特征函数和矩母函数
特征函数与矩函数
根据概率分布的性质和公式,计算相应的矩函数。例如,对于离散型随机变量,可以使用概率质量函数和概率分布函 数来计算;对于连续型随机变量,可以使用概率密度函数和概率分布函数来计算。
数值法
对于一些复杂的概率分布,可以使用数值方法来近似计算矩函数。例如,蒙特卡洛方法可以用来模拟随 机变量的样本值,然后通过样本值的数学期望来近似计算矩函数。
05 特征函数与矩函数的扩展
广义特征函数与矩函数
定义
广义特征函数与矩函数是相对于经典的特征 函数与矩函数的扩展,它们在更广泛的意义 下描述了数据的统计特性。
性质
广义特征函数与矩函数具有更强的灵活性和适应性 ,能够更好地处理复杂的数据分布和异常值。
应用
在统计学、机器学习、数据分析等领域,广 义特征函数与矩函数被广泛应用于数据建模 、特征提取和异常检测。
03 特征函数与矩函数的应用
在概率论中的应用
特征函数用于描述随机变量的概率分布, 可以表示为复平面上的函数。通过计算特 征函数的导数,可以得到随机变量的各阶 矩,如均值、方差、偏度、峰度等。
特征函数还可以用于研究随机变量的 变换性质,例如,通过特征函数可以 推导出随机变量的变换规律,以及随 机变量的独立性、相关性等性质。
特征函数与矩函数
目录
• 特征函数 • 矩函数 • 特征函数与矩函数的应用 • 特征函数与矩函数的区别与联系 • 特征函数与矩函数的扩展
01 特征函数
定义与性质
定义
特征函数是概率论和统计学中的一个 概念,用于描述随机变量或随机过程 的特性。
性质
特征函数具有一些重要的性质,如实 部和虚部都是单调递减的,且实部和 虚部都是偶函数。
特征函数的性质
唯一性
特征函数及其应用
特征函数及其应用
特征函数是概率论中一种重要的工具,用于描述随机变量的分布。
它是一个复数函数,定义为随机变量的各个值对应的指数函数的期望值。
特征函数具有许多有用的性质,例如可以用它来计算随机变量的矩、导数和卷积等。
特征函数在统计学、信号处理、物理学等领域中有着广泛的应用。
在统计学中,特征函数可以用于推导估计量的分布,检验假设以及构造置信区间等。
在信号处理中,特征函数可以用于对信号进行谱分析和滤波。
在物理学中,特征函数可以用于描述粒子的动力学特性和相互作用。
除了普通的特征函数,还有一些特殊的特征函数,例如矩母函数和累积分布函数的特征函数等,它们也具有广泛的应用。
在实际应用中,研究人员还可以根据需要构造自己的特征函数来解决特定的问题。
总之,特征函数是一种非常有用的工具,它不仅可以描述随机变量的分布,还可以用于推导估计量的分布、信号处理、粒子动力学等方面的应用。
- 1 -。
随机过程及其在金融领域中的应用课后答案
习题二:1.证:设为X 取值为k (1k ≥)的随机变量。
且()k p p x k == 证法I (通俗证法,但不严格):111()()(1)2(2)3(3)...()...(1)(2)(3)...()...()k k k k k E x x p kp x k p x p x p x np x n p x p x p x p x n p x k ∞∞==∞======+=+=+=+=≥+≥+≥+≥+=≥∑∑∑证法II :111111()()()()()k k k i i k ii k EX kp x k p x k p x k p x i p x k ∞∞∞∞∞======∞========≥=≥∑∑∑∑∑∑∑证法III :1111111()()(()(1))()(1)(1)(1)(1)(1)()k k k k k k k E X kp x k k p X k p x k kp x k k p x k p x k p k p x k p x k ∞∞==∞∞∞===∞∞=====≥-≥+=≥-+≥++≥+==+≥+=≥∑∑∑∑∑∑∑2.解:(1)0(1)0()()()1111ax ax ax x x a a x E Y E e e f x dx e e dx e dxde a a+∞+∞+∞---∞+∞-======--⎰⎰⎰⎰3.解:边缘概率密度为:12021202,01()(,)603,01()(,)60,X Y x x f x f x y dy xy dy y y f y f x y dx xy dx +∞-∞+∞-∞<<⎧===⎨⎩⎧<<===⎨⎩⎰⎰⎰⎰其它其它因为(,)()()f x y f x f y =所以X ,Y 独立。
故cov(,)cov(,)0X Y Y X ==11223001132400222221()()2()23233()()3()34513cov(,)()(())cov(,)()(())1880E X xf x dx x dx E X x dx E Y yf y dy y dy E Y y dy X X E X E X Y Y E Y E Y +∞-∞+∞-∞===========-==-=⎰⎰⎰⎰⎰⎰ 故(,)X Y 的协方差矩阵为10cov(,)cov(,)18cov(,)cov(,)3080X X X Y Y X Y Y ⎡⎤⎢⎥⎡⎤=⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦4.解:(1)22121210,1,4,2μμσσρ=====将各参数代入二维正态分布密度函数,最终得:22211(,)324f x y x xy y ⎧⎫⎡⎤=--+⎨⎬⎢⎥⎣⎦⎩⎭(2)1cov(,)12XY X Y ρ==⇒=cov(,)()()()()1X Y E XY E X E Y E XY =-∴=当Z 与X 独立时,有()()()E ZY E Z E Y =()()()()()222()()()0,()0,()404E Z aE X E Y E Y E ZY E a XY Y aE XY E Y aE XY E Ya a ⎡⎤=+===+=+⎣⎦∴+=+=⇒=-6.解:()()()1212121211()()12121()(,)!!!!!!!kn kn nk k nnk n kk P X Y n P X k Y n k ee k n k en e n k n k n λλλλλλλλλλλλ---==-+-+-=+====-=-==+-∑∑∑()()12121212()121212!!(|)(|)()!kn kk n kk n n ee k n k P X k Y n k P X k X Y n C e P X Y n n λλλλλλλλλλλλλλ-----+-⎛⎫⎛⎫==-=+====⎪ ⎪+=++⎝⎭⎝⎭+8.解:()0()()()ux ux ux x X M u E e e f x dx e e dx u uλλλλλ+∞+∞--∞====>-⎰⎰()()()()222121()X X u u E X M u E X M u D X λλλ=='''=====13.解:由特征函数与矩母函数关系知:()11X M u u=- ()()()()201()21X X u u E X M u E X M u D X =='''∴=====14.解:1,...,n X X 均相互独立。
矩母函数
因而
Y |Xx x 1 y f fY Y||X X y y||x xd y 1/1 1- 1 -x x x 1 y d y1 2 x
Y|X 1 X/2
fY|X y|x 1/ 1-x
注意: Y|X 1 X/2是随机变量,当X x 时, 其值为
Y|X x 1 x/2
思考题:当X与Y独立时, X |Y y 的值?
定义:X的矩母函数(MGF),或Laplace变换定义为
Xt
etX
其中t在实数上变化。
etxdF Xx
若MGF是有定义的,可以证明可以交换微分操作和求期 望操作,所以有:
0 de tX
d t
t0
d e tX d t t0
X e tX t0
X
取k阶导数,可以得到 k 0
Xk 方便计算分布的矩
.
.
6
X ~ U n ifo r m 0 ,1 , Y |X ~ U n ifo r m x ,1
怎样计算 Y ? 一种方法是计算联合密度 f x , y ,然后计算
Y yf x,ydxdy
另一种更简单的方法是分两步计算
计算 Y| X =1 X
计算 Y =
2 Y|X =
1
X
1+ X
2
2
= 1+
Y |X Y Y |X Y |X Y|X Y 0 0
所以
Y Y |X Y |X
.
10
二、混合分布
在一个分布族中,分布族由一个/一些参数决定, 如 f x,| 这些参数 通常又是一个随机变量 (贝叶斯学派的观点,参数也是随机变量), 则最终的分布称为混合分布(mixture distribution)
特征函数和矩母函数概要
P ( s) pk s pk s
k k k 0 k 0
n
k n 1
p s
k
k
, n n! pn
k n 1
k (k 1)(k n 1) p s
令s 0, 则P ( n ) (0) n! pn 故pn P
k 0 l 0
P{ N l} P{Y k}s
l 0 k 0
k
l k P{N l} P X j k s l 0 k 0 j 1
k P{N l} P{ X j k}s l 0 j 1 k 0
k 0 k 0
PZ ( s) ck s k
k 0
PX ( s ) PY ( s ) pk s
k 0
k
q s
l 0 l
l
k ,l 0
p qs
k l r
k l
r pk q r k s r 0 k 0
r
c r s PZ ( s )
4. 母函数
定义:设X是非负整数值随机变量,分布律
P{X=k}=pk,k=0,1, 则称
P ( s) E ( s ) pk s
X k 0
k
为X的母函数。
性质: (1)非负整数值随机变量的分布律pk由其母 函数P(s)唯一确定 (k ) P (0) pk , k 0,1,2, k! (2)设P(s)是X的母函数, 若EX存在,则EX=P(1) 若DX存在,则DX= P(1) +P(1)- [P(1)]2
考研数学概率论重要考点总结
考研数学概率论重要考点总结概率论是考研数学中的重要考点之一。
下面是概率论中的一些重要考点总结。
一、概率基本概念1. 随机试验与样本空间2. 事件与事件的关系3. 概率的定义、性质和运算法则4. 条件概率及其性质二、随机变量与概率分布1. 随机变量的概念及其分类2. 离散型随机变量与连续型随机变量3. 随机变量的分布函数和密度函数4. 两个随机变量的独立性5. 随机变量的函数及其分布三、数学期望与方差1. 数学期望的概念及其性质2. 数学期望的计算3. 方差的概念及其性质4. 方差的计算5. 协方差和相关系数四、大数定律与中心极限定理1. 大数定律的概念及其性质2. 切比雪夫不等式3. 中心极限定理的概念及其性质4. 泊松定理5. 极限定理的应用五、随机变量的常见分布1. 二项分布、泊松分布2. 均匀分布、指数分布3. 正态分布4. 伽马分布、贝塔分布5. t分布、F分布、卡方分布六、矩母函数与特征函数1. 矩母函数的概念及性质2. 矩母函数的计算3. 特征函数的概念及性质4. 特征函数的计算5. 中心极限定理的特征函数证明七、样本与抽样分布1. 随机样本的概念及其性质2. 样本统计量的概念及其性质3. 样本均值和样本方差4. 正态总体抽样分布5. t分布,x^2分布,F分布的定义及其应用八、参数估计与假设检验1. 点估计的概念及性质2. 极大似然估计3. 置信区间的概念及计算4. 参数假设检验的概念及流程5. 正态总体均值的假设检验九、回归与方差分析1. 回归分析的概念及方法2. 多元回归模型、回归模型的检验3. 方差分析的概念及方法4. 单因素方差分析、双因素方差分析以上是概率论中的一些重要考点总结。
在备考过程中,需要对这些知识点有一定的掌握,并进行大量的练习和习题训练,只有充分理解和掌握这些知识,并能运用到实际问题中,才能在考试中取得好成绩。
随机变量 特征函数 矩
随机变量特征函数矩
随机变量是概率论中的重要概念,它描述了随机事件的结果。
而特征函数则是描述随机变量的重要工具之一,它可以用来确定随机变量的分布和性质。
特征函数是一个复数函数,通常表示为φ(t),其中t为实数。
对于一个随机变量X,它的特征函数φ(t)定义为:
φ(t) = E[e^(itX)]
其中E表示期望,i表示虚数单位。
特征函数在概率论中有广泛的应用,可以用来计算随机变量的矩和分布,以及求解各种概率分布的性质。
矩是描述随机变量的另一个重要工具,它表示随机变量的各阶矩值。
对于一个随机变量X,它的k阶矩定义为:
E[X^k]
其中E表示期望。
随机变量的矩可以用来描述它的分布和性质,例如均值、方差、偏度和峰度等。
特征函数和矩之间存在着紧密的联系,可以通过特征函数来计算随机变量的各阶矩。
具体来说,随机变量的k阶矩可以表示为特征函数的k阶导数在0处的值:
E[X^k] = (-i)^k φ^(k)(0)
其中φ^(k)(t)表示φ(t)的k阶导数。
这个公式可以用来计算随机变量的矩,从而求解各种概率分布的性质。
总之,随机变量、特征函数和矩是概率论中的重要概念和工具,
它们在统计学、金融学、物理学等领域有广泛的应用。
深入理解这些概念和工具,对于掌握概率论和统计学的基本原理和方法,以及解决实际问题都具有重要意义。
概率统计:矩母函数
矩母函数与特征函数在计算随机变量的数字特征和概率分 布起很大的作用,它们使许多繁难的问题得到简化和解决,是证 明概率论中的许多理论问题的有力的工具.
定义 5.1 设 X 为随机变量,I 是一个包含0的(有限或无限的)
开区间,对任意t I ,期望EetX 存在,则称函数
M X (t) E(etX )
5
矩母函数(5)
3) 设U ,V 独立,U ~ B(m, p),V ~ B(n, p),W U V .则 MU (t) ( pet q)m , MV (t) ( pet q)n,
MW (t) MU (t)MV (t) ( pet q)m ( pet q)n ( pet q)mn. 故W ~ B(m n, p).
6
例 5.2 设 X ~ ( , ),则
矩母函数(6)
1) M X (t)
etx x 1e xdx 0 ( )
x 1e( t)xdx. 0 ( )
xu /( t)
(
t) ( )
0
u
1eu
du
t
a
.
2)
M
X
(t)
t
a1,
M
X
(t
)
(
2
1)
t
a2
2
2) M X (t) tet2 / 2, M X (t) t 2et2 / 2 et2 / 2 ,
EX M X (0) 0, EX 2 M X (0) 1, DX EX 2 (EX )2 1.
9
矩母函数(9)
3) M X (t) et2 / 2
(t2 / 2)k k0 k !
MY (t) et M X (t). 证 MY (t) EetY Eet( X ) et Ee(t ) X et M X (t).
1.4.11.4特征函数的定义
,
i
则
MY
t
M n
i1 Xi
ait
20 X
X1,, X n 为n维实值随机向量,
t
M
t
t1,, E
tn e(
Rn,X的 矩 E X1t1 X ntn )
母 e
函数
X ,t
定
义
为
,
X
30 矩母函数与分布函数也是一一对应关系 .
13
E e i X ,t
n维实值随机向量的特征函数为n元函数.
10
矩母函数
概率空间,F , P 上实值随机变量X ,密度函数 为p x,t R,矩母函数定义为
MX t
E etX
etx p x dx
t 2 x2
1
tx
2!
t n xn
n!
p
x
dx
1 tEX t 2 E X 2 t n E X n
50 X t 一致连续.
0,
X t h X t eitx eihx 1 p x dx
a
e ihx 1 p x dx e ihx 1 p x dx 2 p x dx
a
x a
1) 取 a 充 分 大 ,使 得 2 p x dx
2) x a , 取 h x a
目录
条件期望 特征函数
1
目录
1.4 特征函数的定义
从傅里叶变换到特征函数,再到矩母函数
2
特征函数前传
一 、卷积
如果随机变量X 与Y 相互独立,则它们的和 Z X Y的密度函数等于X 与Y 密度函数的 卷积:
fZ z f X x * fY y
f Z z f X x fY z x dx
概率论的随机变量
概率论的随机变量概率论是数学中一门重要的学科,研究的是随机事件的概率性质和规律。
随机变量是概率论中的重要概念,它是描述随机现象的数值特征的变量。
本文将从概率论的角度出发,全面介绍随机变量及其相关概念和性质。
一、随机变量的定义和分类随机变量是概率论中的一种数值变量,它的取值由随机试验的结果决定。
一般来说,随机变量可以分为离散型随机变量和连续型随机变量两类。
离散型随机变量是只能取有限或可列无穷多个值的随机变量,其取值通常是整数。
例如,抛一枚硬币,用X表示正面朝上的次数,X可以取0、1这两个值。
连续型随机变量是能够取得某个区间内所有可能值的随机变量,其取值可以是实数。
例如,测量一个人的身高X,X可以是区间[150, 200]内的任意一个值。
二、随机变量的分布函数和密度函数对于任意一个随机变量,都可以通过分布函数或密度函数来描述其概率分布情况。
1. 分布函数(累积分布函数,Cumulative Distribution Function,简称CDF):对于随机变量X,其分布函数F(x)定义为F(x) = P(X ≤ x),表示X取值小于等于x的概率。
分布函数具有以下性质:(1)F(x)是一个非降函数;(2)对于任意的实数x1 < x2,有F(x1) ≤ F(x2);(3)当x→-∞时,F(x)→0;当x→+∞时,F(x)→1。
2. 密度函数(Probability Density Function,简称PDF):对于连续型随机变量X,其密度函数f(x)定义为在某个数轴区间内,随机变量落在该区间内的概率密度。
具体来说,密度函数f(x)满足以下性质:(1)f(x) ≥ 0,即密度函数非负;(2)∫f(x)dx = 1,即密度函数的积分等于1;(3)对于任意实数a ≤ b,有P(a ≤ X ≤ b) = ∫[a,b] f(x)dx。
三、随机变量的期望和方差随机变量的期望和方差是描述随机变量性质的两个重要指标。
多项分布的数学期望、协方差阵、特征函数及母函数
多项分布的数学期望、协方差阵、特征函数及母函数多项分布的数学期望、协方差阵、特征函数及母函数 1一、定义与性质设 X 为随机变量, I 是一个包含 0 的 ( 有限或无限的 ) 开区间,对任意t ∈ I ,期望 E e t x 存在设X为随机变量,I是一个包含0的(有限或无限的)开区间,对任意t∈I,期望Ee^{tx}存在设X为随机变量,I是一个包含0的(有限或无限的)开区间,对任意t∈I,期望Eetx存在则称函数M X ( t ) = E ( e t X ) = ∫ − ∞ + ∞ e t x d F ( x ) , t ∈ I 为 X 的矩母函数则称函数M_{X}(t)=E(e^{tX})=\int_{-\infin}^{+\infin}e^{tx}dF(x),t∈I为X的矩母函数则称函数MX(t)=E(etX)=∫−∞+∞etxdF(x),t∈I为X的矩母函数设 X 为任意随机变量,称函数φ X ( t ) = E ( e i t X ) = ∫ − ∞ + ∞ e i t x d F ( x ) 为 X 的特征函数设X为任意随机变量,称函数\varphi_{X}(t)=E(e^{itX})=\int_{-\infin}^{+\infin}e^{itx}dF(x)为X的特征函数设X为任意随机变量,称函数φX(t)=E(eitX)=∫−∞+∞eitxdF(x)为X 的特征函数一个随机变量的矩母函数不一定存在,但是特征函数一定存在。
一个随机变量的矩母函数不一定存在,但是特征函数一定存在。
一个随机变量的矩母函数不一定存在,但是特征函数一定存在。
随机变量与特征函数存在一一对应的关系随机变量与特征函数存在一一对应的关系随机变量与特征函数存在一一对应的关系二、离散型随机变量的分布0、退化分布(Degenerate distribution)若 X 服从参数为 a 的退化分布,那么 f ( k ;a ) = { 1 , k = a 0 , k ≠ a 若X服从参数为a的退化分布,那么f(k;a)=\left\{\begin{matrix} 1,k=a \\ 0,k\neq a \end{matrix}\right. 若X服从参数为a的退化分布,那么f(k;a)={1,k=a0,k=a M ( t ) = e t a M(t)=e^{ta}M(t)=eta φ ( t ) = e i t a \varphi(t)=e^{ita}φ(t)=eita M ′ ( t ) = a e t a M'(t)=ae^{ta}M′(t)=aeta E X = M ′ ( 0 ) = a EX=M'(0)=aEX=M′(0)=a M ′ ′ ( t ) = a 2 e t a M''(t)=a^2e^{ta} M′′(t)=a2eta E X 2 = M ′ ′ ( 0 ) = a 2EX^2=M''(0)=a^2 EX2=M′′(0)=a2 D X = E X 2 − ( E X ) 2 = 0 DX=EX^2-(EX)^2=0 DX=EX2−(EX)2=01、离散型均匀分布(Discrete uniform distribution)若 X 服从离散型均匀分布 D U ( a , b ) , 则 X 分布函数为 F ( k ; a , b ) = ⌊ k ⌋− a + 1 b −a + 1 若X服从离散型均匀分布DU(a,b) ,则X分布函数为F(k;a,b)=\frac{\lfloor k\rfloor -a+1}{b-a+1} 若X服从离散型均匀分布DU(a,b),则X分布函数为F(k;a,b)=b−a+1⌊k⌋−a+1 则矩母函数M ( t ) = ∑ k = a b e t k P ( x = k ) 则矩母函数M(t)=\sum_{k=a}^{b} e^{tk}P(x=k) 则矩母函数M(t)=k=a∑betkP(x=k) = ( ∑ k = a b e t k ) 1 b − a + 1 =(\sum_{k=a}^{b} e^{tk})\frac{1}{b-a+1} =(k=a∑b etk)b−a+11 = e a t − e ( b + 1 ) t ( 1 − e t ) ( b − a + 1 ) =\frac{e^{at}-e^{(b+1)t}}{(1-e^{t})(b-a+1)} =(1−et)(b−a+1)eat−e(b+1)t 特征函数φ ( t ) = ∑k = a b e i t k P ( x = k ) 特征函数\varphi(t)=\sum_{k=a}^{b} e^{itk}P(x=k) 特征函数φ(t)=k=a∑beitkP(x=k) = ( ∑ k = a b e i t k ) 1 b −a + 1 =(\sum_{k=a}^{b} e^{itk})\frac{1}{b-a+1}=(k=a∑beitk)b−a+11 = e a i t − e ( b + 1 ) i t ( 1 − e i t ) ( b − a + 1 ) =\frac{e^{ait}-e^{(b+1)it}}{(1-e^{it})(b-a+1)}=(1−eit)(b−a+1)eait−e(b+1)it M ′ ( t ) = 1 b − a + 1 ( a e a t − ( b + 1 ) e ( b + 1 ) t ) ( 1 − e t ) + ( e a t − e ( b + 1 ) t ) e t ( e t − 1 ) 2M'(t)=\frac{1}{b-a+1}\frac{(ae^{at}-(b+1)e^{(b+1)t})(1-e^t)+(e^{at}-e^{(b+1)t})e^t}{(e^{t}-1)^{2}} M′(t)=b−a+11(et−1)2(aeat−(b+1)e(b+1)t)(1−et)+(eat−e(b+1)t)et t = 0 为M ′ ( t ) 的可去间断点,补充定义M ′ ( 0 ) = lim t → 0 M ′ ( t ) t=0为M'(t)的可去间断点,补充定义M'(0)=\lim_{t\rightarrow0}M'(t) t=0为M′(t)的可去间断点,补充定义M′(0)=t→0limM′(t) E X = M ′ ( 0 ) = lim t → 0 1 b − a + 1 ( a 2 e at − ( b + 1 ) 2 e ( b + 1 ) t ) ( 1 − e t ) + ( e at − e ( b + 1 ) t ) e t 2 ( e t − 1 ) e tEX=M'(0)=\lim_{t\rightarrow0}\frac{1}{b-a+1}\frac{(a^2e^{at}-(b+1)^2e^{(b+1)t})(1-e^t)+(e^{at}-e^{(b+1)t})e^t}{2(e^{t}-1)e^t}EX=M′(0)=t→0limb−a+112(et−1)et(a2eat−(b+1)2e(b+1)t)(1−et)+(eat−e(b+1)t) et = lim t → 0 1 b − a + 1 ( a 2 e a t − ( b +1 )2 e ( b + 1 ) t ) ( e − t − 1 ) + ( e a t − e ( b + 1 ) t ) 2 ( e t − 1 )=\lim_{t\rightarrow0}\frac{1}{b-a+1}\frac{(a^2e^{at}-(b+1)^2e^{(b+1)t})(e^{-t}-1)+(e^{at}-e^{(b+1)t})}{2(e^{t}-1)} =t→0limb−a+112(et−1)(a2eat−(b+1)2e(b+1)t)(e−t−1)+(eat−e(b+1)t) = lim t → 0 1 b − a + 1 ( a 3 e a t − ( b + 1 ) 3 e ( b + 1 ) t ) ( e − t − 1 ) − ( a 2 e a t −( b + 1 ) 2 e ( b + 1 ) t ) e − t + ( a e a t − ( b + 1 ) e ( b + 1 ) t ) 2 e t=\lim_{t\rightarrow0}\frac{1}{b-a+1}\frac{(a^3e^{at}-(b+1)^3e^{(b+1)t})(e^{-t}-1)-(a^2e^{at}-(b+1)^2e^{(b+1)t})e^{-t}+(ae^{at}-(b+1)e^{(b+1)t})}{2e^{t}} =t→0limb−a+112et(a3eat−(b+1)3e(b+1)t)(e−t−1)−(a2eat−(b+1)2e(b+1)t)e−t+(aeat−(b+1)e(b+1)t) = − a 2 + ( b + 1 ) 2 +a − (b + 1 ) 2 ( b − a + 1 ) =\frac{-a^2+(b+1)^2+a-(b+1)}{2(b-a+1)} =2(b−a+1)−a2+(b+1)2+a−(b+1) = − a 2 + ( b + 1 ) 2 2 ( b − a + 1 ) − 1 2 =\frac{-a^2+(b+1)^2}{2(b-a+1)}-\frac{1}{2}=2(b−a+1)−a2+(b+1)2−21 = ( b + 1 − a ) ( b + 1 +a ) 2 (b − a + 1 ) − 1 2 =\frac{(b+1-a)(b+1+a)}{2(b-a+1)}-\frac{1}{2}=2(b−a+1)(b+1−a)(b+1+a)−21 = b + 1 + a 2 − 1 2=\frac{b+1+a}{2}-\frac{1}{2} =2b+1+a−21 = b + a 2=\frac{b+a}{2} =2b+a 由于对M ′ ( t ) 求导得到M ′ ′ ( t ) ,再求M ′ ′ ( 0 ) 的方法比较繁琐,而我们只需要 t = 0 时 M 的二阶导数值,由于对M'(t)求导得到M''(t),再求M''(0)的方法比较繁琐,而我们只需要t=0时M的二阶导数值,由于对M′(t)求导得到M′′(t),再求M′′(0)的方法比较繁琐,而我们只需要t=0时M的二阶导数值,因此可以考虑使用 T a y l o r 公式计算M ′ ′ ( 0 ) 因此可以考虑使用Taylor公式计算M''(0) 因此可以考虑使用Taylor公式计算M′′(0) 令 1 − e t = u , t = 0 时 , u = 0 令1-e^t=u,t=0时,u=0 令1−et=u,t=0时,u=0 M ( t ) = e a t − e ( b + 1 ) t ( 1 − e t ) ( b − a + 1 )M(t)=\frac{e^{at}-e^{(b+1)t}}{(1-e^{t})(b-a+1)}M(t)=(1−et)(b−a+1)eat−e(b+1)t = 1 b − a + 1 u a −u b + 1 u =\frac{1}{b-a+1}\frac{u^a-u^{b+1}}{u}=b−a+11uua−ub+1 = 1 b − a + 1 1 + a 1 ! ( − u ) + a ( a − 1 ) 2 ! u 2 + a ( a − 1 ) ( a − 2 ) 3 ! ( − u 3 ) + o ( u 3 ) − 1 − b + 1 1 ! ( − u ) −( b + 1 ) b 2 ! u 2 − ( b + 1 ) b ( b − 1 ) 3 ! ( −u 3 ) − o ( u 3 ) u =\frac{1}{b-a+1}\frac{1+\frac{a}{1!}(-u)+\frac{a(a-1)}{2!}u^2+\frac{a(a-1)(a-2)}{3!}(-u^3)+o(u^3)-1-\frac{b+1}{1!}(-u)-\frac{(b+1)b}{2!}u^2-\frac{(b+1)b(b-1)}{3!}(-u^3)-o(u^3)}{u} =b−a+11u1+1!a (−u)+2!a(a−1)u2+3!a(a−1)(a−2)(−u3)+o(u3)−1−1!b+1(−u)−2!(b+1)bu2−3!(b+1)b(b−1) (−u3)−o(u3) = 1 b − a + 1 a 1 ! ( − u ) + a ( a −1 ) 2 ! u 2 + a ( a − 1 ) ( a − 2 ) 3 ! ( − u 3 ) + o ( u 3 ) − b + 1 1 ! ( − u ) − ( b + 1 ) b 2 ! u 2 − ( b + 1 ) b ( b − 1 ) 3 ! ( − u 3 ) u=\frac{1}{b-a+1}\frac{\frac{a}{1!}(-u)+\frac{a(a-1)}{2!}u^2+\frac{a(a-1)(a-2)}{3!}(-u^3)+o(u^3)-\frac{b+1}{1!}(-u)-\frac{(b+1)b}{2!}u^2-\frac{(b+1)b(b-1)}{3!}(-u^3)}{u} =b−a+11u1!a(−u)+2!a(a−1)u2+3!a(a−1)(a−2)(−u3)+o(u3)−1!b+1 (−u)−2!(b+1)bu2−3!(b+1)b(b−1)(−u3) = 1 b − a + 1 ( ( b + 1 − a ) + a ( a − 1 ) 2 ! u + a ( a − 1 ) ( a − 2 ) 3 ! ( − u 2 ) + o ( u 2 ) − ( b + 1 ) b2 ! u − ( b + 1 ) b ( b − 1 )3 ! ( − u 2 ) )=\frac{1}{b-a+1}((b+1-a)+\frac{a(a-1)}{2!}u+\frac{a(a-1)(a-2)}{3!}(-u^2)+o(u^2)-\frac{(b+1)b}{2!}u-\frac{(b+1)b(b-1)}{3!}(-u^2)) =b−a+11((b+1−a)+2!a(a−1)u+3!a(a−1)(a−2)(−u2)+o(u2)−2!(b+1)bu−3!(b+1)b(b−1)(−u2)) = 1 + a ( a − 1 ) − ( b + 1 ) b 2 ! ( b − a + 1 ) u + ( b +1 ) b ( b − 1 ) − a ( a − 1 ) ( a −2 )3 ! ( b −a + 1 ) u 2 + o ( u 2 ) =1+\frac{a(a-1)-(b+1)b}{2!(b-a+1)}u+\frac{(b+1)b(b-1)-a(a-1)(a-2)}{3!(b-a+1)}u^2+o(u^2) =1+2!(b−a+1)a(a−1)−(b+1)bu+3!(b−a+1)(b+1)b(b−1)−a(a−1)(a−2)u2+o(u2) 而 u = 1 − e t = − t − t 2 2 ! + o ( t 2 ) 而u=1-e^t=-t-\frac{t^2}{2!}+o(t^2) 而u=1−et=−t−2!t2+o(t2) 因此M ( t ) = 1 − a ( a − 1 ) − ( b + 1 ) b 2 ! ( b −a + 1 ) t − a ( a − 1 ) − (b + 1 ) b 2 ! ( b − a + 1 ) t 2 2 ! + ( b + 1 ) b ( b − 1 ) − a ( a − 1 ) ( a − 2 ) 3 ! ( b − a + 1 ) t 2 + o ( t 2 ) 因此M(t)=1-\frac{a(a-1)-(b+1)b}{2!(b-a+1)}t-\frac{a(a-1)-(b+1)b}{2!(b-a+1)}\frac{t^2}{2!}+\frac{(b+1)b(b-1)-a(a-1)(a-2)}{3!(b-a+1)}t^2+o(t^2) 因此M(t)=1−2!(b−a+1)a(a−1)−(b+1)bt−2!(b−a+1)a(a−1)−(b+1)b2!t2+3!(b−a+1)(b+1)b(b−1)−a(a−1)(a−2)t2+o(t2) 又因为M ( t ) = M ( 0 ) + M ′ ( 0 ) t + M ′ ′ ( 0 ) 2 ! t 2 + o ( t 2 ) 又因为M(t)=M(0)+M'(0)t+\frac{M''(0)}{2!}t^2+o(t^2) 又因为M(t)=M(0)+M′(0)t+2!M′′(0)t2+o(t2) 因此M ′ ( 0 ) = − a ( a − 1 ) − ( b + 1 ) b 2 ! ( b − a + 1 ) = a + b 2 因此M'(0)=-\frac{a(a-1)-(b+1)b}{2!(b-a+1)}=\frac{a+b}{2} 因此M′(0)=−2!(b−a+1)a(a−1)−(b+1)b=2a+b E X = M ′( 0 ) = a + b 2 EX=M'(0)=\frac{a+b}{2} EX=M′(0)=2a+b 而M ′ ′ ( 0 ) = 2 ! ∗ ( − a ( a − 1 ) − ( b +1 ) b 4 ( b − a + 1 ) + ( b + 1 ) b ( b − 1 ) − a ( a − 1 ) ( a −2 )3 ! ( b − a + 1 ) ) 而M''(0)=2!*(-\frac{a(a-1)-(b+1)b}{4(b-a+1)}+\frac{(b+1)b(b-1)-a(a-1)(a-2)}{3!(b-a+1)}) 而M′′(0)=2!∗(−4(b−a+1)a(a−1)−(b+1)b+3!(b−a+1)(b+1)b(b−1)−a(a−1)(a−2)) = a + b 2 + ( b + 1 − a ) ( b 2 + a b − b + a 2 − 2 a ) 3 ( b − a + 1 ) =\frac{a+b}{2}+\frac{(b+1-a)(b^2+ab-b+a^2-2a)}{3(b-a+1)} =2a+b+3(b−a+1)(b+1−a)(b2+ab−b+a2−2a) = a + b 2 + b 2 + a b − b + a 2 − 2 a 3=\frac{a+b}{2}+\frac{b^2+ab-b+a^2-2a}{3} =2a+b+3b2+ab−b+a2−2a = 2 a 2 + 2 b 2 + 2 a b + b − a 6 =\frac{2a^2+2b^2+2ab+b-a}{6} =62a2+2b2+2ab+b−a D X = E X 2 − ( E X ) 2 = M ′ ′ ( 0 ) − ( E X ) 2DX=EX^2-(EX)^2=M''(0)-(EX)^2DX=EX2−(EX)2=M′′(0)−(EX)2 = 2 a 2 + 2 b 2 + 2 a b + b − a 6 − a 2 + 2 a b + b 2 4=\frac{2a^2+2b^2+2ab+b-a}{6}-\frac{a^2+2ab+b^2}{4}=62a2+2b2+2ab+b−a−4a2+2ab+b2 = ( b − a + 1 ) 2 − 1 12 =\frac{(b-a+1)^2-1}{12} =12(b−a+1)2−12、伯努利分布/两点分布(Bernoulli distribution)若 X 服从伯努利分布 B ( 1 , p ) , 则 X 满足 P ( x = 1 ) = p , P ( x = 0 ) = 1 − p = q 若X服从伯努利分布B(1,p) ,则X满足P(x=1)=p, P(x=0)=1-p=q 若X服从伯努利分布B(1,p),则X满足P(x=1)=p,P(x=0)=1−p=q M ( t ) = p e t + 1 − p M(t)=pe^{t}+1-p M(t)=pet+1−p φ ( t ) = p e i t + 1 − p \varphi(t)=pe^{it}+1-pφ(t)=peit+1−p M ′ ( t ) = p e t M'(t)=pe^{t}M′(t)=pet E X = M ′ ( 0 ) = p EX=M'(0)=p EX=M′(0)=pM ′ ′ ( t ) = p e t M''(t)=pe^{t} M′′(t)=pet E X 2 = M ′ ′ ( 0 ) = p EX^{2}=M''(0)=p EX2=M′′(0)=p D X = E X 2 − ( E X ) 2 = p ( 1 − p ) DX=EX^{2}-(EX)^{2}=p(1-p) DX=EX2−(EX)2=p(1−p)3、二项分布(Binomial distribution)若 X 服从二项分布 B ( n , p ) , 则 X 满足 f ( k ; n , p ) = P ( x = k ) = C n k p k ( 1 − p ) n − k ( n 为整数 ) 若X服从二项分布B(n,p) ,则X满足f(k;n,p)=P(x=k)=C_{n}^{k}p^k(1-p)^{n-k} (n为整数) 若X 服从二项分布B(n,p),则X满足f(k;n,p)=P(x=k)=Cnkpk(1−p)n−k(n为整数) 因为服从二项分布的变量可以看作 n 个独立相同的服从伯努利分布的变量之和因为服从二项分布的变量可以看作n个独立相同的服从伯努利分布的变量之和因为服从二项分布的变量可以看作n个独立相同的服从伯努利分布的变量之和因此M ( t ) = ( p e t + 1 − p ) n 因此M(t)=(pe^{t}+1-p)^{n} 因此M(t)=(pet+1−p)n φ ( t ) = ( p e i t + 1 − p ) n \varphi(t)=(pe^{it}+1-p)^{n}φ(t)=(peit+1−p)n M ′ ( t ) = n p ( p e t + 1 − p ) n − 1 e t M'(t)=np(pe^{t}+1-p)^{n-1}e^{t}M′(t)=np(pet+1−p)n−1et E X = M ′ ( 0 ) = n pEX=M'(0)=np EX=M′(0)=np M ′ ′ ( t ) = n ( n − 1 )p 2 ( p e t + 1 − p ) n − 2 e 2 t + n p ( p e t + 1 − p ) n − 1 e t M''(t)=n(n-1)p^{2}(pe^{t}+1-p)^{n-2}e^{2t}+np(pe^{t}+1-p)^{n-1}e^{t}M′′(t)=n(n−1)p2(pet+1−p)n−2e2t+np(pet+1−p)n−1et E X 2 = M ′ ′ ( 0 ) = n ( n − 1 ) p 2 + n pEX^{2}=M''(0)=n(n-1)p^{2}+np EX2=M′′(0)=n(n−1)p2+npD X =E X 2 − ( E X ) 2 = n p ( 1 − p ) DX=EX^{2}-(EX)^{2}=np(1-p) DX=EX2−(EX)2=np(1−p)4、几何分布(Geometric distribution)若 X 服从几何分布 G e ( p ) , 则 X 满足 f ( k ; p ) = P ( x = k ) = ( 1 − p ) k − 1 p ( k = 1 , 2 , 3...... ) 若X服从几何分布Ge(p), 则X满足f(k;p)=P(x=k)=(1-p)^{k-1}p (k=1,2,3......) 若X服从几何分布Ge(p),则X满足f(k;p)=P(x=k)=(1−p)k−1p(k=1,2,3......) M ( t ) = ∑ k = 1 ∞ ( 1 − p ) k − 1 p e t kM(t)=\sum_{k=1}^{\infin}(1-p)^{k-1}pe^{tk}M(t)=k=1∑∞(1−p)k−1petk = p e t ∑ k = 1 ∞ ( ( 1 − p ) e t ) k − 1 =pe^{t}\sum_{k=1}^{\infin}((1-p)e^t)^{k-1} =petk=1∑∞((1−p)et)k−1 = p e t 1 −( 1 − p ) e t =\frac{pe^{t}}{1-(1-p)e^{t}}=1−(1−p)etpet φ ( t ) = ∑ k = 1 ∞ ( 1 − p ) k −1 p e i t k \varphi(t)=\sum_{k=1}^{\infin}(1-p)^{k-1}pe^{itk} φ(t)=k=1∑∞(1−p)k−1peitk = p e i t ∑ k = 1 ∞ ( ( 1 − p ) e i t ) k − 1=pe^{it}\sum_{k=1}^{\infin}((1-p)e^{it})^{k-1}=peitk=1∑∞((1−p)eit)k−1 = p e i t 1 − ( 1 − p ) e i t =\frac{pe^{it}}{1-(1-p)e^{it}} =1−(1−p)eitpeit M ′ ( t ) = p e t ( 1 − ( 1 − p ) e t ) 2M'(t)=\frac{pe^t}{(1-(1-p)e^t)^2}M′(t)=(1−(1−p)et)2pet E X = M ′ ( 0 ) = 1 pEX=M'(0)=\frac{1}{p} EX=M′(0)=p1 M ′ ′ ( t ) = p e t ( e t − p e t + 1 ) ( 1 − ( 1 − p ) e t ) 3M''(t)=\frac{pe^t(e^t-pe^t+1)}{(1-(1-p)e^t)^3}M′′(t)=(1−(1−p)et)3pet(et−pet+1) E X 2 = M ′ ′( 0 ) = 2 − p p 2 EX^{2}=M''(0)=\frac{2-p}{p^2}EX2=M′′(0)=p22−p D X = E X 2 − ( E X ) 2 = 1 − p p 2 DX=EX^{2}-(EX)^{2}=\frac{1-p}{p^2}DX=EX2−(EX)2=p21−p5、负二项分布(Negative binomial distribution)若 X 服从负二项分布 N B ( r , p ) , 则 X 满足 f ( k ; r , p ) = ( k + r − 1 k ) p k ( 1 − p ) r , k = 0 , 1 , 2 , 3...... 若X服从负二项分布NB(r,p), 则X满足f(k;r,p)=\binom{k+r-1}{k}p^{k}(1-p)^{r} ,k=0,1,2,3...... 若X服从负二项分布NB(r,p),则X满足f(k;r,p)=(kk+r−1)pk(1−p)r,k=0,1,2,3...... ( r 可以为实数,此时的分布称为波利亚分布 ) (r可以为实数,此时的分布称为波利亚分布) (r可以为实数,此时的分布称为波利亚分布) M ( t ) = ∑ k = 0 ∞ ( k +r − 1 k ) p k ( 1 − p ) r e t kM(t)=\sum_{k=0}^{\infin}\binom{k+r-1}{k}p^k(1-p)^re^{tk} M(t)=k=0∑∞(kk+r−1)pk(1−p)retk = ∑ k = 0 ∞ ( − 1 ) k ( − r k ) p k ( 1 − p ) r e t k=\sum_{k=0}^{\infin}(-1)^k\binom{-r}{k}p^k(1-p)^re^{tk} =k=0∑∞(−1)k(k−r)pk(1−p)retk = ∑ k = 0 ∞ ( − p e t ) k ( − r k ) ( 1 − p ) r =\sum_{k=0}^{\infin}(-pe^t)^k\binom{-r}{k}(1-p)^r =k=0∑∞(−pet)k(k−r)(1−p)r = ( 1 − p ) r ∑ k = 0 ∞ ( − p e t ) k( − r k ) 1 − r − k =(1-p)^r\sum_{k=0}^{\infin}(-pe^t)^k\binom{-r}{k}1^{-r-k} =(1−p)rk=0∑∞(−pet)k(k−r)1−r−k = ( 1 − p ) r ( 1 − p e t ) −r =(1-p)^r(1-pe^t)^{-r} =(1−p)r(1−pet)−r φ ( t ) = ∑ k = 0 ∞ ( k + r − 1 k ) p k ( 1 − p ) r e i t k \varphi(t)=\sum_{k=0}^{\infin}\binom{k+r-1}{k}p^k(1-p)^re^{itk} φ(t)=k=0∑∞(kk+r−1)pk(1−p)reitk = ∑ k = 0 ∞ ( − 1 ) k ( − r k ) p k ( 1 − p ) r e i t k =\sum_{k=0}^{\infin}(-1)^k\binom{-r}{k}p^k(1-p)^re^{itk} =k=0∑∞(−1)k(k−r)pk(1−p)reitk = ∑ k = 0 ∞ ( − p e i t ) k ( − r k ) ( 1 − p ) r=\sum_{k=0}^{\infin}(-pe^{it})^k\binom{-r}{k}(1-p)^r=k=0∑∞(−peit)k(k−r)(1−p)r = ( 1 − p ) r ∑ k = 0 ∞ ( − p e i t ) k ( − r k ) 1 − r − k =(1-p)^r\sum_{k=0}^{\infin}(-pe^{it})^k\binom{-r}{k}1^{-r-k} =(1−p)rk=0∑∞(−peit)k(k−r)1−r−k = ( 1 − p ) r ( 1 − p e i t ) − r =(1-p)^r(1-pe^{it})^{-r}=(1−p)r(1−peit)−r M ′ ( t ) = ( 1 − p ) r ( − r ) ( 1 − p e t ) − r − 1 ( − p e t ) M'(t)=(1-p)^r(-r)(1-pe^{t})^{-r-1}(-pe^t)M′(t)=(1−p)r(−r)(1−pet)−r−1(−pet) = r p ( 1 −p ) r e t ( 1 − p e t ) − r − 1 =rp(1-p)^re^t(1-pe^t)^{-r-1} =rp(1−p)ret(1−pet)−r−1 E X = M ′( 0 ) = r p 1 − p EX=M'(0)=\frac{rp}{1-p}EX=M′(0)=1−prp M ′ ′ ( t ) = r p ( 1 − p ) r e t ( 1 − p e t ) − r − 1 + r p ( 1 − p ) r e t ( − r − 1 ) ( 1 − p e t ) − r − 2 ( − p e t )M''(t)=rp(1-p)^re^t(1-pe^t)^{-r-1}+rp(1-p)^re^t(-r-1)(1-pe^t)^{-r-2}(-pe^t)M′′(t)=rp(1−p)ret(1−pet)−r−1+rp(1−p)ret(−r−1) (1−pet)−r−2(−pet) E X 2 = r p ( 1 − p ) − 1 + r ( r + 1 ) p 2 ( 1 − p ) − 2 EX^2=rp(1-p)^{-1}+r(r+1)p^2(1-p)^{-2}EX2=rp(1−p)−1+r(r+1)p2(1−p)−2 = r p ( 1 − p ) + r ( r + 1 ) p 2 ( 1 − p ) 2 =\frac{rp(1-p)+r(r+1)p^2}{(1-p)^2} =(1−p)2rp(1−p)+r(r+1)p2 = r p + r 2 p 2 ( 1 − p ) 2 =\frac{rp+r^2p^2}{(1-p)^2}=(1−p)2rp+r2p2 D X = E X 2 − ( E X ) 2 = p r ( 1 −p ) 2 DX=EX^2-(EX)^2=\frac{pr}{(1-p)^2}DX=EX2−(EX)2=(1−p)2pr6、泊松分布(Poisson distribution)若 X 服从泊松分布P ( λ ) , 则 P ( X = k ) = e− λ λ k k ! , k = 0 , 1 , 2...... 若X服从泊松分布P(\lambda),则P(X=k)=\frac{e^{-\lambda}\lambda^k}{k!},k=0,1,2...... 若X服从泊松分布P(λ),则P(X=k)=k!e−λλk,k=0,1,2...... M ( t ) = ∑k = 0 ∞ e − λ λ k k ! e t kM(t)=\sum_{k=0}^{\infin}\frac{e^{-\lambda}\lambda^k}{k!}e^{tk} M(t)=k=0∑∞k!e−λλketk = e − λ ∑ k = 0 ∞ ( λ e t ) k k ! =e^{-\lambda}\sum_{k=0}^{\infin}\frac{(\lambda e^t)^k}{k!} =e−λk=0∑∞k!(λe t)k = e − λ e λ e t =e^{-\lambda}e^{\lambda e^t} =e−λeλet= e λ ( e t − 1 ) =e^{\lambda (e^t-1)} =eλ(et−1) φ ( t ) = ∑ k = 0∞ e − λ λ k k ! e i t k\varphi(t)=\sum_{k=0}^{\infin}\frac{e^{-\lambda}\lambda^k}{k!}e^{itk} φ(t)=k=0∑∞k!e−λλk eitk = e − λ ∑ k = 0 ∞ ( λ e i t ) k k ! =e^{-\lambda}\sum_{k=0}^{\infin}\frac{(\lambdae^{it})^k}{k!} =e−λk=0∑∞k!(λe it)k = e − λ e λ e i t =e^{-\lambda}e^{\lambda e^{it}} =e−λeλeit = e λ ( e i t − 1 ) =e^{\lambda (e^{it}-1)} =eλ(eit−1) M ′ ( t ) = e λ ( e t − 1 ) λ e t M'(t)=e^{\lambda (e^t-1)}\lambda e^t M′(t)=eλ(et−1)λe t E X = M ′ ( 0 ) = λ EX=M'(0)=\lambda EX=M′(0)=λM ′ ′ ( t ) = e λ ( e t − 1 ) λ e t + e λ ( e t − 1 ) λ e tλ e t M''(t)=e^{\lambda (e^t-1)}\lambdae^t+e^{\lambda (e^t-1)}\lambda e^t\lambda e^tM′′(t)=eλ(et−1)λe t+eλ(et−1)λe tλe t E X 2 =M ′ ′ ( 0 ) = λ + λ 2EX^2=M''(0)=\lambda+\lambda^2 EX2=M′′(0)=λ+λ2 D X = E X 2 − ( E X ) 2 = λ DX=EX^2-(EX)^2=\lambdaDX=EX2−(EX)2=λ三、连续型随机变量的分布1、连续型均匀分布(Uniform distribution (continuous))若 X 服从连续型均匀分布 U ( a , b ) , 则 f( x ) = 1 b − a I [ a , b ] ( x ) 若X服从连续型均匀分布U(a,b),则f(x)=\frac{1}{b-a}I_{[a,b]}(x) 若X服从连续型均匀分布U(a,b),则f(x)=b−a1I[a,b](x) M ( t ) = ∫ a b 1 b − a e t x d x M(t)=\int_{a}^{b}\frac{1}{b-a}e^{tx}dx M(t)=∫abb−a1etxdx = 1 b − a ∫ a b e t x d x =\frac{1}{b-a}\int_{a}^{b}e^{tx}dx =b−a1∫abetxdx = 1 b − a ( 1 t e t x ∣ a b ) =\frac{1}{b-a}(\frac{1}{t}e^{tx}\mid_{a}^{b}) =b−a1(t1etx∣ab) = e t b − e t a t ( b − a ) =\frac{e^{tb}-e^{ta}}{t(b-a)} =t(b−a)etb−eta φ ( t ) = ∫ a b 1 b − a e i t x d x \varphi(t)=\int_{a}^{b}\frac{1}{b-a}e^{itx}dxφ(t)=∫abb−a1eitxdx = 1 b − a ∫ a b e i t x d x=\frac{1}{b-a}\int_{a}^{b}e^{itx}dx =b−a1∫abeitxdx = 1 b − a ( 1 i t e i t x ∣ a b ) =\frac{1}{b-a}(\frac{1}{it}e^{itx}\mid_{a}^{b}) =b−a1(it1eitx∣ab) = e i t b − e i t a i t ( b − a ) =\frac{e^{itb}-e^{ita}}{it(b-a)} =it(b−a)eitb−eita M ′ ( t ) = 1 b − a ( b e t b − a e t a ) t − ( e t b − e t a ) t 2 M'(t)=\frac{1}{b-a}\frac{(be^{tb}-ae^{ta})t-(e^{tb}-e^{ta})}{t^2} M′(t)=b−a1t2(betb−aeta)t−(etb−eta) t = 0 为M ′ ( t ) 的可去间断点,补充定义M ′ ( 0 ) = lim t → 0 M ′ ( t ) t=0为M'(t)的可去间断点,补充定义M'(0)=\lim_{t\rightarrow0}M'(t) t=0为M′(t)的可去间断点,补充定义M′(0)=t→0limM′(t) E X = M ′ ( 0 ) = lim t → 0 ( b e t b − a e t a ) + ( b 2 e t b − a 2 e t a ) t − ( b e t b − a e ta ) 2 t (b − a )EX=M'(0)=\lim_{t\rightarrow0}\frac{(be^{tb}-ae^{ta})+(b^2e^{tb}-a^2e^{ta})t-(be^{tb}-ae^{ta})}{2t(b-a)} EX=M′(0)=t→0lim2t(b−a)(betb−aeta)+(b2etb−a2eta)t−(betb−aeta) = lim t → 0 ( b 2 e t b − a 2 e t a ) 2 ( b − a ) =\lim_{t\rightarrow0}\frac{(b^2e^{tb}-a^2e^{ta})}{2(b-a)} =t→0lim2(b−a)(b2etb−a2eta) = b 2 − a 2 2 ( b − a ) =\frac{b^2-a^2}{2(b-a)} =2(b−a)b2−a2 = a + b 2 =\frac{a+b}{2} =2a+b M ′ ′ ( t ) = 1 b − a ( ( b 2 e t b − a 2 e t a ) t + ( b e t b − a e t a ) −( b e t b − a e t a ) ) t − 2 ( ( b e t b − a e ta ) t − ( e tb − e t a ) ) t 3 M''(t)=\frac{1}{b-a}\frac{((b^2e^{tb}-a^2e^{ta})t+(be^{tb}-ae^{ta})-(be^{tb}-ae^{ta}))t-2((be^{tb}-ae^{ta})t-(e^{tb}-e^{ta}))}{t^3} M′′(t)=b−a1t3((b2etb−a2eta)t+(betb−aeta)−(betb−aeta))t−2((be tb−aeta)t−(etb−eta)) = 1 b − a t 2 ( b 2 e t b −a 2 e t a ) − 2 t (b e t b − a e t a ) + 2 ( e t b − e t a ) t 3 =\frac{1}{b-a}\frac{t^2(b^2e^{tb}-a^2e^{ta})-2t(be^{tb}-ae^{ta})+2(e^{tb}-e^{ta})}{t^3} =b−a1t3t2(b2etb−a2eta)−2t(betb−aeta)+2(etb−eta) t = 0 为M ′ ′ ( t ) 的可去间断点,补充定义M ′ ′ ( 0 ) = lim t → 0 M ′ ′ ( t ) t=0为M''(t)的可去间断点,补充定义M''(0)=\lim_{t\rightarrow0}M''(t) t=0为M′′(t)的可去间断点,补充定义M′′(0)=t→0limM′′(t) E X 2 =M ′ ′ ( 0 ) = lim t → 0 1 b − a t 2 ( b 3 e t b − a 3 e t a ) + 2 t ( b 2 e t b − a 2 e t a ) − 2 t ( b 2 e t b − a 2 e t a ) − 2 ( b e t b − a e t a ) + 2 ( b e t b − a e t a ) 3 t 2EX^2=M''(0)=\lim_{t\rightarrow0}\frac{1}{b-a}\frac{t^2(b^3e^{tb}-a^3e^{ta})+2t(b^2e^{tb}-a^2e^{ta})-2t(b^2e^{tb}-a^2e^{ta})-2(be^{tb}-ae^{ta})+2(be^{tb}-ae^{ta})}{3t^2}EX2=M′′(0)=t→0limb−a13t2t2(b3etb−a3eta)+2t(b2etb−a2eta)−2t(b2etb−a2eta)−2(betb−aeta)+2(betb−aeta) = 1 b − a lim t → 0 t 2 ( b 3 e t b − a 3 e t a ) 3 t 2 =\frac{1}{b-a}\lim_{t\rightarrow0}\frac{t^2(b^3e^{tb}-a^3e^{ta})}{3t^2} =b−a1t→0lim3t2t2(b3etb−a3eta) = 1 b − a lim t → 0 ( b 3 e t b − a 3 e t a ) 3=\frac{1}{b-a}\lim_{t\rightarrow0}\frac{(b^3e^{tb}-a^3e^{ta})}{3} =b−a1t→0lim3(b3etb−a3eta) = 1 b − a ( b 3 − a 3 ) 3 =\frac{1}{b-a}\frac{(b^3-a^3)}{3}=b−a13(b3−a3) = b 2 + a b + a 2 3=\frac{b^2+ab+a^2}{3} =3b2+ab+a2 D X = E X 2 − ( E X ) 2 = ( b − a ) 2 12 DX=EX^2-(EX)^2=\frac{(b-a)^2}{12} DX=EX2−(EX)2=12(b−a)22、指数分布(Exponential distribution)若 X 服从指数分布 E ( λ ) ,则 f ( x ) = λ e− λ x I [ 0 , + ∞ ) ( x ) 若X服从指数分布E(\lambda),则f(x)=\lambda e^{-\lambdax}I_{[0,+\infin)}(x) 若X服从指数分布E(λ),则f(x)=λe−λx I[0,+∞)(x) M ( t ) = ∫ 0 + ∞ λ e −λ x e t x d x M(t)=\int_{0}^{+\infin} \lambda e^{-\lambda x}e^{tx}dx M(t)=∫0+∞λe−λx etxdx = λ ∫ 0 + ∞ e ( t − λ ) x d x =\lambda \int_{0}^{+\infin} e^{(t-\lambda)x}dx =λ∫0+∞e(t−λ)xdx = λ t − λ ( e ( t − λ ) x ∣ 0 + ∞ ) =\frac{\lambda}{t-\lambda}(e^{(t-\lambda)x}\mid_{0}^{+\infin}) =t−λλ(e(t−λ)x∣0+∞) t < λ 时,M ( t ) = λ t − λ ( 0 − 1 ) t<\lambda时,M(t)=\frac{\lambda}{t-\lambda}(0-1) t<λ时,M(t)=t−λλ(0−1) = λ λ − t =\frac{\lambda}{\lambda-t} =λ−tλφ ( t ) = λ λ − i t \varphi(t)=\frac{\lambda}{\lambda-it}φ(t)=λ−itλM ′ ( t ) = λ ( λ − t ) 2M'(t)=\frac{\lambda}{(\lambda-t)^2} M′(t)=(λ−t)2λE X = M ′ ( 0 ) = 1 λ EX=M'(0)=\frac{1}{\lambda}EX=M′(0)=λ1 M ′ ′ ( t ) = 2 λ ( λ − t ) 3M''(t)=\frac{2\lambda}{(\lambda-t)^3}M′′(t)=(λ−t)32λ E X 2 = M ′ ′ ( 0 ) = 2 λ 2 EX^2=M''(0)=\frac{2}{\lambda^2} EX2=M′′(0)=λ22 D X = E X 2 − ( E X ) 2 = 1 λ 2 DX=EX^2-(EX)^2=\frac{1}{\lambda^2} DX=EX2−(EX)2=λ213、正态分布(Normal distribution)若 X 服从正态分布N ( μ , σ 2 ) , 则 f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 若X服从正态分布N(\mu,\sigma^2),则f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}} 若X服从正态分布N(μ,σ2),则f(x)=2πσ1e−2σ2(x−μ)2 引理 1 :∫ − ∞ + ∞ e − t 2 2 d t = 2 π 引理1:\int_{-\infin}^{+\infin}e^{-\frac{t^2}{2}}dt=\sqrt{2\pi} 引理1:∫−∞+∞e−2t2dt=2π证明:( ∫ − ∞ + ∞ e − t 2 2 d t ) 2 = ∫ − ∞ + ∞ ∫ − ∞ + ∞ e − x 2 + y 2 2 d x d y 证明:(\int_{-\infin}^{+\infin}e^{-\frac{t^2}{2}}dt)^2=\int_{-\infin}^{+\infin}\int_{-\infin}^{+\infin}e^{-\frac{x^2+y^2}{2}}dxdy 证明:(∫−∞+∞e−2t2dt)2=∫−∞+∞∫−∞+∞e−2x2+y2dxdy = ∫ 0 2 π d θ ∫ 0 + ∞ e − r 2 2 r d r=\int_{0}^{2\pi}d\theta \int_{0}^{+\infin}e^{-\frac{r^2}{2}}rdr =∫02πdθ∫0+∞e−2r2rdr = 2 π ∫ 0 + ∞ e − r 2 2 r d r =2\pi \int_{0}^{+\infin}e^{-\frac{r^2}{2}}rdr =2π∫0+∞e−2r2rdr = 2 π ( − e −r 2 2 ∣0 + ∞ ) =2\pi (-e^{-\frac{r^2}{2}}\mid_{0}^{+\infin}) =2π(−e−2r2∣0+∞) = 2 π =2\pi =2π因此∫ − ∞ + ∞ e − t 2 2 d t = 2 π 因此\int_{-\infin}^{+\infin}e^{-\frac{t^2}{2}}dt=\sqrt{2\pi} 因此∫−∞+∞e−2t2dt=2πM ( t ) = ∫ − ∞ + ∞ 1 2 π σ e − ( x − μ ) 2 2 σ 2 e t x d x M(t)=\int_{-\infin}^{+\infin}\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}e^{tx}dx M(t)=∫−∞+∞2πσ1e−2σ2(x−μ)2etxdx = 1 2 π σ ∫ − ∞ + ∞ e −( x − μ ) 2 2 σ 2 + t x d x=\frac{1}{\sqrt{2\pi}\sigma}\int_{-\infin}^{+\infin}e^{-\frac{(x-\mu)^2}{2\sigma^2}+tx}dx =2πσ1∫−∞+∞e−2σ2(x−μ)2+txdx 令 w = x − μ σ 令w=\frac{x-\mu}{\sigma} 令w=σx−μ原式= 1 2 π ∫ − ∞ + ∞ e − w 2 2 + t ( w σ + μ ) d w 原式=\frac{1}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}e^{-\frac{w^2}{2}+t(w\sigma+\mu)}dw 原式=2π1∫−∞+∞e−2w2+t(wσ+μ)dw = e μ t 1 2 π ∫ − ∞ + ∞ e − w 2 2 + t σ w d w =e^{\mut}\frac{1}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}e^{-\frac{w^2}{2}+t\sigma w}dw=eμt2π1∫−∞+∞e−2w2+tσw dw = e μ t 1 2 π ∫ − ∞ + ∞ e − ( w − t σ ) 2 − t 2 σ 2 2 d w =e^{\mut}\frac{1}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}e^{-\frac{(w-t\sigma)^2-t^2\sigma^2}{2}}dw=eμt2π1∫−∞+∞e−2(w−tσ)2−t2σ2dw = e μ t + t 2 σ 2 2 1 2 π ∫ − ∞ + ∞ e − ( w − t σ ) 2 2 d w=e^{\mut+\frac{t^2\sigma^2}{2}}\frac{1}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}e^{-\frac{(w-t\sigma)^2}{2}}dw=eμt+2t2σ22π1∫−∞+∞e−2(w−tσ)2dw = e μ t + t 2 σ 2 2 1 2 π 2 π =e^{\mut+\frac{t^2\sigma^2}{2}}\frac{1}{\sqrt{2\pi}}\sqrt{2\p i} =eμt+2t2σ22π12π= e μ t + t 2 σ 2 2 =e^{\mu t+\frac{t^2\sigma^2}{2}} =eμt+2t2σ2 φ ( t ) = ∫ − ∞ + ∞ 1 2 π σ e −( x − μ ) 2 2 σ 2 e i t x d x \varphi(t)=\int_{-\infin}^{+\infin}\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}e^{itx}dx φ(t)=∫−∞+∞2πσ1e−2σ2(x−μ)2eitxdx = 1 2 π σ ∫ − ∞ + ∞ e − ( x − μ ) 2 2 σ 2 + i t x d x=\frac{1}{\sqrt{2\pi}\sigma}\int_{-\infin}^{+\infin}e^{-\frac{(x-\mu)^2}{2\sigma^2}+itx}dx=2πσ1∫−∞+∞e−2σ2(x−μ)2+itxdx 令 w = x − μ σ 令w=\frac{x-\mu}{\sigma} 令w=σx−μ原式= 1 2 π ∫ − ∞ + ∞ e − w 2 2 + i t ( w σ + μ ) d w 原式=\frac{1}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}e^{-\frac{w^2}{2}+it(w\sigma+\mu)}dw 原式=2π1∫−∞+∞e−2w2+it(wσ+μ)dw = e i μ t 1 2 π ∫ −∞ + ∞ e − w 2 2 + i t σ w d w =e^{i\mut}\frac{1}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}e^{-\frac{w^2}{2}+it\sigma w}dw=e iμt2π1∫−∞+∞e−2w2+itσw dw = e i μ t 1 2 π ∫ − ∞ + ∞ e − ( w − i t σ ) 2 + t 2 σ 2 2 d w =e^{i\mut}\frac{1}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}e^{-\frac{(w-it\sigma)^2+t^2\sigma^2}{2}}dw=e iμt2π1∫−∞+∞e−2(w−itσ)2+t2σ2dw = e i μ t − t 2 σ 2 2 1 2 π ∫ − ∞ + ∞ e − ( w − i t σ ) 2 2 d w =e^{i\mu t-\frac{t^2\sigma^2}{2}}\frac{1}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}e^{-\frac{(w-it\sigma)^2}{2}}dw=e iμt−2t2σ22π1∫−∞+∞e−2(w−itσ)2dw = e i μ t − t 2 σ 2 2 12 π 2 π =e^{i\mu t-\frac{t^2\sigma^2}{2}}\frac{1}{\sqrt{2\pi}}\sqrt{2\pi} =e iμt−2t2σ22π12π= e i μ t − t 2 σ 2 2 =e^{i\mu t-\frac{t^2\sigma^2}{2}} =e iμt−2t2σ2 M ′ ( t ) = eμ t + t 2 σ 2 2 ( μ + σ 2 t ) M'(t)=e^{\mut+\frac{t^2\sigma^2}{2}}(\mu+\sigma^2t)M′(t)=eμt+2t2σ2(μ+σ2t) E X = M ′ ( 0 ) = μEX=M'(0)=\mu EX=M′(0)=μM ′ ′ ( t ) = e μ t + t 2 σ 2 2 ( μ + σ 2 t ) 2 + e μ t + t 2 σ 2 2 σ 2M''(t)=e^{\mut+\frac{t^2\sigma^2}{2}}(\mu+\sigma^2t)^2+e^{\mut+\frac{t^2\sigma^2}{2}}\sigma^2 M′′(t)=eμt+2t2σ2 (μ+σ2t)2+eμt+2t2σ2σ2 E X 2 = M ′ ′ ( 0 ) = μ 2 + σ 2 EX^2=M''(0)=\mu^2+\sigma^2 EX2=M′′(0)=μ2+σ2 D X = E X 2 − ( E X ) 2 = σ 2 DX=EX^2-(EX)^2=\sigma^2 DX=EX2−(EX)2=σ2 特别地 , X 服从标准正态分布 N ( 0 , 1 ) 时特别地,X服从标准正态分布N(0,1)时特别地,X服从标准正态分布N(0,1)时 M ( t )= e t 2 2 M(t)=e^{\frac{t^2}{2}} M(t)=e2t2 φ ( t ) = e − t 2 2 \varphi(t)=e^{-\frac{t^2}{2}} φ(t)=e−2t2 E X = 0 , D X = 1 EX=0,DX=1 EX=0,DX=14、伽马分布(Gamma distribution)若 X 服从伽马分布Γ ( α , β ) ( α , β > 0 ) , 则 f ( x ) = β α Γ ( α ) x α − 1 e − β x I( 0 , + ∞ ) ( x ) 若X服从伽马分布\Gamma(\alpha,\beta)(\alpha,\beta>0),则f(x)=\frac{\beta^\alpha}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x}I_{(0,+\infin)}(x) 若X服从伽马分布Γ(α,β)(α,β>0),则f(x)=Γ(α)βαxα−1e−βx I(0,+∞)(x) 其中,Γ ( α ) = ∫ 0 + ∞ t α − 1 e − t d t , α > 0 其中,\Gamma(\alpha)=\int_{0}^{+\infin}t^{\alpha-1}e^{-t}dt,\alpha>0 其中,Γ(α)=∫0+∞tα−1e−tdt,α>0 指数分布 E ( λ ) 是伽马分布Γ ( 1 , λ ) , χ 2 分布χ n 2 是伽马分布Γ ( n 2 , 1 2 ) 指数分布E(\lambda)是伽马分布\Gamma(1,\lambda),\chi^2分布\chi^2_n是伽马分布\Gamma(\frac{n}{2},\frac{1}{2}) 指数分布E(λ)是伽马分布Γ(1,λ),χ2分布χn2是伽马分布Γ(2n,21) M ( t ) = ∫ 0 + ∞ β α Γ ( α ) x α −1 e − β x e t x d xM(t)=\int_{0}^{+\infin}\frac{\beta^\alpha}{\Gamma(\alp ha)}x^{\alpha-1}e^{-\beta x}e^{tx}dx M(t)=∫0+∞Γ(α)βαxα−1e−βx etxdx = ∫ 0 + ∞ β α Γ ( α ) x α − 1 e ( t − β ) x d x=\int_{0}^{+\infin}\frac{\beta^\alpha}{\Gamma(\alpha)} x^{\alpha-1}e^{(t-\beta) x}dx =∫0+∞Γ(α)βαxα−1e(t−β)xdx = β α ∫ 0 + ∞ 1 Γ ( α ) x α− 1 e ( t − β ) x d x=\beta^\alpha\int_{0}^{+\infin}\frac{1}{\Gamma(\alpha) }x^{\alpha-1}e^{(t-\beta) x}dx =βα∫0+∞Γ(α)1xα−1e(t−β)xdx t < β 时,令v = ( β − t ) x ,原式= β α β − t ∫ 0 + ∞ 1 Γ ( α ) ( v β −t ) α − 1 e − v d v t<\beta时,令v=(\beta-t)x,原式=\frac{\beta^\alpha}{\beta-t}\int_{0}^{+\infin}\frac{1}{\Gamma(\alpha)}(\frac{v}{ \beta-t})^{\alpha-1}e^{-v}dv t<β时,令v=(β−t)x,原式=β−tβα∫0+∞Γ(α)1(β−tv)α−1e−vdv = ( β β − t ) α 1 Γ ( α ) ∫ 0 + ∞ v α − 1 e − v d v =(\frac{\beta}{\beta-t})^\alpha\frac{1}{\Gamma(\alpha)}\int_{0}^{+\infin}v^ {\alpha-1}e^{-v}dv =(β−tβ)αΓ(α)1∫0+∞vα−1e−vdv = ( β β − t ) α 1 Γ ( α ) Γ ( α ) =(\frac{\beta}{\beta-t})^\alpha\frac{1}{\Gamma(\alpha)}\Gamma(\alpha)=(β−tβ)αΓ(α)1Γ(α) = ( β β − t ) α=(\frac{\beta}{\beta-t})^\alpha =(β−tβ)αφ ( t ) = ( β β − i t ) α \varphi(t)=(\frac{\beta}{\beta-it})^\alpha φ(t)=(β−itβ)αM ′ ( t ) = β α ( β − t ) − α − 1 α M'(t)=\beta^\alpha(\beta-t)^{-\alpha-1}\alpha M′(t)=βα(β−t)−α−1α E X = M ′ ( 0 ) = α β EX=M'(0)=\frac{\alpha}{\beta}EX=M′(0)=βαM ′ ′ ( t ) = β α ( β − t ) − α − 2 α ( α + 1 ) M''(t)=\beta^\alpha(\beta-t)^{-\alpha-2}\alpha(\alpha+1)M′′(t)=βα(β−t)−α−2α(α+1) E X 2 = α ( α + 1 ) β 2 EX^2=\frac{\alpha(\alpha+1)}{\beta^2}EX2=β2α(α+1) D X = E X 2 − ( E X ) 2 = α β 2。
北大随机过程课件:第 3 章 第 6 讲 特征函数与母函数
特征函数、母函数、矩母函数确定随机变量的概率密度函数/分布律 方便求解独立随机变量和的分布函数一类问题可以通过微分运算求随机变量的数字特征1.特征函数:设随机变量ξ的分布函数为F(x), 概率密度函数为f(x), 称:(){}()()jt jtx jtx t E e e dF x e f x dx ξ∞∞−∞−∞Φ===∫∫ 为随机变量ξ的分布函数的特征函数,或ξ的特征函数,特征函数是概率密度函数的付氏变换。
特征函数的性质:1.特征函数与概率密度函数相互唯一地确定;2.两个相互统计独立的随机变量和的特征函数等于各个随机变量特征函数的积;3.特征函数与随机变量的数字特征的关系:()0()|{}k k k t t j E ξ=Φ=典型随机变量的特征函数1. 两点分布的特征函数:()jt t q pe Φ=+2. 二项式分布的特征函数:()()n jt t q pe Φ=+3. 几何分布:()1jtjtpe t qe Φ=− 4. 泊松分布(λ):(1)()jt e t eλ−−Φ= 5. 正态分布2(,)N σ∂:22()exp{}2t t j t σΦ=∂−6. 均匀分布[0,1]:1()jt e t jt−Φ= 7. 负指数分布:()t jtλλΦ=−2.母函数研究分析非负整值随机变量时,可以采用母函数法:对于一个取非负整数值n=0,1,2,……,的随机变量x ,,其相应的矩生成函数定义为: 0()()n n z p x n z ∞=Φ==⋅∑(1/)z Φ是序列()p x n =的正常的z 变换母函数的性质:1. 两个相互统计独立的随机变量和的母函数等于各个随机变量的母函数的积。
2. 随机个独立同分布的非负整值随机变量和的矩生成函数是原来两个母函数的复合(见附合泊松过程的应用)3.()000(),()!1,2,k k z z z p z k p k ==Φ=Φ=="通过母函数有理分式的幂级数展开等方法,得到随机变量的概率分布表达式。
矩母函数性质
矩母函数性质
矩母函数性质是一个大部分数学家都了解的概念,它涉及到一个体现一类函数
准确值的特征函数。
此外,矩母函数性质还有重要的应用价值,以解决复杂的实际问题。
首先,我们来了解矩母函数的定义和概念。
矩母函数是统计平均值的一类函数,也称之为“Action Function”。
它是一个微分形式的函数,通过一个赋值的方法
来精确表达一类函数,也就是矩母函数的值就是照这类函数的赋值情况来计算的。
矩母函数的结果通常是一整体的概括,例如计算一个函数和它的导数在各个点上的取值情况,以及取值范围,平均值等。
此外,矩母函数性质有着重要的应用价值,它可以用来解决复杂的实际问题,
比如计算一个函数的平均质量,通过矩母函数计算出来的值,就可以准确的告诉我们一个函数的总体特性,从而提高函数解决问题的效率。
由此可以看出,矩母函数作为一类平均值函数,在数学和实际问题的求解方面,有着巨大的作用和应用价值,而且它的精确度越高,应用效果也会越好。
特征函数与矩母函数
特征函数与矩母函数
特征函数和矩母函数都是数学中的概念,主要用于描述随机变量的性质。
特征函数(Characteristic function)是随机变量的一个描述函数,它是随机变量的概率分布的Fourier变换。
特征函数的定
义是:对于任意实数t,特征函数φ(t)等于随机变量X的概率
密度函数或概率分布函数的Fourier变换。
特征函数能够完全
描述一个随机变量的分布,它包含了分布的所有信息。
特征函数具有一些重要性质,比如对于相互独立的随机变量,它们的特征函数的乘积等于它们特征函数的逐点相乘。
矩母函数(Moment generating function)是随机变量的另一个
描述函数,它是随机变量的概率分布的矩级数的生成函数。
矩母函数的定义是:对于任意实数t,矩母函数M(t)等于随机变
量X的概率密度函数或概率分布函数的矩级数的生成函数。
矩母函数可以用来计算随机变量的各阶矩(均值、方差等),因此可以用于推导随机变量的性质。
特征函数和矩母函数都是对随机变量的描述函数,它们在概率论和统计学中有着广泛的应用,比如用于计算随机变量的分布、矩以及推导各种统计性质。
特征函数与矩函数的关系,写的非常不错。
∫
∞
f XY ( x, y )e j (ω1 x +ω2 y ) dxdy
f XY ( x, y ) =
1 (2π ) 2
∫ ∫
∞
∞
−∞ −∞
Φ XY (ω1 , ω2 ) ⋅ e − j (ω1x +ω2 y ) dω1dω2
边缘特征函数
Φ X (ω1 ) = Φ XY (ω1 ,0) Φ Y (ω 2 ) = Φ XY ( 0, ω 2 )
2
σ 2ω 2
2
)
ω =0
−
=0
σ 2ω 2
2
− d 2 2 E[ X ] = ( − j ) Φ X (ω ) = −[(−σ ω ) e 2 dω ω =0 2 2
2
σ 2ω 2
2
−σ e
2
]ω =0 = σ 2
5
ΦX (ω) = e
−
σ 2ω2
2
⋅ 3⋅ 5L(n −1)σ n 1 n E[ X ] = 0
1 v v T v −1 v v − ( x −m) C ( x −m) 2
v f X ( x) =
1 (2π ) C
n
e
17
χ2 分布 三、
n个互相独立的高斯变量X 1 , X 2 , L, X n , 方差均为σ 2 , 则其平方和 : Y = ∑ X i2 服从n个自由度的χ 2 分布.
i =1 n
1 2 N
n=1
n
8
1.3 随机信号实用分布律
一、均匀分布
如果随机变量 X 的概率密度满足 1 a≤ x≤b f X ( x) = b − a 0 其它 则称 X为在 [ a , b ]区间内均匀分布 的随机变量 .
正态分布矩母函数
正态分布矩母函数正态分布是概率论和统计学中一种非常重要的连续概率分布。
它在应用领域中广泛应用,经常用于描述连续随机变量的分布情况,如身高、体重等。
正态分布的概率密度函数可表示为:f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}\]其中,μ是均值,σ是标准差。
正态分布的矩母函数是指以分布的参数(μ和σ)为自变量的矩函数的生成函数。
矩函数是随机变量的一种特征函数,用于描述随机变量的统计特性。
对于正态分布的矩母函数,我们可以先计算它的算术平均值,然后用该平均值来计算方差,依次类推。
设X是一个符合正态分布的随机变量,其概率密度函数为f(x)。
那么X的n阶原点矩可表示为:m_n = E(X^n) = \int_{-\infty}^{\infty} x^n f(x) dx\]其中,E表示数学期望。
根据正态分布的概率密度函数,我们可以将其代入上述公式进行计算。
首先,计算随机变量X的一阶原点矩:m_1 = E(X) = \int_{-\infty}^{\infty} x f(x) dx\]将正态分布的概率密度函数代入,得到:m_1 = \int_{-\infty}^{\infty}x\left( \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \right) dx\]通过变量替换将上面的积分转化为标准正态分布的积分形式,得到:m_1 = \mu\]可以发现,随机变量X的一阶原点矩等于均值μ。
接下来,我们计算二阶原点矩:m_2 = E(X^2) = \int_{-\infty}^{\infty} x^2 f(x) dx\]将正态分布的概率密度函数代入:m_2 = \int_{-\infty}^{\infty} x^2\left( \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \right) dx\]通过变量替换,将上面的积分转化为标准正态分布的积分形式,得到:m_2 = \sigma^2 + \mu^2\]同样可以发现,随机变量X的二阶原点矩等于方差σ²加上均值μ²。
特征函数和矩母函数课件
特征函数和矩母函数课件
什么是特征函数?
特征函数是一种连续变量,用来表示给定概率分布的连续特征。
它们借助独特的函数结构来帮助理解该分布的性质。
一般情况下,特征函数被定义为概率密度函数的积分或积分的产物,其中使用的是一组实数序列λ1,λ2,...,λn,称为参数。
它也可以考虑为对概率密度函数的一种广义函数格式的描述。
矩母函数是一种特征函数,用于根据一定的参数描述和控制一组数据的变化模式。
它也被称为矩函数或越积函数,其基本定义为一个有限个参数的多项式,由此引出一组非负实数。
矩母函数拥有独特的性质和拓扑表示,对概率密度函数进行信息可视化具有重要意义。
它也常用于表示一个系统中细胞的状态等普遍现象。
现代精算风险理论01:损失分布
现代精算风险理论01:损失分布⽬录第⼀讲 损失分布第⼀节 随机变量的数字特征⼀、特征函数和矩母函数特征函数和矩母函数是对分布函数的变换,常⽤于确定独⽴随机变量之和的分布。
特征函数:对于随机变量 X ,其分布函数为 F (x ) ,其特征函数的定义为:ϕX (t )=E e i tX .定理:分布函数序列 F n (x ) 收敛于分布函数 F (x ) 的充分必要条件是 F n (x ) 的特征函数 ϕn (t ) 收敛于 F (x ) 的特征函数 ϕ(t ) 。
矩母函数:对于随机变量 X ,其分布函数为 F (x ) ,其矩母函数的定义为:m X (t )=E e tX .矩母函数⼀般要求 t >0 ,并且 t 的取值范围和参数分布的参数有关,使得矩母函数存在。
定理:随机变量 X 的 k 阶矩等于矩母函数的 k 阶导数在 t =0 处的取值,即E X k =d kd t km X (t )t =0.定理:如果随机变量 X 和 Y 相互独⽴,则有ϕX +Y (t )=E e i t (X +Y )=E e i tX E e i tY =ϕX (t )ϕY (t ).m X +Y(t )=E e t (X +Y )=E e tXE e tY=m X(t )m Y(t ).注意:随机变量的矩母函数可能存在,也可能不存在。
如果随机变量的矩母函数不存在,则该随机变量的分布被称为重尾分布或厚尾分布(这是重尾分布的⼀种定义)。
定理:假设随机变量 X n 和 X 的矩母函数存在,则 X n 的矩母函数 m n (t ) 收敛于 X 的矩母函数 m (t ) 的充分必要条件是 X n 的分布函数 F n (x ) 收敛于 X 的分布函数 F (x ) 。
⼆、概率母函数和累积量母函数概率母函数:对于随机变量 X ,其概率母函数的定义为:[][][]|[][][][][][]g X (t )=E t X =∞∑k =0t k Pr(X=k ).从定义可以看出,概率母函数仅⽤于取值为⾃然数的随机变量。
特征函数和矩母函数
分别为P{X=k}=pk,P{Y=k}=qk,k=0,1, ,
则Z=X+Y的分布律为P{Z=k}=ck,其中
ck= p0 qk +p1qk-1 + + pk q0
设X,Y,Z的母函数分别为PX(s), PY(s),
PZ(s),即有
PX (s) pk sk , PY (s) qk sk
k 0
(k) (0) ik EX k , k n 当k=1时,EX = (1) (0) / i ; 当k=2时,DX = (2) (0) ( (1) (0) / i)2 。
(4) (t)是非负定函数。
(5)若X1, X2, , Xn是相互独立的随机变量, 则X=X1+X2++Xn的特征函数为 (t) 1(t)2 (t) n (t)
求X的特征函数。
解
由于 P(X k) k!k e
所以
X (t) eitk k 0
k
k!e
e
k 0
(eit )k
k!
麦克劳林公式
e eeit e (eit 1)
例2 设随机变量X服从[a,b]上的均匀分布,求X的 特征函数。
解
X的概率密度为
1
f
(
x)
b
a
a xb
0 其它
所以
X (t)
概率密度为f(x)的连续型随机变量X,特征
函数为
(t) eitx f (x)dx
对于n维随机向量X=(X1, X2, , Xn),特
征函数为
(t) (t1,t2,
, tn ) EeitX
E
exp
i
n
tk
X
k
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
EY H (1) dG ( P ( s ))
ds
s 1
dG dP G ( P (1)) P (1) dP ds s1
G (1) P (1) EN EX 1
(注 P (1) 1)
二、特征函数
1 .特征函数
设X为随机变量,称复随机变量e itX
的数学期望 X (t) E[eitX ]
为X的特征函数,其中t是实数。
X(t)X(it)
欧拉公式:
eicosisin
还可写成
X (t) E [cto X ] siE [stiX ]n
分布律为P(X=xk)=pk(k=1,2,)的离散
型随机变量X,特征函数为
(t) eitxk pk k 1
概率密度为f(x)的连续型随机变量X,特征
函数为
k 0
l0
pk ql s k l r pk qr k s r
k ,l0
r 0 k 0
cr s r PZ (s) r0
(4) H ( s ) P { Y k } s k k0
P
Y
k, {N
l
ห้องสมุดไป่ตู้
}
s
k
k0
l0
P {Y k , N l}s k k 0 l0
矩母函数和特征函数
一、矩母函数
1.定义
2.原点 矩的求法
称 e tX 的数学期望 (t)E[etX]
为随机变量X的矩母函数。
利用矩母函数可求得X的各阶矩,即对
(t )逐次求导,并计算在 t 0 点的
值:
(t)E[XteX]
( n)(t)E[XnetX]
(n)(0)E[Xn]
3.和的矩母函数
定理1
求X的特征函数。
解
由于 P(Xk)k! k e
所以
X (t) eitk k 0
k
k!e
e
k0
(eit)k
k!
麦克劳林公式
e eeit e(eit1)
例2 设随机变量X服从[a,b]上的均匀分布,求X的 特征函数。
解
X的概率密度为
1 f (x) ba
a x b
0 其它
所以
X(t)
e b itx 1 d a ba
设相互独立的随机变量 X1, X2, , Xr的
矩母函数分别为 1 (t) ,2 (t) ,…, r (t) ,
则其和 YX1X2Xr的矩母函数为
Y (t) 1(t) 2 (t) … r (t)
4. 母函数
定义:设X是非负整数值随机变量,分布律
P{X=k}=pk,k=0,1,
则称
P(s)E(sX) pksk
x
e itb e ita it(b a)
例3:设X服从二项分布B(n, p),求X的特
征函数g(t)及EX、EX2、DX。
(t) e itxf(x)dx
对于n维随机向量X=(X1, X2, , Xn),特 征函数为
(t)(t1,t2,L,tn)E eitX E ex p intkX k
k 1
性质:
(1) (0)1 ,(t)1 ,( t)(t)。
(2) ( t ) 在(-, )上一致连续。 (3)若随机变量X的n阶矩EXn存在,则
则Z=X+Y的分布律为P{Z=k}=ck,其中
ck= p0 qk +p1qk-1 + + pk q0
设X,Y,Z的母函数分别为PX(s), PY(s),
PZ(s),即有
PX(s) pksk, PY (s) qksk
k0
k0
PZ(s) cksk k0
PX ( s) PY (s) pk s k ql s l
k2
k 1
k 2 p k kp k EX 2 EX
k 1
k 1
DX EX 2 ( EX ) 2 P (1 ) EX ( EX ) 2
P (1 ) P (1 ) [ P (1 )] 2
(3) 设离散型非负整数随机变量X,Y的分布律
分别为P{X=k}=pk,P{Y=k}=qk,k=0,1, ,
P {Y k } P { N l}s k k 0 l0
P { N l} P {Y k }s k
l0
k0
P{N
l}
P
l
X
j
k
sk
l0
k 0
j1
P{N
l0
l}
l j1
k 0
P{X
j
k
}
s
k
l
P{N l} P (s)
l0
j1
P{ N l}[P (s)]l G (P (s)) l0
数值随机变量,N是与X1,X2,独立的非
负整数值随机变量,则
Y
N
Xk
k 1
的母函数H(s)=G(P(s)) , EY=ENEX1 其中G(s),P(s)分别是N, X1的母函数。
证明:(1)
n
P(s) pk sk pk sk pk sk , n 0,1,
k 0
k 0
k n1
P(n) (s) n! pn k(k 1) (k n 1) pk skn k n1
(k)(0)ikEXk, k n
当k=1时,EX = (1) (0) / i ;
当k=2时,DX = (2)(0)((1)(0)/i)2。
(4) ( t )是非负定函数。
(5)若X1, X2, , Xn是相互独立的随机变量, 则X=X1+X2++Xn的特征函数为
(t)1(t)2(t)Ln(t)
(6)随机变量的分布函数与特征函数是一一对 应且相互唯一确定。
如果随机变量X为连续型,且其特征函 数绝对可积,则有反演公式:
f(x) 1 e itx (t)dt (相差一个负号的傅立叶逆变换) 2
(t) e itxf(x)dx
(相差一个负号的傅立叶变换)
例1 设随机变量X服从参数为 的泊松分布,
令s 0,则P(n) (0) n! pn
故pn
P(n) (0),n n!
0,1,
(2)
P (s)
p k s k , P ( s )
kp
s k 1
k
k0
k 1
E ( X ) kp k P (1 ) k 1
P ( s ) k ( k 1 ) p k s k 1 k2
P (1 ) k ( k 1 ) p k k ( k 1 ) p k
k0
为X的母函数。
性质:
(1)非负整数值随机变量的分布律pk由其母 函数P(s)唯一确定
pk
P(k)(0),k0,1,2, k!
(2)设P(s)是X的母函数,
若EX存在,则EX=P(1)
若DX存在,则DX= P(1) +P(1)- [P(1)]2
(3)独立随机变量之和的母函数等于母函数 之积。
(4)若X1,X2,是相互独立同分布的非负整