圆柱体积公式推导课件动画演示好

合集下载

圆柱体积公式推导课件(动画演示好)

圆柱体积公式推导课件(动画演示好)

饮料罐
圆柱体体积公式可以用于计算饮 料罐的容量,帮助生产商控制生 产成本。
游泳池
通过圆柱体体积公式,我们可以 计算游泳池的容量,帮助我们加 水和调节水质。
圆柱体体积公式的变形及推导过程
圆柱体体积公式还可以通过变形和推导得到其他形式,这样可以更灵活地应用于不同的问题中。
圆柱体体积公式的实用价值
掌握圆柱体体积公式可以帮助我们解决各种实际问题,培养我们的数学思维 和应用能力。
公式的应用
圆柱体的体积公式可以帮助我们计算容器的容积、液体的体积以及建筑物的 容量等等。它在日常生活中有着广泛的应用。
圆柱体与其他几何体积公式的比较
圆柱体 πr²h
圆锥体 1/3πr²h
立方体 a³
圆柱体体积公式的实际应用
建筑构造
通过圆柱体体积公式,我们可以 计算建筑物的容量,帮助我们进 行合理的规划和设计。
圆柱体积公式推导课件 (动画演示好)
在本课件中,我们将深入探讨圆柱体积公式的推导过程,并使用动画演示来 帮助你理解。让我们开始吧!
圆柱体的定义
圆柱体是一个具有平行且相等的底面圆和顶面圆的立体图形ห้องสมุดไป่ตู้它有着独特的 几何特征和性质。
圆柱体的基本公式
底面积公式
圆柱体底面的面积可以通过公式πr²来计算,其中r表示底面半径。
侧面积公式
圆柱体的侧面积可以通过公式2πrh来计算,其中r表示底面半径,h表示圆柱体的高。
总面积公式
圆柱体的总面积可以通过公式2πr² + 2πrh来计算,其中r表示底面半径,h表示圆柱体的高。
推导圆柱体的体积公式
通过对圆柱体的体积进行思考和分析,我们可以推导出圆柱体的体积公式。 圆柱体的体积公式为V = 底面积 × 高,即V = πr² × h。

圆柱体积公式推导完整(动画演示好)ppt课件

圆柱体积公式推导完整(动画演示好)ppt课件
(1)已知圆的半径和高,怎样求圆柱的体积? (2)已知圆的直径和高,怎样求圆柱的体积? (3)已知圆的周长和高,怎样求圆柱的体积?
可编辑课件
64
讨论
(1)已知圆的半径和高: V=∏r2h (2)已知圆的直径和高: V=∏(d)2h
2
(3)已知圆的周长和高: V=∏(C÷d÷2 )2h
可编辑课件
65
12×12×50=7200(立方厘米) 7200 ÷90=80(厘米)
答:这根钢材长80厘米。
可编辑课件
61
3.14 ×0.42×5=2.512(立方米)
答:它的体积是2.512立方米。
可编辑课件
62
一根圆柱形铁棒,底面周长是12.56厘米, 长是100厘米,它的体积是多少?
可编辑课件
63
讨论
的( )相等。长方体的高就是圆柱体的(
),长方体的底面积就是圆柱体的(
)
,因为长方体的体积=(
底面积×高
),所以圆柱体的体积=(底面积×高)。用 字母“V”表示( ),“S”表示( ),“h”表示( ),那么,圆柱体体积 用字母表示为( )
可编辑课件
57
圆柱体积=底面积×高
1.5米=150厘米
50×150=7500(立方厘米)
可编辑课件
1
长方体的体积=长×宽×高
正方体的体积=棱长×棱长×棱长
底面积×高
可编辑课件
2
可编辑课件
3
可编辑课件
4
可编辑课件
5
可编辑课件
6
可编辑课件
7
可编辑课件
8
可编辑课件
9
可编辑课件

可编辑课件
11

圆柱体课件

圆柱体课件

圆柱体基本属性
高度
圆柱体的高度是底面和顶面之 间的距离。
半径
圆柱体的底面和顶面的半径是 圆的半径。
侧面积
圆柱体的侧面积是侧面展开后 的面积,计算公式为 $2\pi rh$ ,其中 $r$ 是底面半径,$h$ 是高度。
体积
圆柱体的体积是底面积乘以高 度,计算公式为 $\pi r^2 h$, 其中 $r$ 是底面半径,$h$ 是
圆柱体的表面积
• 表面积:圆柱体的表面积包括两个底面圆和一个侧面,计算公 式为 $S = 2\pi r^2 + 2\pi rh$。
03
CATALOGUE
圆柱体的体积
体积的计算公式
圆柱体体积公式
V = πr²h,其中r是底面半径,h是高。
公式推导
通过将圆柱体分割成无数个小的长方体,再求和得到圆柱体的体积。
车床
使用车床对圆柱体进行车削加 工。
铣床
使用铣床对圆柱体进行铣削加 工。
钻床
使用钻床对圆柱体进行钻孔加 工。
其他加工方法
3D打印
使用3D打印技术制作圆柱体。
铸造
通过铸造工艺制作圆柱体。
锻造
通过锻造工艺制作圆柱体。
06
CATALOGUE
圆柱体在日常生活中的应用案例
建筑领域中的应用案例
桥梁结构
圆柱体在桥梁建设中被广泛应用 ,作为桥墩或支撑结构,提供稳
不同形状的圆柱体体积比较
不同形状的圆柱体
例如,底面为圆形的圆柱体、底面为正方形的圆柱体等。
体积比较
不同形状的圆柱体,其体积计算公式不同,但可以通过比较 底面积和高来比较它们的体积大小。
圆柱体体积的应用
计算物体体积
机械制造

圆柱体积公式推导课件(动画演示)

圆柱体积公式推导课件(动画演示)
利用率。
圆柱体的局限性
由于圆柱体的形状限制,它可能 不适合所有应用场景。例如,在 需要更复杂形状或特定功能的场
合,其他形状可能更适合。
02
圆柱体积公式推导
圆柱体积公式推导的背景
圆柱体是三维空间中常见的几何形状之一,其体积计算在数学、物理、工程等领域 具有广泛的应用。
圆柱体积公式推导的目的是为了解决实际问题,如计算圆柱形物体的容积、液体或 气体的体积等。
圆柱体积公式的推导过程。
圆柱体积公式的应用
圆柱体积公式可以应用于计算 圆柱形物体的容积,如水桶、 油罐等。
圆柱体积公式也可以用于计算 液体或气体的体积,如在化学 实验、流体动力学等领域的应 用。
圆柱体积公式还可以用于计算 圆柱形物体的质量、密度等物 理量,如在物理学、工程学等 领域的应用。
03
动画演示
未来圆柱体积公式推导的应用前景
随着数学教育的不断深入和普及,圆柱体积公式的推导将会被广泛应用于各个领 域。同时,随着虚拟现实技术的不断发展,未来的圆柱体积公式推导将会更加真 实、生动和有趣。
THANKS
感谢观看
圆柱体与球体的关系
球体的体积是圆柱体的2/3,但它们的 表面积相等。
05
总结与展望
总结圆柱体积公式推导的过程
圆柱体积公式推导过程
通过动画演示,将圆柱体切割成无数个小的长方体,然后 分别求出这些小长方体的体积,最后将这些体积相加,得 到圆柱体的总体积。
动画演示的优点
通过动画演示,可以直观地展示圆柱体被切割和重组的过 程,帮助学生更好地理解圆柱体积公式的推导过程。
圆柱体积公式推导课件(动画演示)
目 录
• 圆柱体介绍 • 圆柱体积公式推导 • 动画演示 • 圆柱体积公式的实际应用 • 总结与展望

圆柱的ppt课件

圆柱的ppt课件

03
圆柱的应用
生活中的圆柱
圆柱形建筑
圆柱形建筑在日常生活中很常见,如 教堂的圆顶、博物馆的圆柱形展厅等 。
圆柱形物品
圆柱形管道
在工业和工程领域,圆柱形管道被广 泛用于输送流体,如水管、气瓶等。
圆柱形的物品也很多,如铅笔、饮料 瓶、灯罩等。
圆柱在数学中的应用
几何学
圆柱是几何学中一个重要的概念,是二维平面与三维空间相交形 成的几何体。
表面积等特性,为实际应用提供理论支持。
物理模拟
03
在物理模拟中,可以使用旋转体来模拟各种物理现象,如流体
动力学、电磁学等。
06
圆柱的习题与解析
基础习题
01
02
03
04
基础习题1:什么是圆柱?
基础习题2:圆柱的表面积如 何计算?
基础习题3:圆柱的体积如何 计算?
基础习题4:如何绘制圆柱的 图形?
进阶习题
圆柱的底面展开
总结词
底面展开是理解圆柱底面面积的关键 步骤,通过这一步骤,可以帮助学生 更好地掌握圆柱的几何性质。
详细描述
在PPT课件中,可以使用图片或动画 来展示圆柱的底面展开。这一展示可 以帮助学生理解底面是一个圆形,并 可以通过测量底面的半径来计算底面 的面积。
圆柱的折叠与复原
要点一
总结词
旋转体
通过旋转一个平面图形(如圆或椭圆)可以得到一个旋转体,而圆 柱就是其中一种旋转体。
圆柱的表面积和体积
计算圆柱的表面积和体积是数学中的重要问题,涉及到积分等数学 知识。
圆柱在物理中的应用
力学
在力学中,圆柱常被用作支撑和 承受重量的结构,如桥墩、电线
杆等。
流体动力学

圆柱体积公式ppt课件

圆柱体积公式ppt课件

02
圆柱体积公式
V=πr2hpi r^2 hπr2h(其中 r 是圆柱的底面半径,h 是圆柱的高)。
03
比较
球体体积公式和圆柱体积公式在形式上有所不同,但它们都涉及到半径
的平方和高的乘积。在某些情况下,可以通过调整球体和圆柱的半径和
高,使它们的体积相等。
圆柱体积公式与长方体体积公式的比较
长方体体积公式
V=lwhtext{V} = l w hV=lwh(其中 l 是长方体的长度,w 是宽度,h 是高度)。
圆柱体积公式
V=πr2hpi r^2 hπr2h(其中 r 是圆柱的底面半径,h 是圆柱的高)。
比较
长方体体积公式和圆柱体积公式在形式上有所不同,但它们都涉及到三个维度的乘积。长 方体的三个维度可以看作是圆柱底面半径、高和任意一个垂直于底面的直径。
圆柱体与球体的组合
圆柱体与平面体的组合
在机械工程中,经常将圆柱体和球体 组合使用,如轴承、滚珠丝杠等。
在电子、通信等领域中,经常将圆柱 体和平面体组合使用,如微波传输线 、天线等。
圆柱体与圆锥体的组合
在建筑工程中,经常将圆柱体和圆锥 体组合使用,如混凝土桩基、隧道设 计等。
THANKS
感谢观看
圆柱体的基本属性
总结词
圆柱体的基本属性包括底面半径、高 、底面周长和表面积等。
详细描述
圆柱体的底面半径是底面圆的半径, 高是旋转轴到圆柱体底面的距离。底 面周长是圆的周长,表面积是圆柱体 侧面积和两个底面积的总和。
圆柱体的应用
总结词
圆柱体的应用广泛,包括建筑、机械、化工等领域。
Байду номын сангаас
详细描述
在建筑领域,圆柱体常用于支撑结构,如桥梁和高层建筑的立柱。在机械领域, 圆柱体用于各种旋转机械的主体结构,如电机转子、泵和涡轮机等。在化工领域 ,圆柱形容器常用于存储液体和气体,如储罐和反应釜。

圆柱体课件

圆柱体课件

等研究中涉及圆柱体的性质。
工程学
03
在工程学中,圆柱体广泛应用于各种结构设计和建筑设计中,
如水塔、油罐、高层建筑等。
圆柱体的制作方法介绍
旋转成型
通过旋转一个矩形或圆形平面并逐渐缩小尺寸,可以制作出圆柱 体。
切割和拼接
通过将多个矩形或圆形平面切割成细条并拼接起来,也可以制作 出圆柱体。
3D打印
现代技术如3D打印可以方便地制作出各种形状的圆柱体,尤其 是具有复杂内部结构的圆柱体。
起来即可。
计算表面积
利用圆柱体的展开图可以计算圆 柱体的表面积,包括侧面积和底
面积。
理解几何形状
通过观察圆柱体的展开图,可以 更好地理解圆柱体、圆锥体等几
何形状的特点和性质。
05
圆柱体的截面
圆柱体截面的定义
定义
过圆柱体(Cylinder)的任意一平面与 圆柱体的交线称为圆柱体的截面 (Section of Cylinder)。
圆柱体课件
• 圆柱体概述 • 圆柱体的表面积 • 圆柱体的体积 • 圆柱体的展开图 • 圆柱体的截面 • 圆柱体的应用
目录
01
圆柱体概述
圆柱体的定义
圆柱体是一种三维图形,由一 个矩形平面和一个垂直于该平 面的圆形平面相交而成。
圆柱体的两个底面是两个相等 的圆,而侧面是一个矩形。
圆柱体的高度等于矩形的高度 ,而底面的周长等于矩形的长 度。
圆柱体的构成
01
02
03
04
圆柱体由顶面、底面和侧面构 成。
顶面是一个平面,与底面平行 且等距。
底面是一个圆形,与顶面平行 且等距。
侧面是一个矩形,垂直于底面 和顶面,且与底面和顶面等长

圆柱体积公式推导课件动画演示68页PPT

圆柱体积公式推导课件动画演示68页PPT

60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
圆柱体积公式推导课件动画演示
11、不为五斗米折腰。 12、芳菊开林耀,青松冠岩列。怀此 贞秀姿 ,卓为 Nhomakorabea下杰 。
13、归去来兮,田蜀将芜胡不归。 14、酒能祛百虑,菊为制颓龄。 15、春蚕收长丝,秋熟靡王税。
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿

《圆柱的认识》PPT课件

《圆柱的认识》PPT课件

《圆柱的认识》PPT课件•圆柱基本概念与性质•圆柱表面积计算方法•圆柱体积计算公式及应用目录•典型例题解析与讨论•学生自主操作实践环节•课堂小结与课后作业布置圆柱基本概念与性质圆柱定义及特点圆柱定义圆柱特点底面侧面高030201底面、侧面和高等元素圆柱与长方体关系形状差异01面积与体积计算02应用场景03圆柱表面积计算方法侧面积计算公式推导公式推导圆柱侧面积定义设圆柱底面半径为面展开后矩形的长为底面周长2πr,宽为h。

因此,侧面积注意事项底面积计算方法回顾圆的面积公式圆柱底面积计算注意事项总表面积计算实例演示实例1解法实例2解法圆柱体积计算公式及应用体积计算公式推导过程圆柱体积公式为公式推导实际应用举例分析圆柱形水桶计算水桶能装多少水,需要用到圆柱体积公式。

已知水桶的底面半径和高,即可求出其容积。

圆柱形油罐计算油罐内油的容量,同样需要用到圆柱体积公式。

通过测量油罐的底面半径和高,可以计算出油的容量。

圆柱形零件在机械工程中,经常需要计算圆柱形零件的体积。

已知零件的底面半径和高,即可利用公式求出其体积。

与其他几何体积关系探讨与长方体体积关系与球体体积关系与圆锥体积关系典型例题解析与讨论求表面积或体积类问题01020304例题1解析例题2解析涉及比例关系类问题例题1解析例题2解析例题1解析例题2解析创新题型展示与思路拓展学生自主操作实践环节测量步骤首先使用卷尺或游标卡尺测量圆柱的高度;接着使用直尺或游标卡尺测量圆柱的底面直径。

准备工具卷尺、游标卡尺、直尺等测量工具。

数据记录将测量得到的高度和底面直径数据记录在表格中,以便后续计算使用。

利用工具测量圆柱尺寸计算给定条件下圆柱表面积和体积公式回顾回顾圆柱表面积和体积的计算公式,即表面积=2πrh+2πr²,体积=πr²h。

数据代入将测量得到的圆柱高度和底面直径数据代入公式中进行计算。

结果呈现将计算得到的圆柱表面积和体积结果呈现在表格中,以便后续分析使用。

圆柱体积的推导公式

圆柱体积的推导公式

πr r ,切拼成的立体图形越接近长方体。
3、它的高变了吗?
1、拼成的长方体的体积与原来的圆柱体体积是否相等?
2、它的底面积变了吗?
长方体的体积=底面积×高
V=∏r2h
(2)已知圆的直径和高:
V=∏( )2h
d
2
(3)已知圆的周长和高:
V=∏(C÷d÷2 )2h
试一试
16平方米
8 米
9 米
15平方米
(1)你会计算它们的体积吗? (2)试写出它们的体积公式。
2
2
8dm
4cm
3、将一个圆柱体沿着底面直径切成两个半圆柱,表面积增加了40平方厘米,圆柱的底面直径为4厘米,这个圆柱的体积是多少立方厘米?
讨论、展示
(1)已知圆的半径和高,怎样求圆柱的体积?
(2)已知圆的直径和高,怎样求圆柱的体积?
(3)已知圆的周长和高,怎样求圆柱的体积?
(1)已知圆的半径和高:
圆柱的体积公式推导
单击此处添加副标题
执教:郭富贵
汇报人姓名
3
2
4
1
复习提纲
怎样求长方体、正方体的体积? 计算公式是什么?
1 圆面积公式是怎样推导的?
2 怎样求圆柱的侧面积、表面积? 计算公式各是什么?
长方体的体积=长×宽×高
正方体的体积=棱长×棱长×棱长
底面积×高
圆的面积公式推导过程:
底面积×高
底面积×高
一、填表。
15 3 45 40 4 160
一根圆柱形钢材,底面积是50平方厘米,高是1.5米。它的体积是多少?
圆柱体积=底面积×高
1.5米=150厘米
50×150=7500(立方厘米) 答:它的体积是7500立方厘米。

《圆柱的认识》ppt课件

《圆柱的认识》ppt课件
圆柱的两个底面是相等的圆,侧面 是一个曲面,展开后是一个长方形 或正方形。
底面、侧面和高等元素
01
02
03
底面
圆柱的两个底面是相等的 圆,它们平行且在同一平 面内。
侧面
圆柱的侧面是一个曲面, 它连接着两个底面。

圆柱的高是两个底面之间 的距离,它表示圆柱的竖 直高度。
圆柱与长方体关系
形状差异
圆柱与长方体在形状上有明显差异, 圆柱具有弯曲的侧面和圆形的底面, 而长方体则由六个矩形面组成。
应用场景
圆柱和长方体在实际生活中都有广泛 的应用。例如,圆柱形的容器、管道 和柱子等,长方体的箱子、建筑物和 家具等。
体积计算
虽然形状不同,但圆柱和长方体都可
以通过相应的公式来计算体积。圆柱
的体积公式为V=πr²h,长方体的体积
公式为V=lwh。
02
圆柱表面积计算方法
侧面积计算公式
01
圆柱侧面积 = 底面周长 × 高
《圆柱的认识》ppt课件
目录
• 圆柱基本概念与性质 • 圆柱表面积计算方法 • 圆柱体积计算方法 • 圆柱在日常生活中的应用 • 圆柱相关数学问题探讨 • 总结回顾与拓展延伸
01
圆柱基本概念与性质
圆柱定义及特点
圆柱定义
圆柱是由两个平行且相等的圆面以 及连接这两个圆面的曲面所围成的 几何体。
圆柱特点
已知圆柱底面直径和高, 需先将直径转换为半径 后代入公式求解。
已知圆柱底面积和高, 可直接使用底面积乘以 高求解。
04
已知圆柱侧面积和高, 需通过侧面积公式反推 出底面半径后代入体积 公式求解。
与其他几何体体积比较
与立方体比较
当圆柱的高等于直径时,其体积 最大,超过同等尺寸的立方体。

圆柱的体积(圆柱体积公式的推导及计算)_同步课件_小学数学北师大版六年级下册(2022年)

圆柱的体积(圆柱体积公式的推导及计算)_同步课件_小学数学北师大版六年级下册(2022年)

统一公式:V=( Sh )
新知讲解
根据长方体、正方体的体 积计算公式以及左图叠硬 币过程,你能大胆猜想一 下圆柱体的体积应该怎样 求吗?
从叠硬币来看,用“底积 ×高”能计算出圆柱的体积。
新知讲解
你还记我们是如何推导出圆的面积计算公式的吗?
转化的思想
C r
2
新知讲解
a.你准备把圆柱体转化成什 么立体图形?
新知讲解

笑笑了解到一根柱子 从水杯里面量,水
的底面半径为0.4m,高 杯的底面直径是6cm,
为5m。你能算出它的 高是16cm,这个水
体积吗?
杯能装多少毫升水?
柱子的体积: 3.14×0.42×5
=0.5024×5 =2.512(m3)
杯子的容积:
3.14×(6÷2)2×16
=28.26×16 =452.16(cm3) 452.16 cm3=452.16 mL
04
会计算只给底面半径或直径和高的圆柱体的体积。
长方体体积=长×宽×高 正方体体积=边长³ 长(正)方体的体积=底面积×高
新知讲解
回忆了老朋友, 我们再来认识一 位新朋友。
老朋友
新朋友 (圆柱体)
新知讲解
他们在讨论什么问题呢?
一个圆柱体所占空间的大小叫做圆柱的体积。
新知讲解
你能根据已有知 识补充完整并用 语言来叙述吗?
V=( abh)
V=( a3 )
新知讲解
1. 想一想,填一填。 (1)7.8立方米=( 7800 )立方分米
3升56毫升=( 3056 )毫升=( 3056 )立方厘米 (2)一个圆柱形水杯(水杯厚度忽略不计),它的底面积是10 cm2, 高是12 cm,则这个水杯可以装水 ( 0.12 )升。 (3)一个圆柱的体积是62.8立方厘米,底面半径是2厘米,则高是 ( 5 )厘米。

2023圆柱体积公式的推导(动画演示)和应用13页课件PPT

2023圆柱体积公式的推导(动画演示)和应用13页课件PPT
(1)它的容积是多少升?
(1)3.14×(40÷2)2×50 = 3.14×400×50 = 62800(cm3) = 62.8 (L) 答:它的容积是62.8升。
返回
3.有一个圆柱形油桶,从里面量底面直径是40厘米, 高是50厘米。
(2)若1升柴油重0.85千克,则这个油桶可装多少千 克柴油?
(2)0.85×62.8=53.38(千克) 答:这个油桶可装53.38千克柴油。
返回
四、总结收获
这节课你们都学会了哪些知识?
1、掌握了运用转化法推导圆柱体体积。 2、圆柱体的体积=底面积×高
V=Sh V = πr²h
返回
五、课后作业
1、基本题:见课本。 2、能力拓展题:求右图体积。
返回
3.1
4 (
2
4)10
2
= 125.6(cm³)
小结:已知圆柱体的直径和高求ห้องสมุดไป่ตู้积。
返回
2.已知圆柱体底面半径和高求圆柱体体积:
半径为:4厘米,高为10厘米,求体积。
42
3.14 10
=3.14x160 =25.12x20 =502.4(立方厘米)
小结:已知圆柱体的半径和高求体积。
返回
3.有一个圆柱形油桶,从里面量底面直径是40厘米, 高是50厘米。
人教版 六年级 数学 下册
圆柱体积公式的推导和应用
情境导入
探究新知
课堂练习
总结收获
课后作业
一、情境导入
观察右图,有哪些 数学信息,你能提 出什么问题?
12 20
圆柱形冰淇淋包装盒的底面直径是12cm,高是
2圆0c柱m形。包装盒的体积是多少立方厘米?
返回
二、探究新知
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

讨论
(1)已知圆的半径和高: V=∏r2h (2)已知圆的直径和高: V=∏(d2)2h
(3)已知圆的周长和高: V=∏(C÷d÷2 )2h
谢谢!
圆柱体积=底面积×高
1.5米=150厘米 50×150=7500(立方厘米)
答:它的体积是7500立方厘米。
努 力 吧 !
练一练4cm 2
2、 一根方钢长50厘米,底面是边长 12厘米的正方形。如果把它锻造成底 面面积是90平方厘米的圆柱形钢材, 这根钢材长多少厘米?
长方体的体积=底面积×高 底面积
长方体的体积=底面积×高 底面积
长方体的体积=底面积×高 圆柱体的体积= 底面积 ×高
想一想、填一填:
把圆柱体切割拼成近似( ),它们
的( )相等。长方体的高就是圆柱体的(
),长方体的底面积就是圆柱体的(
)
,因为长方体的体积=(
底面积×高
),所以圆柱体的体积=(底面积×高)。用 字母“V”表示( ),“S”表示( ),“h”表示( ),那么,圆柱体体积 用字母表示为( )
长方体的体积=圆柱体的体积
12×12×50=7200(立方厘米) 7200 ÷90=80(厘米)
答:这根钢材长80厘米。
3.14 ×0.42×5=2.512(立方米)
答:它的体积是2.512立方米。
一根圆柱形铁棒,底面周长是12.56厘米, 长是100厘米,它的体积是多少?
讨论
(1)已知圆的半径和高,怎样求圆柱的体积? (2)已知圆的直径和高,怎样求圆柱的体积? (3)已知圆的周长和高,怎样求圆柱的体积?
圆柱体积公式推导课件动 画演示好
长方体的体积=长×宽×高
正方体的体积=棱长×棱长×棱长
底面积×高
长方体的体积=底面积×高 底面积
长方体的体积=底面积×高 底面积
长方体的体积=底面积×高 底面积
长方体的体积=底面积×高 底面积
相关文档
最新文档