实验三功率放大电路实验报告

合集下载

三极管放大电路实验报告范文

三极管放大电路实验报告范文

三极管放大电路实验报告范文要求设计一放大电路,电路部分参数及要求如下:(1)信号源电压幅值:0.5V;(2)信号源内阻:50kohm;(3)电路总增益:2倍;(4)总功耗:小于30mW;(5)增益不平坦度:20~200kHz范围内小于0.1dB2、问题分析:通过分析得出放大电路可以采用三极管放大电路。

2.1对三种放大电路的分析(1)共射级电路要求高负载,同时具有大增益特性;(2)共集电极电路具有负载能力较强的特性,但增益特性不好,小于1;(3)共基极电路增益特性比较好,但与共射级电路一样带负载能力不强。

综上所述,对于次放大电路来说单采用一个三极管是行不通的,因为它要求此放大电路具有比较好的增益特性以及有较强的带负载能力。

2.2放大电路的设计思路在此放大电路中采用两级放大的思路。

先采用共射级电路对信号进行放大,使之达到放大两倍的要求;再采用共集电极电路提高电路的负载能力。

3、实验目的(1)进一步理解三极管的放大特性;(2)掌握三极管放大电路的设计;(3)掌握三种三极管放大电路的特性;(4)掌握三极管放大电路波形的调试;(5)提高遇到问题时解决问题的能力。

4、问题解决测量调试过程中的电路:增益调试:首先测量各点(电源、基极、输出端)的波形:结果如下:绿色的线代表电压变化,红色代表电源。

调节电阻R2、R3、R5使得电压的最大值大于电源电压的2/3 VA=R2〃R3〃(1+3)R5/[R2//R3//(1+3)R5+R1],其中由于R1较大因此R2、R3也相对较大。

第一级放大输出处的波形调试(采用共射级放大电路):结果为:红色的电压最大值与绿色电压最大值之比即为放大倍数。

则需要适当增大R2,减小R3的阻值。

总输出的调试:如果放大倍数不合适,则调节R4与R5的阻值。

即当放大倍数不足时,应增大R4,减小R5如果失真则需要调节R6,或者适当增大电源的电压值,必要时可以返回C极,调节C极的输出。

功率的调试:由于大功率电路耗电现象非常严重,因此我们在设计电路时,应在满足要求的情况下尽可能的减小电路的总功耗。

otl功率放大器实验报告(共8篇)

otl功率放大器实验报告(共8篇)

otl功率放大器实验报告(共8篇)OTL功率放大器实验报告课程设计课程名称题目名称专业班级学生姓名学号指导教师二○一三年十二月二十三日目录引言 (2)模拟电子技术功率放大器12网络工程本2郭能51202032019 孙艳孙长伟一、设计任务与要求 (2)1.1 设计任务 (2)1.2 设计要求 (2)二、方案设计...................................................(3)三、总原理图及元器件清单....................................(4)四、电路仿真与调试.............................................(6)五、性能测试与分析..........................................(7)六、总结......................................................(8)七、参考文献 (8)OTL功率放大器引言:OTL(Output transformerless )电路是一种没有输出变压器的功率放大电路。

过去大功率的功率放大器多采用变压器耦合方式,以解决阻抗变换问题,使电路得到最佳负载值。

但是,这种电路有体积大、笨重、频率特性不好等缺点,目前已较少使用。

OTL 电路不再用输出变压器,而采用输出电容与负载连接的互补对称功率放大电路,使电路轻便、适于电路的集成化,只要输出电容的容量足够大,电路的频率特性也能保证,是目前常见的一种功率放大电路。

它的特点是:采用互补对称电路(NPN、PNP参数一致,互补对称,均为射随组态,串联,中间两管子的射极作为输出),有输出电容,单电源供电,电路轻便可靠。

两组串联的输出中点”可理解为采用互补对称电路(NPN、PNP参数一致,互补对称,均为射随组态,串联,中间两管子的射极作为输出)。

放大电路实验报告

放大电路实验报告

放大电路实验报告一、实验要求利用简单的三级放大电路实现对小信号放大1000倍,输入电阻大于等于100千欧,输出电阻限于等于500欧的目的。

二、实验环境Pspice仿真软件。

三、实验过程与分析初步设计:1、初步设计为第一级为共集放大电路,第二、三级为共射放大电路,分两次对信号进行放大。

2、由于输出电阻为500欧,设计第三级R C为500Ω,放大倍数为25倍,射级电阻的目的是保证一定的输入电阻,防止二、三级间损耗过大。

3、第二级放大倍数较大所以设计不带射级电阻,以尽量扩大放大倍数。

但需要考虑到第二级输出电阻不能过大,所以R C不应该过大。

4、第一级应保证足够大的输入电阻,由于共集电路的限制所以暂时没有考虑输出电阻。

5、电源利用正负6V电源。

6、为了使计算方便,三级间的连接方式使用阻容耦合的方式,使其静态工作点不互相影响。

7、利用以上的初步设计计算了电阻,在电阻的选取中主要考虑了各级放大电路的静态工作点,使U CE尽量保持在6V左右,以保证较大的放大幅度。

进行仿真:1、仿真过程中放大倍数没有准确的稳定在1000倍,通过调整了一些电阻的值使其在一定的频率范围内保持了1000(电容的值选取较大)。

2、在输出电阻的测量中没有问题,输出电阻在允许范围内。

3、在测量输入电阻时遇到了较大的问题,比计算中的共集输入电阻小了很多,被这个问题困惑了很久,最终通过仔细分析交流微变等效电路,发现第二级的输入电阻也对第一级的输入电阻产生了很大的影响(相当于负载),由于第二级的Rπ较小,所以极大的影响了第一级的输入电阻。

所以通过进一步的调整第二级的I CQ,来改变第二级的Rπ,使输入电阻达到100KΩ。

仿真结果:下面是我设计电路一些主要仿真结果的截图:上图为实验电路图及最终的各项参数上图为各三极管的静态工作点上图为取分贝后的放大倍数在一定的范围内分贝值为60,即放大倍数为1000倍上图为输入电阻大小上图为输出电阻四、设计的分析与评价优点:1、该设计静态工作点比较适中,即处于负载线的中点附近,能够放放大较大幅度的电压。

中南大学功率电子技术实验报告

中南大学功率电子技术实验报告

中南大学功率电子技术实验报告功率电子学实验报告学院:物理与电子学院班级:电信1105班姓名:学号:功率电子学实验实验一两相步进电机驱动电路及其单片机控制实验二晶闸管交流调压电路实验三 LM2577升压式DC-DC变换电路5V实验四集成功率放大器TDA2030制作的立体声功率放大电路实验内容:依次做以上四个实验,理解实验的实现功能. 实验步骤:1、修改步进电机的驱动程序,快转,慢转,正转,反转,细分转动等.2、用LM317制作可调式直流电源,要求能在3V-36V之间可调.3、将二节5号电池(带开关)焊在DC-DC板的IN端,调节板上的可调电阻,记下电阻阻值与输出电压之间的关系,特别注意输出为5V 和13V时的电阻阻值.4、将60V交流变压器的输出端接一个整流桥后,接到可控硅调压器的输入端,调节可调电阻,量出输出电压的大小,绘出电阻阻值与电压之间的关系曲线.5、将DC-DC板的电压调至5V.输出端作为单片机版的电压接入.6、将DC-DC板的电压调至13V,输出端作为TDA2030 功率放大器电路的电源接入,联接好功率放大版的音源(可用MP3或手机),小音箱,开启电源,调节功率版上可调电阻,定性检查音量与电阻阻值之间的关系. 实验中遇到的问题和解决方案:在这次实验中,我由于没有按实验要求一步一步的完成实验,在测量DC-DC板的电压时,没有将其调至13V,后来将输出端作为TDA2030功率放大器的电源接入联接好功率放大版的小音箱,但是接了一会就爆了.让自己和同学都吓了一跳,所以我以后再做实验的时候一定要注意实验的每一个步骤,因为每一个步骤都是极其有效果的,也是为了确保实验的平安顺利.做实验的时候遇到了很多的问题,比方电池没电,连接好电池后,我测量电压总是达不到要求的5V,然后测量每一个电池后发现有一个电池没有电了.换了电池后电压到达了5V.实验一两相步进电机驱动电路及其单片机控制一、实验目的 1.了解两相混合式步进电机结构2.了解两相混合式步进电机工作原理3.了解两相混合式步进电机驱动技术4.了解两相混合式步进电机的主要特性和技术指标5.掌握如何运用单片机控制两相步进电动机的运作的工作原理二、实验原理定子上有四个绕有线圈的磁极〔齿〕,相对磁极的线圈串联组成两相绕组。

实验三 功率放大电路实验报告

实验三 功率放大电路实验报告

集成功率放大电路一. 实验目的1.掌握功率放大电路的调试及输出功率、效率的测量方法;2.了解集成功率放大器外围电路元件参数的选择和集成功率放大器的使用方法。

二. 实验仪器设备1.实验箱2. 示波器3. 万用表4. 电流表有关试验方法的说明:(1) 测量最大不失真功率:max O P在放大器的输入端接入频率为1kHz 的正弦频率信号;Vi 置最小(Vi<20mV );在放大器的输出端街上示波器和毫伏表,逐渐增大Vi ,使示波器显示出最大不失真波形,用毫伏表测出电压有效值mox O V ,则最大不失真输出功率为:2maxmax O O LVP R =(2)测量功率放大器的效率η:在保持Vo 为最大不失真输出幅度的情况下,由电流表测量直流电源Vcc 的输出电流E I ,此时电源Vcc 提供的直流输出功率为:×E E CC P I V =注:此处Vcc 应为正负电源之差。

功率放大器的效率为:max=O EP P集成功率放大器的实验电路三. 实验内容及步骤1、连接电路:接入正负电源(+V CC、-V EE)接入负载电阻R L串入电流表2、打开电源开关,记录电流表的读数,即为静态电流I E3、将电流表换至较高档位,接入输入信号v i,按后面要求进行测量。

负载电阻R L=8.2 时,按表分别用示波器测量输出电压峰值为2V和4V时的电流I E,计算输出功率P O、电源供给功率P E和效率η;逐渐增大输入电压,用示波器监视输出波形,记录最大不失真时的输出电压的峰值v omax和电流I E,并计算此时的输出功率P O,电源供给功率P E和效率η,填表。

实验需要测量的数值有I E和V omax ,P O,P E ,η由实验数据计算得到,计算公式如下:22O LP R =峰值24E E P I =×100%OEP P η= 实验注意事项:功率放大器输出大电压大电流,工作在极限状态,产热较多,需要谨慎操作防止烧毁功放;在测量最大不失真电压时的E I 时刻监视电流表防止电流超过电流表量程;测量最大不失真电压max O V 时,一定使输入电压Vi 置最小,然后逐渐慢慢增大输入Vi 。

放大电路实验报告

放大电路实验报告

放大电路实验报告放大电路实验报告引言:本次实验旨在研究和探索放大电路的基本原理和特性。

通过设计和搭建放大电路,并对其进行测试和分析,我们可以更好地理解电路中信号放大的过程和放大器的工作原理。

一、实验目的本实验的主要目的是:1. 理解放大电路的基本概念和原理;2. 掌握放大电路的设计和搭建方法;3. 学会使用示波器和万用表等仪器进行电路测试和测量。

二、实验器材和材料1. 示波器2. 万用表3. 功放芯片4. 电容、电阻、电感等元件5. 连接线和电源等实验器材三、实验步骤1. 搭建基本的共射放大电路。

根据电路图,连接功放芯片、电容、电阻等元件,并连接电源。

2. 调整电源电压和电阻等参数,使电路正常工作。

3. 使用示波器测量输入信号和输出信号的波形,并记录数据。

4. 使用万用表测量电路中的电压和电流,并记录数据。

5. 分析和比较不同参数下的放大效果,并进行数据处理和图表绘制。

6. 总结实验结果,得出结论。

四、实验结果与分析通过实验,我们得到了一系列关于放大电路的数据和波形图。

根据这些数据和波形图,我们可以进行如下分析和总结:1. 放大电路的放大倍数与输入信号幅度成正比,但存在一定的饱和现象。

2. 放大电路的频率响应特性对于不同的电容和电阻参数有所差异,可以通过调整这些参数来改变放大电路的频率响应范围。

3. 放大电路的输出信号存在一定的失真,这可能是由于电路中的非线性元件引起的。

4. 放大电路的功率消耗与电源电压和电阻参数有关,可以通过合理选择这些参数来降低功率消耗。

五、实验结论通过本次实验,我们对放大电路的基本原理和特性有了更深入的了解。

我们学会了放大电路的设计和搭建方法,并掌握了使用示波器和万用表等仪器进行电路测试和测量的技能。

此外,我们还发现了放大电路的一些特点和问题,并提出了一些改进和优化的建议。

六、实验心得本次实验让我深入了解了放大电路的工作原理和特性。

通过亲自搭建电路、进行测试和分析,我对电路中信号放大的过程有了更直观的认识。

音频功率放大电路的设计 实验报告

音频功率放大电路的设计 实验报告

课程名称:电路与电子技术实验Ⅱ指导老师:成绩:__________________实验名称:音频功率放大电路的设计类型:___________________同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求1.了解复杂电子电路的设计方法。

2了解集成功率放大器的基本特点。

3了解放大电路的频率特性及音调控制原理。

4.学习复杂电子电路的分模块调试方法。

5. 学习扩音机电路的特性参数的测试方法。

二、实验内容和原理1. 整机电路设计整机电路主要分为:前置电路、音调电路、功放电路、音量调节、退耦电路、电路负载、电源保护电路几部分。

其中主要部分为前置放大电路、音量调节电路、功率放大电路。

2.前置放大电路前置放大级的主要功能是:进行功率放大,同时消除自激震荡。

为了减小噪声,前置级通常选用低噪声的运放。

由A1组成的前置放大级是一个同相比例放大器,具有较高的输入电阻。

前置放大级的放大倍数:输入电阻Rif=R1,输出电阻Rof=03.音调控制级电路音调控制级的主要功能是:分别对高音和低音的信号进行调节,来满足不同声音的要求。

音调控制级通过不同的负反馈网络和输入网络,使得放大器的Af随信号频率的不同而改变,从而达到音调控制的目的。

音调控制级由音调控制网络和运算放大器A2组成,为电压并联型负反馈电路。

调节RP1和RP2可以改变放大器的Af,达到音调控制的效果。

(1)低音部分在低频区,C6、R7支路可视为开路,反馈网络主要由上半部分电路起作用,R5的影响可忽略;低音时上半部分电路实质上是一个一阶有源低通滤波器。

①RP1活动端移至A点转折频率为:②RP1活动端移至B点时转折频率为:(2)高音部分高音时,下半部分电路实质上是一个一阶有源高通滤波器。

①RP2活动端移至C点转折频率为:②RP2活动端移至D点转折频率为:4.功率放大级功率放大级的主要功能:主要进行功率放大。

三相电路功率测量实验报告

三相电路功率测量实验报告

三相电路功率测量实验报告三相电路功率测量实验报告引言:三相电路是现代电力系统中最常见的电路类型之一。

在实际应用中,准确测量三相电路的功率是非常重要的,因为它涉及到电力供应的稳定性和负载管理。

本实验旨在通过测量三相电路的功率来研究电力系统的基本特性,并验证功率测量的理论知识。

实验目的:1. 研究三相电路的基本特性,如电流、电压和功率之间的关系。

2. 验证功率测量的理论知识,如功率因数和有功功率的计算。

3. 掌握使用电力测量仪器进行功率测量的方法。

实验装置与方法:实验所需的装置包括三相电源、三相负载、电力测量仪器和相应的连接线。

首先,将三相电源连接到三相负载上,然后将电力测量仪器连接到负载上,以测量电流和电压。

在实验过程中,需要记录和计算所测量的值,并进行数据分析。

实验结果与讨论:通过实验测量,我们得到了三相电路的电流和电压值。

根据测量结果,我们可以计算出功率因数和有功功率。

功率因数是衡量电路效率的重要指标之一,它表示电路中有用功率与视在功率之间的比值。

有功功率是电路中实际产生的功率,它与电流和电压的乘积成正比。

在实验中,我们发现功率因数的值与负载的性质有关。

当负载为电感性负载时,电路中的电流滞后于电压,功率因数小于1;而当负载为电容性负载时,电路中的电流超前于电压,功率因数大于1。

这是因为电感性负载和电容性负载对电流的相位产生影响,从而导致功率因数的变化。

此外,我们还发现有功功率的值与电流和电压的大小有关。

当电流或电压较大时,有功功率也相应增加。

这是因为有功功率是电流和电压的乘积,当它们的值增加时,有功功率的值也会随之增加。

结论:通过本实验,我们深入了解了三相电路的功率测量原理和方法。

我们了解到功率因数和有功功率是衡量电路性能的重要指标,它们与电流、电压和负载的特性密切相关。

在实际应用中,准确测量三相电路的功率是确保电力供应稳定和负载管理的关键。

因此,我们需要掌握功率测量的理论知识和实验技巧,以提高电力系统的运行效率和安全性。

功率放大器实验报告(终)

功率放大器实验报告(终)

功率放⼤器实验报告(终)南昌⼤学实验报告学⽣姓名:王晟尧学号: 6102215054 专业班级:通信152班实验类型:□验证□综合□设计□创新实验⽇期:实验成绩:⾳频功率放⼤电路设计⼀、设计任务设计⼀⼩功率⾳频放⼤电路并进⾏仿真。

⼆、设计要求已知条件:电源9±V 或12±V ;输⼊⾳频电压峰值为5mV ;8Ω/0.5W 扬声器;集成运算放⼤器(TL084);三极管(9012、9013);⼆极管(IN4148);电阻、电容若⼲基本性能指标:P o ≥200mW (输出信号基本不失真);负载阻抗R L =8Ω;截⽌频率f L =300Hz ,f H =3400Hz扩展性能指标:P o ≥1W (功率管⾃选)三、设计⽅案⾳频功率放⼤电路基本组成框图如下:⾳频功放组成框图由于话筒的输出信号⼀般只有5mV 左右,通过话⾳放⼤器不失真地放⼤声⾳信号,其输⼊阻抗应远⼤于话筒的输出阻抗;滤波器⽤来滤除语⾳频带以外的⼲扰信号;功率放⼤器在输出信号失真尽可能⼩的前提下,给负载R L (扬声器)提供⼀定的输出功率。

应根据设计要求,合理分配各级电路的增益,功率计算应采⽤有效值。

基于运放TL084构建话⾳放⼤器与宽带滤波器,频率要求详见基本性能指标。

功率放⼤器可采⽤使⽤最⼴泛的OTL (Output Transformerless )功率放⼤电路和OCL (Output Capacitorless )功率放⼤电路,两者均采⽤甲⼄类互补对称电路,这种功放电路在具有较⾼效率的同时,⼜兼顾交越失真⼩,输出波形好,在实际电路中得到了⼴泛的应⽤。

对于负载来说,OTL 电路和OCL 电路都是射极跟随器,且为双向跟随,它们利⽤射极跟随器的优点——低输出阻抗,提⾼了功放电路的带负载能⼒,这也正是输出级所必需的。

由于射极跟随器的电压增益接近且⼩于1,所以,在OTL电路和OCL电路的输⼊端必须设有推动级,且为甲类⼯作状态,要求其能够送出完整的输出电压;⼜因为射极跟随器的电流增益很⼤,所以,它的功率增益也很⼤,这就同时要求推动级能够送出⼀定的电流。

三相功率测量实验报告

三相功率测量实验报告

三相功率测量实验报告三相功率测量实验报告引言:在电力系统中,功率的测量是非常重要的,它涉及到电力的传输和分配。

而三相功率测量是电力系统中常见的一种测量方式。

本实验旨在通过实际测量,探究三相功率的测量原理和方法,并对实验结果进行分析和讨论。

实验目的:1. 了解三相电路的基本原理和特点;2. 学习使用电力仪表进行三相功率测量;3. 掌握三相功率测量的计算方法;4. 分析三相功率测量的误差来源,并提出相应的改进措施。

实验原理:三相电路由三个相位相差120度的交流电源组成,分别称为A相、B相和C相。

在三相电路中,功率的测量需要考虑有功功率、无功功率和视在功率三个参数。

有功功率是指电路中真正转化为有用功的功率,通常用P表示,单位为瓦特(W)。

它可以通过电压和电流的乘积来计算,即P=UIcosθ,其中U为电压,I为电流,θ为电压和电流的相位差。

无功功率是指电路中由于电感或电容元件而产生的功率,通常用Q表示,单位为乏特(VAR)。

它可以通过电压和电流的乘积来计算,即Q=UIsinθ。

视在功率是指电路中实际存在的功率,它是有功功率和无功功率的总和,通常用S表示,单位为伏安乏特(VA)。

它可以通过电压和电流的乘积来计算,即S=UI。

实验步骤:1. 搭建三相电路:根据实验要求,搭建一个三相电路,包括三个相位相差120度的电源和相应的负载电阻。

确保电路连接正确,电源和仪表的接线牢固可靠。

2. 连接电力仪表:将电力仪表连接到三相电路上,确保仪表的接线正确,仪表的量程选择合适。

3. 测量电压和电流:使用电力仪表分别测量A相、B相和C相的电压和电流值,并记录下来。

4. 计算功率参数:根据测得的电压和电流值,使用上述的功率计算公式,计算出三相电路的有功功率、无功功率和视在功率。

5. 分析实验结果:对实验测量结果进行分析,比较理论值和实际测量值之间的差异,分析可能的误差来源,并提出改进措施。

实验结果:根据实际测量数据,计算得到的有功功率、无功功率和视在功率如下所示:A相有功功率:1000W,无功功率:500VAR,视在功率:1100VAB相有功功率:900W,无功功率:400VAR,视在功率:1000VAC相有功功率:1100W,无功功率:600VAR,视在功率:1300VA分析和讨论:通过对实验结果的分析可以发现,实际测量值与理论值存在一定的差异。

三相电路实验报告

三相电路实验报告

三相电路实验报告一、实验目的1. 了解三相电路的基本组成和原理。

2. 学习三相电压、电流的测量方法。

3. 掌握三相功率的测量和计算。

4. 分析三相电路的不对称性及其影响。

二、实验原理三相电路是由三根相位差为120度的单相电路组成的。

在三相电路中,电压和电流都有幅值、频率和相位的变化。

通过对三相电压、电流的测量,可以研究三相电路的基本特性和对称性。

三、实验步骤1. 搭建三相电路:使用电源、电阻器、电容器等搭建一个简单的三相电路。

确保每根导线都连接正确,避免短路或断路。

2. 测量三相电压:使用电压表测量三根火线之间的电压,记录测量值。

注意观察电压的幅值和相位差。

3. 测量三相电流:将电流表串入每根相线中,测量电流值。

观察电流的幅值和相位差。

4. 计算三相功率:根据测量的电压和电流值,计算三相功率。

注意分析功率是否平衡。

5. 分析不对称性:如果三相电压或电流不对称,分析产生不对称的原因及其对电路的影响。

四、实验结果与分析请在此插入表格,展示实验测量的电压、电流值以及计算的三相功率。

分析实验结果,讨论三相电路的不对称性及其影响。

五、结论通过本次实验,我们了解了三相电路的基本组成和原理,学习了三相电压、电流的测量方法以及三相功率的计算方法。

实验结果显示,当三相电路对称时,各相电压、电流的幅值相等,相位差为120度。

此时,三相功率平衡。

当三相电路不对称时,各相电压、电流的幅值和相位差发生变化,导致三相功率不平衡。

不对称性可能由电源电压不平衡、线路阻抗不对称或负载不对称等原因引起。

在实际应用中,应采取措施减小不对称性对三相电路的影响,以保证设备的正常运行和电力系统的稳定性。

三相电路功率实验报告

三相电路功率实验报告

三相电路功率实验报告三相电路功率实验报告一、引言在现代工业中,三相电路被广泛应用于各种电力设备和系统中。

了解三相电路的功率特性对于电力工程师和技术人员来说至关重要。

本实验旨在通过实际操作和测量,探究三相电路中的功率计算方法和功率因数的影响。

二、实验目的1. 掌握三相电路的基本原理和连接方法;2. 学习三相电路中功率的计算方法;3. 研究功率因数对三相电路性能的影响。

三、实验装置和方法实验所用装置包括三相电源、三相电动机、电流表、电压表、功率表等。

首先,将三相电源和电动机连接起来,然后使用电流表和电压表进行电流和电压的测量,最后使用功率表计算功率。

四、实验步骤1. 将三相电源和电动机正确连接,确保电路连接无误;2. 使用电流表测量三相电流的大小,并记录数据;3. 使用电压表测量三相电压的大小,并记录数据;4. 使用功率表计算三相电路的总功率,并记录数据;5. 改变电动机的负载,重复步骤2-4,记录数据。

五、实验结果与分析通过实验测量得到的数据,我们可以计算出三相电路的功率。

根据功率公式P=UI,其中P表示功率,U表示电压,I表示电流。

通过测量得到的电压和电流值,可以计算出每一相的功率,然后将三相功率相加得到总功率。

在实验中我们还可以观察到功率因数的变化。

功率因数是指电路中有功功率与视在功率之比。

当负载较小时,功率因数接近1,说明电路的有功功率占主导地位,整体效率较高。

而当负载较大时,功率因数可能会下降,说明电路中的无功功率增加,整体效率下降。

六、实验结论通过本次实验,我们了解了三相电路的基本原理和连接方法,并掌握了功率的计算方法。

我们还观察到功率因数对三相电路性能的影响。

实验结果表明,当负载较小时,功率因数接近1,电路效率较高;而当负载较大时,功率因数下降,电路效率下降。

七、实验总结本次实验通过实际操作和测量,帮助我们更好地理解了三相电路的功率特性。

在今后的工作和学习中,我们将能够更加熟练地应用三相电路的知识,并能够合理设计和调整电力系统中的三相电路,以提高系统的效率和稳定性。

高频实验三---高频丙类谐振功率放大器实验报告

高频实验三---高频丙类谐振功率放大器实验报告

实验三 高频丙类谐振功率放大器实验一、 实验目的1. 进一步掌握高频丙类谐振功率放大器的工作原理。

2. 掌握丙类谐振功率放大器的调谐特性和负载特性。

3. 掌握激励电压、集电极电源电压及负载变化对放大器工作状态的影响。

4. 掌握测量丙类功放输出功率,效率的方法。

二、实验使用仪器1. 丙类谐振功率放大器实验板2. 200MH 泰克双踪示波器3. FLUKE 万用表4. 高频信号源5. 扫频仪(安泰信) 三、实验基本原理与电路 1.高频谐振功率放大器原理电路高频谐振功率放大器研究的主要问题是如何获得高效率、大功率的输出。

放大器电流导通角θ愈小,放大器的效率η愈高。

如甲类功放的θ=180,效率η最高为50%,而丙类功放的θ<90°,效率η可达到80%。

谐振功率放大器采用丙类功率放大器,采用选频网络作为负载回路的丙类功率放大器称为高频谐振功率放大器。

iR L高频谐振功率放大器电压和电流关系在集电极电路中,LC 振荡回路得到的高频功率为ecme m c cm m c R U R I U I P 22110212121===集电极电源E C 供给的直流输入功率为0C C E I E P =集电极效率ηC 为输出高频功率P o 与直流输入功率P E 之比,即CC cmm c E C E I U I P P 01021==η静态工作点、输入激励信号幅度、负载电阻,集电极电源电压发生变化,谐振功率放大器的工作状态将发生变化。

如图3-3所示,当C 点落在输出特性(对应u BEmax 的那条)的放大区时,为欠压状态;当C 点正好落在临界点上时,为临界状态;当C 点落在饱和区时,为过压状态。

谐振功率放大器的工作状态必须由集电极电源电压E C 、基极的直流偏置电压E B 、输入激励信号的幅度U bm 、负载电阻R e 四个参量决定,缺一不可,其中任何一个量的变化都会改变C 点所处的位置,工作状态就会相应地发生变化。

音频功率放大电路 实验报告

音频功率放大电路 实验报告

实验报告课程名称: 电路与模拟电子技术实验 指导老师: 张冶沁 成绩:__________________ 实验名称: 音频功率放大电路 实验类型: 电路实验 同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得一、实验目的和要求1、理解音频功率放大电路的工作原理。

2、学习手工焊接和电路布局组装方法。

3、提高电子电路的综合调试能力。

4、通过myDAQ 来分析理论数据和实际数据之间的关系。

二、实验内容和原理音频功率放大电路,也即音响系统放大器,用于对音频信号的处理和放大。

按其构成可分为前置放大级、音调控制级和功率放大级三部分。

作为音响系统中的放大设备,它接受的信号源有多种形式,通常有话筒输出、唱机输出、录音输出和调谐器输出。

它们的输出信号差异很大,因此,音频功放电路中设置前置放大级以适应不同信号源的输入。

为了满足听众对频响的要求和弥补扬声器系统的频率响应不足,设置了音调控制放大器,希望能对高音、低音部分的频率特性进行调节。

为了充分地推动扬声器,通常音响系统中的功率放大器能输出数十瓦以上功率,而高级音响系统的功放最大输出功率可达几百瓦以上。

扩音机的整机电路如下图所示,按其构成,可分为前置放大级,音调控制级和功率放大级三部分。

专业: 姓名:学号: 日期: 地点:学生序号6三、主要仪器设备1、示波器、信号发生器、稳压电源。

2、空电路板,电烙铁等工具。

3、μA741、电阻电容等元件。

四、操作方法和实验步骤1.静态调试2.动态调试3.空载测量整机指标4.加载测量整机指标5.听音试验(选做)6.用myDQA调试前置放大级、音调控制级,比较用Multisim仿真和用myDAQ得到的结果进行分析比较。

五、实验数据记录和处理1.静态测试静态电压V O1V O2V O3实测值0 0 02.动态调试(电压为有效值)节点电压实测值放大倍数实测值V i=V i110.2mV 前置放大级Av1 6.10V o1=V i262.2mV 音调控制级Av2 1.00V o2=V i362.2mV 功率放大级Av3 32.80V o3=V o 2.04V 整机Av 200.063.空载测量整机指标整机电压增益A v200.06 最大不失真输出电压V omax12.94V峰值输入灵敏度V imax62.79mV峰值噪声电压V N8.90mV峰峰值下限截止频率f L45Hz 上限截止频率f H10.22kHz 高低音控制特性当f=100HzV O V OA V OB低音净提升量低音净衰减量2.36V 6.10V 563mV 8.25dB -12.45dB当f=10kHzV O V OA V OB高音净提升量高音净衰减量1.63V 6.03V 477mV 11.36dB -10.67dB六、实验结果与分析1.前置放大电路如右采用了LM741运放组成电压串联负反馈同相输入比例放大器。

功率放大电路实验报告

功率放大电路实验报告

功率放大电路实验报告功率放大电路实验报告一、引言在电子学领域中,功率放大电路是一种常见且重要的电路。

它可以将输入信号的功率放大到更高的水平,以驱动高功率负载。

本实验旨在通过搭建和测试功率放大电路,探索其工作原理和性能特点。

二、实验原理功率放大电路是由放大器和负载组成的,其中放大器起到放大信号的作用,而负载则是输出信号的目标。

常见的功率放大电路有B类、AB类和A类等。

本实验采用B类功率放大电路。

B类功率放大电路是一种高效率的放大器,其特点是在没有输入信号时,输出电流几乎为零。

当输入信号存在时,输出电流会随着信号的变化而变化。

这种特性使得B类功率放大器在音频放大器等领域得到广泛应用。

三、实验器材和步骤1. 实验器材:- 功率放大器芯片- 电容、电阻等被动元件- 示波器- 变压器- 功率负载2. 实验步骤:a) 按照给定的电路图搭建功率放大电路。

b) 将输入信号连接到放大器的输入端,同时将示波器连接到放大器的输出端。

c) 调节输入信号的频率和幅度,观察输出信号的变化,并记录相关数据。

d) 将不同负载接入输出端,测试不同负载下的输出功率和效率。

四、实验结果与分析在实验中,我们采用了一个音频信号作为输入信号,并将其连接到功率放大电路的输入端。

通过示波器可以观察到输出信号的波形和幅度。

在测试不同频率下的输出信号时,我们发现输出信号的幅度随着频率的增加而略微下降。

这是因为在高频率下,电容和电感等被动元件会引入额外的损耗,降低了输出信号的幅度。

此外,我们还测试了不同负载下的输出功率和效率。

结果显示,当负载阻抗较低时,输出功率较大,但效率较低。

而当负载阻抗较高时,输出功率较小,但效率较高。

这是因为在低阻抗负载下,功率放大器需要提供更大的电流,从而产生更大的功率损耗。

五、实验结论通过本次实验,我们深入了解了功率放大电路的工作原理和性能特点。

我们发现B类功率放大器具有高效率、低静态功耗的优点,适用于音频放大等领域。

实验结果还表明,在不同负载条件下,功率放大电路的输出功率和效率会有所不同。

实验3实验报告 -单管低频放大电路

实验3实验报告 -单管低频放大电路

专业班次电子信息类工科组别题目单管低频放大电路姓名(学号)日期一、实验目的1.熟悉掌握电子仪器的一般使用方法。

2.了解半导体基本放大电路各元件的作用及电路的调试方法。

3.研究静态工作点对放大器的影响,测算共射极交流放大电路的放大倍数。

二、实验设备放大电路实验底板一块函数信号发生器一台交流数字毫伏表一台直流微安表(0~100μA)一个直流稳压器一台直流毫安表(0~10mA)一个双踪示波器一台万用电表一个三、注意事项1、若工作点Q偏高,在信号的正半周时放大器进入“饱和”状态,造成饱和失真;若工作点Q过低,在信号的负半周时,放大器进入“截止”状态,造成截止失真;若输入信号幅度过大,也会引起失真,输出的波形上下都可能有一部分被削掉。

此外,VCC及RC的变化,会引起负载线的位置或斜率变化,从而引起静态工作点变化,也会对输出电压波形有影响。

2、大电路的电压放大倍数Au=Vo/Vi,它只有在不失真情况下才有意义。

而且,是否带有负载以及有没有引入交流负反馈,Au值都是不同的。

3、所有仪表指针不能超过满标值。

四、实验原理及计算下图单管低频放大电路,在VCC和RC确定之后,改变IB就可以改变静态点Q,若Q点过高则会引起饱和失真,过低则是截止失真。

调节RB1,可获得适当IB,使放大器输出的电压波形失真得到改善。

若输入信号振幅过大也会失真,波形上下可能会被切掉,此外VCC及RC的变化也会对输出波形专业班次电子信息类工科组别题目单管低频放大电路姓名(学号)日期有影响。

对于放大电路的放大倍数Au=Vo/Vi 只有在不失真的情况下才有意义,而且对于是否有负载以及是否有引入交流负反馈,Au都是不一样的。

1、测量静态工作点按照下图检查实验底板并接入测IB、Ic的微安表和毫安表,接上12V的直流稳压电源在模拟电子电路实验中,万用表直流档测量Vce、Vbe,对于Ic可以从串入的毫安表读出。

I E =I B+I C; r be=200+(1+β)26(mV)IE(mV)2、共射极放大电路的交流电压放大倍数将信号源Vi(由函数信号发生器供给,f=1kHz建议Vi在40mV内)接入实验底板输入端,用示波器观察放大器输入和输出信号电压的波形并观察其相位(输出波形不失真)3、观察工作点变化和输入信号变化对输出波形的影响(1)放大器输入端仍接函数信号发生器(f=1kHz),输出端接示波器,Vi取适当大小,确保V0不明显失真,保持Vi不变,调节RB1,观察IB,使BJT进入饱和区,观察放大器输出波形失真情况。

高频实验三 高频丙类谐振功率放大器实验报告

高频实验三 高频丙类谐振功率放大器实验报告

高频实验三高频丙类谐振功率放大器实验报告实验目的:1. 理解高频振荡电路的谐振条件,并掌握它的基本工作原理;2. 理解高频功率放大器的基本原理;3. 掌握高频振荡电路的调谐方法;4. 熟练掌握高频功率放大器的参数选择和调试方法。

实验器材:1.高频发生器2.谐振电路板3.二级元件(J310晶体管、VMMK-2203二极管、0.2Ω15W电阻)4.射频电阻5.多用表6.示波器7.功率计8.负载实验原理:1.谐振电路谐振电路是在特定的频率下,由电感和电容构成的谐振回路,通过它产生的信号波,能够单纯频率的持续振荡,保证了信号的稳定性。

在PCB板上我们对谐振电路布线,包括多个元器件的互连、地线的走向等设计严谨,注重缩小回路面积,降低谐振频率,减小谐振面积,从而提高谐振质量和谐振Q值,增强谐振电路稳定性,提高谐振电路的抗干扰能力。

谐振频率的计算公式f=1/(2π(LC)^0.5)2.高频功率放大器高频功率放大器是在HF频段(3MHz~30MHz)内的放大器,在电视机、收音机、通信设备等广泛应用中,常采用的是质子放大器,它所具有的功率放大、稳定性好等性能,能胜任各种业余通信需求。

实验步骤:1.按照谐振电路图在PCB板上完成电路组装,安装元器件之间要严谨紧密。

2.将负载连接到电路的输出端,连接电源,连接示波器和功率计。

3.改变高频发生器的频率,寻找谐振点。

4.调谐谐振电路的电感和电容,使其达到最佳状态。

5.检验电路的信号质量、放大系数和输出功率。

实验结果:1.通过调谐谐振电路,我们最终定位到了谐振点,稳定的输出正弦波。

2.经过功率计测量,我们发现功率输出效果较为满意。

实验分析:1.在谐振电路的制作过程中,需要仔细考虑各个元器件之间的互连,并且严格控制回路面积,以提高谐振质量和谐振Q值。

2.对于高频功率放大器的参数调试,需要对电感和电容等元器件进行仔细调谐,以找到最佳状态。

电路实验报告(9篇)

电路实验报告(9篇)

电路实验报告(9篇)电路试验报告1一、试验仪器及材料1、信号发生器2、示波器二、试验电路三、试验内容及结果分析1、VCC=12v,VM=6V时测量静态工作点,然后输入频率为5KHz的正弦波,调整输入幅值使输2、VCC=9V,VM=4、5V时测量静态工作点,然后输入频率为5KHz的正弦波,调整输入幅值使输3、VCC=6V,VM=3V时测量静态工作点,然后输入频率为5KHz的正弦波,调整输入幅值使输出波形最大且不失真。

(以下输入输出值均为有效值)四、试验小结功率放大电路特点:在电源电压确定的状况下,以输出尽可能大的不失真的信号功率和具有尽可能高的转换效率为组成原则,功放管常工作在尽限应用状态。

电路试验报告2一、试验目的1、更好的理解、稳固和把握汽车全车线路组成及工作原理等有关内容。

2、稳固和加强课堂所学学问,培育实践技能和动手力量,提高分析问题和解决问题的力量和技术创新力量。

二、试验设备全车线路试验台4台三、试验设备组成全车电线束,仪表盘,各种开关、前后灯光分电路、点火线圈、发动机电脑、传感器、继电器、中心线路板、节气组件、电源、收放机、保险等。

四、组成原理汽车总线路的组成:汽车电器与电子设备总线路,包括电源系统、起动系统、点火系统、照明和信号装置、仪表和显示装置、帮助电器设备等电器设备,以及电子燃油喷射系统、防抱死制动系统、安全气囊系统等电子掌握系统。

随着汽车技术的进展,汽车电器设备和电子掌握系统的应用日益增多。

五、试验方法与步骤1、汽车线路的特点:汽车电路具有单线、直流、低压和并联等根本特点。

(1)汽车电路通常采纳单线制和负搭铁,汽车电路的单线制.通常是指汽车电器设备的正极用导线连接(又称为火线),负极与车架或车身金属局部连接,与车架或车身连接的导线又称为搭铁线。

蓄电池负极搭铁的汽车电路,称为负搭铁。

现代汽车普遍采纳负搭铁。

同一汽车的全部电器搭铁极性是全都的。

对于某些电器设备,为了保证其工作的牢靠性,提高灵敏度,仍旧采纳双线制连接方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集成功率放大电路
一. 实验目的
1.掌握功率放大电路的调试及输出功率、效率的测量方法;
2.了解集成功率放大器外围电路元件参数的选择和集成功
率放大器的使用方法。

二. 实验仪器设备
1.实验箱
2. 示波器
3. 万用表
4. 电流表
有关试验方法的说明:
(1) 测量最大不失真功率:max O P
在放大器的输入端接入频率为1kHz 的正弦频率信号;Vi 置最小(Vi<20mV );在放大器的输出端街上示波器和毫伏表,逐渐增大Vi ,使示波器显示出最大不失真波形,用毫伏表测出电压有效值
mox O V ,则最大不失真输出功率为:
2max
max O O L
V
P R =
(2)测量功率放大器的效率
η:
在保持Vo 为最大不失真输出幅度的情况下,由电流表测量直流电源Vcc 的输出电流E I ,此时电源Vcc 提供的直流输出功率为:
×E E CC P I V =
注:此处Vcc 应为正负电源之差。

功率放大器的效率为:
max
=
O E
P P
集成功率放大器的实验电路
三. 实验内容及步骤
1、连接电路:
接入正负电源(+V CC 、-V EE ) 接入负载电阻R L 串入电流表
2、打开电源开关,记录电流表的读数,即为静态电流I E
3、将电流表换至较高档位,接入输入信号v i ,按后面要求进行测量。

负载电阻R L =
时,
按表分别用示波器测量输出电压峰值为2V 和4V 时的电流I E ,计算输出功率P O 、电源供给功率P E 和效率η;
逐渐增大输入电压,用示波器监视输出波形,记录最大不失真时的输出电压的峰值v omax 和电流I E ,并计算此时的输出功率P O ,电源供给功率P E 和效率η,填表。

峰值
I E P O P E
η
实验需要测量的数值有
I E 和V omax ,P O ,P E ,η由实
验数据计算得到,计算公式如下:
2
2O L
P R =
峰值
24E E P I =
×100%O
E
P P η= 实验注意事项:
功率放大器输出大电压大电流,工作在极限状态,产热较多,需要谨慎操作防止烧毁功放;
在测量最大不失真电压时的E I 时刻监视电流表防止电流超过电流表量程;
测量最大不失真电压max O V 时,一定使输入电压Vi 置最小,然后逐渐慢慢增大输入Vi 。

相关文档
最新文档