数列的实际应用问题
日常生活具体数列的例子
![日常生活具体数列的例子](https://img.taocdn.com/s3/m/b22e15c25ff7ba0d4a7302768e9951e79b8969ba.png)
日常生活具体数列的例子在我们的日常生活中,数列被广泛地应用于各种场合。
从购物、生物、运动到计算机科学,数列都被用来处理数据,辅助决策。
那么,日常生活中的具体数列有哪些呢?下面我将从不同角度为大家举出一些例子:一、购物中的数列我们在购物中经常遇到各种数列。
比如,我们买卫生纸时,店员告诉我们这款卫生纸一包有12卷,而一包又分为两层,每层有6卷。
那么,我们可以得到以下数列:12, 6, 6其中,第一项12表示一包卫生纸的总卷数,第二项6表示一层卫生纸的卷数,第三项6表示一包卫生纸的层数。
再比如,我们看到打折商品时,常常会看到“买3送1”的优惠条件。
这时,我们可以把这个优惠条件看作是一个等差数列,公差为1,首项为1,求n项和就是这个优惠条件的总价:S(n) = n∗a1 + n(n−1)2∗d其中,n表示买几件商品,a1表示第一件商品的价格,d表示优惠后每件商品的价格。
二、生物中的数列在生物学上,数列有非常重要的应用。
比如,DNA序列就是通过数列来描述的。
DNA不同的碱基可以用不同的数字代替,从而把DNA序列转化为数字序列。
这个数字序列就是数列。
除了DNA序列,还有一些其他生物现象也可以转化为数列。
比如,斐波那契数列是由兔子繁殖规律演化而来。
斐波那契数列中的每一项都是前两项之和。
当我们把兔子看做是生物现象时,这个数列就可以用来描述兔子的数量变化。
又比如,可以用格雷码来描述DNA中两个序列的差异。
格雷码是一个数列,在这个数列中,每一项与前一项只有一位不同。
通过比较两份DNA序列的格雷码,科学家可以找出这两份DNA序列的差异。
三、运动中的数列运动中也有很多数列应用。
比如,高中时我们学过的运动员跑圈问题。
题目大意是:两名运动员从同一起点同时起跑,一个运动员以每秒4米的速度匀速奔跑,另一个运动员以每秒5米的速度匀速奔跑。
如果要第一名运动员追上第二名运动员,需要跑多久?这道题的答案可以通过数列来解决。
定义第一个运动员跑了x秒,那么第一个运动员跑的路程就是4∗x,第二个运动员跑的路程就是5∗x。
探索数学奥秘小学生数列和等差数列的实际应用题
![探索数学奥秘小学生数列和等差数列的实际应用题](https://img.taocdn.com/s3/m/b560538a64ce0508763231126edb6f1aff007107.png)
探索数学奥秘小学生数列和等差数列的实际应用题数学是一门充满奥秘的学科,它存在着丰富的实际应用。
在小学数学中,数列和等差数列是常见且重要的概念。
本文将通过探索数学奥秘,介绍小学生数列和等差数列的实际应用,并解答相关实际问题。
一、数列的实际应用数列是由一系列按照特定规律排列的数所组成的,它可以描述许多实际问题中的变化规律。
比如,小明每天早上醒来后都会记录自己的身高,这些身高值就可以构成一个身高数列。
通过观察和分析这个数列,我们可以得出小明的身高增长规律,进而推测出未来的身高。
数列在日常生活中有着广泛的应用,比如我们常见的等差数列。
等差数列是指数列中每一项与它的前一项之差都相等的数列。
假设小明每天跑步锻炼,第一天跑了1公里,第二天跑了2公里,第三天跑了3公里,以此类推。
这样的数列就是一个等差数列,其中公差为1,可以表示为1,2,3,4,...。
通过等差数列的概念,我们可以简便地计算小明在任意一天跑了多少公里。
二、等差数列的实际应用题为了更好地理解等差数列的实际应用,我们来解决一个例题。
例题:小明每天早上7点出发骑自行车上学,第一天骑行2公里,以后每天比前一天多骑行2公里。
假设他上学一共需要20分钟,那么他每天的平均速度是多少?解析:我们首先可以得出小明每天骑行的距离构成了一个等差数列。
第一天骑行2公里,第二天骑行4公里,以此类推。
那么第n天骑行的距离可以表示为2n。
又根据题目中给出的信息,我们知道小明上学一共需要20分钟,即骑行时间为20/60小时。
根据速度的定义,速度等于距离除以时间。
因此,小明每天的平均速度可以表示为骑行距离除以骑行时间。
即:速度 = 骑行距离 / 骑行时间通过观察等差数列的性质,我们可以得到小明骑行的总距离等于等差数列前n项和。
等差数列前n项和的公式为:前n项和 = (首项 + 末项) ×项数 / 2在本题中,小明骑行的总距离即为等差数列前n项和,其中首项为2,末项为2n,项数为n。
数学应用数列和级数解决实际问题
![数学应用数列和级数解决实际问题](https://img.taocdn.com/s3/m/243e48249a6648d7c1c708a1284ac850ac02047f.png)
数学应用数列和级数解决实际问题数学应用:数列和级数解决实际问题数学是一门广泛应用于各个领域的学科,而数列和级数则是数学中的重要概念之一。
数列是按照一定规律排列起来的一系列数,而级数则是将数列中的数相加得到的和。
在实际问题中,我们常常会遇到需要利用数列和级数来解决的情况。
本文将探讨数学应用中的数列和级数,以及如何运用它们解决实际问题。
一、数列应用数列在实际问题中的应用非常广泛。
例如,在日常生活中我们常常会遇到时间和距离的关系问题。
假设一个人每天以相同的速度行走,我们可以将他的位置与时间建立起数列关系。
通过观察数列的规律,我们可以预测这个人在未来的任意时间点的位置。
此外,数列在物理学中也有着广泛的应用。
例如,当一个物体从高处自由落体时,它的速度和位移之间也存在数列关系。
通过研究这个数列的规律,我们可以得出物体下落的加速度和运动时间等关键信息。
在经济学领域中,数列同样扮演着重要角色。
例如,在投资领域中,我们可以将某个投资项目每年的收益率看作数列中的数值,通过研究数列的规律,我们可以预测未来几年的收益情况,从而做出更加明智的投资决策。
二、级数应用级数是数列的和,也是实际问题中的重要概念。
级数在数学中有着广泛的应用,尤其是在微积分和物理学领域中。
例如,在微积分中,我们常常需要通过对无穷级数进行求和来解决积分问题。
对于某些函数,我们可以将其展开成幂级数的形式,并通过对级数的求和来计算函数在某个区间内的积分值。
除了在数学中应用广泛外,级数在物理学中也有着重要的作用。
例如,在光学中,我们可以利用级数来分析光的衍射和干涉现象。
通过研究级数的规律,我们可以得出光的波长、出射角等关键信息,从而更好地理解和利用光学现象。
三、实际问题的解决数列和级数在解决实际问题时,一般需要通过数学建模来求解。
首先,我们需要将实际问题转化为数列或级数的形式,建立起数列和级数与实际问题的联系。
然后,通过研究数列和级数的规律,可以运用数学知识进行求解。
综合算式专项练习数列的应用问题
![综合算式专项练习数列的应用问题](https://img.taocdn.com/s3/m/bf0a6a2124c52cc58bd63186bceb19e8b8f6ec91.png)
综合算式专项练习数列的应用问题数列是数学中常见的概念,它是按照一定的规律排列的一组数。
在实际应用中,数列经常被用来描述和解决各种问题。
本文将重点介绍数列的应用问题,并提供一些综合算式的专项练习。
一、斐波那契数列斐波那契数列是一个神奇的数列,它的前两项为1,之后的每一项都是前两项的和。
斐波那契数列在自然界中有着广泛的应用,如描述兔子繁殖、植物生长等。
下面是一个斐波那契数列的应用问题:问题:兔子繁殖问题。
开始时,一对兔子(一公一母)放养在一个围栏里,请问第10个月共有多少对兔子?解析:根据题目描述,第1个月有1对兔子,第2个月也有1对兔子。
从第3个月开始,每个月的兔子对数都是前两个月兔子对数之和。
我们可以用数列来表示,设第n个月兔子对数为An。
则有如下递推关系:An = An-1 + An-2。
根据递推关系,我们可以计算出前几个月的兔子对数如下:1, 1, 2, 3, 5, 8, 13, 21, 34, 55。
所以第10个月共有55对兔子。
二、等差数列等差数列是指数列中相邻两项之差保持恒定的数列。
等差数列在日常生活中也有很多应用,如计算等差数列的和可用于预算和财务管理。
下面是一个等差数列的应用问题:问题:购物问题。
小明每天购物,他从第一天起每天花费10元,且每天的花费都比前一天多5元。
请问,到第30天,小明一共花费了多少元?解析:根据题目描述,小明每天的花费构成了一个等差数列。
设第n天的花费为An,第一天的花费为A1。
根据题目要求,可得递推关系:An = A1 + (n-1) * 5。
代入题目信息,第一天花费10元,即A1 = 10,共花费到第30天,即n = 30。
带入递推关系,可以计算出小明一共花费了10 + (30-1) * 5= 155元。
三、等比数列等比数列是指数列中相邻两项之比保持恒定的数列。
等比数列在生活中也有很多应用,如描述一种倍增或倍减的现象。
下面是一个等比数列的应用问题:问题:细菌繁殖问题。
数列实际应用
![数列实际应用](https://img.taocdn.com/s3/m/2a78ea71ef06eff9aef8941ea76e58fafbb04555.png)
数列实际应用
数列是按照一定规律排列的数的集合,它在数学中有广泛的应用,同时也在现实生活中有许多实际应用。
以下是一些数列在实际中的应用:
1.金融和经济学:在金融和经济学中,数列可以用于建模和分析投资回报、股票价格的变化、经济增长等。
例如,等差数列可以用来描述定期投资的增长,而等比数列可以用来建模复利效应。
2.工程:在工程领域,数列可以用于描述周期性变化。
例如,振动和波动的频率可以通过正弦或余弦函数的数列来表示。
这在机械工程、电子工程和声学等领域都有应用。
3.计算机科学:在计算机科学中,数列被广泛用于算法和数据结构。
例如,斐波那契数列常用于递归算法和动态规划,而等差数列和等比数列可以用于表示计算机内存中的数据结构。
4.统计学:在统计学中,数列可以用于建模和分析随机过程。
例如,随机游走模型中的数列描述了随机变量的变化。
这在风险管理、市场分析等方面有应用。
5.物理学:在物理学中,数列可以用于描述时间和空间中的变化。
例如,牛顿的运动定律中的等差数列描述了运动物体的位移随时间的变化。
6.生物学:在生物学中,数列可以用于描述生物体的生长、衰老和其他变化。
例如,菲波那契数列可以用于描述植物的分枝结构。
7.电信和通信:在通信领域,数列可以用于描述信号的变化。
例如,正弦数列可用于表示模拟信号,而二进制数列可用于表示数字信号。
8.交通规划:数列可以用于模拟交通流量的变化。
例如,等差数列可以用于描述车辆在道路上的运动,有助于交通规划和优化。
这些都只是数列在实际中的一些例子,数列的应用领域非常广泛,涵盖了几乎所有科学和工程领域。
数列在实际中的应用
![数列在实际中的应用](https://img.taocdn.com/s3/m/c1330344a7c30c22590102020740be1e650ecc25.png)
数列在实际中的应用数列是数学中的重要概念,它是按照一定规律排列的一系列数字。
数列在实际生活中有着广泛的应用,从自然科学到社会科学,都离不开数列的运用。
本文将探讨数列在实际中的应用,并分析其在不同领域的具体应用案例。
一、自然科学中的数列应用1. 物理学中的数列应用物理学是研究物质和能量以及它们之间相互作用规律的学科。
数列在物理学中有着广泛的应用,例如在运动学中,常常会涉及到时间和位置、速度、加速度之间的关系。
当物体按照规律运动时,其位置、速度和加速度都可以表示为数列。
通过数列的分析,可以了解物体的运动规律和变化趋势。
2. 化学中的数列应用化学是研究物质的组成、结构、性质、变化以及它们之间的相互作用的学科。
数列在化学中的应用主要体现在化学反应的动力学研究上。
例如,在某些化学反应中,反应物的浓度随时间的变化可以用数列来表示。
通过数列的分析,可以研究反应速率、反应程度等化学动力学参数。
二、社会科学中的数列应用1. 统计学中的数列应用统计学是研究数据收集、整理、分析和解释的学科。
数列在统计学中的应用非常广泛,例如在人口统计研究中,常常会涉及到人口的年龄、性别、地区等信息。
这些信息可以通过数列进行统计和分析,从而得出人口结构、人口变化趋势等重要结果。
2. 经济学中的数列应用经济学是研究人类在有限资源下如何选择以满足无限需求的学科。
数列在经济学中的应用主要体现在经济指标的预测和分析上。
例如,国民经济中的GDP、通货膨胀率、失业率等指标的变化趋势可以用数列来表示和分析,通过数列的预测和分析,可以为经济决策提供参考。
三、数列在工程技术中的应用1. 电路中的数列应用在电子工程中,数列有着广泛的应用。
例如,在信号传输中,根据不同的调制方式,信号可以用二进制数列、多进制数列、矩阵数列等不同形式表示。
通过数列的编码和解码,可以实现信号的高效传输和正确解读。
2. 计算机科学中的数列应用数列在计算机科学中有着极为重要的应用。
(全面版)等差数列的应用举例和实际问题总结
![(全面版)等差数列的应用举例和实际问题总结](https://img.taocdn.com/s3/m/a77d8729a55177232f60ddccda38376baf1fe0c6.png)
(全面版)等差数列的应用举例和实际问题总结等差数列是数学中常见且重要的数列之一。
它在实际生活和各个领域中有着广泛的应用。
本文将通过举例和问题总结,介绍等差数列在实际中的应用。
1. 等差数列的应用举例1.1. 购物优惠某商场推出了一种特殊的购物优惠活动:购买第一个商品60% off,第二个商品50% off,第三个商品40% off,以此类推。
假设小明购买了5个商品,依次为 A、B、C、D、E。
A 商品原价为100元。
我们可以通过等差数列来计算小明购买这5个商品的总价格。
设第 n 个商品的价格为 An,其中 n 表示商品的顺序。
已知 A1 = 100,公差 d = -10%(每个商品的折扣比例递减10%)。
则 An 可以表示为 An = A1 + (n-1)d。
我们将这个等差数列列出来:A1 = 100A2 = 100 + (2-1)(-10) = 90A3 = 100 + (3-1)(-10) = 80A4 = 100 + (4-1)(-10) = 70A5 = 100 + (5-1)(-10) = 60小明购买的5个商品的总价格为 100 + 90 + 80 + 70 + 60 = 400 元。
1.2. 运动训练假设一个人每天进行跑步训练,每天的距离比上一天增加相同的固定值。
设这个人第一天跑了1公里,而第n(n>1)天跑的距离为An。
假设固定增加的距离为d = 0.5公里。
我们可以通过等差数列来计算这个人连续7天的训练距离。
A1 = 1A2 = 1 + (2-1)(0.5) = 1.5A3 = 1 + (3-1)(0.5) = 2A4 = 1 + (4-1)(0.5) = 2.5A5 = 1 + (5-1)(0.5) = 3A6 = 1 + (6-1)(0.5) = 3.5A7 = 1 + (7-1)(0.5) = 4这个人连续7天的训练距离分别为 1公里,1.5公里,2公里,2.5公里,3公里,3.5公里和4公里。
利用数列解决实际问题练习题
![利用数列解决实际问题练习题](https://img.taocdn.com/s3/m/712afd4753ea551810a6f524ccbff121dd36c52f.png)
利用数列解决实际问题练习题一、数列概念与性质数列是数学中非常重要的概念之一,它由一系列按照一定规律排列的数所组成。
在解决实际问题时,我们经常会遇到需要利用数列来进行建模和计算的情况。
本文将通过一些实际问题练习题,来演示如何利用数列解决实际问题。
二、等差数列练习1. 一辆汽车从某地出发,每小时行驶60公里。
求3小时后汽车行驶的总路程。
解析:根据题目中的条件可知,汽车的速度是恒定的,每小时行驶60公里。
那么,在3小时的时间内,汽车行驶的总路程就是等差数列的前3项和。
设总路程为S,每小时行驶的距离为a,则有:a₁ = 60(每小时行驶的距离)a₂ = 60(第2小时行驶的距离)a₃ = 60(第3小时行驶的距离)S = a₁ + a₂ + a₃代入数据,可得:S = 60 + 60 + 60 = 180所以,3小时后汽车行驶的总路程为180公里。
2. 某班级刚开始有30人,每个月新增3人。
求第10个月结束后班级的总人数。
解析:根据题目中的条件可知,班级刚开始有30人,每个月新增3人。
那么,在第10个月结束后,班级的总人数就是等差数列的前10项和。
设总人数为S,每月新增的人数为a,则有:a₁ = 30(初始时班级的人数)a₂ = 30 + 3 = 33(第2个月结束后班级的人数)a₃ = 30 + 3 + 3 = 36(第3个月结束后班级的人数)...a₁₀ = 30 + 3 × 9 = 57(第10个月结束后班级的人数)S = a₁ + a₂ + a₃ + ... + a₁₀代入数据,可得:S = 30 + 33 + 36 + ... + 57这是一个公差为3的等差数列求和问题。
根据等差数列求和公式,可得:S = (a₁ + a₁₀) × 10 ÷ 2 = (30 + 57) × 10 ÷ 2 = 870所以,第10个月结束后班级的总人数为870人。
三、等比数列练习1. 一棵小树每年长高的比例是1.2倍,第1年高度为1.5米。
高一数学中的数列在实际问题中的应用有哪些
![高一数学中的数列在实际问题中的应用有哪些](https://img.taocdn.com/s3/m/79f67e17ce84b9d528ea81c758f5f61fb636281a.png)
高一数学中的数列在实际问题中的应用有哪些在高一数学的学习中,数列作为一个重要的知识板块,不仅在数学理论中具有重要地位,还在实际生活中有着广泛的应用。
通过数列,我们可以更好地理解和解决许多现实世界中的问题,从经济领域的投资和贷款计算,到自然科学中的生物繁殖和放射性物质衰变,再到日常生活中的排队和资源分配等。
接下来,让我们深入探讨一下高一数学中数列在实际问题中的具体应用。
一、经济领域1、储蓄与利息计算在银行储蓄中,常常会涉及到利息的计算。
假设我们将一笔本金 P存入银行,年利率为 r,存期为 n 年。
如果按照单利计算,到期后的本息和 A 可以用数列公式表示为:A = P(1 + nr) ;而如果按照复利计算,到期后的本息和 A 则为:A = P(1 + r)^n 。
通过这样的数列公式,我们可以清楚地计算出不同储蓄方式下的最终收益,帮助我们做出更明智的理财决策。
2、分期付款在购买一些价格较高的商品时,如汽车、房屋等,我们可能会选择分期付款。
假设购买一件价格为 P 的商品,分 n 期付款,每期利率为 r。
每期的还款金额可以通过数列计算得出,从而帮助我们规划好每月的财务支出,避免逾期还款和额外的利息费用。
3、投资回报在投资领域,数列也发挥着重要作用。
例如,我们投资一项每年回报率为 r 的项目,初始投资为 P,经过 n 年后的投资总额可以用数列公式计算。
通过对不同投资项目的回报进行数列分析,我们可以评估其风险和收益,选择最适合自己的投资组合。
二、科学研究1、生物繁殖在生物学中,许多生物的繁殖现象可以用数列来描述。
比如,某种细菌每小时繁殖的数量是前一小时的 2 倍,如果初始时有 x 个细菌,经过 n 小时后的细菌数量就是一个等比数列。
通过数列的计算,我们可以预测生物种群的增长趋势,为生态保护和资源管理提供重要依据。
2、放射性物质衰变放射性物质的衰变过程也符合数列规律。
假设某种放射性物质的半衰期为 T,初始质量为 M,经过 n 个半衰期后的剩余质量可以用数列公式表示为:M(1/2)^(n/T) 。
数列的应用与拓展
![数列的应用与拓展](https://img.taocdn.com/s3/m/db2019279a6648d7c1c708a1284ac850ac020462.png)
数列的应用与拓展【数列的应用与拓展】数列是数学中的一个重要概念,它在实际问题中有着广泛的应用。
本文将从不同角度展示数列的应用,并介绍数列相关的拓展内容。
一、数列在数学中的应用1. 等差数列的应用等差数列是最常见的一种数列形式。
它的应用非常广泛,尤其在数学建模中发挥重要作用。
例如,在经济学中,等差数列可以用来分析人口增长、收入分配等问题;在物理学中,等差数列可以描述运动物体的加速度、速度等变化。
2. 等比数列的应用等比数列是指数列中的每个数都是前一个数乘以同一个常数得到的。
在实际问题中,等比数列也有着广泛的应用。
例如,在金融领域中,等比数列可以用来计算复利的增长;在生物学中,等比数列可以用来描述细胞的增长过程。
3. 斐波那契数列的应用斐波那契数列是一个特殊的数列,它的每个数都是前两个数之和。
这个数列在生物学、计算机科学等领域都有着广泛的应用。
例如,在自然界中,斐波那契数列可以用来描述植物的分枝、螺旋等规律;在计算机领域中,斐波那契数列可以用来优化算法的效率。
二、数列的拓展内容除了常见的等差、等比、斐波那契数列,数列还有许多其他拓展内容。
1. 奇偶数列奇偶数列是指数列中的元素按照奇数和偶数进行排列。
这种数列常常用于解决递归问题或者进行特殊排列。
例如,著名的拓展问题“猴子吃桃”就是一个奇偶数列问题。
2. 等摆数列等摆数列是指数列中每个数的绝对值与前一个数的绝对值之差保持一定的比例。
这种数列在物理学、工程学等领域中有着重要的应用。
例如,在电路中,等摆数列可以用来描述电流、电压等变化。
3. 递推数列递推数列是指数列中的每个数都是前面若干个数的特定函数运算得到的。
这种数列在数学中有着广泛的应用。
例如,杨辉三角就是一个递推数列,它在组合数学中有着重要的地位。
三、总结数列的应用与拓展内容涵盖了数学、经济学、物理学、生物学等众多领域。
了解数列的应用和学习拓展内容,能够帮助我们更好地理解和应用数学知识,提高问题解决的能力。
数列知识在日常生活中的应用例谈
![数列知识在日常生活中的应用例谈](https://img.taocdn.com/s3/m/59e9d81476eeaeaad1f330de.png)
数列知识在日常生活中的应用例谈数列知识有着广泛的应用,如生物种群数量变化,银行中的利息计算,人口增长,粮食增长、住房建设等等问题,都会用到高中的数列知识。
本文举例说明,有助于学生认识和理解数列知识。
例1:在植物组织培养过程中,某细胞在培养基中按照1个分裂为2个,2个分裂为4个,依次分裂下去进行增加,而且每15分钟分裂一次。
那么,1小时后,这种细胞会增加到多少个?解析:这是生物学上的一个比较常见的问题(细菌的分裂已是如此)。
应用数列知识我们很快就会求得。
显然,a1=2,q=2,n=4,那么a4=a1 ×qn-1=2×23=16(个)例2:某房地产公司推出的售房有两套方案:一种是分期付款的方案,当年要求买房户首付3万元,然后从第二年起连续十年,每年付款8000元;另一种方案是一次性付款,优惠价为9万元,若一买房户有现金9万元可以用于购房,又考虑到另有一项投资年收益率为5%,他该采用哪种方案购房更合算?请说明理由.(参考数据1.059≈1.551,1.0510≈1.628)解析:如果分期付款,到第十一年付清后看其是否有结余,设首次付款后第n年的结余数为an,∵a1=(9-3)×(1+0.5%)-0.8=6×1.05-0.8a2=(6×1.05-0.8)×1.05-0.8=6×1.052-0.8×(1+1.05)……a10=6×1.0510-0.8(1+1.05+…+1.059)=6×1.0510-0.8×=6×1.0510-16×(1.0510-1)=16-10×1.0510≈16-16.28=-0.28(万元)所以一次性付款合算.例3:假如某市2010年新建住房面积为4000平方米,其中,250平方米为中低价房,预计在今后若干年内该市每年新建住房面积平均不上一年增长8%,加50平方米,问到哪一年底该市历年新建的中低价房的累计面积将首次不少于4750平方米?解析:设中低价房的面积构成数列{ an},由题意可以知道,an 为等差数列,a1=250,d=50sn =250×n +[n(n-1)/2] ×50=25n2 +225n令25n2 +225n≥4750,解之得到:n≥10或者n≤-19(不符合题意,舍去)由此可知,要到2020年底该市历年新建的中低价房的累计面积将首次不少于4750平方米。
数列实际应用举例
![数列实际应用举例](https://img.taocdn.com/s3/m/08ae9519336c1eb91b375d3d.png)
6.4数列的实际应用举例实例一:用分期付款方式购买电脑,价格每台11500元,可以用以下方式付款,购买当天先付1500元,以后每月交付500元,并先加付欠款利息,月利率1℅(即欠款1℅利息不计入欠款),在交付1500元后第一个月开始为分期付款的第一个月.问分期付款的第10个月该交付多少钱?全部货款付清后,买这台电脑实际花了多少钱? 分析:第一个月付款:500(115001500)1+-⨯ ℅第二个月付款:50095000.01+⨯……第十个月付款:500(100005009)0.01+-⨯⨯.解:由题意可知每月的付款数是500元和一个等比数列.1500100000.01a =+⨯,250095000.01a =+⨯,…10500(100005009)0.01a =+-⨯⨯; 1232050020(100009500500)0.01S a a a a =+++=⨯++++⨯ =(50010000)10100000.0110000105000.1100001050110502+⨯+⨯=+⨯=+=元. 买这台电脑实际花了11050+1500=12550元.实例二:某制糖厂今年制糖5万吨,如果平均每年的产量比上一年增加10%,那么从今年起,几年内可以使总产量达到30万吨(保留到个位).解:由题意可知,这个糖厂从今年起,平均每年的产量(万吨)组成一个等比数列.15,10.1 1.1,30n a q S ==+==于是得到5(1 1.1)301 1.1n -=- 整理后,得1.1 1.6n =lg1.60.20415lg1.10.0414n ==≈ 答:5年内可以使总产量达到30万吨.实例三:某长跑运动员 7 天里每天的训练量(单位:m )是: 7500 8000 8500 9000 9500 10000 10500 求这位长跑运动员 7 天共跑了多少米?。
浅析数列在日常生活中的应用
![浅析数列在日常生活中的应用](https://img.taocdn.com/s3/m/a392f47e9b89680203d825a1.png)
浅析数列在日常生活中的应用在实际生活和经济活动中, 很多问题都与数列密切相关.如分期付款、个人投资理财以及人口问题、资源问题等都可运用所学数列知识进行分析,从而予以解决. 与此同时,数列在艺术创作上也有突出的作用. 数学家华罗庚曾经说过:"宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学. " 这是对数学与生活关系的精彩描述. 下面笔者将举几个生活中的小例子来浅谈一下数列在日常生活中的运用.一、在生产生活中在给各种产品的尺寸划分级别时, 当其中的最大尺寸与最小尺寸相差不大时, 常按照等差数列进行分级. 若为等差数列, 且有an=m,am=n. 则a(m+n)=0.其实等差数列生活中处处可见, 关键是发现它, 并用以解决实际问题. 在路灯的排列、银行的按揭贷款、银行的利息结算等等.例如1 台电脑售价为1 万元, 如果采取分期付款, 在1 年内将款全部还清的前提下,商家还提供下表所示的几种付款方案(月利率为1%). 假定你的父母为给你创建更好的学习条件,打算买台电脑,除一次性付款外商家还提供三种分期付款方式. 你能帮他们参谋选择一下吗?方案分几次付清付款方法每期所付款额方案1.分6 次付清. 购买后2 个月第1次付款, 再过2 个月第2 次付款……购买后12 个月第6 次付款方案2.分12 次付清. 购买后1 个月第1次付款, 再过1 个月第2 次付款……购买后12 个月第12 次付款方案3.分3 次付清. 购买后4 个月第1次付款,再过4 个月第2 次付款,再过4 个月第3 次付款分析:思路1: 本题可通过逐月计算欠款来处理,根据题意,到期还清即第12 个月的欠款数为0 元.设每次应付x 元,则:二、细胞分裂中的数列自然界是由许许多多的细胞组成的,细胞分裂产生新的生命, 人的孕育也是由细胞分裂开始的. 以某种细胞为例我们一起来分析一下细胞是如何分裂的.某种细胞每过30 分钟便由 1 个分裂成 2 个,经过 5 小时,这种细胞由 1 个分裂成几个?经过N 小时,细胞由1 个能分裂成几个?该细胞分裂数是公比为2 的等比数列方式增加.显然不用减去那最初的一个母细胞了,因为题目问的是:"经过5 小时, 这种细胞由一个分裂成几个,"当然是1024 了,又不是问由一个分裂"出"几个,那就要减去最初的母细胞了.显然N 时后,该细胞会由一个分裂"成"2(k-1)个(k为自然数,k=2N+1)即:N 时后,会有22N个细胞,(其中N 表示整时,单位为时,N=0,1,2,3,……)因此,经过N 时后,细胞由一个分裂成22N个(N=0,1,2,3,…)三、爬楼梯小明同学在小的时候喜欢爬楼梯, 不为什么,只是觉得这种阶梯状的建筑非常好玩,等到他长大了,可以一次跨上一级,也可以跨两级,所以,他想知道,有多少种不同的上到楼梯顶端的方案.首先假设楼梯只有一级,那么小明只有一种爬法;如果有 2 级,那么小明可以一级一级地往上爬,也可以一次就上两级,用算式表示为1+1 或2, 说明他上 2 级楼梯有 2 种不同的爬法;如果有 3 级,小明的第一步可以上一级,也可以上二级. 如果上一级,那么还剩下 2 级, 上面已经讨论过了有 2 种不同的爬法;如果上二级,那么还剩下 1 级,上面也已经讨论过了,只有 1 种爬法;合计起来就有2+1=3 种不同的爬法. 有算式表示为3=1+2(2 种不同的爬法)=2+1(1 种不同的爬法);如果有4 级,小明的第一步可以上一级,也可以上二级. 如果上一级, 那么还剩下3级,上面已经讨论过了有3 种不同的爬法;如果上二级,那么还剩下 2 级,上面也已经讨论过了,有 2 种不同的爬法;合计起来就有3+2=5 种不同的爬法. 用算式表示为4=1+3(3种不同的爬法)=2+2(2 种不同的爬法);……照这样推下去, 可以得一串斐波那契数列:1,2,3,5,8,13,21,34,55,89,……由此可知,爬上有10 级台阶的楼梯,一共有89 种不同的爬法.随着科学的进步,数学学科在我们的生活中扮演着一个不可忽视的重要角色,作为跨世纪的中学生, 我们不仅要学会数学知识,而且要会应用数学知识去分析、解决生活中遇到的问题,这样才能更好地适应社会的发展和需要. 数学既不严峻,也不遥远,它既和所有的人类活动有关,又对每一个真正感兴趣的人有益. 数学研究、科学研究从身边的活动做起. 让我们从一个小小的数列开始,多思考,找规律,相信任何问题都可以迎刃而解的.。
1.4数列在日常经济生活中的应用(讲义+典型例题+小练)(原卷版)
![1.4数列在日常经济生活中的应用(讲义+典型例题+小练)(原卷版)](https://img.taocdn.com/s3/m/fbee849bed3a87c24028915f804d2b160a4e8653.png)
1.4数列在日常经济生活中的应用(讲义+典型例题+小练)一、例述数列在生活中的应用数学不仅仅是我们生活中的工具,更大程度上是我们生活中的必需品,并影响着人们的生活。
以生活中的一个常见问题为例:例1:1.为了防止某种新冠病毒感染,某地居民需服用一种药物预防.规定每人每天定时服用一次,每次服用m毫克.已知人的肾脏每24小时可以从体内滤除这种药物的80%,设第n=).次服药后(滤除之前)这种药物在人体内的含量是n a毫克,(即1a mm=,求2a、3a;(1)已知12(2)该药物在人体的含量超过25毫克会产生毒副作用,若人需要长期服用这种药物,求m的最大值.举一反三:1.顾客采用分期付款的方式购买一件5000元的商品,在购买一个月后第一次付款,且每月等额付款一次,在购买后的第12个月将货款全部付清,月利率0.5%.按复利计算,该顾客每月应付款多少元(精确到1元)?二、银行储蓄与分期付款中的数列应用储蓄与贷款与国计民生、社会生活发展息息相关,大到支援国家建设,小到个人家庭的财政支出管理,处处都嵌套着数列的应用。
在人们日常的生活规划中,为未来进行资金储备的零存整取的存储模式是银行储蓄中常见的一种金融计算方式。
下面将以某一常见模式为例,进行数列在储蓄领域应用的解析。
(1)储蓄业务种类①活期储蓄②定期储蓄(整存整取定期储蓄、零存整取定期储蓄、整存零取定期储蓄、存本取息定期储蓄、定活两便储蓄)③教育储蓄④个人通知存款⑤单位协定存款(2)银行存款计息方式:①单利单利的计算是仅在原有本金上计算利息,对本金所产生的利息不再计算利息.其公式为:利息=本金×利率×存期以符号P代表本金,n代表存期,r代表利率,S代表本金和利息和(以下简称本利和),则有②复利把上期末的本利和作为下一期的本金,在计算时每一期本金的数额是不同的.复利的计算公式是(3)零存整取模型例1:1.复利是指一笔资金产生利息外,在下一个计息周期内,以前各计息周期内产生的利息也计算利息的计息方法,单利是指一笔资金只有本金计取利息,而以前各计息周期内产生的利息在下一个计息周期内不计算利息的计息方法.小闯同学一月初在某网贷平台贷款10000元,约定月利率为1.5%,按复利计算,从一月开始每月月底等额本息还款,共还款12次,直到十二月月底还清贷款,把还款总额记为x元.如果前十一个月因故不还贷款,到十二月月底一次还清,则每月按照贷款金额的1.525%,并且按照单利计算利息,这样的还款总额记为y元.则y-x的值为()(参考数据:1.01512≈1.2)A.0B.1200C.1030D.9002.银行有一种叫作零存整取的储蓄业务,即每月定时存入一笔相同数目的现金,这是零存;到约定日期,可以取出全部本利和,这是整取.规定每次存入的钱不计复利(暂不考虑利息税).(1)若每月存入金额为x元,月利率r保持不变,存期为n个月,试推导出到期整取是本利和的公式;(2)若每月初存入500元,月利率为0.3%,到第36个月末整取时的本利和是多少?(3)若每月初存入一定金额,月利率为0.3%,希望到第12个月末整取时取得本利和2000元.那么每月初应存入的金额是多少?举一反三:1.某企业在2013年年初贷款M万元,年利率为m,从该年年末开始,每年偿还的金额都是a万元,并恰好在10年间还清,则a的值为()A.()()1010111M mm++-B.()101Mmm+C.()()1010111Mm mm++-D.()()1010111Mm mm+++2.银行有一种叫作零存整取的储蓄业务,即每月定时存入一笔相同数目的现金,这是零存;到约定日期,可以取出全部本利和,这是整取.规定每次存入的钱不计复利.银行按国家规定到期扣除20﹪的利息税(应纳税额=应纳税利息额×税率).(1)若每月存入金额为x 元,月利率r 保持不变,存期为n 个月,试推导出到期整取时本利和的公式;(2)若每月初存入500元,月利率为0.3%,到第36个月末整取时的本利和是多少?三、 环境资源利用中的数列应用进入21世纪以来,能源的短缺成为困扰人类社会发展的主要问题之一,尤其是不可再生资源的合理有效利用问题,更是人类社会进一步发展需要解决的首要问题。
数学教案应用数列解决实际问题
![数学教案应用数列解决实际问题](https://img.taocdn.com/s3/m/5ea34744eef9aef8941ea76e58fafab069dc4487.png)
数学教案应用数列解决实际问题数学教学在培养学生的逻辑思维和问题解决能力方面起着至关重要的作用。
数列作为数学的一个重要概念,在实际问题中有着广泛的应用。
本文将探讨数学教案如何应用数列来解决实际问题。
一、数列的概念和性质在开始讨论数列应用之前,我们先回顾一下数列的基本概念和性质。
1. 数列的定义:数列是按照一定顺序排列的一组数,其中每个数称为这个数列的项。
2. 数列的通项公式:一般而言,一个数列可以通过通项公式来表示,通项公式是指数列中的每一项与其序号之间的关系式。
3. 数列的递推公式:数列可以通过递推公式来表示,递推公式是指数列中的每一项与前一项之间的关系式。
4. 数列的性质:数列有许多重要的性质,如等差数列和等比数列。
等差数列指的是数列中的相邻两项之间的差恒定,而等比数列指的是数列中的相邻两项之间的比例恒定。
二、数列在实际问题中的应用举例1. 货币兑换问题在国际旅行或国际贸易中,经常会遇到货币兑换的问题。
假设汇率为每1美元兑换6.5人民币,现在要把3000人民币兑换成美元,我们可以使用数列来解决这个问题。
我们可以将人民币金额看作是一个等比数列的前n项和,其中第一项为3000,公比为1/6.5。
现根据等比数列的求和公式,可以得到:S_n = a * (1 - r^n) / (1 - r)其中,a表示第一项,r表示公比,n表示项数。
通过带入a=3000,r=1/6.5,n=∞(无穷项),我们可以计算出3000人民币可以兑换成的美元数。
2. 等差数列在房贷计算中的应用购房贷款是很多人的重要支出之一。
假设我们要计算某人购房贷款的还款计划,我们可以使用等差数列来帮助我们解决这个问题。
我们可以将每月的还款金额看作是一个等差数列的前n项和,其中第一项为贷款总额,公差为每月还款金额。
现根据等差数列的求和公式,可以得到:S_n = (a + l) * n / 2其中,a表示第一项(贷款总额),l表示最后一项(每月还款金额),n表示还款期数。
数列求和的几种方法、数列的实际应用问题
![数列求和的几种方法、数列的实际应用问题](https://img.taocdn.com/s3/m/4ef6d7adc67da26925c52cc58bd63186bceb9215.png)
数列求和的⼏种⽅法、数列的实际应⽤问题数列求和的⼏种⽅法、数列的实际应⽤问题⼀. 教学难点:数列的实际应⽤问题⼆. 课标要求:1. 探索并掌握⼀些基本的数列求前n 项和的⽅法;2. 能在具体的问题情境中,发现数列的通项和递推关系,并能⽤有关等差、等⽐数列知识解决相应的实际问题.三. 命题⾛向:数列求和和数列综合及实际问题在⾼考中占有重要的地位,⼀般情况下都是出⼀道解答题,解答题⼤多以数列为⼯具,综合运⽤函数、⽅程、不等式等知识,通过运⽤逆推思想、函数与⽅程、归纳与猜想、等价转化、分类讨论等各种数学思想⽅法,这些题⽬都考查考⽣灵活运⽤数学知识分析问题和解决问题的能⼒,它们都属于中、⾼档题⽬.有关命题趋势:1. 数列是⼀种特殊的函数,⽽不等式则是深刻认识函数和数列的有效⼯具,三者的综合题是对基础和能⼒的双重检验,在三者交汇处设计试题,特别是代数推理题是⾼考的重点;2. 数列推理题将继续成为数列命题的⼀个亮点,这是由于此类题⽬能突出考查学⽣的逻辑思维能⼒,能区分学⽣思维的严谨性、灵敏程度、灵活程度;3. 数列与新的章节知识结合的特点有可能加强,如与解析⼏何的结合等;4. 有关数列的应⽤问题也⼀直备受关注.【教学过程】⼀、基本知识回顾 1. 数列求通项与和(1)数列前n 项和S n 与通项a n 的关系式:a n =--11s s s n n 12=≥n n .(2)求通项常⽤⽅法①作新数列法.作等差数列与等⽐数列.②累差叠加法.最基本的形式是:a n =(a n -a n -1)+(a n -1+a n -2)+…+(a 2-a 1)+a 1.③归纳、猜想法.(3)数列前n 项和①重要公式:等差和等⽐数列的求和公式1+2+…+n =21n (n +1);12+22+…+n 2=61n (n +1)(2n +1);13+23+…+n 3=(1+2+…+n )2=41n 2(n +1)2;②裂项相消法将数列的通项分成两个式⼦的代数和,即a n =f (n +1)-f (n ),然后累加抵消掉中间的许多项,这种先裂后消的求和法叫裂项求和法.⽤裂项法求和,需要掌握⼀些常见的裂项,如:)11(1))((1C An B An B C C An B An a n +-+-=++=、)1(1+n n =n 1-11+n 等.③错位相减法(可⽤于推导等⽐数列前n 项和公式)对⼀个由等差数列及等⽐数列对应项之积组成的数列的前n 项和,常⽤错位相减法.n n n c b a ?=,其中{}n b 是等差数列, {}n c 是等⽐数列,记n n n n n c b c b c b c b S ++?++=--112211,则1211n n n n n qS b c b c b c -+=+??++,…④分组转化求和把数列的某些项放在⼀起先求和,然后再求S n .⑤倒序相加法(可⽤于推导等差数列前n 项和公式) 2. 递归数列数列的连续若⼲项满⾜的等量关系a n +k =f (a n +k -1,a n +k -2,…,a n )称为数列的递归关系.由递归关系及k 个初始值可以确定的⼀个数列叫做递归数列.如由a n +1=2a n +1,及a 1=1,确定的数列}12{-n 即为递归数列.递归数列的通项的求法⼀般说来有以下⼏种:(1)归纳、猜想.(2)迭代法.(3)代换法.包括代数代换,对数代数,三⾓代数.(4)作新数列法.最常见的是作成等差数列或等⽐数列来解决问题.【典型例题】例1. 已知数列{}n a 为等差数列,且公差不为0,⾸项也不为0,求和:∑=+ni i i a a 111.解:⾸先考虑=∑=+n i i i a a 111∑=+-n i i i a a d 11)11(1,则∑=+ni i i a a 111=1111)11(1++=-n n a a na a d .点评:已知数列{}n a 为等差数列,且公差不为0,⾸项也不为0,下列求和11nni i ===也可⽤裂项求和法.例2. 求)(,32114321132112111*N n n ∈+++++++++++++++.解:)1(2211+=+?++=k k k a k , ])1n (n 1321211[2S n ++?+?+?=∴.1n n 21n 1121n 1n 131212112+=??+-= ??+-+?+??-+ -= 点评:裂项求和的关键是先将形式复杂的因式转化的简单⼀些.例3. 设221)(+=x x f ,利⽤课本中推导等差数列前n 项和的⽅法,可求得)6()5()0()4()5(f f f f f ++++-+- 的值为____________解:课本中推导等差数列前n 项和的⽅法为倒序相加法.因为22221221)1()(1=+++=-+-x x x f x f所以22)1()0()5()4()6()5(=+==+-=+-f f f f f f原式=622=23点评:本题曾为上海⾼考题,主要考查考⽣对课本的熟练程度和倒序相加法的应⽤,其中有函数式⼦的变化,计算能⼒的考查.例4. 已知1,0≠>a a ,数列{}n a 是⾸项为a ,公⽐也为a 的等⽐数列,令)(lg N n a a b n n n ∈?=,求数列{}n b 的前n 项和n S .解:,lg n nn n a a b n a a ==? , 232341(23)lg (23)lg n n n n S a a a na a aS a a a na a +∴=++++=++++ ……①……②①-②得:a na a a a S a n n n lg )()1(12+-+++=- ,[]nn ana n a a a S )1(1)1(lg 2-+--=∴点评:设数列{}n a 是等⽐数列,数列{}n b 是等差数列,则对数列{}n n b a 的前n 项和nS 进⾏求解,均可⽤错位相减.例 5. 数列),60cos 1000lg(),...60cos 1000lg(),60cos 1000lg(,1000lg 1n 2-…的前多少项和为最⼤?解:{}3(1)lg2,n n a n a =--是以3为⾸项,以lg 2-为公差的等差数列,2lg 26lg 2[33(1)lg 2],222n n S n n n +=+--=-+对称轴*6lg 210.47,,10,112lg 2n n N +=≈∈⽐较起来10更靠近对称轴∴前10项和为最⼤另法:由100n n a a +≥??点评:求和的最值关键在于找分界点.例6. 求数列1,3+13,32+132,……,3n +13n的各项的和.解:其和为(1+3+ (3))+(13132++…+13n )=3121321n n +--+-=12(3n +1-3-n ).点评:分组转化法求和.例7. (2006年浙江卷20)已知函数()f x =x 3+x 2,数列{x n }.(x n > 0)的第⼀项x 1=1,以后各项按如下⽅式取定:曲线y =()f x 在11(())n n x f x ++?处的切线与经过(0,0)和(x n ,f (x n ))两点的直线平⾏(如图).求证:当n ∈*N 时:(I )221132n n n n x x xx -++=+;(II )1211()()22n n n x --≤≤.解:(I )因为'2 ()32,f x x x =+所以曲线()y f x =在11(,())n n x f x ++处的切线斜率121132.n n n k x x +++=+因为过(0,0)和(,())n n x f x 两点的直线斜率是2,n n x x +所以221132n n n n x x x x +++=+.(II )因为函数2()h x x x =+当0x >时单调递增,⽽221132n n n n x x x x +++=+21142n n x x ++≤+211(2)2n n x x ++=+所以12nn x x +≤,即11,2n n x x +≥ 因此1121211().2n n n n n n x x x x x x x ----=≥⼜因为12212(),n n n n x x x x +++≥+ 令2,n n n y x x =+则11.2n ny y +≤ 因为21112,y x x =+=所以12111()().22n n n y y --≤?=因此221(),2n n n n x x x -≤+≤故1211()().22n n n x --≤≤点评:数列与解析⼏何问题结合在⼀块,数列的通项与线段的长度、点的坐标建⽴起联系.例8. (2005上海⾼考20.)假设某市2004年新建住房400万平⽅⽶,其中有250万平⽅⽶是中低价房.预计在今后的若⼲年内,该市每年新建住房⾯积平均⽐上⼀年增长8%.另外,每年新建住房中,中低价房的⾯积均⽐上⼀年增加50万平⽅⽶.那么,到哪⼀年底,(1)该市历年所建中低价房的累计⾯积(以2004年为累计的第⼀年)将⾸次不少于4750万平⽅⽶?(2)当年建造的中低价房的⾯积占该年建造住房⾯积的⽐例⾸次⼤于85%? 解:(1)设中低价房⾯积形成数列{a n },由题意可知{a n }是等差数列,其中a 1=250,d =50,则S n =250n +502)1(?-n n =25n 2+225n ,令25n 2+225n ≥4750,即n 2+9n -190≥0,⽽n 是正整数,∴n ≥10.到2013年底,该市历年所建中低价房的累计⾯积将⾸次不少于4750万平⽅⽶.(2)设新建住房⾯积形成数列{b n },由题意可知{b n }是等⽐数列,其中b 1=400,q =1.08,则b n =400·(1.08)n -1·0.85.由题意可知a n >0.85 b n ,有250+(n -1)·50>400·(1.08)n -1·0.85.由计算器解得满⾜上述不等式的最⼩正整数n =6.到2009年底,当年建造的中低价房的⾯积占该年建造住房⾯积的⽐例⾸次⼤于85%.点评:本题考查等差、等⽐数列的应⽤题,关键是如何把实际问题转化为数列问题,注意解应⽤题的设、列、解、答四个步骤.例9. 某企业进⾏技术改造,有两种⽅案,甲⽅案:⼀次性贷款10万元,第⼀年便可获利1万元,以后每年⽐前⼀年增加30%的利润;⼄⽅案:每年贷款1万元,第⼀年可获利1万元,以后每年⽐前⼀年增加5千元;两种⽅案的使⽤期都是10年,到期⼀次性归还本息.若银⾏两种形式的贷款都按年息5%的复利计算,试⽐较两种⽅案中,哪种获利更多?(取665.575.1,786.133.1,629.105.1101010===)解:甲⽅案是等⽐数列,⼄⽅案是等差数列,①甲⽅案获利:63.423.013.1%)301(%)301(%)301(11092≈-=+++++++ (万元),银⾏贷款本息:29.16%)51(1010≈+(万元),故甲⽅案纯利:34.2629.1663.42=-(万元),②⼄⽅案获利:5.02910110)5.091()5.021()5.01(1??+=+++++++50.32=(万元);银⾏本息和:]%)51(%)51(%)51(1[05.192+++++++? 21.1305.0105.105.110≈-?=(万元)故⼄⽅案纯利:29.1921.1350.32=-(万元);综上可知,甲⽅案更好.点评:这是⼀道⽐较简单的数列应⽤问题,由于本息与利润是熟悉的概念,因此只建⽴通项公式并运⽤所学过的公式求解.例10. (2007⼭东理17)设数列{}n a 满⾜211233333n n na a a a -++++=(Ⅰ)求数列{}n a 的通项;(Ⅱ)设n n nb a =,求数列{}n b 的前n 项和n S .解:(I )2112333...3,3n n na a a a -+++= 221231133...3(2),3n n n a a a a n ---+++=≥1113(2).333n n n n a n --=-=≥1(2).3n n a n =≥验证1n =时也满⾜上式,*1().3n n a n N =∈(II )3nn b n =?,23132333...3n n S n =?+?+?+?231233333n n n S n +-=+++-?11332313n n n S n ++--=-?-,111333244n n n n S ++=?-?+?例11. (2007⼭东⽂18)设{}n a 是公⽐⼤于1的等⽐数列,n S 为数列{}n a 的前n 项和.已知37S =,且123334a a a ++,,构成等差数列.(1)求数列{}n a 的等差数列.(2)令31ln 12n n b a n +== ,,,,求数列{}n b 的前n 项和T n .解:(1)由已知得1231327:(3)(4)3.2a a a a a a ++=??+++=,解得22a =.设数列{}n a 的公⽐为q ,由22a =,可得1322a a qq ==,.227q q ++=,即22520q q -+=,解得12122q q ==,.由题意得12q q >∴=,. 11a ∴=.故数列{}n a 的通项为12n n a -=.(2)由于31ln 12n n b a n +== ,,,,由(1)得3312nn a +=3ln 23ln 2n n b n ∴==⼜2ln 3b b n 1n =-+{}n b ∴是等差数列. 12n n T b b b ∴=+++.2ln 2)1n (n 32)2ln n 32ln 3(n 2)b b (n n 1+=+=+=故3(1)ln 22n n n T +=.点评:2007年⼭东⾼考⽂科和理科数列的题⽬都在⼤题的前两题的位置,理科考查的是错位相减法求和,⽂科为等差和等⽐数列公式的应⽤,都考查了考⽣的运算能⼒.例12. (2007福建⽂21)数列{}n a 的前n 项和为n S ,11a =,*12()n n a S n +=∈N .(Ⅰ)求数列{}n a 的通项n a ;(Ⅱ)求数列{}n na 的前n 项和n T .解:(Ⅰ)12n n a S += ,12n n n S S S +∴-=,13n nS S +∴=.⼜111S a == ,∴数列{}n S 是⾸项为1,公⽐为3的等⽐数列,1*3()n n S n -=∈N .当2n ≥时, )2(32221≥?==--n S a n n n ,≥?==∴-2,321,12n n a n n (Ⅱ)12323n n T a a a na =++++ ,当1n =时,11T =;当2n ≥时,2103236341-?++?+?+=n n n T ,…………①12132363433-?++?+?+=n n n T ………………………②-①②得:122132)333(2422--?-+++++-=-n n n n T123231)31(322--?---?+=n n n13)21(1-?-+-=n n . 1113(2)22n n T n n -??∴=+- ≥.⼜111T a == 也满⾜上式,1*113()22n n T n n -??∴=+-∈ N .点评:本⼩题考查数列的基本知识,考查等⽐数列的概念、通项公式及数列的求和,考查分类讨论及化归的数学思想⽅法,以及推理和运算能⼒.满分12分.[思维⼩结]1. 数列求和的常⽤⽅法(1)公式法:适⽤于等差、等⽐数列或可转化为等差、等⽐数列的数列;(2)裂项相消法:适⽤于+1n n a a c 其中{ n a }是各项不为0的等差数列,c 为常数;部分⽆理数列、含阶乘的数列等;(3)错位相减法:适⽤于{}n n b a 其中{ n a }是等差数列,{}n b 是各项不为0的等⽐数列.(4)倒序相加法:类似于等差数列前n 项和公式的推导⽅法. (5)分组求和法 2. 常⽤结论nk k ==∑1+2+3+...+n = 2)1(+n n(2)1(21)nk k =-=∑1+3+5+...+(2n -1)=2n(3)21nk k ==∑)12)(1(613212222++=++++n n n n(4)111)1(1+-=+n n n n )211(21)2(1+-=+n n n n(5))()11(11q p q p p q pq <--=3. 数学思想(1)迭加累加(等差数列的通项公式的推导⽅法)若1(),(2)n n a a f n n --=≥,则……;(2)迭乘累乘(等⽐数列的通项公式的推导⽅法)若1()(2)nn a g n n a -=≥,则……;(3)逆序相加(等差数列求和公式的推导⽅法);(4)错位相减(等⽐数列求和公式的推导⽅法).4. 应⽤题注意审清题意,把实际问题转化为数列中的问题.设、列、解、答四步骤不可少.【模拟试题】1. 数列{}n a 的通项公式11++=n n a n ,则该数列的前()项之和等于9.A. 98B. 99C. 96D. 972. 在等差数列{}n a 中,若4,184==S S ,则20191817a a a a +++的值为()A. 9D. 173. 在等差数列{}n a 中,2700...,200...10052515021=+++=+++a a a a a a ,则1a 为()A. 22.5-B. 21.5-C. 20.5-D. 20-4. 已知等差数列n a n 的前}{项和m S a a a m S m m m m n 则且若,38,0,1,12211==-+>-+-等于()A. 38B. 20C. 10D. 95. 等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若231n n S nT n =+,则n n a b =()A. 23B. 2131n n --C. 2131n n ++D. 2134n n -+6. 已知数列的12++=n n S n ,则12111098a a a a a ++++=_____________.7. 在等差数列{}n a 中,公差21=d ,前100项的和45100=S ,则99531...a a a a ++++=_____________.8. 若等差数列{}n a 中,37101148,4,a a a a a +-=-=则13__________.S =9. ⼀个等⽐数列各项均为正数,且它的任何⼀项都等于它的后⾯两项的和,则公⽐q 为_______________.10. (2007北京理)若数列{}n a 的前n 项和210(123)nS n n n =-= ,,,,则此数列的通项公式为;数列{}n na 中数值最⼩的项是第项.11. 已知数列{}n a 的前n 项和nn S 23+=,求n a .170,求此数列的公⽐和项数.13. 数列),60cos 1000lg(),...60cos 1000lg(),60cos 1000lg(,1000lg 1n 2-…的前多少项和为最⼤?14. 已知数列{}n a 的前n 项和)34()1( (139511)--++-+-=-n S n n,求312215S S S -+的值.【试题答案】1. B...n n a S ===+110,99n S n ====2. A 4841,3,S S S =-=⽽48412816122016,,,,,S S S S S S S S S ----成等差数列即1,3,5,7,9,1718192020169a a a a S S +++=-=3. C501505027002005050,1,()2002d d S a a -=?==+=,1501118,2498,241,20.5a a a d a a +=+==-=- 4. C 20,(2)0,2,m m m m m m a a a a a a +-=-==21121221()(21)38,21192m m m m S a a m am --+=-=-=,m =10.5. B 121212112121()22(21)21223(21)131()2n n n n n n n n n a a a a S n n b b T n n b b -----+--=====-+-+6. 100228910111212712121(771)100a a a a a S S ++++=-=++-++= 7. 10 100110011001991100100()45,0.9,0.4,2S a a a a a a a a d =+=+=+=+-="1995050()0.41022S a a =+=?=8.156371011431110471311371312,,12,()132a a a a a a a a a a S a a a +-+-=+=+==+=9.设2212,10,0,n n n n n a a a qa q a q q q q ++=+=++-=>=10. 211n - 3 11. 解:111132,32,2(2)n n n nn n n n S S a S S n ----=+=+=-=≥ ⽽115a S ==,∴≥==-)2(,2)1(,51n n a n n 12. 解:设此数列的公⽐为,(1)q q ≠,项数为2n ,则,170q 1)q 1(a S ,85q 1)q 1(a S 2n 222n 21=--=偶奇2221122,85,2256,28,14n n S a q n S a -======-偶奇∴,2=q 项数为813. 解:{}3(1)lg2,n n a n a =--是以3为⾸项,以lg 2-为公差的等差数列,2lg 26lg 2[33(1)lg 2],222n n S n n n +=+--=-+对称轴*6lg 210.47,,10,112lg 2n n N +=≈∈⽐较起来10更靠近对称轴∴前10项和为最⼤.另法:由100n n a a +≥??14. 解:(4),2,2121,(4)43,2n n nn n n S S n n n n n ??-?-??==??---+-??为偶数为偶数,,为奇数为奇数15223129,44,61,S S S ==-=15223176S S S +-=-。
探究数列的实际应用
![探究数列的实际应用](https://img.taocdn.com/s3/m/1ad04094b8f3f90f76c66137ee06eff9aff84943.png)
探究数列的实际应用数列是数学中一个重要的概念,本文将探究数列在实际应用中的作用和意义。
从数学模型到实际问题的转化,数列给我们提供了一种有序的排列方式,使得我们可以更好地理解和解决实际问题。
一、数列在数学建模中的应用数列在数学建模中起到了至关重要的作用,通过数列可以描述出许多事物的发展规律。
例如,人口增长、经济增长、物种数量等等都可以用数列来表示。
在数学建模中,我们可以根据已有的数据进行分析和预测,从而对未来的发展趋势做出合理的判断和决策。
二、数列在经济学中的应用在经济学中,数列也发挥着重要的作用。
例如,经济增长率可以通过数列来表示,通过对经济增长率的分析,我们可以判断经济的发展趋势,制定出相应的经济政策。
此外,还可以通过数列来计算物价指数、消费价格指数等指标,从而对经济发展状况进行评估和监测。
三、数列在自然科学中的应用数列在自然科学中也有广泛的应用。
例如,物理学中的运动学问题中,可以通过数列来描述物体在运动中的位置、速度、加速度等变化规律,从而更好地理解和解决实际问题。
同样,在化学中,数列可以用来描述化学反应的速度与物质浓度的关系,从而对化学反应进行研究和控制。
四、数列在信息科学中的应用在信息科学中,数列也有广泛的应用。
例如,计算机编程中经常用到的算法中,常常需要用到数列的概念来处理和解决问题。
同时,在信号处理中,数列可以用来表示和处理各种信号,如音频信号、图像信号等。
数列能够提供一种有序的排列方式,使得信息的传输和处理更加高效和准确。
五、数列在其他领域的应用除了以上几个领域,数列还有许多其他的应用。
例如,在物流中,可以用数列来描述货物的运输过程;在排队论中,可以用数列来描述人员排队的等待时间;在生物学中,可以用数列来描述DNA序列的结构等等。
综上所述,数列在实际应用中起到了重要的作用。
不仅能够提供一种有序的排列方式,使得我们能够更好地理解和解决实际问题,还能够通过数学模型对未来进行预测和判断。
数列应用练习题
![数列应用练习题](https://img.taocdn.com/s3/m/00ae93afb9f67c1cfad6195f312b3169a451eadc.png)
数列应用练习题一、等差数列应用题1. 甲买了一批商品,每天卖出其中的5个,经过10天后全部卖完。
已知甲每天的销售额为200元,求甲买进这批商品的总额。
解析:由已知可知,甲每天销售的商品数量为5个,所以经过10天,甲总共卖出的商品数量为5 * 10 = 50个。
同时,甲每天的销售额为200元,所以甲卖出这批商品的总额为50 * 200 = 10000元。
由于这批商品全部卖完,所以甲买进这批商品的总额也为10000元。
2. 一列等差数列的首项是2,公差是3,请问这列数列中第10项的值是多少?解析:由已知可知,这列等差数列的首项是2,公差是3。
根据等差数列的通项公式an = a1 + (n - 1)d,其中an表示第n项,a1表示首项,d表示公差。
代入已知数据可以得到第10项的值:a10 = 2 + (10 - 1) * 3 = 2 + 9 * 3 = 2 + 27 = 29。
二、等比数列应用题1. 一列等比数列的首项是1,公比是2,求前10项的和。
解析:由已知可知,这列等比数列的首项是1,公比是2。
根据等比数列的求和公式Sn = a1 * (1 - q^n) / (1 - q),其中Sn表示前n项的和,a1表示首项,q表示公比,n表示项数。
代入已知数据可以得到前10项的和:S10 = 1 * (1 - 2^10) / (1 - 2) = 1 * (-1023) / (-1) = 1023。
2. 一列等比数列的首项是3,公比是0.5,求前10项的乘积。
解析:由已知可知,这列等比数列的首项是3,公比是0.5。
根据等比数列的乘积公式Pn = a1^n * q^{n(n-1)/2},其中Pn表示前n项的乘积,a1表示首项,q表示公比,n表示项数。
代入已知数据可以得到前10项的乘积:P10 = 3^10 * (0.5)^{10(10-1)/2} = 59049 * (0.5)^45 = 59049 * (0.5)^{45/2} = 59049 * (0.5)^{(9*5)/2} = 59049 * (0.5)^{45/2} = 3.8146973 * 10^{-7}。
数列的实际应用
![数列的实际应用](https://img.taocdn.com/s3/m/6ae5afeb4afe04a1b071deb4.png)
(1)“零存整取”的计算 “零存整取”是单利计算,属于等差数列求和问题.其本利和为 S=P(1+nr),其中 P 代表本金,n 代表存期,r 代表利率,S 代表本金与利息和,简称本利和. (2)“定期自动转存”的计算 “定期自动转存”是复利计算,属于等比数列求通项问题,到期后的本利和为 S=P(1 +r)n,其中 P 代表本金,n 代表存期,r 代表利率,S 代表本利和.注意复利计算是求等比 数列的第 n 项,而不是求和. (3)应用数列知识解决实际问题的步骤 ①根据实际问题提取数据;②建立数据关系,对提取的数据进行分析、归纳,建立数列 的通项公式或递推关系; ③检验关系是否符合实际, 符合实际可以使用, 不符合要修改关系; ④利用合理的结论对实际问题展开讨论.
变式训练 41:从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发 1 展旅游产业,根据规划,本年度投入 800 万元,以后每年投入将比上年减少 ,本年度当地 5 旅游业收入估计为 400 万元,由于该项建设对旅游业的促进作用,预计今后旅游业收入每年 1 会比上年增加 . 4 (1)设 n 年内(本年度为第 1 年)总投入 Sn 万元,旅游业总收入为 Tn 万元,写出 Sn、Tn 的 表达式; (2)第几年旅游业的总收入才能首次超过总投入?
等比数列前 n 项和的实际应用 【例 4】 某同学若将每月省下的零花钱 5 元在月末存入银行,月利按复利计算,月利为 0.2%,每够一年就将一年的本和利改存为年利按复利计算,年利为 6%,问三年取出本利共 多少元(结果保留到个位)?
思路点拨:解答本题可先建立数学模型用数列知识求解后再回归实际问题.
思路点拨: 生活中常见的增加(增长)问题, 可以考虑利用等差数列(等比数列)的知识来处 理.
解:由题设知今年学生人数为 b, 则 10 年后学生人数为 b(1+4.9‟)10=1.05b. 由题设可知,1 年后的设备数量为 a×(1+10%)-x=1.1a-x; 2 年后的设备数量为 (1.1a-x)×(1+10%)-x=1.12a-1.1x-x =1.12a-x(1+1.1); „ 10 年后的设备数量为 a×1.110-x(1+1.1+1.12+„+1.19) 1×1-1.110 =2.6a-x× 1-1.1 =2.6a-16x, 2.6a-16x a a 由题设得 =2× ,解得 x= . 1.05b b 32
数列的应用问题:中考数学数列的实际应用
![数列的应用问题:中考数学数列的实际应用](https://img.taocdn.com/s3/m/e02d84fbd0f34693daef5ef7ba0d4a7303766c45.png)
数列的应用问题:中考数学数列的实际应用数列是中考数学中的一个非常重要的考点,而数列的应用也是我们在生活中经常遇到的。
本文将从实际问题出发,介绍数列在生活中的应用情况以及数列的求法。
一、数列的定义和求法数列是一个按照一定规律排列起来的数的序列。
数列中的数叫做项,用通项公式来表示一般是 an=f(n),其中,an 表示第 n 项,f(n)表示通项公式。
求数列的方法有很多种,其中比较常见的有:1、通项公式法:根据前几项数列的规律,推导出数列的通项公式,从而可以方便地求出任意一项的值。
2、递推公式法:根据前一项的值,递推得到后一项的值。
递推公式是指数列中后一项与前一项之间的关系式,如 an=an-1+2。
3、逆推法:从数列的最后一项开始向前推导,一步一步逆推,求得数列中任意一项的值。
二、数列的应用问题1、等差数列的应用等差数列是指数列中相邻两项之差是一个定值,通常用 a1,d 来表示,其中,a1 表示首项,d 表示公差。
在实际问题中,等差数列的应用非常广泛,比如身高增长问题、数学成绩问题、温度变化问题等等,都可以通过等差数列来解决。
例如,小明的身高从 140 厘米开始,每年增长 5 厘米,问 7 年后小明的身高是多少?首项 a1=140,公差 d=5,求第 7 项的值 an。
由于每年增长 5 厘米,所以公差为 5,即 d=5。
根据等差数列的通项公式:an=a1+(n-1)d,代入式子,得到 an=140+(7-1)*5=170。
所以,7 年后小明的身高为 170 厘米。
2、等比数列的应用等比数列是指数列中相邻两项之比是一个定值,通常用 a1,q 来表示,其中,a1 表示首项,q 表示公比。
在实际问题中,等比数列的应用也非常广泛,比如利润增长问题、人口增长问题、艺术品价格上涨问题等等。
例如,一件艺术品的价格每年以 8% 的速度上涨,现在的价格为4800 元,问 5 年后的价格是多少?首项 a1=4800,公比 q=1.08,求第 5 项的值 an。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(II )如果将该商品每月都投放市场
(II )要保持每个月都满足供应,则每月投放市场的商品数
P (万
件)应
f (n)
即
1
Pn n(n 1)(35 2n), P 150
1
150
(n 1)(35 2n)
丄(n 2
更n 更)
75
2
2
N ,当n 8时, 1)(35 2n)的最大值为1.14万件即P 至少为1.14万件
练习:听P82例2 例2 •某外商到一开发区投资
72万美元建起一座蔬菜加工厂,第一年各种经费
12万美兀,
出售该厂;②纯利润总和最大时,以
16万元出售该厂,问哪种方案最合算?
解答:由题意知,每年的经费是以 12为首项,4为公差的等差数列,设纯利润与年数的关
系为 f (n),则 f (n)
50n
[12n
(1 )纯利润就是要求 f(n) 0 ,
血 U 4]
72 2n
2
40n
72
2
2n 2 40n 72
(2)①年平均利润
f(n) n
40
2(n 笑)16当且仅当n = 6时取等
口 号。
数列的实际应用问题
例1 .某地区预计从2005年初的前n 个月内,对某种商品的需求总量
f(n)(万件)与月
1
份 n 的近似关系为 f( n) n(n 1)(35 2n)(n N , n 12)
150
(I)求2005年第n 个月的需求量g(n)(万件)与月份 n 的函数关系式,并求出哪个月份 的需求量超过1.4万件。
P 万件,要保持每月都满足供应,则P 至少为多少万件?
以后每年增加4万美元,每年销售蔬菜收入
50 万美兀。
设f (n)表示前n 年的纯收入
(f (n)前n 年的总收入一前n 年的总支出一投资额) (1)从第几年开始获取纯利润?
(2 )若干年后,外商为开始新项目,有两种处理方案:①年平均利润最大时以 48万美元
解得2 n 18。
由n N 知从第三年开始获利
解答:
(I ) 由题意知, g 1 f (1)
g(n) f(n) f (n
1): 1
n(n 150
1
150
n[(n 1)(35 2n) (n 1)(37 1
11 又一 1 (12 1) 25
g(1),
25
由丄
n(12 n) 14 得:n 2 12n 25
即6月份的需求量超过
1.4 万件
1
、11 「 当
2时, 1 2 3- n 150 2n)—
150
25
1)(35 (n 1) n[35 2(n 1)]
2n)]
1 n(1
2 25
n)
1
g(n )
n (12 25
n)(n N , n 12) 35 0, 5 n
7,又n
N ,
n 6
故此方案先获利6 16 48 144 (万美元),此时n = 6
2
② f(n) 2(n 10) 128
当 n = 10 时,f(n)max 128
故第②种方案共获利128 16 144 (万美元)
比较两种方案,获利都是 144万美元。
但第①种方案只需 6年,而第②种方案需10年,故选择第①方案。
例3 •用分期付款的方式购买一批总价为2300万元的住房,购买当天首付 300万元,以后每
月的这一天都交100万元,并加付此前欠款的利息,设月利率为1%。
若首付300万元之后的第一个月开始算分期付款的第一个月,问分期付款的第10个月应付多少万元?全部贷款付
清后,买这批房实际支付多少万元?
解答:购买时付款300万元,则欠款2000万元,依题意分20次付清,
则每次交付欠款的数额顺次构成数列{a n},故a1 100 2000 0.01 120 (万元)
a2 100 (2000 100) 0.01 119 (万元);a3 100 (2000 100 2) 0.01 118 (万元)
a4100 (2000 100 3) 0.01 117 (万元)…
a n 100 [2000 100(n 1)] 0.01 120 (n 1) 121 n (1 n 20,n N)
因此{a n}是首项为120 ,公差为-1的等差数列,
故 a10 121 10 111 (万兀) a20 121 20 101 (万兀)
20次分期付款的总和为S20 ©a20)20 (120 101) 20
2210
2
(万兀)
2
实际要付 300+2210=2510 (万兀)
答:略
练习1.某地区位于沙漠边缘地带,,到2004 年底该地区的绿化率只有30%,计划从2005
年开始加大沙漠化改造的力度,每年原来沙漠面积的16%,将被植树改造为绿洲,但同时原有绿洲面积的4%还会被沙漠化。
(1)设该地区的面积为1 , 2002年绿洲面积为a13,经过一年绿洲面积为a2经过n
10
4 4 4 “
年绿洲面积为a n 1,求证:a n 1 a n ;(2)求证:{a n 1 }是等比数列;
5 25 5
⑶问至少需要经过多少年努力,才能使该地区的绿洲面积超过60% ?(取lg2 0.3)解答:(1)设2004年底沙漠面积为b1,经过n年治理后沙漠面积为 b n+1。
则a n+b n= 1。
依题意,a n+1由两部分组成,一部分是原有的绿洲面积减去沙漠化后剩下的面积,
a n — 4%a n= 96%a n,另一部分是新植树绿洲化的面积16%
b n,于是
4 4
a n+1 = 96%a n+16%
b n =96%a n +16%(1 — a n)=80% a n +16%= a n
5 25
-(4)n
>60%
2 5
即(7)n
5
1 0.6 1 0.9
4.故至少需要5年才能达到目标。
4 1、 4 a i
为首项,一为公比的等比数列。
5
2
5 丄
—
4
1 4 n 、 4 ⑶由⑵可知a n 1
(),依题意一
5 2 5
5
2 lg 2 lg 5
1 2lg
2 门
lOg 4
5
2lg 2_亦
1 3lg 2
练习2.听P81例2变式 作业:P234B 级1
⑵由a n 1
4 25
两边减去
得
a
n 1
5
4
4
5), A {a
n 1 5}是以。