2015年全国高中数学联赛试卷解析
2015全国高中数学联赛广东初赛试题及答案
y − y1 =
y2 − y1 ( x − x1 ). 当 y = 0 时, x2 − x1
2 x2 − x1 y2 − y12 y2 yy y1 + 1 = − 1 2 , y1 + x1 = − y2 − y1 2 p ( y2 − y1 ) 2p 2p yy ………. 5 分 所以 | OC |= − 1 2 . 2p 另一方面,抛物线在 A、B 两点的切线方程分别为: yy1 = p ( x + x1 ), yy2 = p ( x + x2 ), yy ………. 10 分 求得其交点的横坐标为 x3 = 1 2 . 于是 | OC | + x3 = 0 . 2p
2 2
最小值, 当且仅当 ∆ = a − 4 < 0 . 所以 1 < a < 2 .
2
4. 已 知 数 列 {an } 满 足 a1 = 0, an +1 = an + 1 + 2 an + 2 , 则 该 数 列 的 通 项 公 式
an = ______________.
【答案】 an = n + 2 − 1 − 2 . 【 解 析 】 因 为 an +1 + 2 = an + 2 + 2 an + 2 + 1 =
,有概率 在 0 ≤ x1 , x2 ≤ 1 上考虑满足上述条件的 (x1 , x2)
P=∫
1
0
6 3 α −β 7. 已知 sin α + sin β = , 则 cos , cos α + cos β = = ______________. 2 3 3
【答案】1/4. 【解析】平方求和, 再用倍角公式即得.
2015年全国高中数学联赛江苏赛区初赛试卷(含答案)
20XX 年全国高中数学联赛江苏赛区初赛参考答案与评分细则一、填空题(本题共10小题,满分70分,每小题7分.要求直接将答案写在横线上.) 1.已知点P (4,1)在函数f (x )=log a (x -b ) (b >0)的图象上,则ab 的最大值是.解:由题意知,log a (4-b )=1,即a +b =4,且a >0,a ≠1,b >0,从而ab ≤(a +b )24=4,当a =b =2时,ab 的最大值是4.2.函数f (x )=3sin(2x -π4)在x =43π24处的值是.解:2x -π4=43π12-π4=40π12=10π3=2π+4π3,所以f (43π24)=3sin 4π3=-32.3.若不等式|ax +1|≤3的解集为{x |-2≤x ≤1},则实数a 的值是. 解:设函数f (x )=|ax +1|,则f (-2)= f (1)=3,故a =2.4.第一只口袋里有3个白球、7个红球、15个黄球,第二只口袋里有10个白球、6个红球、9个黑球,从两个口袋里各取出一球,取出的球颜色相同的概率是.解:有两类情况:同为白球的概率是3×1025×25=30625,同为红球的概率是7×625×25=42625,所求的概率是72625.5.在平面直角坐标系xOy 中,设焦距为2c 的椭圆x 2a 2+y 2b 2=1(a >b >0)与椭圆x 2b 2+y 2c 2=1有相同的离心率e ,则e 的值是.解:若c >b ,则c 2a 2=c 2-b 2c 2,得a =b ,矛盾,因此c <b ,且有c 2a 2=b 2-c2b 2,解得e =-1+52.6.如图,在长方体ABCD -A 1B 1C 1D 1中,对角线B 1D 与平面A 1BC 1交于E 点.记四棱锥E -ABCD 的体积为V 1,长方体ABCD -A 1B 1C 1D 1的体积为V 2,则V 1V 2的值是.(第6题图) A 1解:记四棱锥B 1-ABCD 的体积为V .如图,DE =23DB 1,从而V 1=23V .又V =13V 2,所以V 1V 2=29.7.若实数集合A ={31x ,65y }与B ={5xy ,403}仅有一个公共元素,则集合A ∪B 中所有元素之积的值是.解:因为31x ×65y =5xy ×403=2015xy .若xy ≠0,则集合A 和集合B 中有一组相等,则另一组也必然相等,这不合题意.所以xy =0,从而A ∪B 中所有元素之积的值为0. 8.设向量a =(cos α,sin α),b =(-sin α,cos α).向量x 1,x 2,…,x 7中有3个为a ,其余为b ;向量y 1,y 2,…,y 7中有2个为a ,其余为b .则7∑i =1x i y i 的可能取值中最小的为.解:因为a ·a =b ·b =1,a ·b =0,所以7∑i =1x i y i 的最小值为2.9.在3×3的幻方中填数,使每行、每列及两条对角线上的三个数之和都相等.如图,三个方格中的数分别为1,2,2015,则幻方中其余6个数之和为. 解:如图,设幻方正中间的数为x ,则由题意知a =-2012,从而对角线上三个数的和为x -2011.因此b =x -2014,c =-4026,d =-2013,e =x +2014. 由b +e +x =x -2011,解得x =-20112.这9个数的和为3×(-20112-2011)=-180992,所以幻方中其余6个数之和为-180992-2018=-221352.10.在平面直角坐标系xOy 中,设D 是满足x ≥0,y ≥0,x +y +[x ]+[y ]≤19的点(x ,y )形成的区域(其中[x ]是不超过x 的最大整数).则区域D 中整点的个数为. 解:区域D 中整点的个数为1+2+3+…+10=55.(第9题图) 12 2015(第9题图)e c d ab1 2 2015x (第6题图)A 1二、解答题(本大题共4小题,每小题20分,共80分)11.在等比数列{a n }中,a 2=2,q 是公比.记S n 为{a n }的前n 项和,T n 为数列{a 2n }的前n 项和.若S 2n =2T n ,求q 的值.解:若q =1,则a n =a 2=2,a 2n =4,则S 2n =4n ,T n =4n ,S 2n ≠2T n .若q =-1,则a n =2×(-1)n ,a 2n =4,则S 2n =0,T n =4n ,S 2n ≠2T n .……………………………… 5分若q ≠±1,则a n =2q n -2,a 2n =4q 2n -4,从而S 2n =2q ×(1-q 2n )1-q ,T n =4q 2×(1-q 2n)1-q 2. ……………………………… 15分由S 2n =2T n ,则4q (1+q )=1,q 2+q -4=0,解得q =-1±172.综上,q 的值为-1+172和-1-172. ……………………………… 20分12.如图,△ABC 中,AB >AC ,点D 、E 分别在边AB 、AC 上,且BD =CE .∠BAC 的外角平分线与△ADE 的外接圆交于A 、P 两点.求证:A 、P 、B 、C 四点共圆.证明:如图,连结PD ,PE ,PC .因为四边形APDE 是圆内接四边形, 所以∠P AD =∠PED ,∠P AF =∠PDE . 又因为AP 是∠BAC 的外角平分线, 所以∠P AD =∠P AF , 从而∠PED =∠PDE ,故PD =PE . ……………………………… 10分 又∠ADP =∠AEP , 所以∠BDP =∠CEP .又因为BD =CE ,所以△BDP ≌△CEP ,从而∠PBD =∠PCE ,即∠PBA =∠PCA ,ABCDP(第12题图)EA BC DP (第12题图)EF所以A 、P 、B 、C 四点共圆. ……………………………… 10分13.如图,在平面直角坐标系xOy 中,圆O 1、圆O 2都与直线l :y =kx 及x 轴正半轴相切.若两圆的半径之积为2,两圆的一个交点为P (2,2),求直线l 的方程. 解:由题意,圆心O 1,O 2都在x 轴与直线l若直线l 的斜率k =tanα, 设t =tan α2,则k =2t1-t 2.圆心O 1,O 2在直线y =tx 上, 可设O 1(m ,mt ),O 2(n ,nt ).交点P (2,2)在第一象限,m ,n ,t >0.……………………………… 4分 所以⊙O 1:(x -m )2+(y -mt )2=(mt )2,⊙O 1:(x -n )2+(y -nt )2=(nt )2,所以⎩⎨⎧(2-m )2+(2-mt )2=(mt )2,(2-n )2+(2-nt )2=(nt )2,即⎩⎨⎧m 2-(4+4t )m +8=0,n 2-(4+4t )n +8=0,……………… 8分 所以 m ,n 是方程X 2-(4+4t )X +8=0的两根,mn =8.由半径的积(mt )(nt )=2,得t 2=14,故t =12.……………………………… 16分所以 k =2t 1-t2=11-14=43,直线l :y =43x .……………………………… 20分 14.将正十一边形的k 个顶点染红色,其余顶点染蓝色. (1)当k =2时,求顶点均为蓝色的等腰三角形的个数;(2)k 取何值时,三个顶点同色(同红色或同蓝色)的等腰三角形个数最少?并说明理由. 解:(1)设正十一边形的顶点A 1,A 2,A 3,…,A 11,则易知其中任意三点为顶点的三角形都不是正三角形.以这些点为顶点的等腰三角形个数可以如此计算:以A i (i =1,2,3,…,11)为顶角顶点的等腰三角形有11-12=5个,这些三角形均不是等边三角形,即当j ≠i 时,以A j 为顶角顶点的等腰三角形都不是上述等腰三角形.故所有的等腰三角形共有5×11=55个. …………………… 5分当k =2时,设其中A m ,A n 染成红色,其余染成蓝色.以A m 为顶角顶点的等腰三角形有5个,以A m 为底角顶点的等腰三角形有10个;同时以A m ,A n 为顶点的等腰三角形有3个,这些等腰三角形的顶点不同色,且共有(5+10)×2-3=27个.注意到仅有这些等腰三角形的三个顶点不同蓝色,故所求三个顶点同为蓝色的等腰三角形有55-27=28个. ………………………… 10分(2)若11个顶点中k 个染红色,其余11-k 个染蓝色.则这些顶点间连线段(边或对角线)中,两端点染红色的有k (k -1)2条,两端点染蓝色的有(11-k )(10-k )2条,两端点染一红一蓝的有k (11-k )条.并且每条连线段必属于且仅属于3个等腰三角形.把等腰三角形分4类:设其中三个顶点均为红色的等腰三角形有x 1个,三个顶点均为蓝色的等腰三角形有x 2个,两个顶点为红色一个顶点为蓝色的等腰三角形有x 3个,两个顶点为蓝色一个顶点为红色的等腰三角形有x 4个,则按顶点颜色计算连线段,3x 1+x 3=3×k (k -1)2,①3x 2+x 4=3×(11-k )(10-k )2, ②2x 3+2x 4=3×k (11-k ), ③由①+②得3(x 1+x 2)+x 3+x 4=32[k (k -1)+(11-k )(10-k )],用③代入得x 1+x 2=12[k (k -1)+(11-k )(10-k )-k (11-k )]=12(3k 2-33k +110).当k =5或6时,(x 1+x 2)min =12(5×4+6×5-5×6)=10.即顶点同色的等腰三角形最少有10个,此时k =5或6.………… 20分。
2015年全国高中数学联合竞赛一式参考答案及平分标准
2015年全国高中数学联合竞赛一试一、填空题:本大题共8小题,没小题8分,满分64分。
1.设a 、b 为不相等的实数,若二次函数b ax x x f ++=2)(满足)()(b f a f =,则)2(f 的值为2.若实数α满足ααtan cos =,则αα4cos sin 1+的值为 3.已知复数数列{}n z 满足),2,1(i 1,111⋅⋅⋅=++==+n n z z z n n ,其中i 为虚数单位,n z 表示n z 的共轭复数,则2015z 的值为4.在矩形ABCD 中,1,2==AD AB ,边DC 上(包含D 、C )的动点P 与CB 延长线上(包含点B )的动点Q =,则向量与向量的数量积⋅的最小值为 5.在正方体中随机取3条棱,他们两两异面的概率为6.在平面直角坐标系xOy 中,点集{}0)63)(63(),(≤-+-+=y x y x y x K 所对应的平面区域的面积为7.设w 是正实数,若存在)2(,ππ≤<≤b a b a ,使得2sin sin =+wb wa ,则w 的取值范围是8.对四位数)9,,0,91(≤≤≤≤d c b a abcd ,若d c c b b a ><>,,,则称abcd 为P 类数;若d c c b b a <><,,则称abcd 为Q 类数.用)(),(Q N P N 分别表示P 类数和Q 类数的个数,则)()(Q N P N -的值为二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤。
9.(本小题满分16分)若实数c b a ,,满足cbacba424,242=+=+,求c 的最小值。
10.(本小题满分20分)设4321,,,a a a a 是4个有理数,使得{}⎭⎬⎫⎩⎨⎧----=≤<≤3,1,81,23,2,2441j i aa ji求4321a a a a +++的值。
2015全国高中数学联赛加试试题及答案(A卷)
n
i =1
n 个集 k
合(这里 X 表示有限集合 X 的元素个数) . 证明:不妨设 | A1 |= k .设在 A1 , A2 , , An 中与 A1 不相交的集合有 s 个,重新 记为 B1 , B2 , , Bs ,设包含 A1 的集合有 t 个,重新记为 C1 , C2 , , Ct .由已知条件,
A
三、 (本题满分 50 分) 如图,ABC 内接于圆 O ,P 为 上一点,点 K 在线段 AP 上,使得 BK 平分 ∠ABC .过 BC
K、P、C 三点的圆 Ω 与边 AC 交于点 D ,连接 BD 交圆 Ω
F K B E P
奥 林
设 A1 = {a1 , a2 , , ak } .在 A1 , A2 , , An 中除去 B1 , B2 , , Bs , C1 , C2 , , Ct 后,在剩
这里 S (m) 表示正整数 m 在二进制表示下的数码之和. 由 于 2 ( k −1) n +1 不 整 除
①
(kn)! (kn)! 等 价 于 ν2 ≤ (k − 1)n , 即 n! n!
kn −ν 2 ((kn)!) ≥ n −ν 2 (n !) , 进而由①知,本题等价于求所有正整数 k ,使得 S (kn) ≥ S (n) 对任意正整数 n 成立. 我们证明,所有符合条件的 k 为 2a (a = 0, 1, 2,) . 一方面,由于 S (2a n) = S (n) 对任意正整数 n 成立,故 k = 2a 符合条件.
2015 年全国高中数学联合竞赛加试(A 卷) 参考答案及评分标准
说明: 1. 评阅试卷时,请严格按照本评分标准的评分档次给分. 2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可 参考本评分标准适当划分档次评分, 10 分为一个档次,不要增加其他中间档次. 一、 ( 本 题 满 分 40 分 ) 设 a1 , a2 , , an (n ≥ 2) 是 实 数 , 证 明 : 可 以 选 取
2015年全国高中数学联赛参考答案(A卷word版本)
2015 年全国高中数学联合竞赛(A 卷)参考答案及评分标准一试说明:1.评阅试卷时,请依据本评分标冶填空题只设。
分和香分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题该分为一个档次,不要增加其他中间档次.一、填空题:本大题共8小题,每小题份分,满分64分.1.设b a ,为不相等的实数,若二次函数b ax x x f ++=2)(满足)()(b f a f =,则=)2(f 答案:4.解:由己知条件及二次函数图像的轴对称性,可得22a b a+=-,即20a b +=,所以(2)424f a b =++=.2.若实数α满足ααtan cos =,则αα4cos sin 1+的值为 . 答案:2. 解:由条件知,ααsin cos 2=,反复利用此结论,并注意到1sin cos 22=+αα,得)cos 1)(sin 1(sin sin sin cos cos sin 122224αααααααα-+=++=+ 2cos sin 22=-+=αα.3.已知复数数列{}n z 满足),2,1(1,111⋅⋅⋅=++==+n ni z z z n n ,则=2015z .答案:2015 + 1007i .解:由己知得,对一切正整数n ,有211(1)11(1)2n n n n z z n i z ni n i z i ++=+++=+++++=++, 于是201511007(2)20151007z z i i =+⨯+=+.4.在矩形ABCD 中,1,2==AD AB ,线段DC 上的动点P 与CB 延长线上的动点Q 满=,则PQ PA ⋅的最小值为 .答案34.解:不妨设 A ( 0 , 0 ) , B ( 2 , 0 ) , D ( 0 , l ) .设 P 的坐标为(t , l) (其中02t ≤≤),则由||||DP BQ =得Q 的坐标为(2,-t ),故(,1),(2,1)PA t PQ t t =--=---,因此,22133()(2)(1)(1)1()244PA PQ t t t t t t ⋅=-⋅-+-⋅--=-+=-+≥.当12t =时,min 3()4PA PQ ⋅=.5.在正方体中随机取三条棱,它们两两异面的概率为 . 答案:255.解:设正方体为ABCD-EFGH ,它共有12条棱,从中任意取出3条棱的方法共有312C =220种.下面考虑使3条棱两两异面的取法数.由于正方体的棱共确定3个互不平行的方向(即 AB 、AD 、AE 的方向),具有相同方向的4条棱两两共面,因此取出的3条棱必属于3个不同的方向.可先取定AB 方向的棱,这有4种取法.不妨设取的棱就是AB ,则AD 方向只能取棱EH 或棱FG ,共2种可能.当AD 方向取棱是EH 或FG 时,AE 方向取棱分别只能是CG 或DH .由上可知,3条棱两两异面的取法数为4×2=8,故所求概率为8222055=.6.在平面直角坐标系中,点集{}0)63)(63(),(≤-+-+y x y x y x 所对应的平面区域的面积为 . 答案:24.解:设1{(,)||||3|60}K x y x y =+-≤. 先考虑1K 在第一象限中的部分,此时有36x y +≤,故这些点对应于图中的△OCD 及其内部.由对称性知,1K 对应的区域是图中以原点O为中心的菱形ABCD 及其内部.同理,设2{(,)||3|||60}K x y x y =+-≤,则2K 对应的区域是图中以O 为中心的菱形EFGH 及其内部.由点集K 的定义知,K 所对应的平面区域是被1K 、2K 中恰好一个所覆盖的部分,因此本题所要求的即为图中阴影区域的面积S .由于直线CD 的方程为36x y +=,直线GH 的方程为36x y +=,故它们的交点P 的坐标为33(,)22.由对称性知,138842422CPG S S ∆==⨯⨯⨯=.7.设ω为正实数,若存在实数)2(,ππ≤<≤b a b a ,使得2sin sin =+b a ωω,则ω的取值范围为 . 答案:9513[,)[,)424w ∈+∞.解:2sin sin =+b a ωω知,1sin sin ==b a ωω,而]2,[,ππωωw w b a si ∈,故题目条件等价于:存在整数,()k l k l <,使得 ππππππw l k w 22222≤+≤+≤. ①当4w ≥时,区间]2,[ππw w 的长度不小于π4,故必存在,k l 满足①式. 当04w <<时,注意到)8,0(]2,[πππ⊆w w ,故仅需考虑如下几种情况:(i) ππππw w 2252≤<≤,此时21≤w 且45>w 无解;(ii) ππππw w 22925≤<≤,此时2549≤≤w ;(iii) ππππw w 221329≤<≤,此时29413≤≤w ,得4413<≤w .综合(i)、(ii)、(iii),并注意到4≥w 亦满足条件,可知9513[,)[,)424w ∈+∞.8.对四位数abcd ,若,,,d c c b b a ><>则称abcd 为P 类数,若d c c b b a <><,,,则称abcd 为Q 类数,则P 类数总量与Q 类数总量之差等于 .答案:285.解:分别记P 类数、Q 类数的全体为A 、B ,再将个位数为零的P 类数全体记为0A ,个位数不等于零的尸类数全体记为1A .对任一四位数1A abcd ∈,将其对应到四位数dcba ,注意到1,,≥><>d c c b b a ,故B dcba ∈.反之,每个B dcba ∈唯一对应于从中的元素abcd .这建立了1A 与B 之间的一一对应,因此有011()()||||||||||||N P N Q A B A A B A -=-=+-=.下面计算0||A 对任一四位数00A abc ∈, b 可取0, 1,…,9,对其中每个b ,由9≤<a b 及9≤<c b 知,a 和c 分别有b -9种取法,从而992200191019||(9)2856b k A b k ==⨯⨯=-===∑∑. 因此,()()285N P N Q -=. 三、解答题9.(本题满分16分)若实数c b a ,,满足cb ac b a 424,242=+=+,求c 的最小值. 解:将2,2,2abc分别记为,,x y z ,则,,0x y z >.由条件知,222,x y z x y z +=+=,故2222224()2z y x z y z y z y -==-=-+.8分因此,结合平均值不等式可得,4221111(2)244y y z y y y y +==++≥⋅=12分 当212y y =,即y =时,zx求).由于2log c z =,故c的最小值225log log 33=-.16分 10.(本题满分20分)设4321,,,a a a a 为四个有理数,使得:{}⎭⎬⎫⎩⎨⎧----=≤<≤3,1,81,23,2,2441j i aa ji,求4321a a a a +++的值. 解:由条件可知,(14)i j a a i j ≤<≤是6个互不相同的数,且其中没有两个为相反数,由此知,4321,,,a a a a 的绝对值互不相等,不妨设||||||||4321a a a a <<<,则||||(14)i j a a i j ≤<≤中最小的与次小的两个数分别是12||||a a 及13||||a a ,最大与次大的两个数分别是34||||a a 及24||||a a ,从而必须有121324341,81,3,24,a a a a a a a a ⎧=-⎪⎪⎪=⎨⎪=⎪=-⎪⎩ 10 分 于是2341112113,,248a a a a a a a =-===-. 故2231412113{,}{,24}{2,}82a a a a a a =--=--,15分结合1a Q ∈,只可能114a =±.由此易知,123411,,4,642a a a a ==-==-或者123411,,4,642a a a a =-==-=.检验知这两组解均满足问题的条件. 故123494a a a a +++=±. 20 分 11.(本题满分20分)设21,F F 分别为椭圆1222=+y x 的左右焦点,设不经过焦点1F 的直线l 与椭圆交于两个不同的点B A ,,焦点2F 到直线l 的距离为d ,如果11,,BF l AF 的斜率依次成等差数列,求d 的取值范围.解:由条件知,点1F 、2F 的坐标分别为(-1, 0)和(l, 0) .设直线l 的方程为y kx m =+,点A 、B 的坐标分别为11(,)x y 和22(,)x y ,则12,x x 满足方程22()12x kx m ++=,即 222(21)4(22)0k x kmx m +++-=.由于点A 、B 不重合,且直线l 的斜率存在,故12,x x 是方程①的两个不同实根,因此有①的判别式22222(4)4(21)(22)8(21)0km k m k m ∆=-⋅+⋅-=+->,即2221k m +>.②由直线11,,BF l AF 的斜率1212,,11y y k x x ++依次成等差数列知,1212211y yk x x +=++,又1122,y kx m y kx m =+=+,所以122112()(1)()(1)2(1)(1)kx m x kx m x k x x +++++=++,化简并整理得,12()(2)0m k x x -++=.假如m k =,则直线l 的方程为y kx k =+,即 z 经过点1F (-1, 0),不符合条件. 因此必有1220x x ++=,故由方程①及韦达定理知,1224()221kmx x k =-+=+,即12m k k=+.③ 由②、③知,222121()2k m k k +>=+,化简得2214k k>,这等价于||2k >. 反之,当,m k满足③及||2k >l 必不经过点1F (否则将导致m k =,与③矛盾), 而此时,m k 满足②,故l 与椭圆有两个不同的交点A 、B ,同时也保证了1AF 、1BF 的斜率存在(否则12,x x 中的某一个为- l ,结合1220x x ++=知121x x ==-,与方程①有两个不同的实根矛盾).10分点2F (l , 0)到直线l: y kx m =+的距离为211|2|(2)22d k kk ==+=+.注意到||2k >t =t ∈,上式可改写为 21313()()222t d t t t=⋅+=⋅+.考虑到函数13()()2f t t t=⋅+在上上单调递减,故由④得,(1)f d f <<,即2)d ∈.20 分加试1.(本题满分40分)设)2(,,,21≥⋅⋅⋅n a a a n 是实数,证明:可以选取{}1,1,,,21-∈⋅⋅⋅n εεε,使得))(1()()(122121∑∑∑===+≤+ni i i n i i ni i a n a a ε.证法一:我们证明:2[]222111[]2()(1)()n n n n i i j i n i i i j a a a n a ====⎛⎫ ⎪+-≤+ ⎪ ⎪⎝⎭∑∑∑∑,① 即对1,2,,[]2n i =,取1i ε=,对[]1,,2ni n =+,取1i ε=-符合要求.(这里,[]x 表示实数x 的整数部分.) 10分事实上,①的左边为2222[][][]222111[]1[]1[]122222n n n n n n i j i j i j n n n i i i j j j a a a a a a ====+=+=+⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪++-=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑∑∑∑ []2221[]122222n n i j n i j n n a n a ==+⎛⎫⎛⎫⎛⎫⎡⎤⎡⎤ ⎪ ⎪≤+- ⎪⎢⎥⎢⎥ ⎪ ⎪⎣⎦⎣⎦⎝⎭ ⎪ ⎪⎝⎭⎝⎭∑∑(柯西不等式)30分 []2221[]1212222n n i j n i j n n a a ==+⎛⎫⎛⎫⎛+⎫⎡⎤⎡⎤ ⎪ ⎪=+ ⎪⎢⎥⎢⎥ ⎪ ⎪⎣⎦⎣⎦⎝⎭ ⎪⎪⎝⎭⎝⎭∑∑(利用122n n n +⎡⎤⎡⎤-=⎢⎥⎢⎥⎣⎦⎣⎦) []2221[]12(1)n n i j n i j n a n a ==+⎛⎫⎛⎫ ⎪ ⎪≤++ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭∑∑(利用[]x x ≤) 21(1)()ni i n a =≤+∑.所以 ① 得证,从而本题得证.证法二:首先,由于问题中12,,,n a a a 的对称性,可设12n a a a ≥≥≥.此外,若将12,,,n a a a 中的负数均改变符号,则问题中的不等式左边的21)(∑=n i i a 不减,而右边的21ni i a=∑不变,并且这一手续不影响1i ε=±的选取,因此我们可进一步设120n a a a ≥≥≥≥. 10分引理:设120n a a a ≥≥≥≥,则1110(1)ni i i a a -=≤-≤∑.事实上,由于1(1,2,,1)i i a a i n +≥=-,故当n 是偶数时,1123411(1)()()()0ni i n n i a a a a a a a --=-=-+-++-≥∑,11232111(1)()()ni i n n n i a a a a a a a a ---=-=------≤∑.当n 是奇数时,11234211(1)()()()0ni i n n n i a a a a a a a a ---=-=-+-++-+≥∑,1123111(1)()()ni i n n i a a a a a a a --=-=-----≤∑.引理得证. 30 分回到原题,由柯西不等式及上面引理可知22122211111(1)(1)n n n ni i i i i i i i i a a n a a n a -====⎛⎫⎛⎫⎛⎫+-≤+≤+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑∑,这就证明了结论. 40分证法三:加强命题:设12,,,n a a a ⋅⋅⋅(2n ≥)是实数,证明:可以选取12,,,{1,1}n εεε⋅⋅⋅∈-,使得 2221111()()()()n nn i i i i i i i a a n a n ε===+≤+∑∑∑.证明 不妨设22212n a a a ≥≥⋅⋅⋅≥,以下分n 为奇数和n 为偶数两种情况证明.当n 为奇数时,取12121n εεε-==⋅⋅⋅==,13221n n n εεε++==⋅⋅⋅==-,于是有12221112()[()()]n nni i jn i i j a a a -+===+-∑∑∑12221122[()+()]n ni jn i j a a -+===∑∑1222112112()+2()()22n n i j n i j n n a n a -+==--≤⋅⋅-∑∑(应用柯西不等式).1222112(1)()+(1)()n ni jn i j n a n a -+===-+∑∑ ①另外,由于22212n a a a≥≥⋅⋅⋅≥,易证有122211211(1)(1)n n i j n i j a a n n -+==+≥-∑∑,因此,由式①即得到1222112(1)()+(1)()n nijn i j n a n a -+==-+∑∑211()()n i i n a n =≤+∑,故n 为奇数时,原命题成立,而且由证明过程可知,当且仅当12121n εεε-==⋅⋅⋅==,13221n n n εεε++==⋅⋅⋅==-,且12n a a a ==⋅⋅⋅=时取等号.当n 为偶数时,取1221n εεε==⋅⋅⋅==,24221n n n εεε++==⋅⋅⋅==-,于是有2222112()[()()]n nni i j n i i j a a a +===+-∑∑∑22222122[()+()]n ni j n i j a a +===∑∑2222122()+2()()22nn i j n i j n n a n a +==≤⋅⋅-∑∑(应用柯西不等式).222212[()+()]n nijn i j n a a +===∑∑22111()()()nn ii i i n a n a n ===≤+∑∑,故n 为偶数时,原命题也成立,而且由证明过程可知,当且仅当120n a a a ==⋅⋅⋅==时取等号,若12,,,n a a a ⋅⋅⋅不全为零,则取不到等号.综上,联赛加试题一的加强命题获证. 2.(本题满分40分)设{},,,,21n A A A S ⋅⋅⋅=其中n A A A ,,,21⋅⋅⋅是n 个互不相同的有限集合)2(≥n ,满足对任意的S A A j i ∈,,均有S A A j i ∈ ,若2min 1≥=≤≤i ni A k ,证明:存在i ni A x 1=∈ ,使得x 属于n A A A ,,,21⋅⋅⋅中的至少kn个集合.证明:不妨设1||A k =.设在12,,,n A A A 中与1A 不相交的集合有s 个,重新记为12,,,s B B B ,设包含1A 的集合有t 个,重新记为12,,,t C C C .由已知条件,1()i B A S ∈,即112(){,,,}i t B A C C C ∈,这样我们得到一个映射12121:{,,,}{,,,},()s t i i f B B B C C C f B B A →=. 显然f 是单映射,于是,s t ≤. 10 分设112{,,,}k A a a a =.在n A A A ,,,21⋅⋅⋅中除去12,,,s B B B ,12,,,t C C C 后,在剩下的n s t --个集合中,设包含i a 的集合有i x 个(1i k ≤≤),由于剩下的n s t --个集合中每个集合与从的交非空,即包含某个i a ,从而12k x x x n s t +++≥--. 20 分不妨设11max i i k x x ≤≤=,则由上式知i n s tx k --≥,即在剩下的n s t --个集合中,包含1a的集合至少有n s tk--个.又由于),,2,1(1t i C A i ⋅⋅⋅=⊆,故12,,,t C C C 都包含1a ,因此包含1a 的集合个数至少为(1)n s t n s k t n s tt k k k---+---+=≥(利用2k ≥) nk ≥(利用s t ≤). 40 分 3.(本题满分50分)如图,ABC ∆内接于圆O ,P 为BC 弧上一点,点K 在AP 上,使得BK 平分ABC ∠,过C P K ,,三点的圆Ω与边AC 交于D ,连接BD 交圆Ω于E ,连接PE ,延长交AB 于F ,证明:FCB ABC ∠=∠2.证法一:设CF 与圆Q 交于点L (异于C),连接PB 、PC 、 BL 、KL .注意此时C 、D 、L 、K 、E 、P 六点均在圆Ω上,结合A 、 B 、P 、C 四点共圆,可知∠FEB=∠DEP=180°-∠DCP=∠ABP=∠FBP ,因此△FB E ∽△FPB ,故FB 2=FE ·FP .10分又由圆幂定理知,FE ·FP= FL ·FC ,所以FB 2=FL ·FC . 从而△FBL ∽△FCB .因此, ∠FLB=∠FBC=∠APC=∠KPC=∠FLK, 即B 、K 、L 三点共线. 30 分再根据△FBL ∽△FCB 得,∠FCB=∠FBL=12∠ABC, 即∠ABC=2∠FCB .证法二:设CF 与圆Ω交于点L (异于C).对圆内接广义六边形DCLKPE 应用帕斯卡定理可知, DC 与KP 的交点A 、CL 与PE 的交点F 、LK 与ED 的交点了共线,因此B ’是AF 与ED 的交点,即B ’=B .所以B 、K 、L 共线.10分根据A 、B 、P 、C 四点共圆及L 、K 、P 、C 四点共圆,得 ∠ABC=∠APC=∠FLK=∠FCB+∠LBC,又由BK 平分∠ABC 知,∠FBL=12∠ABC ,从而 ∠ABC=2∠FCB .4.(本题满分50分)求具有下述性质的所有正整数k :对任意正整数n 都有1)1(2+-n k 不整除!)!(n kn . 解:对正整数m ,设2()v m 表示正整数m 的标准分解中素因子2的方幂,则熟知2(!)()v m m S m =-,①这里()S m 表示正整数m 在二进制表示下的数码之和.由于1)1(2+-n k 不整除()!!kn n ,等价于2()!()(1)!kn v k n n ≤-,即22(()!)(!)kn v kn n v n -≥-,进而由①知,本题等价于求所有正整数k ,使得()()S kn S n ≥对任意正整数n 成立. 10分我们证明,所有符合条件的k 为2(0,1,2,)aa =.一方面,由于(2)()aS n S n =对任意正整数n 成立,故2ak =符合条件. 20 分另一方面,若k 不是2的方幂,设2,0,ak q a q =⋅≥是大于1的奇数.下面构造一个正整数n ,使得()()S kn S n <.因为()(2)()aS kn S q S qn <⋅=, 因此问题等价于我们选取q 的一个倍数m ,使得()()m S m S q <. 由(2,q )=l ,熟知存在正整数u ,使得21(mod )uq ≡.(事实上,由欧拉定理知,u 可以取()q ϕ的.)设奇数q 的二进制表示为1212222,0,2t a a at a a a t +++=<<<≥.取1122222t t a a tu aa-+++++,则()S m t =,且2(21)0(mod )t a tu m q q =+-≡.我们有1(1)02121211212(122)12t t ttu uu t a a lu a u t ul m q q q q q -+-=---=++⋅=+⋅+++=+⋅∑由于2102u uq -<<,故正整数21u q -的二进制表示中的最高次幂小于u ,由此易知,对任意整数,(01)i j i j t ≤<≤-,数212t u iu a q +-⋅与212tu ju a q+-⋅的二进制表示中没有相同的项.又因为0i a >,故212(0,1,,1)tu lu a l t q +-⋅=-的二进制表示中均不包含1,故由②可知21()1()()u m S S t t S m q q-=+⋅>=, 因此上述选取的m 满足要求.综合上述的两个方面可知,所求的k 为2(0,1,2,)aa =.50分。
2015年全国高中数学联赛试题及答案详解(A卷)
(i ) 5 2 ,此时 1 且 5 ,无解;
22
2
4
(ii) 5 9 2 ,此时有 9 5 ;
件等价于:存在整数 k, l (k l) ,使得
2k 2l 2 .
①
2
2
当 4 时,区间[, 2]的长度不小于 4 ,故必存在 k, l 满足①式.
当 0 4 时,注意到[, 2] (0, 8) ,故仅需考虑如下几种情况:
.
答案: 2015 1007i .
解:由已知得,对一切正整数 n ,有
zn2 zn1 1n 1i zn 1 ni 1n 1i zn 2 i , 于是 z2015 z1 10072 i 2015 1007i .
4. 在矩形 ABCD 中, AB 2, AD 1 ,边 DC 上(包含点 D 、 C )的动点 P 与 CB 延 长线上(包含点 B )的动点 Q 满足 DP BQ ,则向量 PA 与向量 PQ 的数量积 PA PQ 的
6. 在平面直角坐标系 xOy 中,点集 K (x, y) x 3y 6 3x y 6 0所对
应的平面区域的面积为
.
答案:24.
解:设 K1 (x, y) x 3y 6 0 .先考虑 K1
在第一象限中的部分,此时有 x 3y 6 ,故这些点对
应于图中的 OCD 及其内部.由对称性知, K1 对应的 区域是图中以原点 O 为中心的菱形 ABCD 及其内部.
同理,设 K2 (x, y) 3x y 6 0 ,则 K2 对
应的区域是图中以 O 为中心的菱形 EFGH 及其内部.
由点集 K 的定义知, K 所对应的平面区域是被
2015年全国高中数学联赛试题答案
…………………20 分
包含 a1 的集合至少有
n− s −t 个.又由于 A1 ⊆ Ci ( i = 1, , t ) ,故 C1 , C2 , , Ct 都 k
n− s −t ,即在剩下的 n − s − t 个集合中, k
包含 a1 ,因此包含 a1 的集合个数至少为
n− s −t n − s + (k − 1)t n − s + t (利用 k ≥ 2 ) = +t ≥ k k k n . ……………40 分 ≥ (利用 t ≥ s ) k
n ≤ (n + 1) ∑ห้องสมุดไป่ตู้ai2 , i =1 所以①得证,从而本题得证.
…………………40 分
证法二:首先,由于问题中 a1 , a2 , , an 的对称性,可设 a1 ≥ a2 ≥ ≥ an .此 n 外,若将 a1 , a2 , , an 中的负数均改变符号,则问题中的不等式左边的 ∑ ai 不 i =1 减,而右边的 ∑ ai2 不变,并且这一手续不影响 ε i = ±1 的选取,因此我们可进一
2t u − 1 2u − 1 m 1 2αt ⋅ 1 2αt ⋅ 1 + 2u + + 2(t −1)u ) =+ =+ ( q q q
…………………10 分
n + 2 ∑ aj n = j +1 2
2
2
n 2 n n n 2 2 ≤ 2 ∑ ai + 2 n − ∑ a j (柯西不等式) …………30 分 2 i =1 2 = n j +1 2 n n 2 2 n + 1 n n n + 1 2 a j (利用 n − = = 2 ∑ ai + 2 ) ∑ 2 2 2 i =1 2 = n j +1 2 n n 2 2 2 ≤ n ∑ ai + (n + 1) ∑ a j (利用 [ x ] ≤ x ) n = i =1 j +1 2
2015全国高中数学竞赛试题
2015年全国高中数学竞赛试题一、简述:2015年全国高中数学竞赛试题,作为一场高水平的数学竞赛,其试题设计严谨,旨在全面检测参赛者在数学学科上的知识掌握、思维逻辑和问题解决能力。
试题内容通常涵盖代数、几何、数论等多个数学领域,要求参赛者具备扎实的数学基础和灵活的解题思维。
二、内容分析:该竞赛试题通常包含选择题、填空题和解答题等多种题型,每种题型都有其特定的考查重点。
选择题和填空题主要检测参赛者对数学基础知识点的掌握程度,而解答题则更注重对参赛者思维逻辑和问题解决能力的考查。
整体而言,试题内容既注重基础知识的考查,又强调对数学思想的深入理解和灵活运用。
三、特点分析:综合性强:试题往往融合了多个数学领域的知识点,要求参赛者具备全面的数学素养和跨学科的解题能力。
思维灵活:试题设计注重引导参赛者运用多种数学思想和解题方法进行问题求解,鼓励创新思维和发散性思维。
难度递进:试题难度通常呈现出递进的特点,从基础题到难题逐渐过渡,有利于全面评估参赛者的数学水平。
四、难易程度分析:整体而言,2015年全国高中数学竞赛试题的难度属于较高水平。
基础题部分主要考查参赛者的基本数学知识和解题技巧,难度适中;而难题部分则对参赛者的数学思维和问题解决能力提出了更高的要求,难度较大。
这种难度设计既保证了竞赛的区分度,又充分展现了数学学科的挑战性和趣味性。
需要注意的是,以上分析仅基于一般性的了解和推测,实际试题的难度和特点可能会有所不同。
因此,在准备此类竞赛时,建议参赛者充分熟悉竞赛要求和历年试题,制定科学的备考策略,全面提升自己的数学素养和解题能力。
由于我无法提供2015年全国高中数学竞赛的全部真实试题,我将根据该竞赛的一般特点和难度,为您模拟举例一些可能的试题。
请注意,以下试题仅为示例,并非真实的2015年竞赛试题。
2015年全国高中数学竞赛模拟试题一、选择题1.若复数 (z) 满足 (z + |z| = 2 + i),其中 (i) 是虚数单位,则 (z) 等于:A. (1 + i)B. (1 - i)C. (\frac{3}{2} + \frac{1}{2}i)D. (\frac{4}{3} + i)2.已知等差数列 ({ a_n }) 的前n项和为 (S_n),若 (a_2 + a_4 = 10),则 (S_5) 等于:A. 20B. 25C. 50D. 1003.设函数 (f(x) = ax^3 + bx^2 + cx + d) 的图像关于原点对称,且 (f(x))在 (x = 1) 处的切线斜率为 -6,则下列说法正确的是:A. (a = 2, b = 0)B. (a = -2, b = 0)C. (a = 2, c = 0)D. (a = -2, c = 0)二、填空题1.设实数 (a, b, c) 满足 (a^2 + b^2 + c^2 = 1),则 (ab + bc + ca) 的最大值是 _______。
2015年全国高中数学联合竞赛一试试题(A卷)解析
33 ,
.
22
于是每个小三角形的面积为
1 2
×4×
3 2
= 3,
所以阴影部分的面积为 3 × 8 = 24.
y
33 A,
22
O
x
7. 设 ω 为正实数,若存在 a, b(π ⩽ a < b ⩽ 2π),使得 sin ωa + sin ωb = 2,则 ω
的取值范围是
.
解答
依题意,存在
k, l
∈
Z,使得
设 A(x1, y1), B(x2, y2), F1(−1, 0),则
y1
+
y2
=
2km −k2 + 2,
y1y2
=
m2 − 2. k2 + 2
且 ∆ = 4k2m2 − 4(k2 + 2)(m2 − 2) = 8(k2 − m2 + 2) > 0.
于是
kAF1
+
kBF1
=
y1 x1 +
1
+
y2 x2 +
−
1 2
=
1007
⇒
z2015
=
2015
+
1007i.
4. 在矩形 ABCD 中,AB = 2, AD = 1,边 DC 上 (包含点 D、C) 的动点 P 与
CB 延长线上 (包含点 B) 的动点 Q 满足 |D# P»| = |B# Q»|,则向量 P# A» 与向量
#» PQ
的数量积
#» #» PA · PQ
为满足 d = 0 的 P 类数的个数,记 A 为满足 d = 0 的 P 类数的集合.
2015年全国高中数学联合竞赛试题及解答.(A卷)
2k 2 1 m2 .②
由直线
AF1, l, BF1
的斜率
y1 , k, y2 x1 1 x2 1
依次成等差数列知,
y1 x1 1
y2 2k x2 1
,又
y1 kx1 m, y2 kx2 m ,所以 (kx1 m)(x2 1) (kx2 m)(x1 1) 2k(x1 1)(x2 1) ,化简并
棱两两异面的取法数为 4×2=8,故所求概率为 8 2 . 220 55
2015A6、在平面直角坐标系 xOy 中,点集 K (x, y) | ( x 3 y 6)( 3x y 6) 0 所对应的平
面区域(如图所示)的面积为
◆答案: 24 ★解析:设 K1 {(x, y) || x | | 3y | 6 0} . 先考虑 K1 在第一象限中的部分,此时有 x 3y 6 ,故这些点
对应于图中的△OCD 及其内部.由对称性知, K1 对应的区
域是图中以原点 O 为中心的菱形 ABCD 及其内部.
同理,设 K2 {(x, y) || 3x | | y | 6 0} ,则 K2 对应
的区域是图中以 O 为中心的菱形 EFGH 及其内部.
由点集 K 的定义知,K 所对应的平面区域是被 K1 、K2
1 sin
cos4
cos 2 sin 2 sin
sin 2
(1 sin )(1 cos2 )
2 sin
cos2
2.
2015A 3、已知复数数列 zn 满足 z1 1,zn1 zn 1 ni (n 1,2,) ,其中 i 为虚数单位,zn 表
2015年全国高中数学联赛山东赛区预赛试题详解
2015年全国高中数学联赛 山东赛区预赛试题详解2015年9月6日 一、填空题(本题共10小题,每小题8分,共80分)1.复数z 满足5z =,且()34i z +是纯虚数,则z =_________________________________________________. 解析:由已知得:()343425i z i z +=+= ,故()3425i z i +=±, 于是()25253443343434i i iz i i i i±-==±=±+++- ,因此()43z i =±-. 2.方程44sin cos 1x x -=的解为_________________________________________________.解析:由于()()44222222sin cos sin cos sin cos sin cos cos 2x x x x x x x x x -=+-=-=-,故cos 21x =-,∴()22x k k Z ππ=+∈,因此()2x k k Z ππ=+∈.法二:由己知得:44sin 1cos 1x x =+≥,又4sin 1x ≤,∴44sin 1,cos 0x x ==, ∴sin 1,cos 0x x =±=,因此()2x k k Z ππ=+∈.3.设函数()()221sin 1x xf x x ++=+的最大值是M ,最小值是N ,则M N += _________________________.解析:由已知得:()22sin 11x xf x x +-=+是奇函数,最大值与最小值是相反数,故()()110M N -+-=,∴2M N +=. 4.如图,O 是半径为1 的球的球心, 点,,A B C 在球面上,,,OA OB OC 两两垂直,,E F 分别是,AOB AOC ∠∠对应的 ,AB AC 的中点,则点,E F 在该球面上球面距离是_________________________. 解析:由已知得:面OAB ⊥面OAC ,作EM ⊥OA 于M ,连接MF ,则EM ⊥MF 且MF ⊥OA ,由已知得:∠EOM=∠FOM=4π,∴EF=1,故EOF ∆是等边三角形,因此∠EOF=3π,从而点,E F 在该球面上球面距离是3π. 5.已知[),0,x y ∈+∞且满足331x y xy ++3=,则2x y 的最大值是_________________________________________________. 解析:∵ ()()()()233333x y xy x y x y xy xy x y xy x y ⎡⎤++3=++-+3=+-+⎣⎦,∴()()3131x y xy x y +-=+-,∴()()()()21131x y x y x y xy x y ⎡⎤+-++++=+-⎣⎦,∴()()()21130x y x y x y xy ⎡⎤+-++++-=⎣⎦,∵()()()()213413110x y x y xy xy x y xy xy x y ++++-≥+++-=+++≥>, ∴10x y +-=,∴1y x =-,于是()()32142241422327x x x x x x y x ⎡⎤++-⎢⎥=-≤=⎢⎥⎢⎥⎣⎦, 当且仅当12x x =-即21,33x y ==时等号成立,因此2x y 的最大值是427. 6.将正整数列{}1,2,3, 中的所有完全平方数去掉后仍按原顺序构成数列{}n a , 则2015a = _________________________________________________.解析:依题意知:若()()221*n k a k k N <<+∈,则n a n k =+,由()()2220151*k k k k N <+<+∈解得:45k =,因此20152060a =.7.把1,2,3,4,5,6这六个数随机排成一列组成一外数列,要求该数列恰好先增后减,这样的数列共有_________________________________________________个. 解析:按此数列中在数字6两边的个数可分为:6右边1个数时符合条件的数列有15C 个,6右边2个数时符合条件的数列有25C 个, 6右边3个数时符合条件的数列有35C 个,6右边4个数时符合条件的数列有45C 个, 因此符合条件的数列共有1234555530C C C C +++=个.8.设1a >,若关于x 的方程x a x =无实根,则实数a 的取值范围为_________________________.解析:由x y a =和y x =的图象可知:若()1xa x a =>无实根,则0x a x ->恒成立,设()xf x a x =-,则()'ln 1xf x a a =-,由()'0f x <得:log ln a x a <-,由()'0f x >得:log ln a x a >-, 于是()f x 在(),log ln a a -∞-上递减,在()log ln ,a a -+∞上递增, ∴()f x 在log ln a x a =-处取得最小值()()1log ln log ln log ln ln a a a f a a e a a-=+=, 因此只须()min 0f x >,即()log ln 0a e a >,∴ln 1e a >,∴1ln a e>,∴1e a e >. 9.在ABC ∆中,角,,A B C 满足A B C <<且sin sin sin cos cos cos A B CA B C++=++则B ∠= _________________________________________________.(培优教程一试三角函数最后一节的习题8)解析:原式可化为:()()()sin sin sin 0A A B B C C ++-=,∵()()()sin sin sin A A B B C C ++2sin 2sin 2sin 333A B C πππ⎛⎫⎛⎫⎛⎫=-+-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2sin 2sin 2sin 3333A B A B ππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+---+- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦33334sin cos 22A B A B ππππ⎛⎫⎛⎫⎛⎫⎛⎫-+---- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=33334sin cos22A B A B ππππ⎛⎫⎛⎫⎛⎫⎛⎫-+--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭-3333334sin cos cos 222A B A B A B ππππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+------- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥=-⎢⎥⎢⎥⎣⎦3338sinsinsin222C A B πππ---=-∴333sinsinsin0222C A B πππ---=,故角,,A B C 中必有一个角为3π,又A B C <<,因此3B π=.10.已知集合{}1,2,,99M = ,现随机选取集合M 中9个元素做成子集,记该子集中的最小数为ξ,则E ξ= _________________________________________________.解析:集合M 中以正整数()199k k ≤≤为最小数的9元子集有899k C -个,故E ξ=88888989796958999999999999999123491C C C C C C C C C C +++++()()()888888888898979689796896889991C C C C C C C C C C C ⎡⎤=+++++++++++++⎣⎦ ()1099991009998979999999110C C C C C C C =++++== . 二、解答题(本大题共4个小题,共70分,需写出详细的解答过程)11.(本小题满分15分)求证:不存在这样的函数{}:1,2,3f z →满足对任意的整数,x y ,若{}2,3,5x y -∈,则()()f x f y ≠.解析:假设存在这样的函数{}:1,2,3f z →,则对任意正整数n ,()f n 与()()()2,3,5f n f n f n +++均不相同,…………(*) 由于函数值域中只有三个值,且()f n 占用了一个值, 因此()()()2,3,5f n f n f n +++中至少有两个是相同的,若()()23f n f n +=+,则()f n 为常数函数,函数值只有一个,与(*)式矛盾; 若()()25f n f n +=+,则()()3f n f n =+,与(*)式矛盾; 若()()35f n f n +=+,则()()2f n f n =+,与(*)式矛盾; 因此假设不成立,即不存在这样的函数f . 法二:假设存在这样的函数{}:1,2,3f z →,则对任意正整数n ,()f n 与()()()2,3,5f n f n f n +++均不相同,…………(*) 由于函数值域中只有三个值,因此()()()(),2,3,5f n f n f n f n +++中至少有两个是相同的, ∵()()2f n f n ≠+∴()()35f n f n +≠+, ∵()()3f n f n ≠+∴()()25f n f n +≠+,又()()5f n f n ≠+,故必有()()23f n f n +=+,由此得:()()34f n f n +=+, ∴()()()222f n fn +=++,与(*)式矛盾,因此假设不成立,即不存在这样的函数f .12.(本小题满分15分)对任意的实数x 和自然数n ,试比较2sin n x 和sin sin x nx 的大小.解析:下面先证明()2sin sin sin sin sin sin 0n x x nx x n x nx -=-≥.当sin 0x =时,结论显然成立; 当sin 0x ≠时,下面用数学归纳法证明sin sin nxn x≤成立; 当1n =时,结论显然成立;假设当n k =时,结论成立,即sin sin kxk x≤成立, 那么当1n k =+时,()sin 1sin cos cos sin sin cos cos sin sin sin k x kx x kx x kxkx x x x x++==+sin cos cos 1sin kxkx x k x≤+≤+,因此当1n k =+时结论成立; 由数学归纳法可知:sin sin nxn x≤,对任意自然数n 都成立, ∴2sin sin sin x nx n x ≤即2sin sin sin x nx n x≤,∴2sin sin sin sin sin 0n x x nx x nx ≥≥≥, 综上所述,对任意的实数x 和自然数n ,都 有2sin sin sin n x x nx ≥成立.13.(本小题满分20分)已知椭圆22122:1x y C a b+=,不过原点的直线l 和椭圆相交于两点A ,B ,⑴求△AOB 面积的最大值;⑵是否存在椭圆2C ,使得对于2C 的每一条切线和椭圆1C 均相交,设交于A ,B 两点,且△AOB 的面积恰取最大值?若存在,给出该椭圆,若不存在,说明理由.解析:⑴若直线l 斜率存在,设直线l 的方程为y kx m =+,代入到椭圆方程得:()22222222220a kb x a kmx a m a b +++-=,设()()1122,,,A x y B x y ,则有2222212122222222,a km a m a b x x x x a k b a k b-+=-=++,故2222abAB a k b==+ 原点O 到直线l的距离为d =,于是△AOB 的面积为()222222222221222AOBm a k b m ab abab S AB d a k b a k b ∆++-===++ 因此对任意的k ,都有2AOB abS ∆≤,等号成立当且仅当22222a k b m +=;若直线l 斜率不存在,设l 的方程为0x x =,则A 、B两点的坐标为0,x ⎛ ⎝, 于是△AOB 的面积为()2220022AOBx a x b ab S a ∆+-=≤= ,等号成立当且仅当2202a x =; 综上所述,△AOB 面积的最大值是2ab; ⑵设满足条件的椭圆2C 的方程为2222222:1x y C a b +=,过椭圆2C 上任一点()00,P x y 的切线方程为0022221x x y ya b +=,该切线与椭圆1C 相交于A ,B 两点, ①当切线的斜率不存在时,00y =,2202x a =,切线方程为0x x =,由⑴知△AOB 面积取得最大值2ab 的充要条件是2202a x =, 可得:2222a a =,解得:22212a a =; ②当切线的斜率存在时,222002221y x a b ⎛⎫=- ⎪⎝⎭,切线的斜率220220b x k a y =-,纵截距220b m y =,∴()2242222220242242222222202224242220200222a a b b y a b x b b a k b b b b b a y a y y -+=+=+=-+ ,由⑴知△AOB 面积取得最大值2ab的充要条件是22222a k b m +=, 可得:44222222200222b b b b y y -+=,解得:22212b b =; 综上所述,存在椭圆222221:2x y C a b +=符合题意,满足对于椭圆2C 的每一条切线和椭圆1C 都相交,设交点为A ,B ,这时△AOB 的面积恰取最大值2ab. 14.(本小题满分20分)已知数列{}n a 满足()11211,*n n n a a a n N a +==+∈, ⑴求证:当2n ≥时,33n a n >;⑵当4n ≥时,求39n a 的整数部分39n a ⎡⎤⎣⎦. 解析:由11211,0n n n a a a a +=-=>可知:数列{}n a 是正项递增数列,⑴当2n =时,3222,8a a ==,满足33n a n >,假设当()2,*n k k k N =≥∈时命题成立,即33k a k >,则当1n k =+时,()33331236131333331k k k k k k k a a a a k k a a a +⎛⎫=+=+++>+>+=+ ⎪⎝⎭,故当1n k =+时命题成立,由数学归纳法知:对任意正整数2n ≥,33n a n >都成立; ⑵由⑴知当2n ≥时,()333393927na n n >⨯=,故393n a n >,……………………(*)当4n ≥时,3113n a n<且n ≥> 由33136313n n n n a a a a +-=++,依次代入1,2,3,,n ,然后累加可得: 331133333366661234512311111111113n n n a a n a a a a a a a a a a +⎛⎫⎛⎫=++3+++++++++++ ⎪ ⎪⎝⎭⎝⎭31333333666612345123111*********n n a n a a a a a a a a a a ⎛⎫⎛⎫⎛⎫=++3+++++++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2221111111111312345923n n n ⎛⎫⎛⎫<++3++++++++++ ⎪ ⎪⎝⎭⎝⎭()11111113123912231n n n ⎛⎫<++3++++++++ ⎪ ⎪⨯⨯-⎝⎭1111131135239n n n ⎛⎫=++3+++++-<+ ⎪⎝⎭∴33135n n a a n +<<+,()3333232927352739131n a n n n n n n <++<+++=+,∴3931n a n <+,………………………………………………………………………(**) 因此由(*)与(**)两式可得:393n a n ⎡⎤=⎣⎦.。
2015年全国高中数学联赛试卷解析
2015 年全国高中数学联合竞赛参考答案及评分标准一试一、填空题:本大题共8小题,每小题8分,满分64分.1.设b a ,为不相等的实数,若二次函数b ax x x f ++=2)(满足)()(b f a f =,则=)2(f 答案:4.解:由己知条件及二次函数图像的轴对称性,可得22a b a+=-,即20a b +=,所以(2)424f a b =++=.2.若实数α满足ααtan cos =,则αα4cos sin 1+的值为 . 答案:2. 解:由条件知,ααsin cos 2=,反复利用此结论,并注意到1sin cos 22=+αα,得)cos 1)(sin 1(sin sin sin cos cos sin 122224αααααααα-+=++=+ 2cos sin 22=-+=αα.3.已知复数数列{}n z 满足),2,1(1,111⋅⋅⋅=++==+n ni z z z n n ,其中i 为虚数单位,n z 表示n z 的共轭复数,则=2015z .答案:2015 + 1007i .解:由己知得,对一切正整数n ,有211(1)11(1)2n n n n z z n i z ni n i z i ++=+++=+++++=++, 于是201511007(2)20151007z z i i =+⨯+=+.4.在矩形ABCD 中,1,2==AD AB ,边DC 上(包含点D 、C )的动点P 与CB 延长线上(包含点B )的动点Q =,则PQ PA ⋅的最小值为 . 答案34. 解:不妨设 A ( 0 , 0 ) , B ( 2 , 0 ) , D ( 0 , l ) .设 P 的坐标为(t , l) (其中02t ≤≤),则由||||DP BQ =得Q 的坐标为(2,-t ),故(,1),(2,1)PA t PQ t t =--=---,因此,22133()(2)(1)(1)1()244PA PQ t t t t t t ⋅=-⋅-+-⋅--=-+=-+≥.当12t =时,min 3()4PA PQ ⋅=.5.在正方体中随机取三条棱,它们两两异面的概率为 . 答案:255.解:设正方体为ABCD-EFGH ,它共有12条棱,从中任意取出3条棱的方法共有312C =220种.下面考虑使3条棱两两异面的取法数.由于正方体的棱共确定3个互不平行的方向(即 AB 、AD 、AE 的方向),具有相同方向的4条棱两两共面,因此取出的3条棱必属于3个不同的方向.可先取定AB 方向的棱,这有4种取法.不妨设取的棱就是AB ,则AD 方向只能取棱EH 或棱FG ,共2种可能.当AD 方向取棱是EH 或FG 时,AE 方向取棱分别只能是CG 或DH .由上可知,3条棱两两异面的取法数为4×2=8,故所求概率为8222055=.6.在平面直角坐标系xOy 中,点集{}0)63)(63(),(≤-+-+y x y x y x 所对应的平面区域的面积为 . 答案:24.解:设1{(,)||||3|60}K x y x y =+-≤. 先考虑1K 在第一象限中的部分,此时有36x y +≤,故这些点对应于图中的△OCD 及其内部.由对称性知,1K 对应的区域是图中以原点O为中心的菱形ABCD 及其内部.同理,设2{(,)||3|||60}K x y x y =+-≤,则2K 对应的区域是图中以O 为中心的菱形EFGH 及其内部.由点集K 的定义知,K 所对应的平面区域是被1K 、2K 中恰好一个所覆盖的部分,因此本题所要求的即为图中阴影区域的面积S .由于直线CD 的方程为36x y +=,直线GH 的方程为36x y +=,故它们的交点P 的坐标为33(,)22.由对称性知,138842422CPG S S ∆==⨯⨯⨯=.7.设ω为正实数,若存在实数)2(,ππ≤<≤b a b a ,使得2sin sin =+b a ωω,则ω的取值范围为 . 答案:9513[,)[,)424w ∈+∞.解:2sin sin =+b a ωω知,1sin sin ==b a ωω,而]2,[,ππωωw w b a si ∈,故题目条件等价于:存在整数,()k l k l <,使得 ππππππw l k w 22222≤+≤+≤. ① 当4w ≥时,区间]2,[ππw w 的长度不小于π4,故必存在,k l 满足①式. 当04w <<时,注意到)8,0(]2,[πππ⊆w w ,故仅需考虑如下几种情况:(i) ππππw w 2252≤<≤,此时21≤w 且45>w 无解;(ii) ππππw w 22925≤<≤,此时2549≤≤w ;(iii) ππππw w 221329≤<≤,此时29413≤≤w ,得4413<≤w .综合(i)、(ii)、(iii),并注意到4≥w 亦满足条件,可知9513[,)[,)424w ∈+∞.8.对四位数abcd (9d ,0,91≤≤≤≤c b a ,),若,,,d c c b b a ><>则称abcd 为P 类数;若d c c b b a <><,,,则称abcd 为Q 类数,用N(P)和N(Q)分别表示P 类数与Q 类数的个数,则N(P)-N(Q)的值为 .答案:285.解:分别记P 类数、Q 类数的全体为A 、B ,再将个位数为零的P 类数全体记为0A ,个位数不等于零的尸类数全体记为1A .对任一四位数1A abcd ∈,将其对应到四位数dcba ,注意到1,,≥><>d c c b b a ,故B dcba ∈.反之,每个B dcba ∈唯一对应于从中的元素abcd .这建立了1A 与B 之间的一一对应,因此有011()()||||||||||||N P N Q A B A A B A -=-=+-=.下面计算0||A 对任一四位数00A abc ∈, b 可取0, 1,…,9,对其中每个b ,由9≤<a b 及9≤<c b 知,a 和c 分别有b -9种取法,从而992200191019||(9)2856b k A b k ==⨯⨯=-===∑∑. 因此,()()285N P N Q -=.二、解答题:本大题共3小题,满分56分,解答应写出文字说明、证明过程或演算步骤。
2015年全国高中数学联合竞赛一试试题(a卷)解答集锦
2015年全国高中数学联合竞赛一试试题(a卷)解答集锦全国高中数学联合竞赛一试试题(A卷)高中数学联赛篇一:2015年全国高中数学联赛试题一、填空题:本大题共8小题,每小题8分,满分64分1.设a,b为不相等的实数,若二次函数f(x) x2 ax b满足f(a) f(b),则f(2)的值为2.若实数满足cos tan ,则1 cos4 的值为sin3.已知复数数列{zn}满足z1 1,zn 1 zn 1 ni(n 1,2,3, ),其中i为虚数单位,zn 表示zn的共轭复数,则z2015的值为4.在矩形ABCD中,AB 2,AD 1,边DC(包含点D,C)上的动点P与CB延长线上(包含点B)的动点Q满足DP BQ,则向量PA与向量PQ的数量积PA PQ的最小值为5.在正方体中随机取3条棱,它们两两异面的概率为6.在平面直角坐标系xOy中,点集K (x,y)(x 3y 6)(3x y 6) 0所对应的平面区域的面积为7.设为正实数,若存在a,b( a b 2 ),使得sin a sin b 2,则的取值范围是8.对四位数abcd(1 a 9,0 b,c,d 9),若a b,b c,c d,则称abcd为P类数,若a b,b c,c d,则称abcd为Q类数,用N(P),N(Q)分别表示P类数与Q类数的个数,则N(P) N(Q)的值为二、解答题:本大题共3小题,满分56分,解答应写出文字说明、证明过程或演算步骤9.(本题满分16分)若实数a,b,c满足2a 4b 2c,4a 2b 4c,求c的最小值.10.(本题满分20分)设a1,a2,a3,a4是4个有理数,使得31 aa1 i j 4 24, 2, , ,1,3 ,求a1 a2 a3 a4的值. ij 28x211.(本题满分20分)在平面直角坐标系xOy中,F1,F2分别是椭圆y2 1的左、右焦点,2设不经过焦点F1的直线l与椭圆交于两个不同的点A,B,焦点F2到直线l的距离为d,如果直线AF1,l,BF1的斜率依次成等差数列,求d的取值范围.2015年全国高中数学联合竞赛加试试题(A卷)一、(本题满分40分)设a1,a2, ,an(n 2)是实数,证明:可以选取1, 2, , n 1, 1 ,使n2 得ai iai (n 1) ai . i 1 i 1 i 1二、(本题满分40分)设S A1,A2, ,An ,其中A1,A2, ,An是n个互不相同的有限集合(n 2),满足对任意的Ai,Aj S,均有Ai Aj S,若k minAi 2.证明:存在x Ai,1 i ni 1nn2n2使得x属于A1,A2, ,An中的至少n个集合(这里X表示有限集合X 的元素个数).k 上一点,点K在线段AP上,使得三、(本题满分50分)如图,ABC内接于圆O,P为BCBK平分ABC,过K,P,C三点的圆与边AC交于D,连接BD交圆于点E,连接PE并延长与边AB交于点F.证明:ABC 2 FCB.(解题时请将图画在答卷纸上)四、(本题满分50分)求具有下述性质的所有正整数k:(kn)!对任意正整数n,2(k 1)n 1不整除.n!高中数学联赛篇二:高中数学联赛基本知识集锦高中数学联赛基本知识集锦一、三角函数常用公式由于是讲竞赛,这里就不再重复过于基础的东西,例如六种三角函数之间的转换,两角和与差的三角函数,二倍角公式等等。
2015年全国高中数学联赛试卷解析汇报
2015 年全国高中数学联合竞赛(A 卷)参考答案及评分标准一试说明:1.评阅试卷时,请依据本评分标冶填空题只设。
分和香分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题该分为一个档次,不要增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1.设b a ,为不相等的实数,若二次函数b ax x x f ++=2)(满足)()(b f a f =,则=)2(f 答案:4.解:由己知条件及二次函数图像的轴对称性,可得22a b a+=-,即20a b +=,所以(2)424f a b =++=.2.若实数α满足ααtan cos =,则αα4cos sin 1+的值为 . 答案:2. 解:由条件知,ααsin cos 2=,反复利用此结论,并注意到1sin cos 22=+αα,得)cos 1)(sin 1(sin sin sin cos cos sin 122224αααααααα-+=++=+ 2cos sin 22=-+=αα.3.已知复数数列{}n z 满足),2,1(1,111⋅⋅⋅=++==+n ni z z z n n ,其中i 为虚数单位,n z 表示n z 的共轭复数,则=2015z .答案:2015 + 1007i .解:由己知得,对一切正整数n ,有211(1)11(1)2n n n n z z n i z ni n i z i ++=+++=+++++=++, 于是201511007(2)20151007z z i i =+⨯+=+.4.在矩形ABCD 中,1,2==AD AB ,边DC 上(包含点D 、C )的动点P 与CB 延长线上(包含点B )的动点Q =PQ PA ⋅的最小值为 . 答案34. 解:不妨设 A ( 0 , 0 ) , B ( 2 , 0 ) , D ( 0 , l ) .设 P 的坐标为(t , l) (其中02t ≤≤),则由||||DP BQ =得Q 的坐标为(2,-t ),故(,1),(2,1)PA t PQ t t =--=---,因此,22133()(2)(1)(1)1()244PA PQ t t t t t t ⋅=-⋅-+-⋅--=-+=-+≥.当12t =时,min 3()4PA PQ ⋅=.5.在正方体中随机取三条棱,它们两两异面的概率为 .答案:255.解:设正方体为ABCD-EFGH ,它共有12条棱,从中任意取出3条棱的方法共有312C =220种.下面考虑使3条棱两两异面的取法数.由于正方体的棱共确定3个互不平行的方向(即 AB 、AD 、AE 的方向),具有相同方向的4条棱两两共面,因此取出的3条棱必属于3个不同的方向.可先取定AB 方向的棱,这有4种取法.不妨设取的棱就是AB ,则AD 方向只能取棱EH 或棱FG ,共2种可能.当AD 方向取棱是EH 或FG 时,AE 方向取棱分别只能是CG 或DH .由上可知,3条棱两两异面的取法数为4×2=8,故所求概率为8222055=.6.在平面直角坐标系xOy 中,点集{}0)63)(63(),(≤-+-+y x y x y x 所对应的平面区域的面积为 . 答案:24.解:设1{(,)||||3|60}K x y x y =+-≤. 先考虑1K 在第一象限中的部分,此时有36x y +≤,故这些点对应于图中的△OCD 及其内部.由对称性知,1K 对应的区域是图中以原点O为中心的菱形ABCD 及其内部.同理,设2{(,)||3|||60}K x y x y =+-≤,则2K 对应的区域是图中以O 为中心的菱形EFGH 及其内部.由点集K 的定义知,K 所对应的平面区域是被1K 、2K 中恰好一个所覆盖的部分,因此本题所要求的即为图中阴影区域的面积S .由于直线CD 的方程为36x y +=,直线GH 的方程为36x y +=,故它们的交点P 的坐标为33(,)22.由对称性知,138842422CPG S S ∆==⨯⨯⨯=.7.设ω为正实数,若存在实数)2(,ππ≤<≤b a b a ,使得2sin sin =+b a ωω,则ω的取值范围为 . 答案:9513[,)[,)424w ∈+∞.解:2sin sin =+b a ωω知,1sin sin ==b a ωω,而]2,[,ππωωw w b a si ∈,故题目条件等价于:存在整数,()k l k l <,使得ππππππw l k w 22222≤+≤+≤. ①当4w ≥时,区间]2,[ππw w 的长度不小于π4,故必存在,k l 满足①式. 当04w <<时,注意到)8,0(]2,[πππ⊆w w ,故仅需考虑如下几种情况:(i) ππππw w 2252≤<≤,此时21≤w 且45>w 无解; (ii) ππππw w 22925≤<≤,此时2549≤≤w ; (iii) ππππw w 221329≤<≤,此时29413≤≤w ,得4413<≤w . 综合(i)、(ii)、(iii),并注意到4≥w 亦满足条件,可知9513[,)[,)424w ∈+∞.8.对四位数abcd (9d ,0,91≤≤≤≤c b a ,),若,,,d c c b b a ><>则称abcd 为P 类数;若d c c b b a <><,,,则称abcd 为Q 类数,用N(P)和N(Q)分别表示P 类数与Q 类数的个数,则N(P)-N(Q)的值为 .答案:285.解:分别记P 类数、Q 类数的全体为A 、B ,再将个位数为零的P 类数全体记为0A ,个位数不等于零的尸类数全体记为1A .对任一四位数1A abcd ∈,将其对应到四位数dcba ,注意到1,,≥><>d c c b b a ,故B dcba ∈.反之,每个B dcba ∈唯一对应于从中的元素abcd .这建立了1A 与B 之间的一一对应,因此有011()()||||||||||||N P N Q A B A A B A -=-=+-=.下面计算0||A 对任一四位数00A abc ∈, b 可取0, 1,…,9,对其中每个b ,由9≤<a b 及9≤<c b 知,a 和c 分别有b -9种取法,从而992200191019||(9)2856b k A b k ==⨯⨯=-===∑∑.因此,()()285N P N Q -=.二、解答题:本大题共3小题,满分56分,解答应写出文字说明、证明过程或演算步骤。
2015年全国高中数学联合竞赛试题(A卷)与答案
而
bn+1
−
1 (n
2
+
1)
+
1 4
=
−bn
+
n
−
1 (n
2
+
1)
+
1 4
=
−bn
+
1 n
2
−
1 4
=−
11
bn
−
n 2
+
4
⇒
bn
−
1 n
2
+
1 4
=
− 1 (−1)n−1 4
=
1 (−1)n 4
⇒
bn
=
1 n
2
+
1 [(−1)n 4
−
1](n
∈
N∗).
所以
a2015
=
2015, b2015
=
2015 2
= 4t2 − 2t + 1 = 4
1 t−
2
+
3
⩾
3 ,等号成立时
#» DP
=
1D# C».
4 44
4
所以向量 P# A» 与向量 P# Q» 的数量积 P# A» · P# Q» 的最小值为 3.
4
5. 在正方体中随机取 3 条棱,它们两两异面的概率为
.
解答
正方体 12 条棱共有 3 种方向 (左右,上下,前后),每种方向对应 4 条棱.
=
a
+
b
⇒
b
=
−2a,
22
于是 f (x) = x2 + ax − 2a ⇒ f (2) = 4 + 2a − 2a = 4.
2015年全国高中数学联赛试题及答案解析
2015 年全国高中数学联赛模拟试题 04 第一试参考解答 一、填空题:本大题共 8 小题,每小题 8 分,共 64 分. 1. 集合 A = {x, y} 与 B = {1, log 3 ( x + 2)} 恰有一个公共元为正数 1 + x ,则 A B = 解:由于 1 + x ¹ x ,故 1 + x = y .由 log 3 ( x + 2) ¹ 1 知 x ¹ 1 ,又因为 1 + x > 0 ,所以 3
A1B 42 52 2 4 5
CA2 A1B 2 BC 2 9 31 3 ,进一步有 cos A cos CA1B 1 , 32 2 2CA1 A1B 16
2
5 7 1 15 7 9 3 9 ,所以 S chc . 因此 c AA1 A1B 2 4 6 , hc 4 1 4 16 2 2 4 16 7. 已知过两抛物线 C1 : x 1 ( y 1) 2 , C2 : ( y 1) 2 4 x a 1 的交点的各自的切线互相垂直,则实数 a 的 值为 . a a a a 解: 联立曲线 C1 , C2 的方程, 求得交点坐标为 ( , 1 1 ) , 由对称性, 不妨只考虑交点 A ( , 1 1 ) 5 5 5 5
102假设还满足则又因为乘以减去乘将其乘以减去乘以acbc是无理数所以因为由于代入这与是无理数矛盾因此不是任何整数系数二次方程axbx2015年全国高中数学联赛模拟试题04加试参考答案一本小题满分40分如图在锐角abac分别是边abac的中点ade的外接圆与的外接圆交于点异于点bce的外接圆与bcdapaqpkpk是一切大于3的素数
2015年全国高中数学联合竞赛试题与解答(A卷)-高中课件精选
2015 年全国高中数学联合竞赛(A 卷)一试说明:1.评阅试卷时,请依据本评分标冶填空题只设0分和8分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不要增加其他中间档次.一、填空题:本大题共8小题,每小题份分,满分64分.1.设b a ,为不相等的实数,若二次函数b ax x x f ++=2)(满足)()(b f a f =,则=)2(f2.若实数α满足ααtan cos =,则αα4cos sin 1+的值为 . 3.已知复数数列{}n z 满足),2,1(1,111⋅⋅⋅=++==+n ni z z z n n ,则=2015z .4.在矩形ABCD 中,1,2==AD AB ,线段DC 上的动点P 与CB 延长线上的动点Q 满足条件BQ DP =,则PQ PA ⋅的最小值为 . 5.在正方体中随机取三条棱,它们两两异面的概率为 .6.在平面直角坐标系中,点集{}0)63)(63(),(≤-+-+y x y x y x 所对应的平面区域的面积为 .7.设ω为正实数,若存在实数)2(,ππ≤<≤b a b a ,使得2sin sin =+b a ωω,则ω的取值范围为 .8.对四位数abcd , 若,,,d c c b b a ><>则称abcd 为P 类数,若d c c b b a <><,,,则称abcd 为Q 类数,则P 类数总量与Q 类数总量之差等于 . 三、解答题9.(本题满分16分)若实数c b a ,,满足c b a c b a 424,242=+=+,求c 的最小值.10.(本题满分20分)设4321,,,a a a a 为四个有理数,使得:{}⎭⎬⎫⎩⎨⎧----=≤<≤3,1,81,23,2,2441j i a a ji ,求4321a a a a +++的值.11.(本题满分20分)设21,F F 分别为椭圆1222=+y x 的左右焦点,设不经过焦点1F 的直线l 与椭圆交于两个不同的点B A ,,焦点2F 到直线l 的距离为d ,如果11,,BF l AF 的斜率依次成等差数列,求d 的取值范围.加试1.(本题满分40分)设)2(,,,21≥⋅⋅⋅n a a a n 是实数,证明:可以选取{}1,1,,,21-∈⋅⋅⋅n εεε,使得))(1()()(122121∑∑∑===+≤+ni i i n i i ni i a n a a ε.2.(本题满分40分)设{},,,,21n A A A S ⋅⋅⋅=其中n A A A ,,,21⋅⋅⋅是n 个互不相同的有限集合)2(≥n ,满足对任意的S A A j i ∈,,均有S A A j i ∈ ,若2min 1≥=≤≤i ni A k ,证明:存在i ni A x 1=∈ ,使得x 属于n A A A ,,,21⋅⋅⋅中的至少kn个集合.3.(本题满分50分)如图,ABC ∆内接于圆O ,P 为BC 弧上一点,点K 在AP 上,使得BK 平分ABC ∠,过C P K ,,三点的圆Ω与边AC 交于D ,连接BD 交圆Ω于E ,连接PE ,延长交AB 于F ,证明:FCB ABC ∠=∠2.4.(本题满分50分)求具有下述性质的所有正整数k :对任意正整数n 都有1)1(2+-n k 不整除!)!(n kn .2015 年全国高中数学联合竞赛(A 卷)参考答案及评分标准一试说明:1.评阅试卷时,请依据本评分标冶填空题只设。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015 年全国高中数学联合竞赛(A 卷)参考答案及评分标准一试说明:1.评阅试卷时,请依据本评分标冶填空题只设。
分和香分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题该分为一个档次,不要增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1.设b a ,为不相等的实数,若二次函数b ax x x f ++=2)(满足)()(b f a f =,则=)2(f 答案:4.解:由己知条件及二次函数图像的轴对称性,可得22a b a+=-,即20a b +=,所以(2)424f a b =++=.2.若实数α满足ααtan cos =,则αα4cos sin 1+的值为 . 答案:2. 解:由条件知,ααsin cos 2=,反复利用此结论,并注意到1sin cos 22=+αα,得)cos 1)(sin 1(sin sin sin cos cos sin 122224αααααααα-+=++=+ 2cos sin 22=-+=αα.3.已知复数数列{}n z 满足),2,1(1,111⋅⋅⋅=++==+n ni z z z n n ,其中i 为虚数单位,n z 表示n z 的共轭复数,则=2015z .答案:2015 + 1007i .解:由己知得,对一切正整数n ,有211(1)11(1)2n n n n z z n i z ni n i z i ++=+++=+++++=++, 于是201511007(2)20151007z z i i =+⨯+=+.4.在矩形ABCD 中,1,2==AD AB ,边DC 上(包含点D 、C )的动点P 与CB 延长线上(包含点B )的动点Q =,则PQ PA ⋅的最小值为 . 答案34. 解:不妨设 A ( 0 , 0 ) , B ( 2 , 0 ) , D ( 0 , l ) .设 P 的坐标为(t , l) (其中02t ≤≤),则由||||DP BQ =得Q 的坐标为(2,-t ),故(,1),(2,1)PA t PQ t t =--=---,因此,22133()(2)(1)(1)1()244PA PQ t t t t t t ⋅=-⋅-+-⋅--=-+=-+≥.当12t =时,min 3()4PA PQ ⋅=.5.在正方体中随机取三条棱,它们两两异面的概率为 . 答案:255.解:设正方体为ABCD-EFGH ,它共有12条棱,从中任意取出3条棱的方法共有312C =220种.下面考虑使3条棱两两异面的取法数.由于正方体的棱共确定3个互不平行的方向(即 AB 、AD 、AE 的方向),具有相同方向的4条棱两两共面,因此取出的3条棱必属于3个不同的方向.可先取定AB 方向的棱,这有4种取法.不妨设取的棱就是AB ,则AD 方向只能取棱EH 或棱FG ,共2种可能.当AD 方向取棱是EH 或FG 时,AE 方向取棱分别只能是CG 或DH .由上可知,3条棱两两异面的取法数为4×2=8,故所求概率为8222055=.6.在平面直角坐标系xOy 中,点集{}0)63)(63(),(≤-+-+y x y x y x 所对应的平面区域的面积为 . 答案:24.解:设1{(,)||||3|60}K x y x y =+-≤. 先考虑1K 在第一象限中的部分,此时有36x y +≤,故这些点对应于图中的△OCD 及其内部.由对称性知,1K 对应的区域是图中以原点O为中心的菱形ABCD 及其内部.同理,设2{(,)||3|||60}K x y x y =+-≤,则2K 对应的区域是图中以O 为中心的菱形EFGH 及其内部.由点集K 的定义知,K 所对应的平面区域是被1K 、2K 中恰好一个所覆盖的部分,因此本题所要求的即为图中阴影区域的面积S .由于直线CD 的方程为36x y +=,直线GH 的方程为36x y +=,故它们的交点P 的坐标为33(,)22.由对称性知,138842422CPG S S ∆==⨯⨯⨯=.7.设ω为正实数,若存在实数)2(,ππ≤<≤b a b a ,使得2sin sin =+b a ωω,则ω的取值范围为 . 答案:9513[,)[,)424w ∈+∞.解:2sin sin =+b a ωω知,1sin sin ==b a ωω,而]2,[,ππωωw w b a si ∈,故题目条件等价于:存在整数,()k l k l <,使得 ππππππw l k w 22222≤+≤+≤. ①当4w ≥时,区间]2,[ππw w 的长度不小于π4,故必存在,k l 满足①式. 当04w <<时,注意到)8,0(]2,[πππ⊆w w ,故仅需考虑如下几种情况:(i) ππππw w 2252≤<≤,此时21≤w 且45>w 无解; (ii) ππππw w 22925≤<≤,此时2549≤≤w ; (iii) ππππw w 221329≤<≤,此时29413≤≤w ,得4413<≤w .综合(i)、(ii)、(iii),并注意到4≥w 亦满足条件,可知9513[,)[,)424w ∈+∞.8.对四位数abcd (9d ,0,91≤≤≤≤c b a ,),若,,,d c c b b a ><>则称abcd 为P 类数;若d c c b b a <><,,,则称abcd 为Q 类数,用N(P)和N(Q)分别表示P 类数与Q 类数的个数,则N(P)-N(Q)的值为 .答案:285.解:分别记P 类数、Q 类数的全体为A 、B ,再将个位数为零的P 类数全体记为0A ,个位数不等于零的尸类数全体记为1A .对任一四位数1A abcd ∈,将其对应到四位数dcba ,注意到1,,≥><>d c c b b a ,故B dcba ∈.反之,每个B dcba ∈唯一对应于从中的元素abcd .这建立了1A 与B 之间的一一对应,因此有011()()||||||||||||N P N Q A B A A B A -=-=+-=.下面计算0||A 对任一四位数00A abc ∈, b 可取0, 1,…,9,对其中每个b ,由9≤<a b 及9≤<c b 知,a 和c 分别有b -9种取法,从而992200191019||(9)2856b k A b k ==⨯⨯=-===∑∑. 因此,()()285N P N Q -=.二、解答题:本大题共3小题,满分56分,解答应写出文字说明、证明过程或演算步骤。
9.(本题满分16分)若实数c b a ,,满足cb ac b a 424,242=+=+,求c 的最小值. 解:将2,2,2abc分别记为,,x y z ,则,,0x y z >.由条件知,222,x y z x y z +=+=,故2222224()2z y x z y z y z y -==-=-+.8分因此,结合平均值不等式可得,4221111(2)244y y z y y y y +==++≥⋅=12分 当212y y =,即y =时,zx求).由于2log c z =,故c的最小值225log log 33=-.16分10.(本题满分20分)设4321,,,a a a a 为四个有理数,使得:{}⎭⎬⎫⎩⎨⎧----=≤<≤3,1,81,23,2,2441j i aa ji,求4321a a a a +++的值. 解:由条件可知,(14)i j a a i j ≤<≤是6个互不相同的数,且其中没有两个为相反数,由此知,4321,,,a a a a 的绝对值互不相等,不妨设||||||||4321a a a a <<<,则||||(14)i j a a i j ≤<≤中最小的与次小的两个数分别是12||||a a 及13||||a a ,最大与次大的两个数分别是34||||a a 及24||||a a ,从而必须有121324341,81,3,24,a a a a a a a a ⎧=-⎪⎪⎪=⎨⎪=⎪=-⎪⎩ 10 分 于是2341112113,,248a a a a a a a =-===-.故2231412113{,}{,24}{2,}82a a a a a a =--=--,15分 结合1a Q ∈,只可能114a =±.由此易知,123411,,4,642a a a a ==-==-或者123411,,4,642a a a a =-==-=.检验知这两组解均满足问题的条件. 故123494a a a a +++=±. 20 分 11.(本题满分20分)在平面坐标系xOy 中,21,F F 分别为椭圆1222=+y x 的左右焦点,设不经过焦点1F 的直线l 与椭圆交于两个不同的点B A ,,焦点2F 到直线l 的距离为d ,如果11,,BF l AF 的斜率依次成等差数列,求d 的取值范围.解:由条件知,点1F 、2F 的坐标分别为(-1, 0)和(l, 0) .设直线l 的方程为y kx m =+,点A 、B 的坐标分别为11(,)x y 和22(,)x y ,则12,x x 满足方程22()12x kx m ++=,即 222(21)4(22)0k x kmx m +++-=.由于点A 、B 不重合,且直线l 的斜率存在,故12,x x 是方程①的两个不同实根,因此有①的判别式22222(4)4(21)(22)8(21)0km k m k m ∆=-⋅+⋅-=+->,即2221k m +>.②由直线11,,BF l AF 的斜率1212,,11y y k x x ++依次成等差数列知,1212211y yk x x +=++,又1122,y kx m y kx m =+=+,所以122112()(1)()(1)2(1)(1)kx m x kx m x k x x +++++=++,化简并整理得,12()(2)0m k x x -++=.假如m k =,则直线l 的方程为y kx k =+,即 z 经过点1F (-1, 0),不符合条件. 因此必有1220x x ++=,故由方程①及韦达定理知,1224()221kmx x k =-+=+,即12m k k=+.③ 由②、③知,222121()2k m k k +>=+,化简得2214k k>,这等价于||k > 反之,当,m k满足③及||k >l 必不经过点1F (否则将导致m k =,与③矛盾), 而此时,m k 满足②,故l 与椭圆有两个不同的交点A 、B ,同时也保证了1AF 、1BF 的斜率存在(否则12,x x 中的某一个为- l ,结合1220x x ++=知121x x ==-,与方程①有两个不同的实根矛盾).10分点2F (l , 0)到直线l: y kx m =+的距离为211|2|(2)22d k kk ==+=+.注意到||k >t =t ∈,上式可改写为21313()()222t d t t t=⋅+=⋅+.考虑到函数13()()2f t t t=⋅+在上上单调递减,故由④得,(1)f d f <<,即2)d ∈.20 分加试1.(本题满分40分)设)2(,,,21≥⋅⋅⋅n a a a n 是实数,证明:可以选取{}1,1,,,21-∈⋅⋅⋅n εεε,使得))(1()()(122121∑∑∑===+≤+ni i i n i i ni i a n a a ε.证法一:我们证明:2[]222111[]2()(1)()nnn ni i j i n i i i j a a a n a ====⎛⎫ ⎪+-≤+ ⎪ ⎪⎝⎭∑∑∑∑,① 即对1,2,,[]2n i =,取1i ε=,对[]1,,2ni n =+,取1i ε=-符合要求.(这里,[]x 表示实数x 的整数部分.) 10分事实上,①的左边为2222[][][]222111[]1[]1[]122222n n n n n n i j i j i j n n n i i i j j j a a a a a a ====+=+=+⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪++-=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑∑∑∑ []2221[]122222n n i j n i j n n a n a ==+⎛⎫⎛⎫⎛⎫⎡⎤⎡⎤ ⎪ ⎪≤+- ⎪⎢⎥⎢⎥ ⎪ ⎪⎣⎦⎣⎦⎝⎭ ⎪ ⎪⎝⎭⎝⎭∑∑(柯西不等式)30分 []2221[]1212222n n i j n i j n n a a ==+⎛⎫⎛⎫⎛+⎫⎡⎤⎡⎤ ⎪ ⎪=+ ⎪⎢⎥⎢⎥ ⎪ ⎪⎣⎦⎣⎦⎝⎭ ⎪⎪⎝⎭⎝⎭∑∑(利用122n n n +⎡⎤⎡⎤-=⎢⎥⎢⎥⎣⎦⎣⎦) []2221[]12(1)n n i j n i j n a n a ==+⎛⎫⎛⎫ ⎪ ⎪≤++ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭∑∑(利用[]x x ≤) 21(1)()ni i n a =≤+∑.所以 ① 得证,从而本题得证.证法二:首先,由于问题中12,,,n a a a 的对称性,可设12n a a a ≥≥≥.此外,若将12,,,n a a a 中的负数均改变符号,则问题中的不等式左边的21)(∑=n i i a 不减,而右边的21ni i a=∑不变,并且这一手续不影响1i ε=±的选取,因此我们可进一步设120n a a a ≥≥≥≥. 10分引理:设120n a a a ≥≥≥≥,则1110(1)ni i i a a -=≤-≤∑.事实上,由于1(1,2,,1)i i a a i n +≥=-,故当n 是偶数时,1123411(1)()()()0ni i n n i a a a a a a a --=-=-+-++-≥∑,11232111(1)()()ni i n n n i a a a a a a a a ---=-=------≤∑.当n 是奇数时,11234211(1)()()()0ni i n n n i a a a a a a a a ---=-=-+-++-+≥∑,1123111(1)()()ni i n n i a a a a a a a --=-=-----≤∑.引理得证. 30 分回到原题,由柯西不等式及上面引理可知22122211111(1)(1)n n n ni i i i i i i i i a a n a a n a -====⎛⎫⎛⎫⎛⎫+-≤+≤+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑∑,这就证明了结论. 40分证法三:加强命题:设12,,,n a a a ⋅⋅⋅(2n ≥)是实数,证明:可以选取12,,,{1,1}n εεε⋅⋅⋅∈-,使得 2221111()()()()n nn i i i i i i i a a n a n ε===+≤+∑∑∑.证明 不妨设22212n a a a ≥≥⋅⋅⋅≥,以下分n 为奇数和n 为偶数两种情况证明.当n 为奇数时,取12121n εεε-==⋅⋅⋅==,13221n n n εεε++==⋅⋅⋅==-,于是有12221112()[()()]n nni i jn i i j a a a -+===+-∑∑∑12221122[()+()]n ni jn i j a a -+===∑∑1222112112()+2()()22n n i j n i j n n a n a -+==--≤⋅⋅-∑∑(应用柯西不等式).1222112(1)()+(1)()n ni jn i j n a n a -+===-+∑∑ ①另外,由于22212n a a a≥≥⋅⋅⋅≥,易证有122211211(1)(1)n n i j n i j a a n n -+==+≥-∑∑,因此,由式①即得到1222112(1)()+(1)()n nijn i j n a n a -+==-+∑∑211()()n i i n a n =≤+∑,故n 为奇数时,原命题成立,而且由证明过程可知,当且仅当12121n εεε-==⋅⋅⋅==,13221n n n εεε++==⋅⋅⋅==-,且12n a a a ==⋅⋅⋅=时取等号.当n 为偶数时,取1221n εεε==⋅⋅⋅==,24221n n n εεε++==⋅⋅⋅==-,于是有2222112()[()()]n nni i j n i i j a a a +===+-∑∑∑22222122[()+()]n ni j n i j a a +===∑∑2222122()+2()()22n n i j n i j n n a n a +==≤⋅⋅-∑∑(应用柯西不等式).222212[()+()]n nijn i j n a a +===∑∑22111()()()nn ii i i n a n a n ===≤+∑∑,故n 为偶数时,原命题也成立,而且由证明过程可知,当且仅当120n a a a ==⋅⋅⋅==时取等号,若12,,,n a a a ⋅⋅⋅不全为零,则取不到等号.综上,联赛加试题一的加强命题获证. 2.(本题满分40分)设{},,,,21n A A A S ⋅⋅⋅=其中n A A A ,,,21⋅⋅⋅是n 个互不相同的有限集合)2(≥n ,满足对任意的S A A j i ∈,,均有S A A j i ∈ ,若2min 1≥=≤≤i ni A k ,证明:存在i ni A x 1=∈ ,使得x 属于n A A A ,,,21⋅⋅⋅中的至少kn个集合.证明:不妨设1||A k =.设在12,,,n A A A 中与1A 不相交的集合有s 个,重新记为12,,,s B B B ,设包含1A 的集合有t 个,重新记为12,,,t C C C .由已知条件,1()i B A S ∈,即112(){,,,}i t B A C C C ∈,这样我们得到一个映射12121:{,,,}{,,,},()s t i i f B B B C C C f B B A →=. 显然f 是单映射,于是,s t ≤. 10 分设112{,,,}k A a a a =.在n A A A ,,,21⋅⋅⋅中除去12,,,s B B B ,12,,,t C C C 后,在剩下的n s t --个集合中,设包含i a 的集合有i x 个(1i k ≤≤),由于剩下的n s t --个集合中每个集合与从的交非空,即包含某个i a ,从而12k x x x n s t +++≥--. 20 分不妨设11max i i k x x ≤≤=,则由上式知i n s tx k --≥,即在剩下的n s t --个集合中,包含1a的集合至少有n s tk--个.又由于),,2,1(1t i C A i ⋅⋅⋅=⊆,故12,,,t C C C 都包含1a ,因此包含1a 的集合个数至少为(1)n s t n s k t n s tt k k k---+---+=≥(利用2k ≥) nk≥(利用s t ≤). 40 分 3.(本题满分50分)如图,ABC ∆内接于圆O ,P 为BC 弧上一点,点K 在AP 上,使得BK 平分ABC ∠,过C P K ,,三点的圆Ω与边AC 交于D ,连接BD 交圆Ω于E ,连接PE ,延长交AB 于F ,证明:FCB ABC ∠=∠2.证法一:设CF 与圆Q 交于点L (异于C),连接PB 、PC 、 BL 、KL .注意此时C 、D 、L 、K 、E 、P 六点均在圆Ω上,结合A 、 B 、P 、C 四点共圆,可知∠FEB=∠DEP=180°-∠DCP=∠ABP=∠FBP ,因此△FB E ∽△FPB ,故FB 2=FE ·FP .10分又由圆幂定理知,FE ·FP= FL ·FC ,所以FB 2=FL ·FC . 从而△FBL ∽△FCB .因此, ∠FLB=∠FBC=∠APC=∠KPC=∠FLK, 即B 、K 、L 三点共线. 30 分再根据△FBL ∽△FCB 得,∠FCB=∠FBL=12∠ABC, 即∠ABC=2∠FCB . 证法二:设CF 与圆Ω交于点L (异于C).对圆内接广义六边形DCLKPE 应用帕斯卡定理可知, DC 与KP 的交点A 、CL 与PE 的交点F 、LK 与ED 的交点了共线,因此B ’是AF 与ED 的交点,即B ’=B .所以B 、K 、L 共线.10分根据A 、B 、P 、C 四点共圆及L 、K 、P 、C 四点共圆,得 ∠ABC=∠APC=∠FLK=∠FCB+∠LBC,又由BK 平分∠ABC 知,∠FBL=12∠ABC ,从而 ∠ABC=2∠FCB .4.(本题满分50分)求具有下述性质的所有正整数k :对任意正整数n 都有1)1(2+-n k 不整除!)!(n kn . 解:对正整数m ,设2()v m 表示正整数m 的标准分解中素因子2的方幂,则熟知2(!)()v m m S m =-,①这里()S m 表示正整数m 在二进制表示下的数码之和.由于1)1(2+-n k 不整除()!!kn n ,等价于2()!()(1)!kn v k n n ≤-,即22(()!)(!)kn v kn n v n -≥-,进而由①知,本题等价于求所有正整数k ,使得()()S kn S n ≥对任意正整数n 成立. 10分我们证明,所有符合条件的k 为2(0,1,2,)aa =.一方面,由于(2)()aS n S n =对任意正整数n 成立,故2ak =符合条件. 20 分另一方面,若k 不是2的方幂,设2,0,ak q a q =⋅≥是大于1的奇数.下面构造一个正整数n ,使得()()S kn S n <.因为()(2)()aS kn S q S qn <⋅=, 因此问题等价于我们选取q 的一个倍数m ,使得()()m S m S q <. 由(2,q )=l ,熟知存在正整数u ,使得21(mod )uq ≡.(事实上,由欧拉定理知,u 可以取()q ϕ的.)设奇数q 的二进制表示为1212222,0,2t a a at a a a t +++=<<<≥.取1122222t t a a tu aa-+++++,则()S m t =,且2(21)0(mod )t a tu m q q =+-≡.我们有1(1)02121211212(122)12t t ttu uu t a a lu a u t ul m q q q q q -+-=---=++⋅=+⋅+++=+⋅∑由于2102u uq -<<,故正整数21u q-的二进制表示中的最高次幂小于u ,由此易知,对任意整数,(01)i j i j t ≤<≤-,数212t u iu a q +-⋅与212tu ju a q+-⋅的二进制表示中没有相同的项.又因为0i a >,故212(0,1,,1)tu lu a l t q +-⋅=-的二进制表示中均不包含1,故由②可知21()1()()u m S S t t S m q q-=+⋅>=, 因此上述选取的m 满足要求.综合上述的两个方面可知,所求的k 为2(0,1,2,)aa =.50分。