣x2+2x﹣3=﹣(x﹣1)2﹣2≤﹣2,原式有最大值是﹣2.并完成下列问题:(1)求代数式2x2﹣4x+1的最值;(2)解决实际问题:在紧靠围墙的空地上,利用围墙及一段长为100米的木栏围成一个长方形花圃,为了设计一个尽可能大的花圃,如图设长方形一边长度为x米,完成下列任务.①用含x的式子表示花圃的面积;②请说明当x取何值时,花圃的最大面积是多少平方米?13.如图1,点E是正△ABC边AC上一点以BE为边做正△BDE,连接CD.探究线段AE 与CD的数量关系并证明.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现∠ABE与∠DBC相等.”小伟:“通过全等三角形证明,再经过进一步推理,可以得到线段BC平分∠ACD.”…老师:“保留原题条件,连接AD,F是AB的延长线上一点,AD=DF(如图2),如果BD=BF,可以求出CE、CB、EB三条线段之间的数量关系.”(1)求证:∠ABE=∠DBC;(2)求证:线段BC平分∠ACD;(3)探究CE、CB、EB三条线段之间的数量关系并证明.14.如图1,在△ABC中,AB=AC,∠BAC=30°,点D是△ABC内一点,DB=DC,∠DCB=30°,点E是BD延长线上一点,AE=AB(1)求证:DE=AD+DC;(2)作BP平分∠ABE,EF⊥BP,垂足为F(如图2).若EF=5,求BP的长.参考答案与试题解析1.数学活动课上,小云和小王在讨论张老师出示的一道代数式求值问题:已知实数a,b同时满足a2+2a=b+2,b2+2b=a+2,求代数式的值.结合他们的对话,请解答下列问题:(1)当a=b时,a的值是﹣2或1.(2)当a≠b时,代数式的值是7.【分析】(1)将a=b代入方程,然后解一元二次方程求解;(2)联立方程组,运用加减消元法并结合完全平方公式,求得a2+b2和ab的值,然后将原式通分化简,代入求解.【解答】解:(1)当a=b时,a2+2a=a+2,a2+a﹣2=0,(a+2)(a﹣1)=0,解得:a=﹣2或1,故答案为:﹣2或1;(2)联立方程组,将①+②,得:a2+b2+2a+2b=b+a+4,整理,得:a2+b2+a+b=4③,将①﹣②,得:a2﹣b2+2a﹣2b=b﹣a,整理,得:a2﹣b2+3a﹣3b=0,(a+b)(a﹣b)+3(a﹣b)=0,(a﹣b)(a+b+3)=0,又∵a≠b,∴a+b+3=0,即a+b=﹣3④,将④代入③,得a2+b2﹣3=4,即a2+b2=7,又∵(a+b)2=a2+2ab+b2=9∴ab=1,∴,故答案为:7.【点评】本题考查分式的化简求值及完全平方公式的运用,掌握完全平方公式的公式结构和分式的化简计算法则准确计算是解题关键.2.先化简,再求值:(1)已知分式,其中a=3,b=;(2)已知,求的值.【分析】(1)原式变形后,约分得到最简结果,把a与b的值代入计算即可求出值;(2)原式结合变形后,将已知等式整理后代入计算即可求出值.【解答】解:(1)原式==,当a=3,b=时,原式=2;(2)∵=﹣2,∴a﹣b=﹣2ab,则原式===1.(3),其中.(4),其中x从0,1,2,3四个数中适当选取.【分析】(3)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(4)先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得.【解答】解:(1)原式=(﹣)÷=÷=•=x﹣2,当x=2+时,原式=2+﹣2=;(2)原式=÷=•=,当x=0时,原式=﹣.(5).已知+=4,则求值.【分析】已知等式左边通分并利用同分母分式的加法法则变形,得到x+y=4xy,代入原式计算即可得到结果.【解答】解:由+==4,得到x+y=4xy,则原式==6.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.3.已知实数a满足a2﹣3a+1=0,求下列各式的值:(1)a+的值;(2)(a+)2的值;(3)a2+的值;(4)a4+的值;(5)(a﹣)2的值;(6)的值;(7)的值;(8)的值.【分析】(1)已知等式两边除以a变形求出a+的值即可;(2)把(1)结果两边平方即可;(3)把(2)中结果利用完全平方公式变形即可;(4)原式利用完全平方公式变形,把(3)中结果代入计算即可求出值;(5)原式利用完全平方公式变形,把各自的值代入计算即可求出值;(6)原式分子分母除以a变形,将a+代入计算即可求出值;(7)原式分子分母除以a2,把(3)中结果代入计算即可求出值;(8)原式分子分母除以a2,把(3)中结果代入计算即可求出值.【解答】解:(1)a2﹣3a+1=0,变形得:a+=3;(2)∵a+=3,∴(a+)2=9;(3)a2+=(a+)2﹣2=9﹣2=7;(4)a4+=(a2+)2﹣2=49﹣2=47;(5)(a﹣)2=a2+﹣2=7﹣2=5;(6)原式===8;(7)原式==;(8)原式==.【点评】此题考查了分式的化简求值,以及完全平方公式,熟练掌握完全平方公式是解本题的关键.4.我们知道对于一个图形,通过不同的方法计算图形的面积时,可以得到一个数学等式例如由图1可以得到a2+3ab+2b2=(a+2b)(a+b)请回答下列问题.(1)写出图2中所表示的数学等式是2a2+5ab+2b2=(2a+b)(a+2b);(2)如图3,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有x,y的式子表示)4xy=(x+y)2﹣(x﹣y)2.(3)通过上述的等量关系,我们可知当两个正数的和一定时,它们的差的绝对值越小,则积越大(填“大“或“小“);当两个正数的积一定时,它们的差的绝对值越小,则和越小(填“大”或“小”).【分析】(1)图b面积有两种求法,可以由长为2a+b,宽为a+2b的矩形面积求出,也可以由两个边长为a与边长为b的两正方形,及4个长为a,宽为b的矩形面积之和求出,表示即可;(2)阴影部分的面积可以由边长为x+y的大正方形的面积减去边长为x﹣y的小正方形面积求出,也可以由4个长为x,宽为y的矩形面积之和求出,表示出即可;(3)两正数和一定,则和的平方一定,根据等式4xy=(x+y)2﹣(x﹣y)2,得到被减数一定,差的绝对值越小,即为减数越小,得到差越大,即积越大;当两正数积一定时,即差的绝对值越小,得到减数越小,可得出被减数越小;【解答】解:(1)2a2+5ab+2b2=(2a+b)(a+2b);(2)4xy=(x+y)2﹣(x﹣y)2;(3)当两个正数的和一定时,它们的差的绝对值越小则积越大;当两个正数的积一定时,它们的差的绝对值越小则和越小;故答案为:2a2+5ab+2b2=(2a+b)(a+2b),4xy=(x+y)2﹣(x﹣y)2,大,小.【点评】本题考查了完全平方公式的几何背景,弄清题意是解本题的关键.5.已知点A在x轴正半轴上,以OA为边作等边△OAB,A(x,0),其中x是方程﹣=的解.(1)求点A的坐标;(2)如图1,点C在y轴正半轴上,以AC为边在第一象限内作等边△ACD,连DB并延长交y轴于点E,求∠BEO的度数;(3)如图2,若点F为x轴正半轴上一动点,点F在点A的右边,连FB,以FB为边在第一象限内作等边△FBG,连GA并延长交y轴于点H,当点F运动时,GH﹣AF的值是否发生变化?若不变,求其值;若变化,求出其变化的范围.【分析】(1)先求出方程的解为x=3,即可求解;(2)由“SAS”可证△CAO≌△DAB,可得∠DBA=∠COA=90°,由四边形内角和定理可求解;(3)由“SAS”可证△ABG≌△OBF可得OF=AG,∠BAG=∠BOF=60°,可求∠OAH =60°,可得AH=6,即可求解.【解答】解:(1)∵x是方程﹣=的解.解得x=3检验当x=3时,6x﹣2≠0,∴x=3是原方程的解,∴点A(3,0);(2)∵△ACD,△ABO是等边三角形,∴AO=AB,AD=AC,∠BAO=∠CAD=60°,∴∠CAO=∠BAD,且AO=AB,AD=AC,∴△CAO≌△DAB(SAS)∴∠DBA=∠COA=90°,∴∠ABE=90°,∵∠AOE+∠ABE+∠OAB+∠BEO=360°,∴∠BEO=120°;(3)GH﹣AF的值是定值,理由如下:∵△ABC,△BFG是等边三角形,∴BO=AB=AO=3,FB=BG,∠BOA=∠ABO=∠FBG=60°,∴∠OBF=∠ABG,且OB=AB,BF=BG,∴△ABG≌△OBF(SAS)∴OF=AG,∠BAG=∠BOF=60°,∴AG=OF=OA+AF=3+AF,∵∠OAH=180°﹣∠OAB﹣∠BAG,∴∠OAH=60°,且∠AOH=90°,OA=3,∴AH=6,∴GH﹣AF=AH+AG﹣AF=6+3+AF﹣AF=9.【点评】本题是三角形综合题,考查了分式方程的解法,等边三角形性质,全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力.6.如图,在平面直角坐标系中,已知A(a,0)、B(0,b)分别在坐标轴的正半轴上.(1)如图1,若a、b满足(a﹣4)2+=0,以B为直角顶点,AB为直角边在第一象限内作等腰直角△ABC,则点C的坐标是(3,7);(2)如图2,若a=b,点D是OA的延长线上一点,以D为直角顶点,BD为直角边在第一象限作等腰直角△BDE,连接AE,求证:∠ABD=∠AED;(3)如图3,设AB=c,∠ABO的平分线过点D(2,﹣2),直接写出a﹣b+c的值.【分析】(1)由偶次方和算术平方根的非负性质求出a=4,b=3,则OA=4,OB=3,再证△BNC≌△AOB(AAS),得BN=AO=4,CN=BO=3,则ON=7,即可求解;(2)过E作EF⊥x轴于F,证△DEF≌△BDO(AAS),得∠EDF=∠DBO,DF=OB,EF=OD,再证△AEF是等腰直角三角形,得∠EAF=∠AEF=45°,然后由三角形的外角性质即可得出结论;(3)过D作DM⊥y轴于M,DH⊥x轴于H,DG⊥BA交BA的延长线于G,则DM=DH=OM=OH=2,由角平分线的性质得DM=DG,再证Rt△BDG≌△BDM(HL),得BG=BM,同理Rt△ADH≌△ADG(HL),得AH=AG,进而求解即可.【解答】(1)解:∵(a﹣4)2+=0,∴(a﹣4)2=0,=0,∴a﹣4=0,b﹣3=0,∴a=4,b=3,∵A(a,0)、B(0,b),∴OA=4,OB=3,过点C作CN⊥y轴于N,如图1所示:则∠BNC=90°,∵∠ABC=∠AOB=90°,∴∠CBN+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBN=BAO,又∵∠BNC=∠AOB=90°,BC=AB,∴△BNC≌△AOB(AAS),∴BN=AO=4,CN=BO=3,∴ON=OB+BN=7,∴C(3,7),故答案为:(3,7);(2)证明:过E作EF⊥x轴于F,如图2所示:则∠EFD=90°,∵a=b,∴OA=OB,∵∠AOB=90°,∴△OAB是等腰直角三角形,∴∠ABO=∠BAO=45°,∵△BDE是等腰直角三角形,∠BDE=90°,∴DB=DE,∵∠EDF+∠BDO=90°,∠DEF+∠EDF=90°,∴∠BDO=∠DEF,∵∠EFD=∠DOB=90°,∴△DEF≌△BDO(AAS),∴∠EDF=∠DBO,DF=OB,EF=OD,∵OB=OA,∴DF=OA,∴DF+AD=OA+OD,即AF=OD,∴AF=EF,∴△AEF是等腰直角三角形,∴∠EAF=∠AEF=45°,∵∠EDF=∠EAF+∠AED=45°+∠AED,∠DBO=∠OBA+∠ABD=45°+∠ABD,∴∠ABD=∠AED;(3)解:过D作DM⊥y轴于M,DH⊥x轴于H,DG⊥BA交BA的延长线于G,∵D(2,﹣2),∴DM=DH=OM=OH=2,∵BD平分∠ABO,DM⊥OB,DG⊥AB,∴DM=DG,又∵BD=BD,∴Rt△BDG≌△BDM(HL),∴BG=BM,同理:Rt△ADH≌△ADG(HL),∴AH=AG,∵OA=a,OB=b,AB=c,∴a﹣b+c=OA﹣OB+AB=(OA+AH)﹣(BM﹣OM)+(BG﹣AG)=2+AH﹣BM+2+BG ﹣AG=4,即a﹣b+c=4.【点评】本题是三角形综合题目,考查了全等三角形的判定与性质、坐标与图形性质、等腰直角三角形的判定与性质、直角三角形的性质、角平分线的性质、偶次方和算术平方根的非负性质等知识,本题综合性强,熟练掌握等腰直角三角形的判定与性质,证明三角形全等是解题的关键,属于中考常考题型.7.在平面直角坐标系中,点A(a,0),点B(0,b),已知a、b满足(a+4)2+b2+8b+16=0.(1)点A的坐标为(﹣4,0),点B的坐标为(0,﹣4);(2)如图1,点E为线段OB上一点,连接AE,过A作AF⊥AE,且AF=AE,连接BF 交x轴于点D,若点D(﹣1,0),求点E的坐标;(3)在(2)的条件下,如图2,过E作EH⊥OB交AB于H,点M是射线EH上一点(点M不在线段EH上),连接MO,作∠MON=45°,ON交线段BA的延长线于点N,连接MN,探究线段MN与OM的关系,并说明理由.【分析】(1)a与b分别在两个完全平方式中,两个非负数为零,可得a、b的值;(2)过点F作FH⊥AO,证明△AFH≌△AOE,△FHD≌△BOD即可解决问题.(3)解法一:连接OH,证明△AON∽△OMH,=,从而可以得出△NMO为等腰直角三角形,可得OM=NM,OM⊥NM.解法二:作NK⊥NO交OM的延长线于K,作NT⊥y轴于T,NQ⊥NT,KQ⊥NQ,连接BQ.证明△NQK≌△NTO,得NQ=NT,再证△BNQ≌△BNT,得K,Q,B共线,OM =MK,即可得出结论.【解答】解:(1)由已知可得(a+4)2+(b+4)2=0∴a=﹣4,b=﹣4∴点A坐标为(﹣4,0),点B坐标为(0,﹣4)(2)如图1,过点G作FH⊥AO,垂足为H∵∠F AH+∠AFH=90°∠F AH+∠OAE=90°∴∠AFH=∠OAE∴△AFH≌△AOE∴FH=AO=4∵FH=OB,∠BOD=∠FHD,∠FDH=∠ODB,∴△FHD≌△BOD,∴OD=HD=1,∴AD=OE=2,∴E(0,﹣2)(3):作NK⊥NO交OM的延长线于K,作NT⊥y轴于T,NQ⊥NT,KQ⊥NQ,连接BQ.∵∠NOM=45°,∠KNO=90°,∴NK=ON,∵∠KNO=∠TNQ=90°,∴∠KNQ=∠TNO,∵∠NQK=∠NTO=90°,∴△NQK≌△NTO(ASA),∴NQ=NT,∵∠BNQ=∠BNT=45°,BN=BN,∴△BNQ≌△BNT(SAS),∴∠NQB=∠NTB=90°,∴K,Q,B共线,∵ME∥BK,OE=EB,∴OM=MK,∴MN=OM,MN⊥OM.【点评】本题考查了一次函数,全等与相似,等腰直角三角形的性质,还有半角模型的应用,综合度较高,是一道很好的一次函数问题.8.如图1,在平面直角坐标系中,A、B坐标为(6,0)、(0,6),P为线段AB上的一点(1)如图1,若S△AOP=12,求P的坐标(2)如图2,若P为AB的中点,点M、N分别是OA、OB边上的动点,点M从顶点A、点N从顶点O同时出发,且它们的速度都为1cm/s,则在M、N运动的过程中,线段PM、PN之间有何关系?并证明(3)如图3,若P为线段AB上异于A、B的任意一点,过B点作BD⊥OP,交OP、OA 分别与F、D两点,E为OA上一点,且∠PEA=∠BDO,试判断线段OD与AE的数量关系,并说明理由.【分析】(1)如图1中,作PH⊥OA于H,PK⊥OB于K,利用面积法求解即可.(2)结论:PM=PN,PM⊥PN.连接OP.只要证明△PON≌△P AM即可解决问题;(3)结论:OD=AE.如图3中,作AG⊥x轴交OP的延长线于G.由△DBO≌△GOA,推出OD=AG,∠BDO=∠G,再证明△P AE≌△P AG即可解决问题;【解答】解:(1)如图1中,作PH⊥OA于H,PK⊥OB于K.∵A、B坐标为(6,0)、(0,6),∴OA=OB=6,∵•OA•PH=12,∴PH=4,∵S△OPB=S△AOB﹣S△POA,∴×6×PK=18﹣12,∴PK=2,∴P(2,4).(2)结论:PM=PN,PM⊥PN.如图2中,连接OP.∵OB=OA,∠AOB=90°,PB=P A,∴OP=PB=P A,OP⊥AB,∠PON=∠A=45°,∴∠OP A=90°∵AM=ON,OP=AP,∴△PON≌△P AM,∴PN=PM,∠OPN=∠APM,∴∠NPM=∠OP A=90°∴PM⊥PN,PM=PN.(3)结论:OD=AE.理由:如图3中,作AG⊥x轴交OP的延长线于G.∵BD⊥OP,∴∠OAG=∠BOD=∠OFD=90°,∴∠ODF+∠AOG=90°,∠ODF+∠OBD=90°,∴∠AOG=∠DBO,∵OB=OA,∴△DBO≌△GOA,∴OD=AG,∠BDO=∠G,∵∠BDO=∠PEA,∴∠G=∠AEP,∵∠P AE=∠P AG=45°,P A=P A,∴△P AE≌△P AG,∴AE=AG,∴OD=AE.【点评】本题考查三角形综合题、等腰直角三角形的性质、全等三角形的判定和性质、一次函数、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.9.已知:Rt△ABC和Rt△ADE中,AB=AC,AE=AD,∠BAC=∠EAD=90°.(1)如图1,∠BAE=α,直接写出∠DFC的度数为α.(用α表示)(2)如图2,四边形BCED的面积为8,求CD长;(3)点G是CE的中点,H为BD和AG的交点,AG=9,HG=2,求△AEC的面积.【分析】(1)由三角形内角和定理可求∠DAC=∠DFC=α;(2)连接BE交CD于O,由“SAS”可证△ABE≌△ACD,可得CD=BE,∠AEB=∠ADC,可证CD⊥BE,由四边形面积公式可求CD的长,即可求解;(3)延长AG到K,使得GK=AG=9,利用全等三角形的性质可求BD=AK=9,由面积的和差关系可求解.【解答】解:(1)如图1,设AC与DF交于点N,∵∠BAC=∠EAD=90°,∴∠BAE=∠CAD=α,∵AB=AC,AE=AD,∠BAC=∠EAD=90°,∴∠ADE=∠AED=∠ACB=∠ABC=45°,又∵∠AND=∠FNC,∴∠DAC=∠DFC=α,故答案为:α;(2)如图2,连接BE交CD于O,∵∠BAC=∠EAD=90°,∴∠BAE=∠CAD,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴CD=BE,∠AEB=∠ADC,∵∠ADC+∠CDE+∠AED=90°,∴∠CDE+∠AED+∠AEO=90°,∴∠DOE=90°,∴四边形BCED的面积=×CD×BE=8,∴BE=CD=4;(3)如图3,延长AG到K,使得GK=AG=9,连接CK,∵∠BAC=∠EAD=90°,∴∠BAE=∠CAD,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴S△ABE=S△ACD,BE=CD,∵点G是EC的中点,∴EG=GC,∵∠AGE=∠KGC,AG=GK,∴△AEG≌△KCG(SAS),∴AE=CK,∠AEG=∠KCG,∴AE=KC=AD,∠ACK=∠ACB+∠KCG=45°+∠AEC=45°+∠ABE+∠BAE=90°+∠BAE=∠BAD,∵AB=AC,∴△AKC≌△BDA(SAS),∴BD=AK=18,∠CAK=∠DBA,∵∠BAG+∠CAG=90°,∴∠ABD+∠BAG=90°,∴∠AHB=90°,∴S△ABD=×BD×AH=×18×(9﹣2)=63,∵S△AEC=S△ABD+S△BCD﹣S△ABE﹣S△ACD,∴S△AEC=63+×BC×CD﹣2×BE×=63.【点评】本题是三角形综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质,添加恰当的辅助线构造全等三角形是本题的关键.10.在平面直角坐标系xOy中,已知点A的坐标为(﹣2,0).(1)如图1,当点B的坐标为(0,﹣4)时,则△AOB的面积是4;(2)如图2,在(1)的条件下,过点A作AC⊥AB,且使AC=AB,求第三象限内的点C的坐标;(3)如图3,P为y轴负半轴上一点,过点P作PD⊥P A,且使PD=P A,过第四象限内的点D作DE⊥x轴于E,试判断OP﹣DE的值是否发生变化?若不发生变化,请求其值;若发生变化,请说明理由.【分析】(1)由三角形的面积公式可得出答案;(2)过点C作CD⊥x轴于点D,证明△ADC≌△BOA(AAS),得出DC=OA=2,DA =OB=4,则可得出答案;(3)作DF⊥y轴于F,证明△APO≌△DPF,得到PF=OA=2,结合图形计算即可得出答案.【解答】解:(1)∵A(﹣2,0),B(0,﹣4),∴OA=2,OB=4,∴==4,故答案为:4.(2)过点C作CD⊥x轴于点D,∵AC⊥AB,∴∠CAB=90°,∴∠DAC+∠OAB=90°,∵∠AOB=90°,∴∠OAB+∠ABO=90°,∴∠DAC=∠ABO,在△ADC和△BOA中,,∴△ADC≌△BOA(AAS),∴DC=OA=2,DA=OB=4,∴OD=6,∴C(﹣6,﹣2);(3)OP﹣DE的值不变,值为2,理由如下:作DF⊥y轴于F,∴∠PDF+∠DPF=90°,∵∠APD=90°,∴∠APO+∠DPF=90°,∴∠APO=∠PDF,在△APO和△DPF中,,∴△APO≌△DPF(AAS),∴PF=OA=2,∴OP﹣DE=OP﹣OF=PF=2.【点评】本题是三角形综合题,考查了等腰直角三角形的性质,坐标与图形的性质,三角形的面积,全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.11.(1)已知x﹣y=3,y﹣z=1,求x2+y2+z2﹣xy﹣yz﹣xz的值.(2)已知P=2x2﹣4x﹣1,Q=x2﹣6x﹣6,比较P与Q的大小.(3)设x、y为实数,求式子4x2﹣2xy+y2﹣12x+13的最小值.【分析】(1)根据已知条件得到x﹣z=4,把原式配方代入x﹣y=3,y﹣z=1,x﹣z=4,即可得到结论;(2)求得P﹣Q(x+1)2+4≥4>0于是得到结论;(3)通过配方得到(x﹣y)2+3(x﹣2)2+1,然后根据非负数的性质即可得到结论.【解答】解:(1)∵x﹣y=3,y﹣z=1,∴x﹣z=4,∴x2+y2+z2﹣xy﹣yz﹣xz=(2x2+2y2+2z2﹣2xy﹣2yz﹣2xz)=[(x﹣y)2+(y﹣z)2+(x﹣z)2]=(32+12+42)=13;(2)∵P﹣Q=(2x2﹣4x﹣1)﹣(x2﹣6x﹣6)=2x2﹣4x﹣1﹣x2+6x+6=x2+2x+5=(x+1)2+4≥4>0∴P>Q;(3)∵4x2﹣2xy+y2﹣12x+13=(x﹣y)2+3(x﹣2)2+1,∴原式有最小值为1.【点评】本题考查了配方法的应用,非负数的性质,熟练掌握配方法是解题的关键.12.我们已学完全平方公式:a2±2ab+b2=(a±b)2,观察下列式子:x2+4x+2=(x2+4x+4)﹣2=(x+2)2﹣2,∵(x+2)2≥0,∴x2+4x+2=(x+2)2﹣2≥﹣2,原式有最小值是﹣2;﹣x2+2x﹣3=﹣(x2﹣2x+1)﹣2=﹣(x﹣1)2﹣2,∵﹣(x﹣1)2≤0,∴﹣x2+2x﹣3=﹣(x﹣1)2﹣2≤﹣2,原式有最大值是﹣2.并完成下列问题:(1)求代数式2x2﹣4x+1的最值;(2)解决实际问题:在紧靠围墙的空地上,利用围墙及一段长为100米的木栏围成一个长方形花圃,为了设计一个尽可能大的花圃,如图设长方形一边长度为x米,完成下列任务.①用含x的式子表示花圃的面积;②请说明当x取何值时,花圃的最大面积是多少平方米?【分析】(1)将代数式2x2﹣4x+1配方可得最值;(2)①利用长方形的面积=长×宽可得结论;②利用配方法即可解决问题.【解答】解:(1)2x2﹣4x+1=2(x2﹣2x+1﹣1)+1=2(x﹣1)2﹣1,∵(x﹣1)2≥0,∴2x2﹣4x+1=2(x﹣1)2﹣1≥﹣1,原式有最小值是﹣1;(2)①花圃的面积:x(100﹣2x)=(﹣2x2+100x)平方米;②由①可知:﹣2x2+100x=﹣2(x﹣25)2+1250,∵当x=25时,100﹣2x=50<100,∴当x=25时,花圃的最大面积为1250平方米.【点评】本题考查非负数的性质、配方法的应用,解题的关键是熟练掌握配方法,利用配方法可以确定最值问题,属于中考常考题型.13.阅读下面材料,完成(1)﹣(3)题.数学课上,老师出示了这样一道题:如图1,点E是正△ABC边AC上一点以BE为边做正△BDE,连接CD.探究线段AE 与CD的数量关系并证明.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现∠ABE与∠DBC相等.”小伟:“通过全等三角形证明,再经过进一步推理,可以得到线段BC平分∠ACD.”…老师:“保留原题条件,连接AD,F是AB的延长线上一点,AD=DF(如图2),如果BD=BF,可以求出CE、CB、EB三条线段之间的数量关系.”(1)求证:∠ABE=∠DBC;(2)求证:线段BC平分∠ACD;(3)探究CE、CB、EB三条线段之间的数量关系,并加以证明.【分析】(1)利用等边三角形的性质可知∠ABC=∠EBD=60°即可解决问题.(2)证明△ABE≌△CBD(SAS),推出∠BAE=∠BCD=60°可得结论.(3)结论:EC+BE=BC.由DA=DF,可以将△DBF绕点D顺时针旋转,使得DF 与DA重合,得到△DMA,连接AM.证明CD=CM=BD=BE,再证明CD+CE=BC即可解决问题.【解答】(1)证明:∵△ABC,△DEB都是等边三角形,∴∠ABC=∠EBD=60°,∴∠ABE+∠EBC=∠EBC+∠CBD,∴∠ABE=∠CBD.(2)证明:∵△ABC,△DEB都是等边三角形,∴BA=BC,BE=BD,∠BAC=∠ACB=60°,∵∠ABE=∠CBD,∴△ABE≌△CBD(SAS),∴∠BAE=∠BCD=60°,∴∠ACB=∠BCD=60°,∴CB平分∠ACD.(3)解:结论:EC+BE=BC.理由:∵DA=DF,∴可以将△DBF绕点D顺时针旋转,使得DF与DA重合,得到△DMA,连接AM.∵DA=DF,BD=BF,∴∠DAF=∠F=∠BDF,∵∠BCD=∠ABC=60°,∴CD∥AB,∴∠MDA=∠DAF,∵∠MDA=∠BDF=∠F=∠DAB,∴∠MDA=∠CDA,∴D,C,M共线,∵∠AMD=∠DBF=∠CDB,∠ACM=∠BCD=60°,AM=DM=BD=BF,∴△AMC≌△BDC(AAS),∴CM=DC=BD=BE,∵△ABE≌△CBD,∴AE=CD,∴BC=AC=EC+AE=CE+CD=CE+BE,∴EC+BE=BC.【点评】本题属于三角形综合题,考查了等边三角形的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.14.如图1,在△ABC中,AB=AC,∠BAC=30°,点D是△ABC内一点,DB=DC,∠DCB=30°,点E是BD延长线上一点,AE=AB(1)求证:DE=AD+DC;(2)作BP平分∠ABE,EF⊥BP,垂足为F(如图2).若EF=5,求BP的长.【分析】(1)在DE上取一点N,使DN=AD,可知△ADN为等边三角形;又可证△ABD ≌△AEN(SAS即可);(2)延长EF交BA的延长线与点N,可证:Rt△ANE≌Rt△APB(AAS),即可求解.【解答】解:(1)在DE上取一点N,使DN=AD,∵AB=AC,∴∠ABE=∠AEB=45°,∴∠BAE=90°,又∠BAC=30°,∴∠AND=60°,∴△ADN为等边三角形,∴AD=AN,∵AB=AE,AD=AN,∠ABE=∠AEB,∴△ABD≌△AEN(SAS),∴BD=EN,∴AD+DC=DN+DC=DN+BD=DN+NE=ED,(2)延长EF交BA的延长线与点N,∵∠BAE=90°,EF⊥BP,∴∠ABF=∠NEA,又AB=AE,∴Rt△ANE≌Rt△APB(AAS),∴BP=EN,∵BF既是△BEN的角平分线又是高,∴BF是△BEN的中线,即:EF=EN,∴BP=EN=2EF=10.【点评】本题考查的是三角形全等的判定和性质,等腰三角形三线合一性质等知识点,难点在于通过作辅助线构筑新的三角形.。

人教版八年级上册数学期末常考题型复习训练 含答案

人教版八年级上册数学期末常考题型复习训练   含答案

人教版八年级上册数学期末常考题型复习训练一.选择题1.在“回收”、“节水”、“绿色食品”、“低碳”四个标志图案中.轴对称图形是()A.B.C.D.2.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.16B.11C.3D.63.分式有意义,则x的取值范围是()A.x≠1B.x=1C.x≠﹣1)D.x=﹣14.点M(1,2)关于y轴对称点的坐标为(A.(﹣1,2)5.下列运算正确的是(A.a3•a4=a12B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1))B.(a3)2=a5D.a6÷a3=a2C.(3a2)3=27a66.如图,已知∠A CB=∠DB C,添加以下条件,不能判定△AB C≌△D CB的是()A.∠AB C=∠D C B B.∠AB D=∠D C A C.AC=D B 7.若x2+mxy+4y2是一个完全平方式,那么m的值是(A.±4B.﹣2C.±2D.AB=D C D.4)8.如图,△AB C为等边三角形,AE=C D,A D、BE相交于点P,B Q⊥A D于Q,P Q=3,PE=1.A D的长是()A .5 9.从边长为a 的正方形内去掉一个边长为 b 的小正方形(如图1),然后将剩余部分剪拼成 一个矩形(如图 2),上述操作所能验证的等式是(B .6C .7D .8)A .(a ﹣b )2=a 2﹣2ab+b 2 C .(a+b )2=a 2+2ab+b 2B .a 2﹣b 2=(a+b )(a ﹣b ) D .a 2+ab =a (a+b )10.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为( )A .60°B .120°C .60°或 150°D .60°或 120°二.填空题11.计算:(6x 4﹣8x 3)÷(﹣2x 2)= 12.若分式的值为零,则 x 的值为..13.禽流感病毒的形状一般为球形,直径大约为 0.000000102m ,将 0.000000102 用科学记数 法表示为14.如果一个多边形的每个外角都等于 60°,则这个多边形的边数是15.如图,已知△ABC 是等边三角形,点 B 、C 、D 、E 在同一直线上,且 C G =C D ,DF = D E ,则∠E =度...16.已知 2 =a ,32 =b ,y 为正整数,则 23 +10 =.x y x y 17.若 a ﹣b =1,ab =2,那么 a+b 的值为 .18.繁昌到南京大约150 千米,由于开通了高铁,动车的的平均速度是汽车的2.5 倍,这样 乘动车到南京比坐汽车就要节省 1.2 小时,设汽车的平均速度为 x 千米/时,根据题意列 出方程19.如图,在△AB C 中,AB =3,A C =4,BC =5,EF 垂直平分 BC ,点 P 为直线 EF 上一 动点,则△ABP 周长的最小值是..20.如图所示,第1个图案是由黑白两种颜色的正六边形地面砖组成,第2个,第3个图案可以看作是第1个图案经过平移而得,那么设第n个图案中有白色地面砖m块,则m与n的函数关系式是.三.解答题32﹣121.计算:20200﹣()+2÷(﹣2)22.解方程:.23.如图,点E、F在BC上,BE=FC,AB=D C,∠B=∠C.求证:∠A=∠D.24.先化简,再求值:÷(x﹣2﹣),其中x=3.25.如图,在Rt△ABC中,∠ACB=90°,C D是AB边上的高,(1)尺规作图:作△ABC的角平分线AE,交C D于点F(不写作法,保留作图痕迹);(2)求证:△CEF为等腰三角形.26.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.这项工程的规定时间是多少天?27.两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形B,C,E在同一条直线上,连结D C.(1)请找出图②中的全等三角形,并给予说明(注意:结论中不得含有未标识的字母);(2)请判断D C与BE的位置关系,并证明;(3)若CE=2,B C=4,求△D C E的面积.28.如图(1)AC⊥AB,B D⊥AB,AB=12cm,AC=B D=8cm,点P在线段AB上以2cm/s 的速度由点A向点B运动,同时,点Q在线段B D上由点B向点D运动,它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=2时,△ACP与△BP Q是否全等,请说明理由;(2)在(1)的条件下,判断此时线段PC和线段P Q的位置关系,并证明;(3)如图(2),将图(1)中的“AC⊥AB,B D⊥AB”改为“∠C AB=∠DBA=50°”,其他条件不变.设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BP Q全等?若存在,求出相应的x、t的值;若不存在,请说明理由.参考答案一.选择题1.解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项不合题意.故选:C.2.解:设第三边的长度为x,由题意得:7﹣3<x<7+3,即:4<x<10,故选:D.3.解:根据题意可得x﹣1≠0;解得x≠1;故选:A.4.解:点M(1,2)关于y轴对称点的坐标为(﹣1,2).故选:A.5.解:A.a3•a4=a7,故本选项不合题意;B.(a3)2=a6,故本选项不合题意;C.(3a2)3=27a6,正确,故选项C符合题意;D.a6÷a3=a3,故本选项不合题意.故选:C.6.解:A、∵在△ABC和△D C B中∴△ABC≌△D C B(ASA),故本选项不符合题意;B、∵∠AB D=∠D C A,∠DB C=∠ACB,∴∠AB D+∠DB C=∠AC D+∠A CB,即∠ABC=∠D C B,∵在△ABC和△D C B中∴△ABC≌△D C B(ASA),故本选项不符合题意;C、∵在△AB C和△D C B中∴△ABC≌△D C B(SAS),故本选项不符合题意;D、根据∠ACB=∠DB C,B C=B C,AB=D C不能推出△ABC≌△D C B,故本选项符合题意;故选:D.7.解:∵x2+mxy+4y2=x2+mxy+(2y)2,∴mxy=±2x•2y,解得:m=±4.故选:A.8.解:∵△AB C为等边三角形,∴AB=CA,∠BAE=∠AC D=60°;又∵AE=C D,在△ABE和△CAD中,,∴△ABE≌△CAD(SAS);∴BE=A D,∠CA D=∠ABE;∴∠BP Q=∠ABE+∠BA D=∠BA D+∠CA D=∠BAE=60°;∵B Q⊥A D,∴∠A QB=90°,则∠PB Q=90°﹣60°=30°;∵P Q=3,∴在Rt△BP Q中,BP=2P Q=6;又∵PE=1,∴A D=BE=BP+PE=7.故选:C.9.解:∵从边长为a的正方形内去掉一个边长为b的小正方形,剩余部分的面积是:a2﹣b2,拼成的矩形的面积是:(a+b)(a﹣b),2∴根据剩余部分的面积相等得:a﹣b=(a+b)(a﹣b),2故选:B.10.解:当高在三角形内部时(如图1),顶角是60°;当高在三角形外部时(如图2),顶角是120°.故选:D.二.填空题11.解;原式=6x4÷(﹣2x2)﹣8x3÷(﹣2x2)=﹣3x+4x,2故答案为:﹣3x+4x.212.解:,则|x|﹣1=0,即x=±1,且x+1≠0,即x≠﹣1.故x=1.故若分式的值为零,则x的值为1.13.解:0.000000102=1.02×10﹣7.故答案为:1.02×10.﹣714.解:360°÷60°=6.故这个多边形是六边形.故答案为:6.15.解:∵△ABC是等边三角形,∴∠ACB=60°,∠AC D=120°,∵C G=C D,∴∠C D G=30°,∠F DE=150°,∵DF=DE,∴∠E=15°.故答案为:15.16.解:∵32y=b,∴(2)=2=b5y5y∴23x+10y=2•2=(2)•(2)=a b.3x10y x35y232故答案为:a b.3217.解:把a﹣b=1,两边平方得:(a﹣b)2=a2+b2﹣2ab=1,把ab=2代入得:a+b=5,22∴(a+b)=a+b+2ab=9,222则a+b=±3,故答案为:±318.解:设原来火车的平均速度为x千米/时,则动车运行后的平均速度为1.8x,由题意得,故答案为:==+1.2.+1.2.19.解:∵EF垂直平分BC,∴B、C关于EF对称,连接AC交EF于D,∴当P和D重合时,AP+BP的值最小,最小值等于AC的长,∴△ABP周长的最小值是4+3=7.故答案为:7.20.解:首先发现:第一个图案中,有白色的是6个,后边是依次多4个.所以第n个图案中,是6+4(n﹣1)=4n+2.∴m与n的函数关系式是m=4n+2.故答案为:4n+2.三.解答题21.解:原式=1﹣3+8÷4=1﹣3+2=0.22.解:去分母得:2=x2+2x﹣x2+4,解得:x=﹣1,经检验x=﹣1是分式方程的解.23.证明:∵BE=FC,∴BE+EF=CF+EF,即BF=CE;又∵AB=D C,∠B=∠C,∴△ABF≌△D C E(SAS),∴∠A=∠D.===÷•.当x=3时,原式=1.25.(1)解:如图线段AE即为所求;(2)证明:∵CD⊥AB,∴∠B D C=∠ACB=90°,∴∠AC D+∠D C B=90°,∠D CB+∠B=90°,∴∠AC D=∠B,∵∠CFE=∠ACF+∠CAF,∠CEF=∠B+∠EAB,∠CAF=∠EAB,∴∠CEF=∠CFE,∴CE=CF,∴△CEF是等腰三角形.26.解:设这项工程的规定时间是x天,根据题意得解得:x=30.经检验x=30是方程的解.答:这项工程的规定时间是30天.27.解:(1)△ABE≌△AC D,∵△ABC和△A D E是等腰直角三角形,∴AB=AC,AE=A D,∠BA C=∠EA D=90°,∴∠BAC+∠EA C=∠DAE+∠EA C,∴∠BAE=∠CAD,在△ABE和△ACD中,∴△ABE≌△ACD(SAS).(2)∵△ABE≌△AC D,∴∠AEB=∠A D C.∵∠A D C+∠AF D=90°,∴∠AEB+∠AF D=90°.∵∠AF D=∠CFE,∴∠AEB+∠CFE=90°,∴∠FCE=90°,∴D C⊥BE;(3)∵CE=2,B C=4,∴BE=6,∵△ABE≌△ACD,∴C D=BE=6,∴△D CE的面积=CE•C D=×2×6=6.28.解:(1)△AC P与△BP Q全等,理由如下:当t=2时,AP=B Q=4cm,则BP=12﹣4=8cm,∴BP=AC=8cm,又∵∠A=∠B=90°,在△ACP和△BPQ中,,∴△ACP≌△BPQ(SAS).(2)PC⊥P Q,证明:∵△ACP≌△BP Q,∴∠ACP=∠BPQ,∴∠APC+∠BP Q=∠APC+∠ACP=90°.∴∠CP Q=90°,即线段PC与线段P Q垂直.(3)①若△ACP≌△BP Q,则AC=BP,AP=B Q,∴12﹣2t=8,解得,t=2(s),则x=2(cm/s).②若△ACP≌△BQ P,则AC=B Q,AP=BP,则2t=×12,解得,t=3(s),则x=8÷3=(cm/s),故当t=2s,x=2cm/s或t=3s,x=cm/s时,△AC P与△BP Q全等.∴CE=CF,∴△CEF是等腰三角形.26.解:设这项工程的规定时间是x天,根据题意得=1.解得:x=30.经检验x=30是方程的解.答:这项工程的规定时间是30天.27.解:(1)△ABE≌△AC D,∵△ABC和△A D E是等腰直角三角形,∴AB=AC,AE=A D,∠BA C=∠EA D=90°,∴∠BAC+∠EA C=∠DAE+∠EA C,∴∠BAE=∠CAD,在△ABE和△ACD中,∴△ABE≌△ACD(SAS).(2)∵△ABE≌△AC D,∴∠AEB=∠A D C.∵∠A D C+∠AF D=90°,∴∠AEB+∠AF D=90°.∵∠AF D=∠CFE,∴∠AEB+∠CFE=90°,∴∠FCE=90°,∴D C⊥BE;(3)∵CE=2,B C=4,∴BE=6,∵△ABE≌△ACD,∴C D=BE=6,∴△D CE的面积=CE•C D=×2×6=6.28.解:(1)△AC P与△BP Q全等,理由如下:当t=2时,AP=B Q=4cm,则BP=12﹣4=8cm,∴BP=AC=8cm,又∵∠A=∠B=90°,在△ACP和△BPQ中,,∴△ACP≌△BPQ(SAS).(2)PC⊥P Q,证明:∵△ACP≌△BP Q,∴∠ACP=∠BPQ,∴∠APC+∠BP Q=∠APC+∠ACP=90°.∴∠CP Q=90°,即线段PC与线段P Q垂直.(3)①若△ACP≌△BP Q,则AC=BP,AP=B Q,∴12﹣2t=8,解得,t=2(s),则x=2(cm/s).②若△ACP≌△BQ P,则AC=B Q,AP=BP,则2t=×12,解得,t=3(s),则x=8÷3=(cm/s),故当t=2s,x=2cm/s或t=3s,x=cm/s时,△AC P与△BP Q全等.∴CE=CF,∴△CEF是等腰三角形.26.解:设这项工程的规定时间是x天,根据题意得=1.解得:x=30.经检验x=30是方程的解.答:这项工程的规定时间是30天.27.解:(1)△ABE≌△AC D,∵△ABC和△A D E是等腰直角三角形,∴AB=AC,AE=A D,∠BA C=∠EA D=90°,∴∠BAC+∠EA C=∠DAE+∠EA C,∴∠BAE=∠CAD,在△ABE和△ACD中,∴△ABE≌△ACD(SAS).(2)∵△ABE≌△AC D,∴∠AEB=∠A D C.∵∠A D C+∠AF D=90°,∴∠AEB+∠AF D=90°.∵∠AF D=∠CFE,∴∠AEB+∠CFE=90°,∴∠FCE=90°,∴D C⊥BE;(3)∵CE=2,B C=4,∴BE=6,∵△ABE≌△ACD,∴C D=BE=6,∴△D CE的面积=CE•C D=×2×6=6.28.解:(1)△AC P与△BP Q全等,理由如下:当t=2时,AP=B Q=4cm,则BP=12﹣4=8cm,∴BP=AC=8cm,又∵∠A=∠B=90°,在△ACP和△BPQ中,,∴△ACP≌△BPQ(SAS).(2)PC⊥P Q,证明:∵△ACP≌△BP Q,∴∠ACP=∠BPQ,∴∠APC+∠BP Q=∠APC+∠ACP=90°.∴∠CP Q=90°,即线段PC与线段P Q垂直.(3)①若△ACP≌△BP Q,则AC=BP,AP=B Q,∴12﹣2t=8,解得,t=2(s),则x=2(cm/s).②若△ACP≌△BQ P,则AC=B Q,AP=BP,则2t=×12,解得,t=3(s),则x=8÷3=(cm/s),故当t=2s,x=2cm/s或t=3s,x=cm/s时,△AC P与△BP Q全等.∴CE=CF,∴△CEF是等腰三角形.26.解:设这项工程的规定时间是x天,根据题意得=1.解得:x=30.经检验x=30是方程的解.答:这项工程的规定时间是30天.27.解:(1)△ABE≌△AC D,∵△ABC和△A D E是等腰直角三角形,∴AB=AC,AE=A D,∠BA C=∠EA D=90°,∴∠BAC+∠EA C=∠DAE+∠EA C,∴∠BAE=∠CAD,在△ABE和△ACD中,∴△ABE≌△ACD(SAS).(2)∵△ABE≌△AC D,∴∠AEB=∠A D C.∵∠A D C+∠AF D=90°,∴∠AEB+∠AF D=90°.∵∠AF D=∠CFE,∴∠AEB+∠CFE=90°,∴∠FCE=90°,∴D C⊥BE;(3)∵CE=2,B C=4,∴BE=6,∵△ABE≌△ACD,∴C D=BE=6,∴△D CE的面积=CE•C D=×2×6=6.28.解:(1)△AC P与△BP Q全等,理由如下:当t=2时,AP=B Q=4cm,则BP=12﹣4=8cm,∴BP=AC=8cm,又∵∠A=∠B=90°,在△ACP和△BPQ中,,∴△ACP≌△BPQ(SAS).(2)PC⊥P Q,证明:∵△ACP≌△BP Q,∴∠ACP=∠BPQ,∴∠APC+∠BP Q=∠APC+∠ACP=90°.∴∠CP Q=90°,即线段PC与线段P Q垂直.(3)①若△ACP≌△BP Q,则AC=BP,AP=B Q,∴12﹣2t=8,解得,t=2(s),则x=2(cm/s).②若△ACP≌△BQ P,则AC=B Q,AP=BP,则2t=×12,解得,t=3(s),则x=8÷3=(cm/s),故当t=2s,x=2cm/s或t=3s,x=cm/s时,△AC P与△BP Q全等.。

人教版八年级上册数学期末专题复习九大类型

人教版八年级上册数学期末专题复习九大类型
= 3a
ab
21.计算:x2
2x 1 x2 1
x
x 1
.
解:原式= (x 1)2 x
(x 1)(x 1) x 1
= x 1 x
x 1 x 1
=1
x 1
22.计算:
a2 a
3
3
9
a
a
a
3
.
解:原式= a2 9 a 3
a3 a
= (a 3)(a 3) a
a3 a3
=a
23.化简:
B
)
A.x= 1
6
B.x=
2 3
C.x= 1
3
D.x= 5
6
3.解方程 3 4 .
x 1 x
解:方程两边同乘以x(x-1),得3x=4(x-1) 解得x=4 检验:当x=4时,x(x-1)≠0. 所以,原分式方程的解为x=1.
4.解方程 x 2 =4.
x 1 1 x
解:方程两边都乘以(x-1),得x-2=4(x-1)
2 x
x2
4x x2 4
4
x x
4 2
其中x2+2x-15=0.
解:原式= x 2
x
x2 4 x 4 x2 4x 4 x 2

x2 x
(
x
2)(x (x 2)2
2)
x4 x2
=Байду номын сангаасx2 x4
x x2
= (x 2)2 x(x 4)
x(x 2)
= x2 4x 4 x2 4x
解:原式=x2+4x+4+4x2-1-4x2-4x =x2+3
当x=- 2 时,原式=(- 2 )2+3=2+3=5.

2024年人教版初中八年级数学(上册)期末试题及答案(各版本)

2024年人教版初中八年级数学(上册)期末试题及答案(各版本)

专业课原理概述部分一、选择题(每题1分,共5分)1.若一个正方形的边长为a,则它的对角线长为()A.a/2B.a√2C.2aD.a²2.下列函数中,哪一个不是二次函数?()A.y=2x²3x+1B.y=x²+4C.y=3x+2D.y=5x²6x+93.在直角坐标系中,点(3,-4)位于()A.第一象限B.第二象限C.第三象限D.第四象限4.一个等腰三角形的底边长为10cm,腰长为13cm,则这个三角形的周长为()A.32cmB.36cmC.42cmD.46cm5.若平行四边形的对角线互相垂直,则这个平行四边形是()A.矩形B.菱形C.正方形D.无法确定二、判断题(每题1分,共5分)1.两个负数相乘的结果是正数。

()2.平行四边形的对角线相等。

()3.二次函数的图像必定是一个抛物线。

()4.在三角形中,大边对大角。

()5.任何数乘以0都等于0。

()三、填空题(每题1分,共5分)1.若一个圆的半径为r,则它的直径长为______。

2.二次函数y=ax²+bx+c的顶点坐标为______。

3.若等腰三角形的底边长为8cm,腰长为10cm,则这个三角形的高为______cm。

4.两个平行线之间的距离是______。

5.若一个正方形的面积为64cm²,则它的边长为______cm。

四、简答题(每题2分,共10分)1.请简要解释勾股定理。

2.什么是二次函数的最值?3.如何判断一个三角形是等腰三角形?4.请说明平行四边形的性质。

5.什么是圆的半径和直径?五、应用题(每题2分,共10分)1.已知一个正方形的边长为6cm,求它的对角线长。

2.已知二次函数y=-2x²+4x+3,求它的顶点坐标。

3.已知等腰三角形的底边长为12cm,腰长为15cm,求这个三角形的高。

4.已知两个平行线之间的距离为5cm,求这两条平行线的距离。

5.已知一个圆的直径为10cm,求这个圆的面积。

人教版数学八年级上册 期末综合复习卷(有答案)

人教版数学八年级上册     期末综合复习卷(有答案)

人教版数学八年级上册期末综合复习卷一、选择题(每题3分,共30分)1.下列“数字”图形中,有且仅有一条对称轴的是()a2.下列运算正确的是()A.a·a2=a2B.(a5)3=a8C.(ab)3=a3b3D.a6÷a2=a33.已知:如图,△OAD≌△OBC,且∠O=70°,∠C=25°,则∠OAD=()A.95°B.85°C.75°D.65°4.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000 000 076 g.将数0.000 000 076用科学记数法表示为()A.7.6×10-9B.7.6×10-8C.7.6×109D.7.6×1085.下列说法:①满足a+b>c的a,b,c三条线段一定能组成三角形;②三角形的三条高一定交于三角形内一点;③三角形的外角大于它的任何一个内角.其中错误的有() A.0个B.1个C.2个D.3个6.如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠A=60°,则∠BFC等于()A.100°B.110°C.120°D.150°7.已知2m +3n =5,则4m ·8n =( )A .16B .25C .32D .648.如图,折叠直角三角形纸片的直角,使点C 落在AB 边上的点E 处.若BC =24,∠B =30°,则DE 的长是( )A .12B .10C .8D .69.甲地到乙地之间的铁路长210千米,动车运行后的平均速度是原来火车的1.8倍,这样由甲地到乙地的行驶时间缩短了1.5小时,设原来火车的平均速度为x 千米/时,则下列方程正确的是( )A.210x -1.8=2101.5xB.210x +1.8=2101.5xC.210x +1.5=2101.8xD.210x -1.5=2101.8x10.如图,过边长为1的等边三角形ABC 的边AB 上一点P ,作PE ⊥AC 于点E ,Q 为BC 延长线上一点,当AP =CQ 时,PQ 交AC 于点D ,则DE 的长为( )A.13B.12C.23D .不能确定二、填空题(每题3分,共30分)11.若式子x x -3+(x -4)0有意义,则实数x 的取值范围是____________. 12.若x 2+bx +c =(x +5)(x -3),其中b ,c 为常数,则点P(b ,c)关于y 轴对称的点的坐标是________.13.化简a 2+2ab +b 2a 2-b 2+b a -b的结果是________. 14.一个多边形的每个内角都是150°,这个多边形是________边形.15.如图,AB =AC ,AD =AE ,∠BAC =∠DAE ,点D 在线段BE 上.若∠1=25°,∠2=30°,则∠3=______.16.如图,将长方形ABCD 沿AE 折叠,得到如图的图形,已知∠CEB′=50°,则∠AEB′的度数为________.17.已知点P(1-a ,a +2)关于y 轴的对称点在第二象限,则a 的取值范围是__________.18.一张纸的厚度约为0.000 008 57米,用科学记数法表示其结果是________米.19.若关于x 的方程ax +3x -1-1=0无解,则a 的值为________. 20.如图,在平面直角坐标系中,点A ,B 分别在y 轴和x 轴上,∠ABO =60°,在坐标轴上找一点P ,使得△PAB 是等腰三角形,则符合条件的P 点共有________个.三、解答题(共60分)21.(8分)计算:(1)x(x -2y)-(x +y)2;(2)⎝⎛⎭⎫3a +2+a -2÷a 2-2a +1a +2.22.(8分) (1)化简求值:(2+a)(2-a)+a(a -2b)+3a 5b÷(-a 2b)4,其中ab =-12.(2)因式分解:a(n -1)2-2a(n -1)+a.23.(8分)解方程:(1)x x -1=3x +1+1;(2)x x -2-1=8x 2-4.24.(8分)如图,已知网格上最小的正方形的边长为1.(1)分别写出A ,B ,C 三点的坐标;(2)作△ABC 关于y 轴对称的△A′B′C′(不写作法),想一想:关于y 轴对称的两个点之间有什么关系?(3)求△ABC 的面积.25.(8分) 如图,已知EC=AC,∠BCE=∠DCA,∠A=∠E.求证∠B=∠D.26.(10分)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米;(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?27.(10分如图①,在四边形ABCD中,已知∠ABC+∠ADC=180°,AB=AD,DA⊥AB,点E在CD的延长线上,∠BAC=∠DAE.(1)求证:△ABC≌△ADE;(2)求证:CA平分∠BCD;(3)如图②,若AF是△ABC的边BC上的高,求证:CE=2AF.参考答案一、1.A 2.C 3.B 4.B 5.D 6.C 7.C 8.C 9.D 10.B二、11.x≠3且x≠4 12.(-2,-15) 13.a +2b a -b14.十二 15.55° 16.65° 17.17.-2<a <1 18.8.57×10-6 19.-3或1 20.6 三、21.解:(1)原式=x 2-2xy -x 2-2xy -y 2=-4xy -y 2.(2)原式=⎣⎢⎡⎦⎥⎤3a +2+(a +2)(a -2)a +2·a +2(a -1)2=a 2-1a +2·a +2(a -1)2=a +1a -1. 22.22.解:(1)原式=4-a 2+a 2-2ab +3a 5b÷a 8b 4=4-2ab +3a -3b -3. 当ab =-12时,原式=4-2×⎝⎛⎭⎫-12+3×⎝⎛⎭⎫-12-3 =4+1-3⎝⎛⎭⎫123 =5-24=-19.(2)原式=a[(n -1)2-2(n -1)+1]=a(n -1-1)2=a(n -2)2.23.解:(1)方程两边乘x 2-1,得x(x +1)=3(x -1)+x 2-1,解得x =2.检验:当x =2时,x 2-1≠0.∴原分式方程的解为x =2;(2)方程两边同时乘(x +2)(x -2),得x(x +2)-(x +2)(x -2)=8.去括号,得x 2+2x -x 2+4=8.移项、合并同类项,得2x =4.系数化为1,得x =2.检验:当x =2时,(x +2)(x -2)=0,即x =2不是原分式方程的解. 所以原分式方程无解.24.解:(1)A(-3,3),B(-5,1),C(-1,0).(2)图略,关于y 轴对称的两个点的横坐标互为相反数,纵坐标相等(两点连线被y 轴垂直平分).(3)S △ABC =3×4-12×2×3-12×2×2-12×4×1=5. 25.证明:∵∠BCE =∠DCA ,∴∠BCE +∠ACE =∠DCA +∠ACE ,即∠ACB =∠ECD.在△ACB 和△ECD 中,⎩⎪⎨⎪⎧∠A =∠E ,AC =EC ,∠ACB =∠ECD ,∴△ACB ≌△ECD(ASA).∴∠B =∠D.26.解:(1)设甲工程队每天修路x 千米,则乙工程队每天修路(x -0.5)千米.根据题意,得1.5×15x =15x -0.5, 解得x =1.5.经检验,x =1.5是原分式方程的解,且符合题意,则x -0.5=1.答:甲工程队每天修路1.5千米,乙工程队每天修路1千米.(2)设甲工程队修路a 天,则乙工程队需要修路(15-1.5a)千米,∴乙工程队需要修路15-1.5a 1=(15-1.5a)(天). 由题意可得0.5a +0.4(15-1.5a)≤5.2,解得a≥8,答:甲工程队至少修路8天.27.证明:(1)∵∠ABC +∠ADC =180°,∠ADE +∠ADC =180°, ∴∠ABC =∠ADE.在△ABC 与△ADE 中,⎩⎪⎨⎪⎧∠BAC =∠DAE ,AB =AD ,∠ABC =∠ADE ,∴△ABC ≌△ADE.(2)∵△ABC ≌△ADE ,∴AC=AE,∠BCA=∠E,∴∠ACD=∠E,∴∠BCA=∠ACD,即CA平分∠BCD.(3)如图,过点A作AM⊥CE,垂足为点M.∵AM⊥CD,AF⊥CF,∠BCA=∠ACD,∴AF=AM.∵∠BAC=∠DAE,∴∠CAE=∠CAD+∠DAE=∠CAD+∠BAC=∠BAD=90°,∴∠ACE=∠E=45°.∵AM⊥CE,∴M为CE中点.∴CM=AM=ME.又∵AF=AM,∴CE=2AM=2AF.。

人教版 八年级数学上册 期末综合复习(一)(含答案)

人教版 八年级数学上册 期末综合复习(一)(含答案)

人教版 八年级数学上册 期末综合复习(一)一、选择题(本大题共10道小题)1. 如图,要用“HL”判定Rt △ABC 和Rt △A ′B ′C ′全等,所需的条件是( )A .AC =A ′C ′,BC =B ′C ′ B .∠A =∠A ′,AB =A ′B ′ C .AC =A ′C ′,AB =A ′B ′D .∠B =∠B ′,BC =B ′C ′2. 如图,△ABC ≌△EDF ,DF=BC ,AB=ED ,AC=15,EC=10,则CF 的长是( )A .5B .8C .10D .153. 如图,为估计池塘岸边A ,B 两地之间的距离,小明在池塘的一侧选取一点O ,测得OA =10米,OB =8米,那么A ,B 两地之间的距离可能是( )A .2米B .15米C .18米D .28米4. (2019•天水)如图,等边OAB △的边长为2,则点B 的坐标为A .(11),B .(13),C .31)D .33),5. 如图,点B ,E ,C ,F 在同一直线上,AB ∥DE ,∠A =∠D ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是( )A .BE =CFB .∠ACB =∠FC .AC =DFD .AB =DE6. 将一个n 边形变成(n +2)边形,内角和将( )A .减少180°B .增加180°C .减少360°D .增加360°7. (2019•临沂)如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,FC AB ∥,若4AB =,3CF =,则BD 的长是A .0.5B .1C .1.5D .28. 如图,△ABC 是等边三角形,AD ⊥BC 于点D ,点E 在AC 上,且AE =AD ,则∠DEC 的度数为( )A .105°B .95°C .85°D .75°9. 对于△ABC ,嘉淇用尺规进行如下操作:如图,(1)分别以点B 和点C 为圆心,BA ,CA 为半径作弧,两弧相交于点D ; (2)作直线AD 交BC 边于点E .根据嘉淇的操作方法,可知线段AE 是( )A.△ABC的高线B.△ABC的中线C.边BC的垂直平分线D.△ABC的角平分线10. 把一张长方形纸片按图2①②所示的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是图3中的()二、填空题(本大题共10道小题)11. 如图,王明想从一块边长为60 cm的等边三角形纸片上剪下一个最大的正六边形,写上“祝福祖国”的字样来表达自己的喜悦之情,则此正六边形的边长是________ cm.12. 如图,已知AB=BC,要使△ABD≌△CBD,还需要添加一个条件,你添加的条件是____________.(只需写一个,不添加辅助线)13. 如图,已知AC=FE,BC=DE,点A,D,B,F在同一直线上,要使△ABC≌△FDE,还需添加一个..条件,这个条件可以是__________(填一个即可).14. 设三角形三边之长分别为3,7,1+a,则a的取值范围为__________.15. 已知点P(x,y)的坐标满足等式(x-2)2+|y-1|=0,且点P与点P′关于y轴对称,则点P′的坐标为________.16. (2019•襄阳)如图,已知ABC DCB∠=∠,添加下列条件中的一个:①A D∠=∠,②AC DB=,③AB DC=,其中不能确定ABC△≌△DCB△的是_ _________(只填序号).17. 如图,在△ABC中,若AB=AC=8,∠A=30°,则S△ABC=________.18. 如图,已知a∥b,若∠1+∠2=75°,则∠3+∠4=________°.19. 如图,在Rt ABC△中,90C∠=︒,以顶点B为圆心,适当长度为半径画弧,分别交AB BC,于点M N,,再分别以点M N,为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D.若30A∠=︒,则BCDABDSS=△△______ ____.20. 如图,点E在等边三角形ABC的边BC上,BE=6,射线CD⊥BC于点C,P是射线CD上一动点,F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC的长为________.三、解答题(本大题共6道小题)21. 育新中学校园内有一块直角三角形(Rt△ABC)空地,如图所示,园艺师傅以角平分线AD为界,在其两侧分别种上了不同的花草,在△ABD区域内种植了一串红,在△ACD区域内种植了鸡冠花,并量得两直角边AB=20 m,AC=10 m,分别求一串红与鸡冠花两种花草的种植面积.22. 如图,上午8时,一条船从海岛A出发,以15海里/时的速度向正北方向航行,上午10时到达海岛B处,从A,B望灯塔C,测得∠NAC=30°,∠NBC=60°.(1)求海岛B到灯塔C的距离;(2)这条船继续向正北方向航行,在什么时间小船与灯塔C的距离最短?23. 如图,用钉子把木棒AB,BC和CD分别在端点B,C处连接起来,AB,CD 可以转动,用橡皮筋把AD连接起来,橡皮筋始终绷直,设橡皮筋AD的长是x cm.(1)若AB=5 cm,CD=3 cm,BC=11 cm,求x的最大值和最小值;(2)在(1)的条件下要围成一个四边形,你能求出x的取值范围吗?24. 如图,现有一块三角形的空地,其三条边长分别是20 m,30 m,40 m.现要把它分成面积比为2∶3∶4的三部分,分别种植不同种类的花,请你设计一种方案,并简单说明理由.(要求:尺规作图,保留作图痕迹,不写作法)25. 如图,在直角坐标系中,△ABO的各顶点的坐标分别为O(0,0),A(2a,0),B(0,-a),线段EF两端点的坐标分别为E(-m,a+1),F(-m,1)(其中2a>m>a>0),直线l∥y轴交x轴于点P(a,0),且线段EF与CD关于y轴对称,线段CD与MN关于直线l对称.(1)求点M,N的坐标(用含m,a的式子表示);(2)△ABO与△MFE能通过平移互相重合吗?若能通过平移互相重合,请你说出一种平移方案(平移的距离用含m,a的式子表示).26. 如图②,在△ABC中,AB=AC,AB>BC,点D在边BC上,且CD=2BD,点E,F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,求△ABE与△CDF的面积之和.人教版八年级数学上册期末综合复习(一)-答案一、选择题(本大题共10道小题)1. 【答案】C2. 【答案】A[解析] ∵△ABC≌△EDF,AC=15,∴EF=AC=15.∵EC=10,∴CF=EF-EC=15-10=5.3. 【答案】B[解析] 设A,B两地之间的距离为x米.依据题意,得10-8<x <10+8,即2<x<18,所以A,B两地之间的距离可能是15米.4. 【答案】B于H点,【解析】如图,过点B作BH AO∵OAB △是等边三角形,∴1OH =,22=213BH -B 的坐标为(13),.故选B .5. 【答案】B6. 【答案】D[解析] (n +2)边形的内角和比n 边形的内角和大n·180°-(n -2)·180°=360°.7. 【答案】B【解析】∵CF AB ∥,∴A FCE ∠=∠,ADE F ∠=∠,在ADE △和FCE △中,A FCEADE F DE FE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ADE CFE △≌△,∴3AD CF ==,∵4AB =,∴431DB AB AD =-=-=.故选B .8. 【答案】A[解析] ∵△ABC 是等边三角形,∴∠BAC =60°.∵AD ⊥BC ,∴AD 平分∠BAC.∴∠DAC =30°.∵AD =AE ,∴∠ADE =∠AED =180°-30°2=75°.∴∠DEC =105°.9. 【答案】A10. 【答案】C二、填空题(本大题共10道小题)11. 【答案】2012. 【答案】答案不唯一,如AD =CD [解析] 因为AB =BC ,BD =BD ,所以:(1)当AD =CD 时,△ABD ≌△CBD(SSS);(2)当∠ABD =∠CBD 时,△ABD ≌△CBD(SAS); (3)当∠A =∠C =90°时,Rt △ABD ≌Rt △CBD(HL).13. 【答案】答案不唯一,如∠C =∠E 或AB =FD 等14. 【答案】3<a <9[解析] 由题意,得7-3<1+a <7+3,解得3<a <9.15. 【答案】(-2,1)[解析] ∵(x -2)2≥0,|y -1|≥0,又(x -2)2+|y -1|=0,∴x-2=0且y -1=0,即x =2,y =1.∴点P 的坐标为(2,1).那么点P 关于y 轴的对称点P′的坐标为(-2,1).16. 【答案】②【解析】∵已知ABC DCB ∠=∠,且BC CB =,∴若添加①A D ∠=∠,则可由AAS 判定ABC △≌DCB △;若添加②AC DB =,则属于边边角的顺序,不能判定ABC △≌DCB △; 若添加③AB DC =,则属于边角边的顺序,可以判定ABC △≌DCB △. 故答案为:②.17. 【答案】16[解析] 如图,过点C 作CD ⊥AB ,垂足为D ,则△ADC 是含30°角的直角三角形,那么DC =12AC =4,∴S △ABC =12AB·DC =12×8×4=16.18. 【答案】105[解析] 如图,∠5=∠1+∠2=75°,∴∠3+∠4=∠6+∠4=180°-∠5=180°-75°=105°.19. 【答案】12【解析】由作法得BD 平分ABC ∠, ∵90C =︒∠,30A ∠=︒,∴60ABC ∠=︒, ∴30ABD CBD ∠=∠=︒,∴DA DB =, 在Rt BCD △中,2BD CD =,∴2AD CD =, ∴12BCD ABD S S =△△.故答案为:12.20. 【答案】10[解析] ∵△ABC 是等边三角形,∴AC =BC ,∠B =60°.如图,作点E 关于直线CD 的对称点G ,过点G 作GF ⊥AB 于点F ,交CD 于点P ,则此时EP +PF 的值最小.∵∠B =60°,∠BFG =90°,∴∠G =30°. ∵BF =7,∴BG =2BF =14.∴EG =8. ∴CE =CG =4.∴AC =BC =10.三、解答题(本大题共6道小题)21. 【答案】解:如图,过点D 作DE ⊥AB 于点E ,DF ⊥AC 于点F.∵AD 是∠BAC 的平分线,∴DE =DF. ∵AB =20 m ,AC =10 m ,∴S △ABC =12×20×10=12×20·DE +12×10·DF ,解得DE =203(m). ∴△ACD 的面积=12×10×203=1003(m 2),△ABD 的面积=12×20×203=2003(m 2).故一串红的种植面积为2003 m 2,鸡冠花的种植面积为1003 m 2.22. 【答案】解:(1)∵∠NBC=60°,∠NAC=30°,∴∠ACB=30°.∴AB=BC.∵AB=15×2=30(海里),∴BC=30 海里,即从海岛B到灯塔C的距离为30海里.(2)过点C作CP⊥AB于点P,则线段CP的长为小船与灯塔C的最短距离.∵∠NBC=60°,∠BPC=90°,∴∠PCB=90°-60°=30°.∴PB=12BC=15海里.∵15÷15=1(时),∴这条船继续向正北方向航行,在上午11时小船与灯塔C的距离最短.23. 【答案】解:(1)x的最大值是5+3+11=19,最小值是11-3-5=3.(2)由(1)得x的取值范围为3<x<19.24. 【答案】解:(答案不唯一)如图,分别作∠ACB和∠ABC的平分线,相交于点P,连接PA,则△PAB,△PAC,△PBC的面积之比为2∶3∶4.理由如下:如图,过点P分别作PE⊥AB于点E,PF⊥AC于点F,PH⊥BC于点H.∵P是∠ABC和∠ACB的平分线的交点,∴PE=PF=PH.∵S△PAB=12AB·PE=10PE,S△PAC=12AC·PF=15PF,S△PBC=12BC·PH=20PH,∴S△PAB∶S△PAC∶S△PBC=10∶15∶20=2∶3∶4.25. 【答案】解:(1)∵线段EF与CD关于y轴对称,EF两端点的坐标分别为E(-m,a+1),F(-m,1),∴C (m ,a+1),D (m ,1).∴CD 与直线l 之间的距离为m-a.∵线段CD 与MN 关于直线l 对称,l 与y 轴之间的距离为a ,∴MN 与y 轴之间的距离为a-(m-a )=2a-m.∴M (2a-m ,a+1),N (2a-m ,1).(2)能.平移方案(不唯一):将△ABO 向上平移(a+1)个单位长度后,再向左平移m 个单位长度,即可与△MFE 重合.26. 【答案】∵∠1=∠2=∠BAC ,且∠1=∠BAE +∠ABE ,∠2=∠CAF +∠ACF ,∠BAC =∠BAE +∠CAF ,∴∠BAE =∠ACF ,∠ABE =∠CAF.在△ABE 和△CAF 中,⎩⎨⎧∠BAE =∠ACF ,AB =CA ,∠ABE =∠CAF ,∴△ABE ≌△CAF(ASA).∴S △ABE =S △CAF .∴S △ABE +S △CDF =S △CAF +S △CDF =S △ACD .∵CD =2BD ,△ABC 的面积为15,∴S △ACD =10.∴S △ABE +S △CDF =10.。

2022-2023学年人教版八年级数学上册期末阶段复习综合训练题(附答案)

2022-2023学年人教版八年级数学上册期末阶段复习综合训练题(附答案)

2022-2023学年人教版八年级数学上册期末阶段复习综合训练题(附答案)一、选择题:(本大题12个小题,共36分)1.要使代数式有意义,x的取值范围是()A.x=2B.x≠2C.x≥2D.x>2 2.下列四个图案中,不是轴对称图案的是()A.B.C.D.3.下列计算正确的是()A.a3•(﹣a)2=a5B.(3a3b)2=3a6b2C.a﹣5÷a2=a﹣3D.a÷b×=a4.下列各式的化简中,正确的是()A.B.C.D.5.下列多项式能用完全平方公式进行分解因式的是()A.x2+1B.x2+2x+4C.x2﹣2x+1D.x2+x+1 6.下列变形正确的是()A.=x3B.=C.=x+y D.=﹣17.若分式的值为0,则x的值为()A.x=±1B.x=1C.x=﹣1D.x=08.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.2B.3C.4D.59.下列命题,正确的是()A.三角形三条中线的交点到三角形三个顶点的距离相等B.三角形三条高线的交点到三角形三个顶点的距离相等C.三角形三条角平分线的交点到三角形三个顶点的距离相等D.三角形三边中垂线的交点到三角形三个顶点的距离相等10.在实施“中小学生蛋奶工程”中,某配送公司按上级要求,每周向学校配送鸡蛋10000个,鸡蛋用甲、乙两种不同规格的包装箱进行包装,若单独使用甲型包装箱比单独使用乙型包装箱可少用10个,每个甲型包装箱比每个乙型包装箱可多装50个鸡蛋,设每个甲型包装箱可装x个鸡蛋,根据题意下列方程正确的是()A.B.C.D.11.若点A(m﹣n,m﹣2n)与点B(m﹣3n,1﹣m)关于y轴对称,则点P(m,n)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限12.若关于x的不等式组无解,且关于y的分式方程=﹣1有非负整数解,那么所有满足条件的整数m的个数是()A.1B.2C.3D.4二、填空题(本大题共6个小题,共24分)13.初二某班物理课堂上,老师测得一根头发的直径约为0.000075米,请将0.000075米用科学记数法表示为米.14.因式分解:x3﹣x=.15.如图,实数a、b在数轴上对应的点分别为A、B,则=.16.若+=﹣3,则的值为.17.如图,在△ABC中,∠ACB=4∠A,点D在边AC上,将△BDA沿BD折叠,点A落在点A'处,恰好BA'⊥AC于点E且BC∥DA',则∠BDC的度数为度.18.某景区内有一条风光极好的河道和一个人工湖,当地政府因地制宜,计划在景区内打造游船项目,设计者为了让游客达到最好的游船体验,在设计路线时做了两次试验,第一次试验:游船从河道上游A处顺流而下到B处,再经过平静的人工湖到达C处,用时2.5小时;第二次试验:这艘游船由C处出发经过平静的人工湖到B,再到A共用5小时.某天,该人工湖进行开闸放水,人工湖的湖水放水速度恰好与河道中的水流速度一样,从B 流向C,这艘游船从A到B再穿过人工湖到C只需要2小时,在这样的条件下,这艘游船由C按原路返回A,共需要小时.三、解答题(本大题共8个小题,共60分)19.计算:(1)(a+b)2﹣a(2b﹣a);(2)(π﹣3.14)0+(﹣)﹣3+(1﹣2).20.(1)计算:(+)÷;(2)解方程:﹣=1.21.先化简,再求值:÷(a+2b﹣),其中a,b满足+(b+2)2=0.22.如图,在△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE,且B,D,E在同一直线上,连接EC.(1)求证:BD=EC.(2)若∠ACB=55°,求∠BEC的度数.23.小白同学为了能在全国大学英语六级考试中获得好的成绩,于是打算利用若干个星期的时间做完144篇阅读练习.当计划开始的时候,她发现实际每个星期完成阅读练习的量是原计划的1.5倍,这样可以提前4个星期完成她的计划.(1)问实际每个星期完成阅读练习量是多少篇?(2)如果小白同学按实际完成阅读练习的速度持续了3个星期之后,打算再次提高速度,那么她在之后的每个星期至少要完成多少阅读练习,才能使她在6个星期内至少完成144篇阅读练习.24.代数式求值是在已知字母的值或限制条件下,求出给定代数式的值.为了方便求值,我们常常将所求代数式化简或把限制条件进行变形,再将变形后的条件代入化简后的代数式求值.例如:当a=﹣1时,求2a3+7a2﹣2a﹣12的值.为解决本道题,若直接把a=﹣1代入所求式子进行计算,计算量较大,我们可以通过对条件和所求式子变形,对本题进行解答:解:∵a=﹣1,∴a+1=.∴(a+1)2=()2.∴a2+2a﹣4=0.方法一:∵a2+2a﹣4=0,∴a2=4﹣2a.∴原式=2a•a2+7a2﹣2a﹣12=2a(4﹣2a)+7a2﹣2a﹣12=8a﹣4a2+7a2﹣2a﹣12=3a2+6a﹣12=3(a2+2a)﹣12=0.方法二:∵a2+2a﹣4=0,∴a2+2a=4.∴原式=2a(a2+2a)+3a2﹣2a﹣12=8a+3a2﹣2a﹣12=3a2+6a﹣12=3(a2+2a)﹣12=3×4﹣12=0.…本题还有其它类似方法.请参照以上解决问题的思路和方法,解决以下问题:(1)当x2+x﹣1=0时,x3+2x2+5=.(2)当x2﹣2020x+1=0时,求x2﹣2019x+的值.(3)当a=时,求a3﹣2a+3的值.25.如图,在等腰△ABC中,CA=CB,点D是AB边上一点,连接DC,且DA=DC.(1)如图1,CH⊥AB,若∠ACB=78°,求∠HCD的度数.(2)如图2,若点E在BC边上且DE=DB,连接AE.点M为线段CE的中点,过M 点作MN∥DE交AB于点N,求证:CD=BN+DN.26.如图,在平面直角坐标系中,点A和点C在x轴上,点B和点D在y轴上,且点B的坐标为(0,8),∠ABO=30°,已知点D为线段OB的中点,OD=OC,点M为线段AB上一动点,连接MD.(1)当线段MD最小时,求点M的纵坐标;(2)在(1)的条件下,将线段MD所在的直线沿直线CD平移得到直线M′D′,直线M'D'与直线AB交于点P,与直线CD交于点Q,连接PQ、PC,若△PCQ为等腰三角形,请直接写出∠PCQ的度数.参考答案一、选择题:(本大题12个小题,共36分)1.解:由题意得,x﹣2>0,解得x>2.故选:D.2.解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.3.解:A.a3•(﹣a)2=a3•a2=a5,符合题意;B.(3a3b)2=9a6b2,不符合题意;C.a﹣5÷a2=a﹣7=,不符合题意;D.a÷b×=a••=,不符合题意;故选:A.4.解:A.+=2+,不符合题意;B.×==2,符合题意;C.==,不符合题意;D.==13,不符合题意.故选:B.5.解:x2﹣2x+1=(x﹣1)2,故选:C.6.解:A、结果为x4,故本选项错误;B、不能约分,故本选项错误;C、不能约分,故本选项错误;D、结果是﹣1,故本选项正确;故选:D.7.解:由题意可知:|x|﹣1=0且x2+1≠0,解得x=±1.观察选项,只有选项A符合题意.故选:A.8.解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,∴S△ABD=AB•DE=×10•DE=15,解得:DE=3,∴CD=3.故选:B.9.解:A、三角形三条中线的交点到三角形三个顶点的距离相等,错误,本选项不符合题意.B、三角形三条高线的交点到三角形三个顶点的距离相等,错误,本选项不符合题意.C、三角形三条角平分线的交点到三角形三个顶点的距离相等,错误,本选项不符合题意.D、三角形三边中垂线的交点到三角形三个顶点的距离相等,正确,本选项符合题意.故选:D.10.解:设每个甲型包装箱可装x个鸡蛋,﹣=10.故选:B.11.解:∵点A(m﹣n,m﹣2n)与点B(m﹣3n,1﹣m)关于y轴对称,∴,解得:则点P(m,n)所在象限为第一象限.故选:A.12.解:解不等式组得:,因为关于x的不等式组无解,所以m+2≥﹣2m﹣1,解得m≥﹣1;解分式方程得:y=,因为关于y的分式方程=﹣1有非负整数解,所以,即m≤4且m≠0,所以使分式方程有非负整数解的m的值为:2,4.所以所有满足条件的整数m的值为:2,4,共2个.故选:B.二、填空题(本大题共6个小题,共24分)13.解:0.000075=7.5×10﹣5,故答案为:7.5×10﹣5.14.解:原式=x(x2﹣1)=x(x+1)(x﹣1),故答案为:x(x+1)(x﹣1)15.解:由数轴可得:a﹣b<0,b﹣1<0,∴=﹣(a﹣b)﹣(b﹣1)=﹣a+b﹣b+1=1﹣a.故答案为:1﹣a.16.解:∵+=﹣3,∴n+3m=﹣3mn,∴====﹣.故答案为:﹣.17.解:由折叠可知:∠A=∠A',∠ABD=∠A'BD,∵∠ACB=4∠A,∴∠ACB=4∠A',∵BC∥A'D,∴∠CBE=∠A'=∠A,∴∠ACB=4∠CBE,∵BA'⊥CD,∴∠ACB+∠CBE=90°,∴∠CBE=18°,∠C+∠A=90°,∵∠A+∠C+∠ABC=180°,∴∠ABC=90°,∴∠ABE=90°﹣18°=72°,∴∠ABD=36°,∴∠BDC=∠A+∠ABD=18°+36°=54°.故答案为54.18.解:设水速为x,船速为y,返回时间为z,则放水速度为x,第一次试验:顺流没放水时船行驶的路程为:2.5(x+y),顺流放水时船行驶的速度为:2(2x+y),∵船行驶的路程相等,则2.5(x+y)=2(2x+y),解得:y=3x①,第二次试验:逆流没放水时船行驶的路程为:5(y﹣x),逆流放水时船行驶的路程为:z(y﹣2x),∵船行驶的路程相等,则5(y﹣x)=z(y﹣2x)②,由①和②式得:z=10,这艘游船由C按原路返回A,共需10小时.故答案为:10.三、解答题(本大题共8个小题,共60分)19.解:(1)原式=a2+2ab+b2﹣2ab+a2=2a2+b2;(2)原式=1﹣8﹣4=﹣11.20.解:(1)原式=÷=×=;(2)方程两边同时乘以(x﹣1)(x+2)得:x(x+2)﹣3=(x﹣1)(x+2),x2+2x﹣3=x2+x﹣2,x=1.检验:把x=1代入(x﹣1)(x+2)=0,所以原分式方程无解.21.解:原式==×=,∵+(b+2)2=0,∴a+3=0,b+2=0,解得:a=﹣3,b=﹣2,则原式==﹣.22.证明:(1)∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC.即∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS).∴BD=EC.解:(2)由(1)知:△ABD≌△ACE,∴∠ADB=∠AEC.∵AB=AC,∴∠ABC=∠ACB=55°.∴∠BAC=180°﹣2∠ABC=70°.∴∠DAE=∠BAC=70°.∵AD=AE,∴∠ADE=∠AED=55°.∴∠ADB=180°﹣∠ADE=125°.∴∠AEC=125°.∴∠BEC=∠AEC﹣AED=125°﹣55°=70°.23.解:(1)设白同学原计划每个星期完成阅读练习量是x篇,则实际每个星期完成阅读练习量是1.5x篇,由题意得:﹣=4,解得:x=12,经检验,x=12是原方程的解,则1.5x=18,答:白同学实际每个星期完成阅读练习量是18篇;(2)设小白同学在之后的每个星期要完成x篇阅读练习,才能使她在6个星期内至少完成144篇阅读练习,由题意得:3×18+(6﹣3)m≥144,解得:m≥30,答:小白同学在之后的每个星期至少要完成30篇阅读练习,才能使她在6个星期内至少完成144篇阅读练习.24.解:(1)∵x2+x+1=0,∴x2+x=1,∴x3+2x2+5=x(x2+x)+x2+5=x+x2+5=1+5=6,故答案为6;(2)∵x2﹣2020x+1=0,∴x2+1=2020x,x+=2020,∴x2﹣2019x+=x2﹣2019x+=2020x﹣1﹣2019x+=x+﹣1=2020﹣1=2019;(3)∵a=,∴2a﹣1=∴(2a﹣1)2=5,∴a2﹣a=1,a2﹣1=a,∴a3﹣2a+3=a(a2﹣1)﹣a+3=a2﹣a+3=4.25.解:(1)∵CA=CB,∠ACB=78°,∴∠A=∠B=51°.∵DA=DC,∴∠ACD=∠A=51°,∴∠ADC=180°﹣2∠A=78°.∵CH⊥AB,∴∠CHD=90°.∴∠HCD=180°﹣∠CHD﹣∠ADC=12°;(2)连接AM,如图,∵DE=DB,∴∠DEB=∠B,∴∠BDE=180°﹣2∠B.∵DA=DC,∴∠ACD=∠CAD.∴∠ADC=180°﹣2∠CAD.∵CA=CB,∴∠CAD=∠B,∴∠CDA=∠BDE.∴∠CDA+∠CDE=∠BDE+∠CDE.即∠ADE=∠CDB.在△ADE和△CDB中,,∴△ADE≌△CDB(SAS).∴AE=CB.∵CB=CA,∴AC=AE.∵点M为线段CE的中点,∴AM⊥CE.∵DE∥MN,∴∠NMB=∠DEB.∴∠NMB=∠B.∴BN=MN.∵∠NMB+∠NMA=90°,∠B+∠∠MAN=90°,∴∠NMA=∠NAM.∴AN=MN.∴AN=BN.∴CD=AD=AN+ND=BN+DN.26.解:(1)如图1中,过点D作DH⊥AB于H,过点H作HJ⊥BD于J.∵B(0,8),∴OB=8,∵D是OB的中点,∴BD=OD=4,在Rt△DBH中,BD=4,∠DHB=90°,∠DBH=30°,∴DH=BD=2,BH===2,∵HJ⊥BD,∴HJ=BH=,∴BJ===3,∴OJ=OB﹣BJ=8﹣3=5,∴H(﹣,5),根据垂线段最短可知,当点M与H重合时,DM的值最小,此时M(﹣,5).(2)如图2中,当QP=QC时,设直线CD交AB于T,∵∠PTQ=∠TBD+∠TDB=30°+45°,∴∠PQT=90°﹣75°=15°,∵QP=PC,∴∠QPC=∠QCP,∵∠PQT=∠QPC+∠QCP,∴∠PCQ=7.5°.如图3中,当CP=CQ时,∠PCQ=180°﹣15°﹣15°=150°.综上所述,满足条件的∠PCQ的值为7.5°或150°.。

人教版八年级上册数学期末复习:解答题专项练习题 2套(含答案解析)

人教版八年级上册数学期末复习:解答题专项练习题 2套(含答案解析)
解得:x=200,
经检验,x=200是原方程的解,且符合题意,
∴2x=2×200=400.
答:这一售票点售出售出平日票400张,指定日票200张.
5.(2020秋•钱塘区期末)如图,在△ABC和△DEF中,B,E,C,F在同一条直线上,AB∥DE,AB=DE,∠A=∠D.
(1)求证:△ABC≌△DEF;
(2)(x+1)(x﹣p)=x2+qx﹣3,求pq的值.
【分析】(1)首先根据已知得出a2m=4,再根据同底数幂的除法法则求出即可.
(2)先根据多项式乘多项式法则进行计算,再根据已知得出1﹣p=q,﹣p=﹣3,求出p、q,再代入计算即可求解.
【解答】解:(1)∵am=2,
∴a2m=4,
∵an=5,
∴a2m﹣n=a2m÷an= ;
(2)若BF=11,EC=5,求BE的长.
【分析】(1)由平行线的性质得出∠B=∠DEF,根据AAS可证明△ABC≌△DEF;
(2)由全等三角形的性质得出BE=CF,则可求出答案.
【解答】(1)证明:∵AB∥DE,
∴∠B=∠DEF,
在△ABC与△DEF中,

∴△ABC≌△DEF(ASA);
(2)解:∵△ABC≌△DEF,
5.(2020秋•钱塘区期末)如图,在△ABC和△DEF中,B,E,C,F在同一条直线上,AB∥DE,AB=DE,∠A=∠D.
(1)求证:△ABC≌△DEF;
(2)若BF=11,EC=5,求BE的长.
6.(2021春•靖边县期末)如图所示,在△ABC和△A′B′C′中,CD⊥AB于点D,C′D′⊥A′B′于点D',BC=B′C′,CD=C′D′.若AB=A′B′,求证:AD=A′D′.

人教版八年级数学上册期末综合复习测试题(含答案)

人教版八年级数学上册期末综合复习测试题(含答案)

八年级数学上册期末综合复习测试题(含答案)一、选择题(本大题10小题,每小题3分,共30分) 1.下列图形中具有稳定性的是( ) A .正方形 B .长方形 C .直角三角形 D .平行四边形 2.计算:a 6÷a 3=( ) A .a 2 B .a 3 C .1 D .0 3.点(-3,-2)关于x 轴对称的点是( )A .(3,-2)B .(-3,2)C .(3,2)D .(-2,-3) 4.若分式x +3x -2的值为0,则x 的值为( ) A .x =-3 B .x =2 C .x ≠-3 D .x ≠25.如图1,AC ⊥BC ,BD ⊥AD ,垂足分别为C ,D ,再添加一个条件,仍不能判定△ABC ≌△BAD 的是( )图1A .AC =BDB .AD =BC C .∠ABD =∠BAC D .∠CAD =∠DBC 6.若x 2+2mx +9是一个完全平方式,则m 的值是( ) A .6 B .±6 C .3 D .±3 7.如图2,在△ABC 中,D ,E 分别是边BC ,AB 的中点.若△ABC 的面积是8,则△BDE 的面积是( )图2A.2 B .3 C .4 D .5 8.已知2m +3n =3,则9m ·27n 的值是( ) A .9 B .18 C .27 D .819.某生产小组计划生产3 000个口罩,由于采用新技术,实际每小时生产口罩的数量是原计划的2倍,因此提前5小时完成任务.设原计划每小时生产口罩x 个,根据题意,所列方程正确的是( )A .3 000x -3 000x +2=5 B .3 0002x -3 000x =5C .3 000x +2-3 000x =5D .3 000x -3 0002x=510.如图3,在平面直角坐标系中,点A ,B 分别在y 轴、x 轴上,∠ABO =60°,在坐标轴上找一点P ,使得△P AB 是等腰三角形,则符合条件的点P 的个数是( )图3A .5个B .6个C .7个D .8个 二、填空题(本大题7小题,每小题4分,共28分)11.人体淋巴细胞的直径大约是0.000 009米,将0.000 009用科学记数法表示为__________.12.如果等腰三角形的一个内角是80°,那么它的顶角的度数是__________.13.当a =4b 时,a 2+b 2ab的值是__________.14.如图4,在△ABC 中,分别以点A 和点C 为圆心,大于12 AC 长为半径画弧,两弧相交于点M ,N ,作直线MN 分别交BC ,AC 于点D ,E ,若△ABC 的周长为23 cm ,△ABD 的周长为13 cm ,则AE 的长为__________cm.图415.若x +y =6,xy =-3,则2x 2y +2xy 2=__________.16.如图5,在△ABC 中,AB =BC ,BE 平分∠ABC ,AD 为BC 边上的高,且AD =BD ,则∠DAC =__________°.图517.如图6,△ABC 是等边三角形,AD 是BC 边上的高,E 是AC 的中点, P 是AD 上一动点,当PC 与PE 的和最小时,∠ACP 的度数是__________.图6三、解答题(一)(本大题3小题,每小题6分,共18分)18.解方程:4x 2-9 -x3-x =1.19.先化简,再求值:(-x -y )2-(-y +x )(x +y )+2xy ,其中x =-2,y =12.20.如图7,在△ABC 中,∠BAC =60°,∠C =80°,AD 是△ABC 的角平分线,E 是AC 上一点,且∠ADE =12∠B ,求∠CDE 的度数.图7四、解答题(二)(本大题3小题,每小题8分,共24分)21.在平面直角坐标系中,△ABC 的三个顶点的位置如图8所示.(1)请画出△ABC 关于y 轴对称的△A ′B ′C ′;(其中A ′,B ′,C ′分别是A ,B ,C 的对应点,不写画法)(2)请直接写出点A ′,B ′,C ′的坐标; (3)求出△A ′B ′C ′的面积.图822.如图9,点B ,C ,E ,F 在同一条直线上,点A ,D 在BC 的异侧,AB =CD ,BF =CE ,∠B =∠C .(1)求证:AE ∥DF ; (2)若∠A +∠D =144°,∠C =30°,求∠AEC 的度数.图923.随着智能分拣设备在快递业务中的普及,快件分拣效率大幅提高.使用某品牌智能分拣设备,每人每小时分拣的快件量是传统分拣方式的25倍,经过测试,由5人用此设备分拣8 000件快件的时间,比20人用传统方式分拣同样数量的快件节省4小时.(1)使用智能分拣设备后,每人每小时可分拣快件多少件?(2)已知某快递中转站平均每天需要分拣10万件快件,每天工作时间为8小时,如果使用此智能分拣设备,每天只需要安排多少名工人就可以完成分拣工作?五、解答题(三)(本大题2小题,每小题10分,共20分)24.如图10①,把一个长为2m 、宽为2n 的矩形,沿图中虚线用剪刀均分成四块小矩形,然后拼成一个如图10②所示的正方形.(1)请用两种不同的方法求图10②中阴影部分的面积.(直接用含m ,n 的式子表示) 方法1:____________________________; 方法2:____________________________.(2)根据(1)中结论,下列三个式子(m +n )2,(m -n )2,mn 之间的等量关系为____________________.(3)根据(2)中的等量关系,解决如下问题:已知x +1x =3,请求出x -1x的值.图1025.(1)【问题发现】如图11①,△ACB 和△DCE 均为等边三角形,点A ,D ,E 在同一条直线上,连接BE ,求∠AEB 的度数.(2)【拓展探究】如图11②,△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,点A ,D ,E 在同一条直线上,CM 为△DCE 中DE 边上的高,连接BE .请求出∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系,并说明理由.图11答案1.C 2.B 3.B 4.A 5.D 6.D 7.A 8.C 9.D 10.B11.9×10-6 12.80°或20° 13.174 14.5 15.-36 16.22.5 17.30°18.解:方程两边乘(x -3)(x +3),得4+x (x +3)=x 2-9.解得x =-133.检验:当x =-133 时,(x -3)(x +3)≠0.所以,原分式方程的解是x =-133.19.解:原式=x 2+y 2+2xy -(x 2-y 2)+2xy =x 2+y 2+2xy -x 2+y 2+2xy =2y 2+4xy . 当x =-2,y =12 时,原式=2×⎝⎛⎭⎫12 2 +4×(-2)×12 =-72 .20.解:在△ABC 中,∠BAC =60°,∠C =80°,∴∠B =180°-60°-80°=40°. ∵AD 平分∠BAC ,∴∠BAD =12 ∠BAC =30°.∴∠ADC =∠B +∠BAD =70°.∵∠ADE =12 ∠B =20°,∴∠CDE =∠ADC -∠ADE =70°-20°=50°.21.解:(1)如答图1,△A ′B ′C ′即为所求.答图1(2)A ′(3,3),B ′(-1,-3),C ′(0,4).(3)由图可得S △A ′B ′C ′=4×7-12 ×1×7-12 ×3×1-12 ×4×6=11.22.(1)证明:∵BF =CE ,∴BF +EF =CE +EF ,即BE =CF . 在△ABE 和△DCF 中,⎩⎪⎨⎪⎧AB =DC ,∠B =∠C ,BE =CF ,∴△ABE ≌△DCF (SAS).∴∠AEB =∠DFC .∴AE ∥DF .(2)解:∵△ABE ≌△DCF ,∴∠A =∠D ,∠B =∠C =30°. ∵∠A +∠D =144°,∴∠A =72°. ∴∠AEC =∠A +∠B =72°+30°=102°.23.解:(1)设使用传统分拣方式,每人每小时可分拣快件x 件,则使用智能分拣设备后,每人每小时可分拣快件25x 件.依题意,得 8 00020x -8 0005×25x=4.解得x =84.经检验,x =84是原方程的解,且符合题意.∴25x =2 100.答:使用智能分拣设备后,每人每小时可分拣快件2 100件. (2)100 000÷8÷2 100=52021 (名),5+1=6(名).答:每天只需要安排6名工人就可以完成分拣工作. 24.解:(1)(m +n )2-4mn (m -n )2. (2)(m -n )2=(m +n )2-4mn .(3)∵x +1x =3,∴⎝⎛⎭⎫x -1x 2 =⎝⎛⎭⎫x +1x 2 -4x ·1x =9-4=5.∴x -1x=±5 .25.解:(1)∵△ACB 和△DCE 均为等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =∠CDE =∠CED =60°. ∴∠ACB -∠DCB =∠DCE -∠DCB ,即∠ACD =∠BCE . 在△ACD 和△BCE 中,⎩⎪⎨⎪⎧AC =BC ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE (SAS).∴∠ADC =∠BEC .∵点A ,D ,E 在同一条直线上,∴∠ADC =180°-∠CDE =120°. ∴∠BEC =120°.∴∠AEB =∠BEC -∠CED =60°. (2)∠AEB =90°,AE =BE +2CM .理由:∵△ACB 和△DCE 均为等腰直角三角形, ∴CA =CB ,CD =CE ,∠ACB =∠DCE =90°.∴∠ACB -∠DCB =∠DCE -∠DCB ,即∠ACD =∠BCE . 在△ACD 和△BCE 中,⎩⎪⎨⎪⎧CA =CB ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE (SAS).∴AD =BE ,∠ADC =∠BEC . ∵△DCE 为等腰直角三角形, ∴∠CDE =∠CED =45°.∵点A ,D ,E 在同一条直线上, ∴∠ADC =180°-∠CDE =135°. ∴∠BEC =135°.∴∠AEB =∠BEC -∠CED =90°. ∵CD =CE ,CM ⊥DE , ∴DM =ME ,∠DCM =90°-∠CDE =45°. ∴∠DCM =∠CDE . ∴DM =ME =CM .∴AE =AD +DE =BE +2CM。

人教版初二数学上学期期末复习测试卷(3)含答案

人教版初二数学上学期期末复习测试卷(3)含答案

初二数学上学期期末复习测试卷(3)(满分:100分时间:90分钟)一、选择题(每题2分,共16分)1.在下列各数中,3.14159,0.131131113…,-π17无理数的个数是( )A.1 B.2 C.3 D.42.下列表情图属于轴对称图形的是( )3.如图,在△ABC和△DEC中,已知AB=DE,还需要添加两个条件才能使△ABC ≌△DEC,不能添加的一组是( )A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D4.如图,在△,ABC中,∠ABC=45°,AC=8cm.若F是高AD和BE的交点,则BF的长是( )A.4cm B.6cm C.8cm D.9cm5.若等腰三角形的一个角是80°,则它的顶角的度数是( )A.80°B.80°或20°C.80°或50°D.20°6.若一个三角形的三边a,b,c满足a2+b2+c2=10a+24b+26c-338,则这个三角形一定是( )A.直角三角形B.锐角三角形C.等腰三角形D.等腰直角三角形7.张师傅驾车从甲地到乙地,两地相距500m,汽车出发前油箱有油25L,途中加油若干升,加油前、后汽车都以100m/h的速度匀速行驶.已知油箱中剩余油量y(L)与行驶时间t(h)之间的关系如图所示.则以下说法错误的是( )A.加油前油箱中剩余油量y(L)与行驶时间t(h)之间的函数关系式是y=-8t+25B.途中加油21LC.汽车加油后还可行驶4hD.汽车到达乙地时油箱中还余油6L8.如图,在平面直角坐标系中,点A,B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A,B,C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是()A.(0,0) B.(0,1)C.(0,2) D.(0,3)二、填空题(每题2分,共20分)9.平方根等于本身的数是_______.10.在△ABC中,∠A=40°,当∠B=_______时,△ABC是等腰三角形.11.如图,∠AOB=70°,QC⊥OA,QD⊥OB,垂足分别为点C,D.若OC=OD,则∠AOQ=_______.12.如图,AB∥CD,AE=AF,CE交AB于点F.若∠C=110°,则∠A=_______.13.给出下列函数:①y=2+8;②y=-2+4;③y=-2+8;④y=4.其中y随的增大而减小的函数是_______.(填序号)14.写出一个过点(0,3)且函数值y随自变量的增大而减小的一次函数关系式:_______.(写一个答案即可)15.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D.若BC=15,且BD=9,则△ADC与△ADB的面积比为_______.16.钓鱼岛自古就是中国的领土,中国政府已对钓鱼岛展开常态化巡逻.某天,为按计划准点到达指定海域,某巡逐艇凌晨1:00出发,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好准时到达,该艇行驶韵路程y(海里)与所用时间t(小时)的函数图像如图所示,该巡逻艇原计划准点到达的时刻是_______.17.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位长度,得到点A1(0,1)、A2(1,1),A3(1,0),A4(2,0),…,那么点A4n+1(n是自然数)的坐标为_______.18.如图,在长方形ABCD中,AB=3,BC=4,点E是边BC上的一点,连接AE,把∠B沿AE折叠,使点B落在点B'处,当△CEB'为直角三角形时,BE的长为_______.三、解答题(共64分)19.(本题6分)计算下列各题,.(1)23÷2-×(-7+5);2.20.(本题6分)下图是单位长度为1的正方形网格.(1)在图1中画出一条长度AB;(2)在图2中画出一个以格点为顶点、面积为5的正方形.21.(本题6分)在△ABC中,∠BAC=90°,AB=20,AC=15,AD⊥BC,垂足为点D,(1)求BC的长;(2)求AD的长.22.(本题10分)如图,在△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABF≌△DCE;(2)当∠AEB=50°,求∠EBC的度数.23.(本题10分)如图,△ABC是等边三角形,D是边AB上的一点,以CD为边作等边兰角形CDE,使点E,A在直线DC的同侧,连接AE.求证:AE∥BC.24.(本题9分)已知一次函数y=+b的图像经过点(-1,-5),且与正比例函数y=12的图像相交于点(2,m).(1)求m的值;(2)求一次函数y=+b的解析式;(3)求这两个函数图像与轴所围成的三角形的面积.25.(本题8分)某生物小组观察-植物生长,得到植物高度y( cm)与观察时间(天)的关系,并画出如图所示的图像(AC是线段,直线CD平行于轴).(1)该植物从观察时起,多少天以后停止长高?(2)求直线AC的解析式,并求该植物最高长多少厘米.26.(本题8分)如图,△ABC是边长为6的等边三角形,P是边AC上一动点、,由点A向点C运动(与点A,C不重合),Q是CB延长线上一动点,与点P同时以相同的速度由点B向CB延长线方向运动(点Q不与点B重合),过点P作PE⊥AB,垂足为点E,连接PQ交AB于点D.(1)当∠BQD=30°时,求AP的长.(2)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果发生改变,请说明理由.27.(本题9分)如图1,A,B,C为三个超市,在从A通往C的道路(粗实线部分)上有一点D,D与B有道路(细实线部分)相通,A与D、D与C、D与B之间的路程分别为25m,10m,5m.现计划在A通往C的道路上建一个配货中心H,每天有一辆货车只为这三个超市送货,该货车每天从H出发,单独为A送货1次,为B送货1次,为C送货2次,货车每次仅能给一家超市送货,每次送货后均返回配货中心H.设H到A的路程为m,这辆货车每天行驶的路程为ym.(1)用含有的代数式填空:当0≤≤25时,货车从H到A往返1次的路程为2m,货车从H到B往返1次的路程为_______m,货车从H到C往返2次的路程为_______m,这辆货车每天行驶的路程y=_______m;当25<≤35时,这辆货车每天行驶的路程y=_______.(2)请在图2中画出y与(0≤≤35)的函数图像.(3)配货中心H建在哪段可使这辆货车每天行驶的路程最短?参考答案一、选择题1.B2.D3.C4.C5.B6.A7.C8.D二、填空题9.0 10.40°,70°或100 11.35°12.40°13.③14.答案不唯一,如y=-+315.2:3 16.7:00 17.(2n,1) 18.3或3 2三、解答题19.(1)10 (2)-120.图略21.(1)BC的长为25 (2)AD的长为12 22.(1)略(2)25°23.略24.(1)m=1(2)y=2-3 (3)3 425.(1)50天以后停止长高(2)16cm26.(1)2 (2)DE的长不变27.(1)60-2 140-4 -4+200 100 (2)函数图像如图所示:(3)建在CD上路程最短.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档