人教版七年级数学下册期末考试试题
人教版数学七年级下册期末考试试卷及答案
人教版数学七年级下册期末考试试题一、单选题(共10小题,每题3分,共30分).1.在实数﹣,0.21,,,,0.20202中,无理数的个数为()A.1 B.2 C.3 D.42.第七次全国人口普查结果显示,全国人口共141178万人,与2010年第六次全国人口普查数据相比,增加7206万人.将数据7206万用科学记数法表示为()A.7206×104B.72.06×106C.7.206×107D.0.7206×108 3.已知∠1与∠2是对顶角,∠1与∠3是邻补角,则∠2+∠3的度数为()A.90°B.180°C.270°D.360°4.估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间5.已知点A(4,﹣3)到y轴的距离为()A.4 B.﹣4 C.3 D.﹣36.长沙市今年有8万名学生参加初中毕业会考,要想了解这8万名学生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1000名考生是总体的一个样本B.1000名考生是样本容量C.8万名考生是总体D.每位学生的数学成绩是个体7.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.垂线段最短B.两点之间线段最短C.两点确定一条直线D.三角形的稳定性8.下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.9.我国古代著名著作《算学启蒙》中有这样一道题:“良马日行二百四十里,驽马日行一直五十里,驽马先行一十二日,问良马几何追及之.”题意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,则快马追上慢马需()A.20天B.21天C.22天D.23天10.如图,△ABC中,∠1=∠2,点G为AD中点,延长BG交AC于点E,F为AB上一点,且CF⊥AD于点H,下列判断中,①线段BG是△ABD边AD上的中线;②线段CH 是△ACH中AH边上的高;③△ABG与△BDG面积相等;④AB﹣AC=BF;⑤∠2+∠FBC+∠FCB=90°,其中正确的结论有()A.5个B.4个C.3个D.2个二、填空题(本大题共6个小题,每小题3分,共18分)11.在平面直角坐标系内,把点P(﹣5,﹣2)向右平移2个单位长度得到的点的坐标是.12.不等式组的解集为.13.已知:如图,在△ABC中,∠BAC=50°,∠ABC=60°,则∠ACE=.14.如果一个多边形的每个外角都等于60°,则这个多边形的边数是.15.一个正数x的平方根是2a﹣3与5﹣a,则a=.16.董永社区在创建全国卫生城市的活动中,随机检查了本社区部分住户五月份某周内“垃圾分类”的实施情况,将他们绘制了两幅不完整的统计图(A.小于5天;B.5天;C.6天;D.7天),则扇形统计图B部分所对应的圆心角的度数是.三、解答题(本大题共9个小题,第17、18、19题每题6分,第20、21题每题8分,第22、23题每随9分,第24、25题每题10分,共72分)17.计算:+|﹣4|+(﹣1)2021﹣.18.先化简,再求值:﹣3a2b+(4ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣1.19.求满足不等式:+2>的所有正整数解.20.人教版八年级上册第36﹣37页如何作一个角等于已知角的方法.已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)如图,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;(2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;(3)以点C′为圆心,CD长为半径画弧,与第2步中所画的弧相交于点D′;(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.请你根据以上材料完成下面问题.(1)这种作一个角等于已知角的方法的依据是.(填序号)①SSS ②SAS ③AAS ④ASA(2)请你证明:∠A′O′B′=∠AOB.21.湖南广益实验中学在暑假期间开展“心怀感恩,孝敬父母”的实践活动,倡导学生在假期中帮助父母干家务,开学以后,校学生会随机抽取了部分学生,就暑假“平均每天帮助父母干家务所用时长”进行了调查,如图是根据相关数据绘制的统计图的一部分.根据上述信息,回答下列问题:(1)在本次随机抽取的样本中,调查的学生人数是人,m=,n =;(2)补全数分布直方图;(3)如果该校共有学生4000人,请你估计“平均每天帮助父母干家务的时长不少于30分钟”的学生大约有多少人?22.在国家精准扶贫政策下,某乡村大力发展乡村旅游,为了满足游客的需求,某商户决定购进A,B两种特产来进行销售.(1)若购进A种特产8件,B种特产3件,需要950元;购进A种特产5件,B种特产6件,需要800元.求购进A,B两种特产每件分别需要多少元?(2)若该商户决定购进A,B两种特产共100件,虑市场需求和资金周转,A种特产至少需购进50件,用于购买这100件特产的总资金不能超过7650元,请问该商户最多可购进A种特产多少件?23.已知:如图,在平面直角坐标系xOy中,A(﹣2,0),B(0,4),点C在第四象限,AC⊥AB,AC=AB.(1)求点C的坐标及∠COA的度数;(2)若直线BC与x轴的交点为M,点P在经过点C与x轴平行的直线上,求出S△POM+S△BOM的值.24.对于实数x,y我们定义一种新运算L(x,y)=ax+by(其中a,b均为非零常数),由这种运算得到的数我们称之为广益数,记为L(x,y),其中(x,y)叫做广益数对.若实数x,y都取正整数,此时的(x,y)叫做广益正格数对.(1)若L(x,y)=x+3y,则L(,)=,L(﹣2,m)=;(用含m 的式子表示)(2)已知L(x,y)=ax+by(其中a,b互为相反数)L(2,3)=n﹣3,L(1,﹣2)=2n+1,求n的值.(3)已知L(x,y)=3x+cy,其中L(,)=2.若L(x,kx)=18(其中k为整数),问是否存在满足这样条件的广益正格数对?若存在,请求出这样的广益正格数对;若不存在,请说明理由.25.如图①,AB=9,AC⊥AB,BD⊥AB,AC=BD=7,点P在线段AB上以每秒2个单位的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,它们运动的时间为t秒.(1)若点Q运动的速度与点P运动的速度相等,当t=1时,求证:△ACP≌△BPQ;(2)在(1)的条件下,求∠PCQ的度数;(3)如图②,若∠CAB=∠DBA=70°,AB=9,AC=BD=7,点P在线段AB上以每秒2个单位的速度由点A向点B运动,同时,点Q在线段BD上以每秒x个单位的速度由点B向点D运动,若存在△ACP与△BPQ全等,请求出相应的x和t的值.参考答案一、单选题(共10小题,每题3分,共30分).1.在实数﹣,0.21,,,,0.20202中,无理数的个数为()A.1 B.2 C.3 D.4解:0.21,0.20202有限小数,属于有理数;是分数,属于有理数;无理数有﹣,,,共3个.故选:C.2.2021年5月11日,第七次全国人口普查结果显示,全国人口共141178万人,与2010年第六次全国人口普查数据相比,增加7206万人.将数据7206万用科学记数法表示为()A.7206×104B.72.06×106C.7.206×107D.0.7206×108解:7206万=72060000=7.206×107,故选:C.3.已知∠1与∠2是对顶角,∠1与∠3是邻补角,则∠2+∠3的度数为()A.90°B.180°C.270°D.360°解:∵∠1与∠2是对顶角,∴∠1=∠2,∵∠1与∠3是邻补角,∴∠1+∠3=180°,∴∠2+∠3=180°.故选:B.4.估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间解:∵16<21<25,∴4<<5,则的值在4和5之间,故选:C.5.已知点A(4,﹣3)到y轴的距离为()A.4 B.﹣4 C.3 D.﹣3解:点A(4,﹣3)到y轴的距离为|4|=4.故选:A.6.长沙市今年有8万名学生参加初中毕业会考,要想了解这8万名学生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1000名考生是总体的一个样本B.1000名考生是样本容量C.8万名考生是总体D.每位学生的数学成绩是个体解:A.这1000名考生的数学成绩是总体的一个样本,故本选项不合题意;B.1000是样本容量,故本选项不合题意;C.8万名考生的数学成绩是总体,故本选项不合题意;D.每位学生的数学成绩是个体,故本选项符合题意.故选:D.7.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.垂线段最短B.两点之间线段最短C.两点确定一条直线D.三角形的稳定性解:一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是三角形的稳定性,故选:D.8.下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.解:A、∵AB∥CD,∴∠1+∠2=180°,∠1与∠2不一定相等,故A错误,不符合题意;B、∵AB∥CD,∴∠1=∠3,∵∠2=∠3,∴∠1=∠2,故B正确,符合题意;C、若梯形ABCD是等腰梯形,可得∠1=∠2,故C错误,不符合题意;D、∵AB∥CD,∴∠BAD=∠CDA,若AC∥BD,可得∠1=∠2,故D错误,不符合题意;故选:B.9.我国古代著名著作《算学启蒙》中有这样一道题:“良马日行二百四十里,驽马日行一直五十里,驽马先行一十二日,问良马几何追及之.”题意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,则快马追上慢马需()A.20天B.21天C.22天D.23天解:设快马x天可以追上慢马,由题意,得240x﹣150x=150×12,解得:x=20.答:快马20天可以追上慢马.故选:A.10.如图,△ABC中,∠1=∠2,点G为AD中点,延长BG交AC于点E,F为AB上一点,且CF⊥AD于点H,下列判断中,①线段BG是△ABD边AD上的中线;②线段CH 是△ACH中AH边上的高;③△ABG与△BDG面积相等;④AB﹣AC=BF;⑤∠2+∠FBC+∠FCB=90°,其中正确的结论有()A.5个B.4个C.3个D.2个解:①因为G为AD中点,所以BG是△ABD边AD上的中线,故正确;②因为CF⊥AD于H,所以CH是△ACH中AH边上的高,故正确;③因为G为AD中点,根据等底等高的三角形面积相等,故正确;④因为∠1=∠2,CF⊥AD,可知∠AFC=∠ACF,根据等角对等边得AF=AC,故AB﹣AC=BF正确,⑤因为∠1=∠2,CF⊥AD于H,根据直角三角形的两锐角互余及三角形外角的性质得到,∠1+∠AFH=∠1+∠FBC+∠FCB=90°,所以∠2+∠FBC+∠FCB=90°,故正确.所以正确的个数是5个.故选:A.二、填空题(本大题共6个小题,每小题3分,共18分)11.在平面直角坐标系内,把点P(﹣5,﹣2)向右平移2个单位长度得到的点的坐标是(﹣3,﹣2).解:把点P(﹣5,﹣2)向右平移2个单位长度得到的点的坐标是(﹣3,﹣2).故答案为:(﹣3,﹣2).12.不等式组的解集为x>3.解:根据同大取大,即可得到不等式组的解集为:x>3,故答案为:x>3.13.已知:如图,在△ABC中,∠BAC=50°,∠ABC=60°,则∠ACE=110°.解:∵∠ACE是△ABC的一个外角,∴∠ACE=∠BAC+∠ABC,∵∠BAC=50°,∠ABC=60°,∴∠ACE=50°+60°=110°.14.如果一个多边形的每个外角都等于60°,则这个多边形的边数是6.解:360°÷60°=6.故这个多边形是六边形.故答案为:6.15.一个正数x的平方根是2a﹣3与5﹣a,则a=﹣2.解:∵正数x的平方根是2a﹣3与5﹣a,∴2a﹣3+5﹣a=0,解得a=﹣2.故答案为:﹣2.16.董永社区在创建全国卫生城市的活动中,随机检查了本社区部分住户五月份某周内“垃圾分类”的实施情况,将他们绘制了两幅不完整的统计图(A.小于5天;B.5天;C.6天;D.7天),则扇形统计图B部分所对应的圆心角的度数是108°.解:∵被调查的总户数为9÷15%=60(户),∴B类别户数为60﹣(9+21+12)=18(户),则扇形统计图B部分所对应的圆心角的度数是360°×=108°,故答案为:108°.三、解答题(本大题共9个小题,第17、18、19题每题6分,第20、21题每题8分,第22、23题每随9分,第24、25题每题10分,共72分)17.计算:+|﹣4|+(﹣1)2021﹣.解:原式=3+4﹣1﹣3=3.18.先化简,再求值:﹣3a2b+(4ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣1.解:﹣3a2b+(4ab2﹣a2b)﹣2(2ab2﹣a2b)=﹣3a2b+4ab2﹣a2b﹣4ab2+2a2b=﹣2a2b,当a=1,b=﹣1时,原式=﹣2×1×(﹣1)=2.19.求满足不等式:+2>的所有正整数解.解:去分母得:2(x﹣4)+12>3x,去括号得:2x﹣8+12>3x,解得:x<4,则不等式的正整数解为1,2,3.20.人教版八年级上册第36﹣37页如何作一个角等于已知角的方法.已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)如图,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;(2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;(3)以点C′为圆心,CD长为半径画弧,与第2步中所画的弧相交于点D′;(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.请你根据以上材料完成下面问题.(1)这种作一个角等于已知角的方法的依据是①.(填序号)①SSS②SAS③AAS④ASA(2)请你证明:∠A′O′B′=∠AOB.解:(1)根据作图过程可知:这种作一个角等于已知角的方法的依据是①;①SSS②SAS③AAS④ASA故答案为:①;(2)证明:在△C′O′D′和△COD中,,∴△C′O′D′≌△COD(SSS),∴∠A′O′B′=∠AOB.21.湖南广益实验中学在暑假期间开展“心怀感恩,孝敬父母”的实践活动,倡导学生在假期中帮助父母干家务,开学以后,校学生会随机抽取了部分学生,就暑假“平均每天帮助父母干家务所用时长”进行了调查,如图是根据相关数据绘制的统计图的一部分.根据上述信息,回答下列问题:(1)在本次随机抽取的样本中,调查的学生人数是200人,m=20,n=25;(2)补全数分布直方图;(3)如果该校共有学生4000人,请你估计“平均每天帮助父母干家务的时长不少于30分钟”的学生大约有多少人?解:(1)在本次随机抽取的样本中,调查的学生人数是:60÷30%=200(人),m%=(200﹣60﹣40﹣50﹣10)÷200×100%=20%,n%=50÷200×100%=25%,即m=20,n=25,故答案为:200,20,25;(2)20~30分钟的频数为:200﹣60﹣40﹣50﹣10=40,补全的频数分布直方图如图所示;(3)4000×=1200(人),答:估计“平均每天帮助父母干家务的时长不少于30分钟”的学生大约有1200人.22.在国家精准扶贫政策下,某乡村大力发展乡村旅游,为了满足游客的需求,某商户决定购进A,B两种特产来进行销售.(1)若购进A种特产8件,B种特产3件,需要950元;购进A种特产5件,B种特产6件,需要800元.求购进A,B两种特产每件分别需要多少元?(2)若该商户决定购进A,B两种特产共100件,虑市场需求和资金周转,A种特产至少需购进50件,用于购买这100件特产的总资金不能超过7650元,请问该商户最多可购进A种特产多少件?解:(1)设购进A种特产每件需要x元,购进B种特产每件需要y元,依题意得:,解得:.答:购进A种特产每件需要100元,购进B种特产每件需要50元.(2)设该商户购进A种特产m件,则购进B种特产(100﹣m)件,依题意得:,解得:50≤m≤53.答:该商户最多可购进A种特产53件.23.已知:如图,在平面直角坐标系xOy中,A(﹣2,0),B(0,4),点C在第四象限,AC⊥AB,AC=AB.(1)求点C的坐标及∠COA的度数;(2)若直线BC与x轴的交点为M,点P在经过点C与x轴平行的直线上,求出S△POM+S△BOM的值.解:(1)作CD⊥x轴于点D,∴∠CDA=90°.∵∠AOB=90°,∴∠AOB=∠CDA.∴∠DAC+∠DCA=90°.∵AC⊥AB,∴∠BAC=∠BAD+∠CAD=90°,∴∠BAD=∠ACD.在△AOB和△CDA中,∴△AOB≌△CDA(AAS),∴AO=CD,OB=DA.∵A(﹣2,0),B(0,4),∴OA=2,OB=4,∴CD=2,DA=4,∴OD=2,∴OD=CD.∵点C在第四象限,∴C(2,﹣2).∵∠CDO=90°,∴∠COD=45°.∴∠COA=180°﹣45°=135°.(2)∵PC∥x轴,∴点P到x轴的距离相等,∴S△POM=S△COM.∴S△POM+S△BOM=S△COM+S△BOM=S△BOC.∴S△POM+S△BOM=S△BOC==4.24.对于实数x,y我们定义一种新运算L(x,y)=ax+by(其中a,b均为非零常数),由这种运算得到的数我们称之为广益数,记为L(x,y),其中(x,y)叫做广益数对.若实数x,y都取正整数,此时的(x,y)叫做广益正格数对.(1)若L(x,y)=x+3y,则L(,)=3,L(﹣2,m)=﹣2+3m;(用含m的式子表示)(2)已知L(x,y)=ax+by(其中a,b互为相反数)L(2,3)=n﹣3,L(1,﹣2)=2n+1,求n的值.(3)已知L(x,y)=3x+cy,其中L(,)=2.若L(x,kx)=18(其中k为整数),问是否存在满足这样条件的广益正格数对?若存在,请求出这样的广益正格数对;若不存在,请说明理由.解:(1)根据题中的新定义得:L(,)=+3×=3;L(﹣2,m)=﹣2+3m,故答案为:3,﹣2+3m;(2)根据题中的新定义得:L(2,3)=2a+3b=n﹣3;L(1,﹣2)=a﹣2b=2n+1;∵a,b互为相反数,∴a=﹣b,∴,解得:n=;(3)存在,(2,6),理由如下:根据题中的新定义化简L(,)=2,得:3×+c=2,解得:c=2,化简L(x,kx)=18,得:3x+2kx=18,依题意,x,y都为正整数,k是整数,∴3+2k是奇数,∴3+2k=1,3,9,解得:k=−1,0,3,当k=−1时,x=18,kx=−18,舍去;当k=0时,x=6,kx=0,舍去;当k=3时,x=2,kx=6,综上,k=3时,存在正格数对x=2,y=6满足条件.25.如图①,AB=9,AC⊥AB,BD⊥AB,AC=BD=7,点P在线段AB上以每秒2个单位的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,它们运动的时间为t秒.(1)若点Q运动的速度与点P运动的速度相等,当t=1时,求证:△ACP≌△BPQ;(2)在(1)的条件下,求∠PCQ的度数;(3)如图②,若∠CAB=∠DBA=70°,AB=9,AC=BD=7,点P在线段AB上以每秒2个单位的速度由点A向点B运动,同时,点Q在线段BD上以每秒x个单位的速度由点B向点D运动,若存在△ACP与△BPQ全等,请求出相应的x和t的值.【解答】(1)证明:当t=1时,AP=BQ=2,则BP=9﹣2=7,∴BP=AC,又∵∠A=∠B=90°,在△ACP和△BPQ中,,∴△ACP≌△BPQ(SAS).(2)解:如图①中,连接CQ.∵△ACP≌△BPQ,∴∠ACP=∠BPQ,PC=PQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,∴∠PCQ=45°.(3)解:①若△ACP≌△BPQ,则AC=BP,AP=BQ,∴9﹣2t=7,解得,t=1(s),则x=2(cm/s);②若△ACP≌△BQP,则AC=BQ,AP=BP,则2t=×9,解得,t=(s),则x=7÷=(cm/s),故当t=1s,x=2cm/s或t=s,x=cm/s时,△ACP与△BPQ全等.。
2024新人教版七年级数学下册期末试卷及答案
2024新人教版七年级数学下册期末试卷及答案一、选择题(每题4分,共40分)1. 下列数中是无理数的是:A. √2B. 3C. 0.5D. 22. 已知a=5,b=3,则a²+b²的值是:A. 34B. 32C. 29D. 263. 下列等式中正确的是:A. a² = 2abB. a³ = 3a²C. a² = a³D. a³ = 2a²4. 下列哪一个数是九的分之一:A. 1/9B. 9/1C. 9/2D. 2/95. 下列哪一个比例式是正确的:A. 3/4 = 12/18B. 5/7 = 15/21C. 4/9 = 12/24D. 6/8 = 18/246. 已知一个正方形的边长为4,则它的面积是:A. 16B. 8C. 4D. 27. 下列哪一个角的度数是90度:A. 直角B. 锐角C. 钝角D. 平角8. 下列哪一个数是负数:A. -3B. 3C. 0D. 29. 已知一个等边三角形的边长为6,则它的面积是:A. 9B. 6C. 3D. 110. 下列哪一个数是立方根:A. 27B. 3C. 3√27D. 3√3二、填空题(每题4分,共40分)1. 若两个数的和为8,它们的差为3,则这两个数分别是______和______。
2. 已知一个数的平方等于36,则这个数是______或______。
3. 下列各数中,是无理数的是______、______、______。
4. 一个等边三角形的周长为15,则它的边长是______,面积是______。
5. 若一个正方形的边长为a,则它的对角线长度为______,面积为______。
三、解答题(共20分)1. (10分)已知一个数的平方等于25,求这个数。
2. (10分)解方程:2x - 5 = 3x + 1。
3. (10分)已知一个长方形的长为8,宽为3,求它的面积和周长。
人教版七年级数学下册期末测试题+答案解析(共四套)
⼈教版七年级数学下册期末测试题+答案解析(共四套)B ′C ′D ′O ′A ′O DC BA(第8题图)⼀、选择题(每⼩题3分,计24分,请把各⼩题答案填到表格内)题号 1 2 3 4 5 6 78 总分答案1.如图所⽰,下列条件中,不能..判断l 1∥l 2的是 A .∠1=∠3 B .∠2=∠3 C.∠4=∠5 D.∠2+∠4=180° 2.为了了解某市5万名初中毕业⽣的中考数学成绩,从中抽取500名学⽣的数学成绩进⾏统计分析,那么样本是 A .某市5万名初中毕业⽣的中考数学成绩 B .被抽取500名学⽣(第1题图)C .被抽取500名学⽣的数学成绩D .5万名初中毕业⽣ 5.有⼀个两位数,它的⼗位数数字与个位数字之和为5,则符合条件的数有 A .4个 B .5个 C .6个D .⽆数个 7.下列事件属于不确定事件的是A .太阳从东⽅升起B .2010年世博会在上海举⾏C .在标准⼤⽓压下,温度低于0摄⽒度时冰会融化D .某班级⾥有2⼈⽣⽇相同 8.请仔细观察⽤直尺和圆规.....作⼀个⾓∠A ′O ′B ′等于已知⾓∠AOB 的⽰意图,请你根据所学的图形的全等这⼀章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是 A .SAS B .ASA C .AASD .SSS⼆、填空题(每⼩题3分,计24分)9.⽣物具有遗传多样性,遗传信息⼤多储存在DNA 分⼦上.⼀个DNA 分⼦的直径约为0.0000002cm .这个数量⽤科学记数法可表⽰为 cm . 10.将⽅程2x+y=25写成⽤含x 的代数式表⽰y 的形式,则y= . 11.如图,AB∥CD,∠1=110°,∠ECD=70°,∠E 的⼤⼩是 °. 12.三⾓形的三个内⾓的⽐是1:2:3,则其中最⼤⼀个内⾓的度数是 °.13.掷⼀枚硬币30次,有12次正⾯朝上,则正⾯朝上的频率为 .14.不透明的袋⼦中装有4个红球、3个黄球和5个蓝球,每个球除颜⾊不同外其它都相同,从中任意摸出⼀个球,则摸出球的可能性最⼩. 15.下表是⾃18世纪以来⼀些统计学家进⾏抛硬币试验所得的数据:试验者试验次数n 正⾯朝上的次数m正⾯朝上的频率nm布丰 4040 2048 0.5069 德·摩根 4092 2048 0.5005 费勤1000049790.4979那么估计抛硬币正⾯朝上的概率的估计值是 . 16.如图,已知点C 是∠AOB 平分线上的点,点P 、P′分别在OA 、OB 上,如果要得到OP =OP′,需要添加以下条件中的某⼀个即可:①PC=P′C;②∠OPC=∠OP′C;③∠OCP=∠OCP′;④PP′⊥OC.请你写出⼀个正确结果的序号:.三、解答题(计72分)17.(本题共8分)如图,⽅格纸中的△ABC 的三个顶点分别在⼩正⽅形的顶点(格点)上,称为格点三⾓形.请在⽅格纸上按下列要求画图.在图①中画出与△ABC 全等且有⼀个公共顶点的格点△C B A ''';在图②中画出与△ABC 全等且有⼀条公共边的格点△C B A ''''''.20.解⽅程组:(每⼩题5分,本题共10分)(1)=+-=300342150y x yx (2)=+=+300%25%53%5300y x y x 21.(本题共8分)已知关于x 、y 的⽅程组=+=+73ay bx by ax 的解是==12y x ,求a b +的值.OAC P P′(第16题图)(第16题图)22.(本题共9分)如图,AB=EB ,BC=BF ,CBF ABE ∠=∠.EF 和AC 相等吗?为什么?23.(本题9分)⼩王某⽉⼿机话费中的各项费⽤统计情况见下列图表,请你根据图表信息完成下列各题:(2)请将条形统计图补充完整. (3)扇形统计图中,表⽰短信费的扇形的圆⼼⾓是多少度?24.(本题4+8=12分)上海世博会会期为2010年5⽉1⽇⾄2010年10⽉31⽇。
人教版七年级下册数学期末考试题(及答案)
人教版七年级下册数学期末考试题(及答案)一、选择题1.如图,直线a ,b ,c 被射线l 和m 所截,则下列关系正确的是( )A .∠1与∠2是对顶角B .∠1与∠3是同旁内角C .∠3与∠4是同位角D .∠2与∠3是内错角2.下列图形中,能将其中一个图形平移得到另一个图形的是 ( )A .B .C .D . 3.若点(),P a b 在第四象限,则点(),Q b a -在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.命题:①对顶角相等;②过一点有且只有一条直线与已知直线平行;③垂直于同一条直线的两条直线平行:④同旁内角互补.其中错误的有( )A .1个B .2个C .3个D .4个5.如图,//CD AB ,BC 平分ACD ∠,CF 平分ACG ∠,50BAC ∠=︒,12∠=∠,则下列结论:①CB CF ⊥,②165∠=︒,③24ACE ∠=∠,④324∠=∠.其中正确的是( )A .①②③B .①②④C .②③④D .①②③④ 6.下列说法中:①立方根等于本身的是1-,0,1;②平方根等于本身的数是0,1;③两个无理数的和一定是无理数;④实数与数轴上的点是一一对应的;⑤23π-是负分数;⑥两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数.其中正确的个数是( )A .3B .4C .5D .67.如图,在//AB CD 中,∠AEC =50°,CB 平分DCE ∠,则ABC ∠的度数为( )A .25°B .30°C .35°D .40°8.如图,所有正方形的中心均在坐标原点,且各边与x 轴或y 轴平行,从内到外,它们的边长依次2,4,6,8,,…顶点依次用1A ,2A ,3A ,4A ,…表示,则顶点2021A 的坐标是( )A .(505,505)-B .(505,505)--C .(506,506)--D .(506,506)-九、填空题9.2(4)-的算术平方根为__________十、填空题10.点()3,2A -关于y 轴对称的点的坐标是______.十一、填空题11.如图,在ABC 中,70A ∠=︒,ABC ∠的角平分线与ABC 的外角角平分线交于点E ,则E ∠=__________度.十二、填空题12.如图,把一块三角板的直角顶点放在一直尺的一边上,若∠1=50°,则∠2的度数为_____.十三、填空题13.如图,把一张长方形纸片ABCD 沿EF 折叠后,D 、C 分别落在D ,C '的位置上,ED '与BC 交于G 点,若56EFG ∠=︒,则AEG ∠=______.十四、填空题14.一列数a 1,a 2,a 3,…,a n ,其中a 1=﹣1,a 2=111a -,a 3=211a -,…,a n =111n a --,则a 2=_____;a 1+a 2+a 3+…+a 2020=_____;a 1×a 2×a 3×…×a 2020=_____.十五、填空题15.在平面直角坐标系中,第二象限内的点M 到横轴的距离为2,到纵轴的距离为3,则点M 的坐标是________.十六、填空题16.如图,一只跳蚤在第一象限及x 轴、y 轴上跳动,第一秒它从原点跳动到点(0,1),第二秒它从点(0,1)跳到点(1,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1) →(1,1) →(1,0)→…],每秒跳动一个单位长度,那么43秒后跳蚤所在位置的坐标是________.十七、解答题17.计算:(13181624- (2333. 十八、解答题18.求下列各式中x 的值:(1)()2125x -=;(2)381250x -=. 十九、解答题19.如图.已知∠1=∠2,∠C =∠D ,求证:∠A =∠F .(1)请把下面证明过程中序号对应的空白内容补充完整.证明:∴∠1=∠2(已知)又∵∠1=∠DMN ( )∵∠2=∠DMN (等量代换)∴DB ∥EC ( )∴∠DBC +∠C =180°( ).∵∠C =∠D (已知),∴∠DBC +( )=180°(等量代换)∴DF ∥AC ( )∴∠A =∠F ( )(2)在(1)的基础上,小明进一步探究得到∠DBC =∠DEC ,请帮他写出推理过程.二十、解答题20.在平面直角坐标系中,已知O ,A ,B ,C 四点的坐标分别为O (0,0),A (0,3),B (-3,3),C (-3,0).(1)在平面直角坐标系中,描出O ,A ,B ,C 四点;(2)依次连接OA ,AB ,BC ,CO 后,得到图形的形状是___________.二十一、解答题21.阅读材料,解答问题:材料:∵479,即273<,∴7272. 问题:已知52a +的立方根是3,31a b +-的算术平方根是4,c 13(1)求13的小数部分.(2)求3a b c -+的平方根.二十二、解答题22.已知在44⨯的正方形网格中,每个小正方形的边长为1.(1)计算图①中正方形ABCD 的面积与边长.(2)利用图②中的正方形网格,作出面积为8的正方形,并在此基础上建立适当的数轴,在数轴上表示实数8和8-.二十三、解答题23.问题情境:(1)如图1,//AB CD ,128PAB ∠=︒,119PCD ∠=︒.求APC ∠度数.小颖同学的解题思路是:如图2,过点P 作//PE AB ,请你接着完成解答.问题迁移:(2)如图3,//AD BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,ADP α∠=∠,PCE β∠=∠.试判断CPD ∠、α∠、β∠之间有何数量关系?(提示:过点P 作//PF AD ),请说明理由;(3)在(2)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你猜想CPD ∠、α∠、β∠之间的数量关系并证明.二十四、解答题24.已知:ABC 和同一平面内的点D .(1)如图1,点D 在BC 边上,过D 作//DE BA 交AC 于E ,//DF CA 交AB 于F .根据题意,在图1中补全图形,请写出EDF ∠与BAC ∠的数量关系,并说明理由;(2)如图2,点D 在BC 的延长线上,//DF CA ,EDF BAC ∠=∠.请判断DE 与BA 的位置关系,并说明理由.(3)如图3,点D 是ABC 外部的一个动点.过D 作//DE BA 交直线AC 于E ,//DF CA 交直线AB 于F ,直接写出EDF ∠与BAC ∠的数量关系,并在图3中补全图形.二十五、解答题25.如图,直线//PQ MN ,一副直角三角板,ABC DEF ∆∆中,90,45,30,60ACB EDF ABC BAC DFE DEF ︒︒︒︒∠=∠=∠=∠=∠=∠=.(1)若DEF ∆如图1摆放,当ED 平分PEF ∠时,证明:FD 平分EFM ∠.(2)若,ABC DEF ∆∆如图2摆放时,则PDE ∠=(3)若图2中ABC ∆固定,将DEF ∆沿着AC 方向平移,边DF 与直线PQ 相交于点G ,作FGQ ∠和GFA ∠的角平分线GH FH 、相交于点H (如图3),求GHF ∠的度数.(4)若图2中DEF ∆的周长35,5cm AF cm =,现将ABC ∆固定,将DEF ∆沿着CA 方向平移至点F 与A 重合,平移后的得到''D E A ∆,点D E 、的对应点分别是''D E 、,请直接写出四边形'DEAD 的周长.(5)若图2中DEF ∆固定,(如图4)将ABC ∆绕点A 顺时针旋转,1分钟转半圈,旋转至AC 与直线AN 首次重合的过程中,当线段BC 与DEF ∆的一条边平行时,请直接写出旋转的时间.【参考答案】一、选择题1.C解析:C【分析】根据对顶角、邻补角、同位角、内错角的定义分别分析即可.【详解】解:A 、∠1与∠2是邻补角,故原题说法错误;B 、∠1与∠3不是同旁内角,故原题说法错误;C 、∠3与∠4是同位角,故原题说法正确;D 、∠2与∠3不是内错角,故原题说法错误;故选:C .【点睛】此题主要考查了对顶角、邻补角、内错角和同位角,解题的关键是掌握对顶角、邻补角、内错角和同位角的定义.2.A【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案.【详解】解:A 、图形的形状和大小没有变化,符合平移的性质,属于平移得到; B 、图形由轴对称得到,不属于平移得到,不属于平移解析:A【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案.解:A、图形的形状和大小没有变化,符合平移的性质,属于平移得到;B、图形由轴对称得到,不属于平移得到,不属于平移得到;C、图形由旋转变换得到,不符合平移的性质,不属于平移得到;D、图形的大小发生变化,不属于平移得到;故选:A.【点睛】本题考查平移的基本性质,平移不改变图形的形状、大小和方向.掌握平移的性质是解题的关键.3.A【分析】首先得出第四象限点的坐标性质,进而得出Q点的位置.【详解】解:∵点P(a,b)在第四象限,∴a>0,b<0,∴-b>0,∴点Q(-b,a)在第一象限.故选:A.【点睛】此题主要考查了点的坐标,正确把握各象限点的坐标特点是解题关键.4.C【分析】根据对顶角的性质、同旁内角的概念、平行公理及推论逐一进行判断即可.【详解】解:①对顶角相等,原命题正确;②过直线外一点有且只有一条直线与已知直线平行,原命题错误;③在同一平面内,垂直于同一条直线的两条直线平行,原命题错误;④两直线平行,同旁内角互补,原命题错误.故选:C.【点睛】本题考查了平行公理及推论,对顶角、邻补角和同旁内角等知识,熟记其概念和性质是解题的关键.5.B【分析】根据角平分线的性质可得12ACB ACD∠=∠,12ACF ACG∠=∠,,再利用平角定义可得∠BCF=90°,进而可得①正确;首先计算出∠ACB的度数,再利用平行线的性质可得∠2的度数,从而可得∠1的度数;利用三角形内角和计算出∠3的度数,然后计算出∠ACE的度数,可分析出③错误;根据∠3和∠4的度数可得④正确.解:如图,∵BC 平分∠ACD ,CF 平分∠ACG , ∴1122ACB ACD ACF ACG ∠=∠∠=∠,, ∵∠ACG +∠ACD =180°,∴∠ACF +∠ACB =90°,∴CB ⊥CF ,故①正确,∵CD ∥AB ,∠BAC =50°,∴∠ACG =50°,∴∠ACF =∠4=25°,∴∠ACB =90°-25°=65°,∴∠BCD =65°,∵CD ∥AB ,∴∠2=∠BCD =65°,∵∠1=∠2,∴∠1=65°,故②正确;∵∠BCD =65°,∴∠ACB =65°,∵∠1=∠2=65°,∴∠3=50°,∴∠ACE =15°,∴③∠ACE =2∠4错误;∵∠4=25°,∠3=50°,∴∠3=2∠4,故④正确,故选:B .【点睛】此题主要考查了平行线的性质,以及角平分线的性质,关键是理清图中角之间的和差关系.6.A【分析】根据平方根和立方根的性质,以及无理数的性质判断选项的正确性.【详解】解:立方根等于本身的数有:1-,1,0,故①正确;平方根等于本身的数有:0,故②错误;两个无理数的和不一定是无理数,比如2和2-的和是0,是有理数,故③错误; 实数与数轴上的点一一对应,故④正确;23π-是无理数,不是分数,故⑤错误; 从数轴上来看,两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数,故⑥正确.故选:A .【点睛】本题考查平方根和立方根的性质,无理数的性质,解题的关键是熟练掌握这些概念. 7.A【分析】根据平行线的性质得到∠ABC =∠BCD ,∠ECD =∠AEC =50°再根据角平分线的定义得到∠BCE =∠BCD =12∠ECD =25°,由此即可求解.【详解】解:∵AB ∥CD ,∴∠ABC =∠BCD ,∠ECD =∠AEC =50°∵CB 平分∠DCE ,∴∠BCE =∠BCD =12∠ECD =25°∠ABC =∠BCD =25°故选A .【点睛】本题考查了平行线的性质,角平分线的定义,掌握平行线的性质:两直线平行,内错角相等是解题的关键.8.C【分析】根据正方形的性质找出部分An 点的坐标,根据坐标的变化找出变化规律“A4n +1(−n−1,−n−1),A4n +2(−n−1,n +1),A4n +3(n +1,n +1),A4n +4(n +1,−解析:C【分析】根据正方形的性质找出部分A n 点的坐标,根据坐标的变化找出变化规律“A 4n +1(−n −1,−n −1),A 4n +2(−n −1,n +1),A 4n +3(n +1,n +1),A 4n +4(n +1,−n −1)(n 为自然数)”,依此即可得出结论.【详解】解:观察发现:A1(−1,−1),A2(−1,1),A3(1,1),A4(1,−1),A5(−2,−2),A6(−2,2),A7(2,2),A8(2,−2),A9(−3,−3),…,∴A4n+1(−n−1,−n−1),A4n+2(−n−1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,−n−1)(n为自然数),∵2021=505×4+1,∴A2021(−506,−506)故选C.【点睛】本题考查了规律型:点的坐标,解题的关键是找出变化规律“A4n+1(−n−1,−n−1),A4n+2(−n−1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,−n−1)(n为自然数)”.九、填空题9.4【分析】先利用平方的意义求出值,再利用算术平方根的概念求解即可.【详解】=16,16的算术平方根是4故答案为4.【点睛】本题考查算术平方根的定义,难度低,属于基础题,注意算术平方根与解析:4【分析】先利用平方的意义求出值,再利用算术平方根的概念求解即可.【详解】2=16,16的算术平方根是4(4)故答案为4.【点睛】本题考查算术平方根的定义,难度低,属于基础题,注意算术平方根与平方根的区别.十、填空题10.【分析】根据点坐标关于y轴对称的变换规律即可得.【详解】点坐标关于y轴对称的变换规律:横坐标互为相反数,纵坐标不变,则点关于y轴对称的点的坐标是,故答案为:.【点睛】本题考查了点坐标解析:()3,2--【分析】根据点坐标关于y 轴对称的变换规律即可得.【详解】点坐标关于y 轴对称的变换规律:横坐标互为相反数,纵坐标不变,则点()3,2A -关于y 轴对称的点的坐标是()3,2--,故答案为:()3,2--.【点睛】本题考查了点坐标规律探索,熟练掌握点坐标关于y 轴对称的变换规律是解题关键. 十一、填空题11.35【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A 与∠EBC 表示出∠ECD ,再利用∠E 与∠EBC 表示出∠ECD ,然后整理即可得到∠A 与∠E 的关系,进而可求出∠E .【详解】解解析:35【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A 与∠EBC 表示出∠ECD ,再利用∠E 与∠EBC 表示出∠ECD ,然后整理即可得到∠A 与∠E 的关系,进而可求出∠E .【详解】解:∵BE 和CE 分别是∠ABC 和∠ACD 的角平分线,∴∠EBC =12∠ABC ,∠ECD =12∠ACD ,又∵∠ACD 是△ABC 的一外角,∴∠ACD =∠A +∠ABC ,∴∠ECD =12(∠A +∠ABC )=12∠A +∠ECD ,∵∠ECD 是△BEC 的一外角,∴∠ECD =∠EBC +∠E ,∴∠E =∠ECD -∠EBC =12∠A +∠EBC -∠EBC =12∠A =12×70°=35°,故答案为:35.【点睛】本题考查了三角形的外角性质与内角和定理,角平分线的定义,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键. 十二、填空题12.40°【分析】利用平行线的性质求出∠3即可解决问题.【详解】解:∵直尺的两边互相平行,∴∠1=∠3=50°,∵∠2+∠3=90°,∴∠2=90°﹣∠3=40°,故答案为:40°.解析:40°【分析】利用平行线的性质求出∠3即可解决问题.【详解】解:∵直尺的两边互相平行,∴∠1=∠3=50°,∵∠2+∠3=90°,∴∠2=90°﹣∠3=40°,故答案为:40°.【点睛】本题考查了平行线的性质,直角三角形两锐角互余等知识,解题的关键是灵活运用所学知识解决问题.十三、填空题13.68°【分析】先根据平行线的性质求得∠DEF的度数,再根据折叠求得∠DEG的度数,最后计算∠AEG的大小.【详解】解:∵AD//BC,,∴∠DEF=∠EFG=56°,由折叠可得,∠GEF解析:68°【分析】先根据平行线的性质求得∠DEF 的度数,再根据折叠求得∠DEG 的度数,最后计算∠AEG 的大小.【详解】解:∵AD //BC ,56EFG ∠=︒,∴∠DEF =∠EFG =56°,由折叠可得,∠GEF =∠DEF =56°,∴∠DEG =112°,∴∠AEG =180°-112°=68°.故答案为:68°.【点睛】本题考查了折叠问题,平行线的性质,解题时注意:长方形的对边平行,且折叠时对应角相等.十四、填空题14., 1【分析】根据题意,可以写出前几项的值,从而可以发现这列数的变化特点,从而可以求得所求式子的值.【详解】解:由题意可得,当a1=﹣1时,a2===,a3=== 解析:12,201721 【分析】根据题意,可以写出前几项的值,从而可以发现这列数的变化特点,从而可以求得所求式子的值.【详解】解:由题意可得,当a 1=﹣1时,a 2=111a -=11(1)--=12, a 3=211a -=1112-=2, a 4=﹣1,…,∵2020÷3=673…1,∴a1+a2+a3+…+a2020=(﹣1+12+2)×673+(﹣1)=32×673+(﹣1)=20192﹣22=20172,a1×a2×a3×…×a2020=[(﹣1)×12×2]673×(﹣1)=(﹣1)673×(﹣1)=(﹣1)×(﹣1)=1,故答案为:12,20172,1.【点睛】本题考查有理数的运算,熟练掌握运算律及-1的指数幂运算是解题关键.十五、填空题15.(-3,2)【分析】根据点到x轴的距离是纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值,第二象限内点的横坐标小于零,纵坐标大于零,可得答案.【详解】∵点到横轴的距离为,到纵轴的距离为,解析:(-3,2)【分析】根据点到x轴的距离是纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值,第二象限内点的横坐标小于零,纵坐标大于零,可得答案.【详解】∵点M到横轴的距离为2,到纵轴的距离为3,∴|y|=2,|x|=3,由M是第二象限的点,得:x=−3,y=2.即点M的坐标是(−3,2),故答案为:(−3,2).【点睛】此题考查象限及点的坐标的有关性质,解题关键在于第二象限内点的横坐标小于零,纵坐标大于零.十六、填空题16.(5,6)【分析】根据题意判断出跳蚤跳到(n,n)位置用时n(n+1)秒,然后根据43秒时n 是偶数,即可判断出所在位置的坐标.【详解】解:跳蚤跳到(1,1)位置用时1×2=2秒,下一步向下跳解析:(5,6)【分析】根据题意判断出跳蚤跳到(n,n)位置用时n(n+1)秒,然后根据43秒时n是偶数,即可判断出所在位置的坐标.【详解】解:跳蚤跳到(1,1)位置用时1×2=2秒,下一步向下跳动;跳到(2,2)位置用时2×3=6秒,下一步向左跳动;跳到(3,3)位置用时3×4=12秒,下一步向下跳动;跳到(4,4)位置用时4×5=20秒,下一步向左跳动;…由以上规律可知,跳蚤跳到(n,n)位置用时n(n+1)秒,当n为奇数时,下一步向下跳动;当n为偶数时,下一步向左跳动;∴第6×7=42秒时跳蚤位于(6,6)位置,下一步向左跳动,则第43秒时,跳蚤需从(6,6)向左跳动1个单位到(5,6),故答案为:(5,6).【点睛】此题考查了点的坐标问题,解题的关键是读懂题意,能够正确确定点运动的规律,从而可以得到到达每个点所用的时间.十七、解答题17.(1)0.5;(2)4【分析】(1)根据立方根,算术平方根的定义对各项进行化简,最后相加减即可;(2)根据实数的混合运算法则进行求解.【详解】解:(1);(2).【点睛】本题考查实数解析:(1)0.5;(2)4【分析】(1)根据立方根,算术平方根的定义对各项进行化简,最后相加减即可;(2)根据实数的混合运算法则进行求解.【详解】解:(13242=-+-0.5=;(231=+4=. 【点睛】本题考查实数的运算,熟练掌握立方根,算术平方根的定义是解题的关键.十八、解答题18.(1)或;(2)【分析】(1)直接根据求平方根的方法解方程即可;(2)直接根据求立方根的方法解方程即可.【详解】解:(1)∵,∴,∴,∴或;(2)∵,∴,∴.【点睛】本题主解析:(1)6x =或4x =-;(2)52x =【分析】(1)直接根据求平方根的方法解方程即可;(2)直接根据求立方根的方法解方程即可.【详解】解:(1)∵()2125x -=,∴15x -=±,∴15x =±,∴6x =或4x =-;(2)∵381250x -=,∴3125x=,8∴5x=.2【点睛】本题主要考查了利用求平方根和求立方根的方法解方程,解题的关键在于能够熟练掌握相关知识进行求解.十九、解答题19.(1)见解析;(2)见解析【分析】(1)由对顶角相等及等量代换得到∠2=∠DMN,由此判定DB∥EC,由平行线的性质及等量代换得出∠DBC+∠D=180°即可判定DF∥AC,再根据平行线的性质即解析:(1)见解析;(2)见解析【分析】(1)由对顶角相等及等量代换得到∠2=∠DMN,由此判定DB∥EC,由平行线的性质及等量代换得出∠DBC+∠D=180°即可判定DF∥AC,再根据平行线的性质即可得解;(2)由平行线的性质及等量代换即可得解.【详解】解:(1)证明:∵∠1=∠2(已知),又∵∠1=∠DMN(对顶角相等),∴∠2=∠DMN(等量代换),∴DB∥EC(同位角相等,两直线平行),∴∠DBC+∠C=180°(两直线平行,同旁内角互补),∵∠C=∠D(已知),∵∠DBC+(∠D)=180°(等量代换),∴DF∥AC(同旁内角互补,两直线平行),∴∠A=∠F(两直线平行,内错角相等).(2)∵DB∥EC,∴∠DBC+∠C=180°,∠DEC+∠D=180°,∵∠C=∠D,∴∠DBC=∠DEC.【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的判定定理与性质定理是解题的关键.二十、解答题20.(1)见解析;(2)正方形【分析】(1)根据平面直角坐标系找出各点的位置即可;(2)观察图形可知四边形ABCO是正方形.【详解】解:(1)如图.(2)四边形ABCO是正方形.【点睛】解析:(1)见解析;(2)正方形【分析】(1)根据平面直角坐标系找出各点的位置即可;(2)观察图形可知四边形ABCO是正方形.【详解】解:(1)如图.(2)四边形ABCO是正方形.【点睛】本题考查了坐标与图形性质,能够准确在平面直角坐标系中找出点的位置是解题的关键.二十一、解答题21.(1);(2).【分析】(1)直接利用估算无理数的大小的方法分别得出答案;(2)根据平方根和立方根的定义以及(1)结论,代入解答即可.【详解】(1)∵即,∴的整数部分为3,小数部分为,解析:(1133;(2)4±.【分析】(1)直接利用估算无理数的大小的方法分别得出答案;(2)根据平方根和立方根的定义以及(1)结论,代入解答即可.【详解】(1)∵91316,<<即3134<<, ∴13的整数部分为3,小数部分为133-, ∴13的小数部分为133-;(2)∵52a +的立方根是3,31a b +-的算术平方根是4,c 是13的整数部分, ∴5227a +=,3116a b +-=,3c =,∴5a =,2b =,3c =,∴316a b c -+=,3a b c -+的平方根是4±.【点睛】本题考查了立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.二十二、解答题22.(1)正方形的面积为10,正方形的边长为;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画解析:(1)正方形ABCD 的面积为10,正方形ABCD 的边长为10;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形ABCD 的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画出图形,然后建立数轴,根据算术平方根的意义即可表示出结论.【详解】解:(1)正方形ABCD 的面积为4×4-4×12×3×1=10则正方形ABCD 的边长为10;(2)如下图所示,正方形的面积为4×4-4×12×2×2=8,所以该正方形即为所求,如图建立数轴,以数轴的原点为圆心,正方形的边长为半径作弧,分别交数轴于两点∴∴弧与数轴的左边交点为【点睛】此题考查的是求网格中图形的面积和实数与数轴,掌握算术平方根的意义和利用数轴表示无理数是解题关键.二十三、解答题23.(1)见解析;(2),理由见解析;(3)①当在延长线时(点不与点重合),;②当在之间时(点不与点,重合),.理由见解析【分析】(1)过P 作PE ∥AB ,构造同旁内角,利用平行线性质,可得∠APC= 解析:(1)见解析;(2)180CPD αβ∠=∠+︒-∠,理由见解析;(3)①当P 在BA 延长线时(点P 不与点A 重合),180CPD βα∠=︒-∠-∠;②当P 在BO 之间时(点P 不与点B ,O 重合),180CPD αβ∠=∠-︒+∠.理由见解析【分析】(1)过P 作PE ∥AB ,构造同旁内角,利用平行线性质,可得∠APC =113°;(2)过过P 作//PF AD 交CD 于F ,,推出////AD PF BC ,根据平行线的性质得出180BCP ,即可得出答案;(3)画出图形(分两种情况:①点P 在BA 的延长线上,②当P 在BO 之间时(点P 不与点B ,O 重合)),根据平行线的性质即可得出答案.【详解】解:(1)过P 作//PE AB ,//AB CD ,////PE AB CD ∴,=180APE PAB ,180CPE PCD ∠+∠=︒,128PAB ∠=︒,119PCD ∠=︒52APE ∴∠=︒,61CPE ∠=︒,5261113APC ∴∠=︒+︒=︒;(2)180CPD αβ∠=∠+︒-∠,理由如下:如图3,过P 作//PF AD 交CD 于F ,//AD BC ,////AD PF BC ∴,ADP DPF ∴∠=∠,BCP CPF ∠=∠,180BCP PCE ∠+∠=︒,PCE β∠=∠,180BCP β∴∠=︒-∠又ADP α∠=∠=180CPD DPF CPF ;(3)①当P 在BA 延长线时(点P 不与点A 重合),180CPD βα∠=︒-∠-∠; 理由:如图4,过P 作//PF AD 交CD 于F ,//AD BC ,////AD PF BC ∴,ADP DPF ∴∠=∠,BCP CPF ∠=∠,180BCP PCE ∠+∠=︒,PCE β∠=∠,180BCP β∴∠=︒-∠,又ADP α∠=∠,180CPD CPF DPF αβ∴∠=∠-∠=︒-∠-∠;②当P 在BO 之间时(点P 不与点B ,O 重合),180CPD αβ∠=∠-︒+∠.理由:如图5,过P 作//PF AD 交CD 于F ,//AD BC ,////AD PF BC ∴,ADP DPF ∴∠=∠,BCP CPF ∠=∠,180BCP PCE ∠+∠=︒,PCE β∠=∠,180BCP β∴∠=︒-∠,又ADP α∠=∠180CPD DPF CPF αβ∴∠=∠-∠=∠+∠-︒.本题考查了平行线的性质的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角.二十四、解答题24.(1)图见解析,,理由见解析;(2),理由见解析;(3)图见解析,或.【分析】(1)根据平行线的画法补全图形即可得,根据平行线的性质可得,由此即可得;(2)如图(见解析),先根据平行线的性质可解析:(1)图见解析,EDF BAC ∠=∠,理由见解析;(2)//DE BA ,理由见解析;(3)图见解析,EDF BAC ∠=∠或180EDF BAC ∠+∠=︒.【分析】(1)根据平行线的画法补全图形即可得,根据平行线的性质可得,EDF BFD B B D AC F ∠=∠∠∠=,由此即可得;(2)如图(见解析),先根据平行线的性质可得BAC BOD ∠=∠,再根据等量代换可得EDF BOD ∠=∠,然后根据平行线的判定即可得;(3)先根据点D 的位置画出如图(见解析)的两种情况,再分别利用平行线的性质、对顶角相等即可得.【详解】(1)由题意,补全图形如下:EDF BAC ∠=∠,理由如下://DE BA ,EDF BFD ∴∠=∠,//DF CA ,BA BFD C ∴∠=∠,EDF BAC ∴∠=∠;(2)//DE BA ,理由如下:如图,延长BA 交DF 于点O ,//DF CA ,BAC BOD ∴∠=∠,EDF BAC ∠=∠,EDF BOD ∴∠=∠,(3)由题意,有以下两种情况:①如图3-1,EDF BAC ∠=∠,理由如下://DE BA ,180E EAF ∴∠+∠=︒,//DF CA ,180E EDF ∴∠+∠=︒,EAF EDF ∴∠=∠,由对顶角相等得:BAC EAF ∠=∠,EDF BAC ∴∠=∠;②如图3-2,180EDF BAC ∠+∠=︒,理由如下://DE BA ,180EDF F ∴∠+∠=︒,//DF CA ,BAC F ∴∠=∠,180EDF BAC ∴∠+∠=︒.【点睛】本题考查了平行线的判定与性质等知识点,较难的是题(3),正确分两种情况讨论是解题关键.二十五、解答题25.(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s 【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EK∥MN,利用平行线性解析:(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EK∥MN,利用平行线性质即可求得答案;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,运用平行线性质和角平分线定义即可得出答案;(4)根据平移性质可得D′A=DF,DD′=EE′=AF=5cm,再结合DE+EF+DF=35cm,可得出答案;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:①当BC∥DE时,②当BC∥EF时,③当BC∥DF时,分别求出旋转角度后,列方程求解即可.【详解】(1)如图1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,∵ED平分∠PEF,∴∠PEF=2∠PED=2∠DEF=2×60°=120°,∵PQ∥MN,∴∠MFE=180°−∠PEF=180°−120°=60°,∴∠MFD=∠MFE−∠DFE=60°−30°=30°,∴∠MFD=∠DFE,∴FD平分∠EFM;(2)如图2,过点E作EK∥MN,∵∠BAC=45°,∴∠KEA=∠BAC=45°,∵PQ∥MN,EK∥MN,∴PQ∥EK,∴∠PDE=∠DEK=∠DEF−∠KEA,又∵∠DEF=60°.∴∠PDE=60°−45°=15°,故答案为:15°;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,∴∠LFA=∠BAC=45°,∠RHG=∠QGH,∵FL∥MN,HR∥PQ,PQ∥MN,∴FL∥PQ∥HR,∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA−∠LFA,∵∠FGQ和∠GFA的角平分线GH、FH相交于点H,∴∠QGH=12∠FGQ,∠HFA=12∠GFA,∵∠DFE=30°,∴∠GFA=180°−∠DFE=150°,∴∠HFA=12∠GFA=75°,∴∠RHF=∠HFL=∠HFA−∠LFA=75°−45°=30°,∴∠GFL=∠GFA−∠LFA=150°−45°=105°,∴∠RHG=∠QGH=12∠FGQ=12(180°−105°)=37.5°,∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;(4)如图4,∵将△DEF沿着CA方向平移至点F与A重合,平移后的得到△D′E′A,∴D′A=DF,DD′=EE′=AF=5cm,∵DE+EF+DF=35cm,∴DE+EF+D′A+AF+DD′=35+10=45(cm),即四边形DEAD′的周长为45cm;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:BC∥DE时,如图5,此时AC∥DF,∴∠CAE=∠DFE=30°,∴3t=30,解得:t=10;BC∥EF时,如图6,∵BC∥EF,∴∠BAE=∠B=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°,∴3t=90,解得:t=30;BC∥DF时,如图7,延长BC交MN于K,延长DF交MN于R,∵∠DRM=∠EAM+∠DFE=45°+30°=75°,∴∠BKA=∠DRM=75°,∵∠ACK=180°−∠ACB=90°,∴∠CAK=90°−∠BKA=15°,∴∠CAE=180°−∠EAM−∠CAK=180°−45°−15°=120°,∴3t=120,解得:t=40,综上所述,△ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与△DEF的一条边平行.【点睛】本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键.。
人教版七年级数学下册期末测试题及答案(共五套)
七下期期末(共六套)一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )±4 B.3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( ) A.135x y x y -=⎧⎨+=⎩ B.135x y x y -=-⎧⎨+=-⎩ C.331x y x y -=⎧⎨-=⎩ D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .1000B .1100C .1150D .120PCBA(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( ) A .5 B .6 C .7 D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 c m 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上. 11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。
人教版七年级数学下册期末考试测试卷(含答案)
人教版七年级数学下册期末考试测试卷(含答案)班级:姓名:得分:时间:120分钟满分:120分一、选择题(共10小题,每题3分,共30分)1.在实数5、227、0、2π、36、-1.414中,有理数有( )A.1个 B.2个 C.3个 D.4个2.在平面直角坐标系中,若点P(m-3,m+1)在第二象限,则m的取值范围为()A.-1<m<3B.m>3C.m<-1D.m>-13.在直角坐标系中,点A(2,1)向左平移4个单位长度,再向下平移2个单位长度后的坐标为()(A)(4,3)(B)(-2,-1)(C)(4,-1)(D)(-2,3)4.将一直角三角板与两边平行的纸条如图所示放置,有下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°.其两边平行的纸条如图所中正确的个数为()A.1 B.2 C.3 D.45.如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB等于( )A.30° B.45° C.60° D.75°6.如果a3x b y与﹣a2y b x+1是同类项,则()A 、23xy=-⎧⎨=⎩B.23xy=⎧⎨=-⎩C.23xy=-⎧⎨=-⎩D.23xy=⎧⎨=⎩7.林老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是( ).组别A 型B 型 AB 型 O 型 频率 0.40.350.10.15A.16人B.14人C.4人D.6人8.若y x 、满足0)2(|3|52=-+-+y x y x ,则有( )(A )⎩⎨⎧-=-=21y x (B )⎩⎨⎧-=-=12y x (C )⎩⎨⎧==12y x (D )⎩⎨⎧==21y x9.某校团委与社区联合举办“保护地球,人人有责”活动,选派20名学生分三组到120个店铺发传单,若第一、二、三小组每人分别负责8、6、5个店铺,且每组至少有两人,则学生分组方案有( ) A.6种 B.5种 C.4种 D.3种10.若关于x 的一元一次不等式组⎩⎨⎧>-<-01a x x 无解,则a 的取值范围是( )A . 1≥aB . 1>aC .1-≤aD . 1-<a 二、填空题(共10小题,每题3分,共30分) 11.点P (-5,1),到x 轴距离为__________.12.如图,是象棋盘的一部分,若“帅”位于点(2,-1)上,“相”位于点(4,-1)上,则“炮”所在的点的坐标是 。
新人教版七年级数学下册期末考试卷及答案【完整版】
新人教版七年级数学下册期末考试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.如果y =2x -+2x -+3,那么y x 的算术平方根是( )A .2B .3C .9D .±3 2.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( )A .160元B .180元C .200元D .220元3.按如图所示的运算程序,能使输出的结果为12的是( )A .3,3x y ==B .4,2x y =-=-C .2,4x y ==D .4,2x y ==4.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A .120元B .100元C .80元D .60元5.如图,AB ∥CD ,∠1=58°,FG 平分∠EFD ,则∠FGB 的度数等于( )A .122°B .151°C .116°D .97°6.如图,∠1=70°,直线a 平移后得到直线b ,则∠2-∠3( )A .70°B .180°C .110°D .80°7.如图,△ABC 的面积为3,BD :DC =2:1,E 是AC 的中点,AD 与BE 相交于点P ,那么四边形PDCE 的面积为( )A .13B .710C .35D .1320 8.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.如图,在菱形ABCD 中,2,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A.6 B.33 C.26 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a+1)2+|b+5|=b+5,且|2a-b-1|=1,则ab=___________.2.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A=________.3.正五边形的内角和等于______度.4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y=95x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.2的相反数是________.5.若x的相反数是3,y=5,则x y+的值为_________.三、解答题(本大题共6小题,共72分)1.解方程:1314(1)(5) 243x x x⎡⎤--=+⎢⎥⎣⎦.2.已知x、y满足方程组52251x yx y-=-⎧⎨+=-⎩,求代数式()()()222x y x y x y--+-的值.3.如图是一个长为a ,宽为b 的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a ,b 的代数式表示矩形中空白部分的面积;(2)当a =3,b =2时,求矩形中空白部分的面积.4.已知ABN 和ACM △位置如图所示,AB AC =,AD AE =,12∠=∠.(1)试说明:BD CE =;(2)试说明:M N ∠=∠.5.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A .仅学生自己参与;B .家长和学生一起参与;C .仅家长自己参与;D .家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.6.为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、C5、B6、C7、B8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、40°3、5404、-405、﹣2.6、2或-8三、解答题(本大题共6小题,共72分)1、1x2、3 53、(1)S=ab﹣a﹣b+1;(2)矩形中空白部分的面积为2;4、(1)略;(2)略.5、(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.6、(1)A种纪念品需要100元,购进一件B种纪念品需要50元(2)共有4种进货方案(3)当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元。
七年级下册数学期末试卷及答案人教版
七年级下册数学期末试卷及答案人教版一、选择题(每题2分,共40分)1. 下列谁是数学家?()A. 马化腾B. 郭守敬C. 李连杰D. 阿里巴巴答案:B2. 下列哪个不属于数学中的基本运算?()A. 加法B. 除法C. 乘法D. 减法答案:B3. 一个矩形的长是3cm,宽是2cm,它的周长是()A. 8cmB. 10cmC. 6cmD. 4cm答案:10cm4. 下列哪个是质数?()A. 6B. 9C. 11D. 15答案:C5. 下列哪个不是等式?()A. 3 + 5 = 8B. 6 ÷ 2 = 2C. 7 × 1 = 7D. 9 + 3 ≠ 12答案:D6. 下列哪个数是奇数?()A. 58B. 29C. 102D. 36答案:B7. 一个三角形的三个角分别是60度、80度和()度。
A. 40B. 20C. 100D. 80答案:408. 下列哪个是正比例函数?()A. y = 2x + 1B. y = 2xC. y = x²D. y = 1/x答案:B9. 下列哪个不是平行四边形?()A. 正方形B. 长方形C. 菱形D. 梯形答案:D10. 下列哪个是数轴上的点?()A. 0.5B. 0.5cmC. 1/2D. 1:2答案:A11. 8.5 ÷ 0.5 = ()A. 17B. 1.7C. 85D. 0.85答案:1712. 下列哪个不是正整数的代表?()A. 0B. 1C. 2D. 3答案:A13. 下列哪个图形面积最大?()A. 长方形B. 正方形C. 三角形D. 圆形答案:D14. 用字母表示未知数,下列哪个是方程?()A. 3 + x = 7B. 3 > xC. 2xD. x + 3答案:A15. 下列哪个是钝角三角形?()A. 30度-60度-90度三角形B. 等腰直角三角形C. 直角三角形D. 锐角三角形答案:D二、填空题(每空2分,共40分)16. 计算$3\times(-4)=$()答案:-1217. 下列哪个角是顶角?∠ABC,∠ACD,∠BCD中,顶角是______。
人教版七年级下册数学期末考试试题及答案
人教版七年级下册数学期末考试试题及答案七年级下册数学期末考试试卷一、选择题(本大题共10小题,每小题3分,共30分)1、下列各点中,位于第二象限的是()A、(2,3)B、(2,-3)C、(-2,3)D、(-2,-3)2、对于条形统计图、折线统计图和扇形统计图这三种常见的统计图,下列说法正确的是()A、条形统计图能清楚地反映事物的变化情况B、折线统计图能清楚地表示出每个项目的具体数目C、扇形统计图能清楚地表示出各部分在总体中所占的百分比D、三种统计图可以互相转换3、下列方程组是二元一次方程组的是()A、x y5z x 5B、x y3xy 2C、x y32x y 4D、x y11x y 44、下列判断不正确的是()A、若a b,则4a4bB、若2a3b,则a bC、若a b,则ac bcD、若ac bc,则a b5、一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1),(-1,2),(3,-1),则第四个顶点的坐标为()A、(2,2)B、(3,2)C、(3,3)D、(2,3)6、下列调查适合作抽样调查的是()A、了解XXX“天天向上”栏目的收视率B、了解初三年级全体学生的体育达标情况C、了解某班每个学生家庭电脑的数量D、“辽宁号”航母下海前对重要零部件的检查7、已知点A(m,n)在第三象限,则点B(m,-n)在()A、第一象限B、第二象限C、第三象限D、第四象限8、关于x,y的方程组y2x mx2y 5x2y5m的解满足x y6,则m的值为()A、1B、2C、3D、49、为了了解我市6000名学生参加的初中毕业会考数学考试的成绩情况,从中抽取了200名考生的成绩进行统计,在这个问题中,下列说法正确的有()A、这6000名学生的数学会考成绩的全体是总体;B、每个考生的数学会考成绩是个体;C、抽取的200名考生的数学会考成绩是总体的一个样本;D、样本容量是200.10、已知:正方形ABCD的面积为64,被分成四个相同的长方形和一个面积为4的小正方形,则a,b的长分别是()A、a=5,b=3B、a=3,b=5C、a=6.5,b=1.5D、a=1.5,b=6.5一、改错题1.今天我们研究了一道非常有意思的数学题目,它是这样的:有一只猴子摘了若干个桃子,第一天它吃了其中的一半,然后再多吃了一个;第二天它又吃了其中的一半,再多吃了一个;以后每天都是这样吃,请问这只猴子摘了多少个桃子?改为:今天我们研究了一道非常有趣的数学题目:一只猴子摘了一些桃子,第一天它吃了其中的一半,再多吃了一个;第二天它又吃了其中的一半,再多吃了一个;以后每天都是这样吃。
人教版七年级下册数学期末测试卷(及答案)
人教版七年级下册数学期末测试卷(及答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-5的相反数是( )A .15-B .15C .5D .-52.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .3.如图,在△ABC 中,AB=20cm ,AC=12cm ,点P 从点B 出发以每秒3cm 速度向点A 运动,点Q 从点A 同时出发以每秒2cm 速度向点C 运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是( )秒A .2.5B .3C .3.5D .44381524,…,其中第6个数为( ) A 373535235.下列说法,正确的是( )A .若ac bc =,则a b =B .两点之间的所有连线中,线段最短C .相等的角是对顶角D .若AC BC =,则C 是线段AB 的中点6.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系:x /kg 0 1 2 3 4 5 y /cm 1010.51111.51212.5下列说法不正确的是( )A .x 与y 都是变量,且x 是自变量,y 是因变量B .弹簧不挂重物时的长度为0 cmC .物体质量每增加1 kg ,弹簧长度y 增加0.5 cmD .所挂物体质量为7 kg 时,弹簧长度为13.5 cm7.当a <0,n 为正整数时,(-a )5·(-a )2n 的值为( ) A .正数B .负数C .非正数D .非负数8.一个几何体的表面展开图如图所示,则这个几何体是( )A .四棱锥B .四棱柱C .三棱锥D .三棱柱9.关于x 的不等式组0312(1)x m x x -<⎧⎨->-⎩无解,那么m 的取值范围为( )A .m ≤-1B .m<-1C .-1<m ≤0D .-1≤m<010.如图,△ABC 中,AD 为△ABC 的角平分线,BE 为△ABC 的高,∠C=70°,∠ABC=48°,那么∠3是( )A .59°B .60°C .56°D .22°二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的代数式()2x -1x 9a ++是完全平方式,则a =_________.2.绝对值不大于4.5的所有整数的和为________.3.已知点A (0,1),B (0 ,2),点C 在x 轴上,且2ABC S ∆=,则点C 的坐标________. 4.已知15x x+=,则221x x +=________________.5.有三个互不相等的整数a,b,c ,如果abc=4,那么a+b+c=__________ 6.如图,已知AB ∥CD ,F 为CD 上一点,∠EFD=60°,∠AEC=2∠CEF ,若6°<∠BAE <15°,∠C 的度数为整数,则∠C 的度数为________.三、解答题(本大题共6小题,共72分)1.求满足不等式组()32813 1322x x x x⎧--≤⎪⎨--⎪⎩<的所有整数解.2.化简(1)先化简,再求值:()()22632a a a a ++-,其中1a =(2)化简:已知222A a ab b =-+,22+2B a ab b =+,求()14B A -3.已知:如图,∠C=∠1,∠2和∠D 互余,BE ⊥FD 于点G .试说明:AB ∥CD .4.如图1,△ABD ,△ACE 都是等边三角形, (1)求证:△ABE ≌△ADC ;(2)若∠ACD=15°,求∠AEB 的度数;(3)如图2,当△ABD 与△ACE 的位置发生变化,使C 、E 、D 三点在一条直线上,求证:AC ∥BE .5.某校计划组织学生参加“书法”、“摄影”、“航模”、“围棋”四个课外兴题小組.要求每人必须参加.并且只能选择其中一个小组,为了解学生对四个课外兴趣小组的选择情況,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计图和条形统计图(部分信息未给出).请你根据给出的信息解答下列问题:(1)求参加这次问卷调查的学生人数.并补全条形统计图(画图后请标注相应的数据);(2)________, ________;m n ==(3)若某校共有1200名学生,试估计该校选择“围棋”课外兴趣小组有多少人?6.某商贸公司有A、B两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:(1)已知一批商品有A、B两种型号,体积一共是20立方米,质量一共是10.5吨,求A、B两种型号商品各有几件?(2)物资公司现有可供使用的货车每辆额定载重3.5吨,容积为6立方米,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元;②按吨收费:每吨货物运输到目的地收费200元.现要将(1)中商品一次或分批运输到目的地,如果两种收费方式可混合使用,商贸公司应如何选择运送、付费方式,使其所花运费最少,最少运费是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、D4、D5、B6、B7、A8、A9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、5或-72、03、(4,0)或(﹣4,0)4、235、-1或-46、36°或37°.三、解答题(本大题共6小题,共72分)1、不等式组的解集:-1≤x<2,整数解为:-1,0,1.2、(1)4a,4;(2)ab3、略4、(1)略(2) ∠AEB=15°(3) 略5、(1)150;补图见解析;(2)36,16;(3)选择“围棋”课外兴趣小组的人数为192人.6、(1)A种型号商品有5件,B种型号商品有8件;(2)先按车收费用3辆车运送18m3,再按吨收费运送1件B型产品,运费最少为2000元。
人教版七年级数学下册期末测试题+答案解析(共四套)
⼈教版七年级数学下册期末测试题+答案解析(共四套)⼈教版七年级第⼆学期综合测试题(⼆)、填空题:(每题3分,共15分)i.8i 的算术平⽅根是 ________ ,旷64= __________ . 2. 如果 13. 在⼛ABC 中,已知两条边a=3,b=4,则第三边c 的取值范围是 _____________4. 若三⾓形三个内⾓度数的⽐为 2:3:4,则相应的外⾓⽐是 ___________ .5.已知两边相等的三⾓形⼀边等于 ___________ 5cm,另⼀边等于11cm,则周长是.⼆、选择题:(每题3分,共15分)6?点P (a,b )在第四象限,则点P 到x 轴的距离是() A.a B.b C.| a | D. | b |7. 已知aa b A.a+5>b+5B.3a>3b;C.-5a>-5bD.>3 38. 如图,不能作为判断AB// CD 的条件是()A. / FEB=/ ECDB./ AEC ⽞ ECD; C. / BEC+Z ECD=180D. / AEG=Z DCH三、解答题:(每题6分,共18分) 11.解下列⽅程组:12.2x 5y 25,4x 3y 15.9.以下说法正确的是()A. 有公共顶点,并且相等的两个⾓是对顶⾓B. 两条直线相交,任意两个⾓都是对顶⾓C. 两⾓的两边互为反向延长线的两个⾓是对顶⾓D. 两⾓的两边分别在同⼀直线上,这两个⾓互为对顶⾓ 10.下列各式中,正确的是()13.若A(2x-5,6-2x)在第四象限,求a解不等式组,并在数轴表⽰2x 3 6 x,1 4x 5x 2.的取值范围作图题:(6分)作BC 边上的⾼作AC 边上的中线。
五.有两块试验⽥,原来可产花⽣470千克,改⽤良种后共产花⽣ 532千克,已知第⼀块⽥的产量⽐原来增加 16%,第⼆块⽥的产量⽐原来增加10%,问这两块试验⽥改⽤良种后各增产花⽣多少千克?( 8分)六,已知a 、b 、c 是⼆⾓形的⼆边长,化简:|a — b +c|+ |a — b — c| (6分)⼋,填空、如图1,已知/1 =/2, Z B =Z C ,可推得AB //CD 。
人教版中学七年级下册数学期末考试试卷(附答案)
人教版中学七年级下册数学期末考试试卷(附答案)一、选择题1.36的平方根是() A .6-B .6C .6±D .4±2.下列各组图形可以通过平移互相得到的是( ) A .B .C .D .3.如果点P (1-2m ,m )的横坐标与纵坐标互为相反数,则点P 一定在( ) A .第一象限B .第二象限C .第三象限D .第四象限4.下列给出四个命题:①如果两个角相等,那么它们是对顶角;②如果两个角互为邻补角,那么它们的平分线互相垂直;③如果两条直线垂直于同一条直线,那么这两条直线平行;④如果两条直线平行于同一条直线,那么这两条直线平行.其中为假命题的是( ) A .①B .①②C .①③D .①②③④5.一副直角三角尺叠放如图1所示,现将45°的三角尺ADE 固定不动,将含30°的三角尺ABC 绕顶点A 顺时针转动,使两块三角尺至少有一组边互相平行,如图2,当15BAD ∠=︒时,//BC DE ,则BAD ∠(0180BAD ︒<∠<︒)其它所有可能符合条件的度数为( )A .60°和135°B .60°和105°C .105°和45°D .以上都有可能 6.下列各式正确的是( )A .42=±B .2(2)4-=C .224-=D .382-=7.如图,AB //CD ,AD ⊥AC ,∠ACD =53°,则∠BAD 的度数为( )A .53°B .47°C .43°D .37°8.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如()1,0,()2,0,()2,1,()3,2,()3,1,()3,0,()4,0.根据这个规律探索可得,第2021个点的坐标为( )A .()64,4B .()64,59C .()2021,4D .()2021,2016九、填空题9.25的算术平方根是 _______ .十、填空题10.在平面直角坐标系中,已知点A 的坐标为(﹣2,5),点Q 与点A 关于y 轴对称,点P 与点Q 关于x 轴对称,则点P 的坐标是___.十一、填空题11.如图,在ABC 中,40B ︒∠=.三角形的外角DAC ∠和ACF ∠的角平分线交于点E ,则AEC ∠=_____度.十二、填空题12.如图所示,直线AB ,BC ,AC 两两相交,交点分别为A ,B ,C ,点D 在直线AB 上,过点D 作DE ∥BC 交直线AC 于点E ,过点E 作EF ∥AB 交直线BC 于点F ,若∠ABC =50°,则∠DEF 的度数___.十三、填空题13.如图1是//AD BC 的一张纸条,按图示方式把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中21CFE ∠=︒,则图2中AEF ∠的度数为______.十四、填空题14.观察下列等式:1﹣12=12,2﹣25=85,3﹣310=2710,4﹣417=6417,…,根据你发现的规律,则第20个等式为_____.十五、填空题15.点()2,28M a a +-是第四象限内一点,若点M 到两坐标轴的距离相等,则点M 的坐标为__________.十六、填空题16.如图,点A (0,1),点1A (2,0),点2A (3,2),点3A (5,1)…,按照这样的规律下去,点1000A 的坐标为 _____.十七、解答题17.计算:(1)利用平方根意义求x 值:()2136x -= (2()235832--十八、解答题18.求下列各式中的x 值: (1)169x 2=144; (2)(x -2)2-36=0.十九、解答题19.完成下面的证明.如图,AB ∥CD ,∠B +∠D =180°,求证:BE ∥DF .分析:要证BE ∥DF ,只需证∠1=∠D . 证明:∵AB ∥CD (已知) ∴∠B +∠1=180°( ) ∵∠B +∠D =180°(已知) ∴∠1=∠D ( ) ∴BE ∥DF ( )二十、解答题20.如图,在平面直角坐标系中,三角形ABC 经过平移得到三角形A 1B 1C 1,结合图形,完成下列问题:(1)三角形ABC 先向左平移 个单位,再向 平移 个单位得到三角形A 1B 1C 1. (2)三角形ABC 内有一点P (x ,y ),则在三角形A 1B 1C 1内部的对应点P 1的坐标是 .(3)三角形ABC 的面积是 .二十一、解答题21.已知21a -的平方根是3±,11a b 1+-的立方根是4,b a -的算术平方根是m . (1)求m 的值;(2)如果10m x y +=+,其中x 是整数,且01y <<,求x y -的值.二十二、解答题22.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A 表示的数为________; (2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 35-+ 的点,并比较它们的大小.二十三、解答题23.如图1,已AB ∥CD ,∠C =∠A . (1)求证:AD ∥BC ;(2)如图2,若点E 是在平行线AB ,CD 内,AD 右侧的任意一点,探究∠BAE ,∠CDE ,∠E 之间的数量关系,并证明.(3)如图3,若∠C =90°,且点E 在线段BC 上,DF 平分∠EDC ,射线DF 在∠EDC 的内部,且交BC 于点M ,交AE 延长线于点F ,∠AED +∠AEC =180°, ①直接写出∠AED 与∠FDC 的数量关系: .②点P 在射线DA 上,且满足∠DEP =2∠F ,∠DEA ﹣∠PEA =514∠DEB ,补全图形后,求∠EPD 的度数二十四、解答题24.如图1,O 为直线AB 上一点,过点O 作射线,30OC AOC ︒∠=,将一直角三角板(30M ︒∠=)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB的上方,将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.(1)几秒后ON与OC重合?MN AB,求此时t的值.(2)如图2,经过t秒后,//(3)若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,那么经过多长时间OC与OM重合?请画图并说明理由.?请画图并说明理由.(4)在(3)的条件下,求经过多长时间OC平分MOB二十五、解答题25.【问题探究】如图1,DF∥CE,∠PCE=∠α,∠PDF=∠β,猜想∠DPC与α、β之间有何数量关系?并说明理由;【问题迁移】如图2,DF∥CE,点P在三角板AB边上滑动,∠PCE=∠α,∠PDF=∠β.(1)当点P在E、F两点之间运动时,如果α=30°,β=40°,则∠DPC= °.(2)如果点P在E、F两点外侧运动时(点P与点A、B、E、F四点不重合),写出∠DPC 与α、β之间的数量关系,并说明理由.(图1) (图2)【参考答案】一、选择题 1.C 解析:C 【分析】根据平方根的定义求解即可. 【详解】 解:∵2(6)36=±, ∴36的平方根是6±, 故选:C . 【点睛】此题考查的是求一个数的平方根,掌握平方根的定义是解决此题的关键.2.C 【分析】根据平移不改变图形的形状和大小,进而得出答案. 【详解】解:观察图形可知选项C 中的图案通过平移后可以得到. 故选:C . 【点睛】本题考查了图形的平移,正确掌握平移的性质是解题关键.解析:C 【分析】根据平移不改变图形的形状和大小,进而得出答案. 【详解】解:观察图形可知选项C 中的图案通过平移后可以得到. 故选:C . 【点睛】本题考查了图形的平移,正确掌握平移的性质是解题关键. 3.B 【分析】互为相反数的两个数的和为0,求出m 的值,再判断出所求点的横纵坐标的符号,进而判断点P 所在的象限. 【详解】解:∵点P (1-2m ,m )的横坐标与纵坐标互为相反数 ∴120m m -+= 解得m =1∴1-2m =1-2×1=-1,m =1∴点P 坐标为(-1,1) ∴点P 在第二象限 故选B . 【点睛】本题考查了点的坐标和相反数的定义,解决本题的关键是记住平面直角坐标系中各个象限内点的符号特点:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-). 4.C 【分析】根据两个相等的角不一定是对顶角对①进行判定,根据邻补角与角平分线的性质对②进行判断,根据在同一平面内,两条直线垂直于同一条直线,那么这两条直线平行对③进行判断,根据平行线的判定对④进行判断. 【详解】解:①如果两个角相等,那么它们不一定是对顶角,选项说法错误,符合题意; ②如果两个角互为邻补角,那么它们的平分线互相垂直,选项说法正确,不符合题意; ③在同一平面内,如果两条直线垂直于同一条直线,那么这两条直线平行,选项说法错误,符合题意;④如果两条直线平行于同一条直线,那么这两条直线平行,选项说法正确,不符合题意; 故选:C . 【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可. 5.D 【分析】根据题意画出图形,再由平行线的性质定理即可得出结论. 【详解】 解:如图当AC ∥DE 时,45BAD DAE ∠=∠=︒; 当BC ∥AD 时,60DAB B ∠=∠=︒; 当BC ∥ AE 时,∵60EAB B ∠=∠=︒, ∴4560105BAD DAE EAB ∠=∠+∠=︒+︒=︒; 当AB ∥DE 时,∵ 90E EAB ∠=∠=︒, ∴4590135BAD DAE EAB ∠=∠+∠=︒+︒=︒.故选:D . 【点睛】本题考查的是平行线的判定与性质,根据题意画出图形,利用平行线的性质及直角三角板的性质求解是解答此题的关键. 6.B 【分析】根据算术平方根的定义,立方根的定义以及平方根的定义逐一判断即可. 【详解】解:2=,故本选项不合题意; B.2(2)4-=,正确;C.224-=-,故本选项不合题意;2=-,故本选项不合题意. 故选:B . 【点睛】本题考查了平方根,立方根以及算术平方根的定义,熟记相关定义是解题的关键. 7.D 【分析】因为AD ⊥AC ,所以∠CAD =90°.由AB //CD ,得∠BAC =180°﹣∠ACD ,进而求得∠BAD 的度数. 【详解】 解:∵AB //CD , ∴∠ACD +∠BAC =180°.∴∠CAB =180°﹣∠ACD =180°﹣53°=127°. 又∵AD ⊥AC , ∴∠CAD =90°.∴∠BAD =∠CAB ﹣∠CAD =127°﹣90°=37°. 故选:D . 【点睛】本题考查了平行线的性质,垂线的定义,掌握平行线的性质是解题的关键.8.A 【分析】横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数. 【详解析:A 【分析】横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,2⋯横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数.【详解】解:把第一个点(1,0)作为第一列,(2,1)和(2,0)作为第二列,依此类推,则第一列有一个数,第二列有2个数,第n列有n个数.则n列共有(1)2n n+个数,并且在奇数列点的顺序是由上到下,偶数列点的顺序由下到上.因为123632016+++⋯+=,则第2021个数一定在第64列,由下到上是第5个数.因而第2021个点的坐标是(64,4).故选:A.【点睛】本题考查了坐标与图形,数字类的规律,根据图形得出规律是解此题的关键.九、填空题9.5【详解】试题分析:根据算术平方根的定义即可求出结果,算术平方根只有一个正根.∵52=25,∴25的算术平方根是5.考点:算术平方根.解析:5【详解】试题分析:根据算术平方根的定义即可求出结果,算术平方根只有一个正根.∵52=25,∴25的算术平方根是5.考点:算术平方根.十、填空题10.(2,﹣5).【分析】根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可【详解】∵点A的坐标为(﹣2,5),点Q与点A关于y轴对称,∴点Q的坐标为(2,5),∵点P与点Q关于x轴解析:(2,﹣5).【分析】根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可【详解】∵点A的坐标为(﹣2,5),点Q与点A关于y轴对称,∴点Q 的坐标为(2,5),∵点P 与点Q 关于x 轴对称,∴点P 的坐标是(2,﹣5).故答案为:(2,﹣5).【点睛】本题考查了平面直角坐标系的定义,轴对称,理解题意是解题的关键.十一、填空题11.【分析】如图,先根据三角形的内角和定理求出∠1+∠2的度数,再求出∠DAC+∠ACF 的度数,然后根据角平分线的定义可求出∠3+∠4的度数,进而可得答案.【详解】解:如图,∵∠B=40°,∴∠解析:【分析】如图,先根据三角形的内角和定理求出∠1+∠2的度数,再求出∠DAC +∠ACF 的度数,然后根据角平分线的定义可求出∠3+∠4的度数,进而可得答案.【详解】解:如图,∵∠B =40°,∴∠1+∠2=180°-∠B =140°,∴∠DAC +∠ACF =360°-∠1-∠2=220°,∵AE 和CE 分别是DAC ∠和ACF ∠的角平分线, ∴113,422DAC ACF ∠=∠∠=∠, ∴()113422011022DAC ACF ∠+∠=∠+∠=⨯=, ∴()1803418011070E ∠=-∠+∠=-=.故答案为:70.【点睛】本题考查了三角形的内角和定理和角平分线的定义,属于基础题型,熟练掌握三角形的内角和定理和整体的数学思想是解题的关键.十二、填空题12.130°.【分析】先求出∠ABC =∠ADE =50°,再求出∠DEF =180°﹣50°=130°即可.【详解】解:∵DE∥BC,∴∠ABC=∠ADE=50°(两直线平行,同位角相等),∵E解析:130°.【分析】先求出∠ABC=∠ADE=50°,再求出∠DEF=180°﹣50°=130°即可.【详解】解:∵DE∥BC,∴∠ABC=∠ADE=50°(两直线平行,同位角相等),∵EF∥AB,∴∠ADE+∠DEF=180°(两直线平行,同旁内角互补),∴∠DEF=180°﹣50°=130°.故答案为:130°.【点睛】本题考查了平行线线段的性质,熟练掌握平行线的性质定理是解题关键.十三、填空题13.113°【分析】如图,设∠B′FE=x,根据折叠的性质得∠BFE=∠B′FE=x,∠AEF=∠A′EF,则∠BFC=x−21°,再由第2次折叠得到∠C′FB=∠BFC=x−21°,于是利用平角定解析:113°【分析】如图,设∠B′FE=x,根据折叠的性质得∠BFE=∠B′FE=x,∠AEF=∠A′EF,则∠BFC=x−21°,再由第2次折叠得到∠C′FB=∠BFC=x−21°,于是利用平角定义可计算出x=67°,接着根据平行线的性质得∠A′EF=180°−∠B′FE=113°,所以∠AEF=113°.【详解】解:如图,设∠B′FE=x,∵纸条沿EF折叠,∴∠BFE=∠B′FE=x,∠AEF=∠A′EF,∴∠BFC=∠BFE﹣∠CFE=x﹣21°,∵纸条沿BF 折叠,∴∠C′FB =∠BFC =x ﹣21°,而∠B′FE +∠BFE +∠C′FE =180°,∴x +x+x ﹣21°=180°,解得x =67°,∵A′D′∥B′C′,∴∠A′EF =180°﹣∠B′FE =180°﹣67°=113°,∴∠AEF =113°.故答案为113°.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决本题的关键是画出折叠前后得图形. 十四、填空题14.20﹣.【分析】观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案.【详解】观察已知等式,等式左边的第一个数的规律为,第二个数的规律为:分子为,分母为等式右边的解析:20﹣208000=401401. 【分析】观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案.【详解】观察已知等式,等式左边的第一个数的规律为1,2,3,,第二个数的规律为:分子为1,2,3,,分母为222112,215,3110,+=+=+=等式右边的规律为:分子为3331,2,3,,分母为222112,215,3110,+=+=+= 归纳类推得:第n 个等式为32211n n n n n -=++(n 为正整数) 当20n =时,这个等式为322202020201201-=++,即20800020401401-= 故答案为:20800020401401-=. 【点睛】 本题考查了实数运算的规律型问题,从已知等式中归纳类推出一般规律是解题关键. 十五、填空题15.【分析】根据点是第四象限内一点且到两坐标轴距离相等,点M 的横坐标与纵坐标互为相反数列方程求出a 的值,再求解即可.【详解】∵点是第四象限内一点且到两坐标轴距离相等,∴点M 的横坐标与纵坐标互为解析:()4,4-【分析】根据点()2,28M a a +-是第四象限内一点且到两坐标轴距离相等,点M 的横坐标与纵坐标互为相反数列方程求出a 的值,再求解即可.【详解】∵点()2,28M a a +-是第四象限内一点且到两坐标轴距离相等,∴点M 的横坐标与纵坐标互为相反数∴()228a =a +--解得,2a =∴M 点坐标为(4,-4).故答案为(4,-4)【点睛】本题考查了点的坐标,理解点M 是第四象限内一点且到两坐标轴距离相等,则点M 的横坐标与纵坐标互为相反数是解题的关键.十六、填空题16.(1500,501).【分析】仔细寻找横坐标,纵坐标与点的序号之间关系,从而确定变换规律求解即可.【详解】观察图形可得,点(2,0),点(5,1),(8,2),…,(3n ﹣1,n ﹣1), 点解析:(1500,501).【分析】仔细寻找横坐标,纵坐标与点的序号之间关系,从而确定变换规律求解即可.【详解】观察图形可得,点1A (2,0),点3A (5,1),5A (8,2),…,21n A -(3n ﹣1,n ﹣1),点2A (3,2),4A (6,3),6A (9,4),…,2n A (3n ,n +1),∵1000是偶数,且1000=2n ,∴n =500,∴1000A (1500,501),故答案为:(1500,501).【点睛】本题考查了图形与坐标,分类思想,通过发现特殊点的坐标与序号的关系,运用特殊与一般的思想探索规律是解题的关键.十七、解答题17.(1)或 (2)【分析】(1)由平方根的定义可得答案,(2)先化简二次根式,求解立方根与绝对值,再合并即可得到答案.【详解】解:(1) ,是的平方根,或(2)【点睛解析:(1)7x =或 5.x =- (2)5【分析】(1)由平方根的定义可得答案,(2)先化简二次根式,求解立方根与绝对值,再合并即可得到答案.【详解】解:(1) ()2136x -=, 1x ∴-是36的平方根,16,16,x x ∴-=-=-7x ∴=或 5.x =-(225(2)2=--522=+-5=【点睛】本题考查的是平方根的定义,实数的运算,求解算术平方根,立方根,绝对值的化简,掌握以上知识是解题的关键.十八、解答题18.(1)x=±;(2)x=8或x=-4. 【分析】(1)移项后,根据平方根定义求解;(2)移项后,根据平方根定义求解.【详解】解:(1)169x2=144,移项得:x2=,解得:x=±.解析:(1)x=±1213;(2)x=8或x=-4.【分析】(1)移项后,根据平方根定义求解;(2)移项后,根据平方根定义求解.【详解】解:(1)169x2=144,移项得:x2=144 169,解得:x=±12 13.(2)(x-2)2-36=0,移项得:(x-2)2=36,开方得:x-2=6或x-2=-6解得:x=8或x=-4.故答案为(1)x=±1213;(2)x=8或x=-4.【点睛】本题考查利用平方根解方程,解答此题的关键是掌握平方根的概念.十九、解答题19.两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行【分析】要证BE∥DF,只需证∠1=∠D,由AB∥CD可知∠B+∠1=180°,又有∠B+∠D =180°,由此即可证得.【详解】解析:两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行【分析】要证BE∥DF,只需证∠1=∠D,由AB∥CD可知∠B+∠1=180°,又有∠B+∠D=180°,由此即可证得.【详解】证明:∵AB ∥CD (已知)∴∠B +∠1=180°(两直线平行,同旁内角互补)∵∠B +∠D =180°(已知)∴∠1=∠D (同角的补角相等),∴BE ∥DF (同位角相等,两直线平行)故答案为:两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行.【点睛】本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解. 二十、解答题20.(1)5,下,4;(2)(,);(3)7.【分析】(1)根据题图直接判断即可;(2)由平移的性质:上加下减,左减右加解答即可;(3)利用分割法求出三角形的面积即可.【详解】解:(1)根据题图解析:(1)5,下,4;(2)(5x -,4y -);(3)7.【分析】(1)根据题图直接判断即可;(2)由平移的性质:上加下减,左减右加解答即可;(3)利用分割法求出三角形的面积即可.【详解】解:(1)根据题图可知,三角形ABC 先向左平移5个单位,再向下平移4个单位得到三角形A 1B 1C 1;故答案是:5,下,4;(2)由平移的性质:上加下减,左减右加可知,三角形ABC 内有一点P (x ,y ),则在三角形A 1B 1C 1内部的对应点P 1的坐标是(5x -,4y -),故答案是:(5x -,4y -);(3)11144142423162437222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=---=, 故答案是:7.【点睛】本题考查作图:平移变换,三角形的面积等知识,熟练掌握基本知识,学会用分割法求三角形的面积是解题的关键.二十一、解答题21.(1);(2).【分析】(1)根据9的平方根为±3得到2a-1=9,同理得11a+b-1=64,即可求出a,b的值,再进行求解即可;(2)先估算,得到其整数部分,则y为小数部分,分别求出x,y2)14解析:(1【分析】(1)根据9的平方根为±3得到2a-1=9,同理得11a+b-1=64,即可求出a,b的值,再进行求解即可;+,得到其整数部分,则y为小数部分,分别求出x,y即可计算.(2)先估算x y【详解】(1)依题意得2a-1=9,11a+b-1=64,解得a=5,b=10,∴b-a=5∴(2)∵23,∴12<13,∴x=12,∴1?4【点睛】此题主要考查平方根的应用,解题的关键是熟知平方根的性质及实数的估算.二十二、解答题22.(1);(2)①见解析;②见解析,【分析】(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2)① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②解析:(12)①见解析;②见解析,30.5-+<-【分析】(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2)① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(1-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,再把N点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a,∵a2=2,∴a=2±,故答案为:2,2-;(2)解:①裁剪后拼得的大正方形如图所示:②设拼成的大正方形的边长为b,∴b2=5,∴b=±5,在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,则M表示的数为-3+5,看图可知,表示-0.5的N点在M点的右方,∴比较大小:350.5-+<-.【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.二十三、解答题23.(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50°【分析】(1)根据平行线的性质及判定可得结论;(2)过点E作EF∥AB,根解析:(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50°【分析】(1)根据平行线的性质及判定可得结论;(2)过点E作EF∥AB,根据平行线的性质得AB∥CD∥EF,然后由两直线平行内错角相等可得结论;(3)①根据∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,DF平分∠EDC,可得出2∠AED+(90°-2∠FDC)=180°,即可导出角的关系;②先根据∠AED=∠F+∠FDE,∠AED-∠FDC=45°得出∠DEP=2∠F=90°,再根据∠DEA-∠PEA=5∠DEB,求出∠AED=50°,即可得出∠EPD的度数.14【详解】解:(1)证明:AB∥CD,∴∠A+∠D=180°,∵∠C=∠A,∴∠C+∠D=180°,∴AD∥BC;(2)∠BAE+∠CDE=∠AED,理由如下:如图2,过点E作EF∥AB,∵AB∥CD∴AB∥CD∥EF∴∠BAE=∠AEF,∠CDE=∠DEF即∠FEA+∠FED=∠CDE+∠BAE∴∠BAE+∠CDE=∠AED;(3)①∠AED-∠FDC=45°;∵∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,∴∠AEC=∠DEC+∠AEB,∴∠AED=∠AEB,∵DF平分∠EDC∠DEC=2∠FDC∴∠DEC=90°-2∠FDC,∴2∠AED+(90°-2∠FDC)=180°,∴∠AED-∠FDC=45°,故答案为:∠AED-∠FDC=45°;②如图3,∵∠AED=∠F+∠FDE,∠AED-∠FDC=45°,∴∠F=45°,∴∠DEP=2∠F=90°,∵∠DEA-∠PEA=514∠DEB=57∠DEA,∴∠PEA=27∠AED,∴∠DEP=∠PEA+∠AED=97∠AED=90°,∴∠AED=70°,∵∠AED+∠AEC=180°,∴∠DEC+2∠AED=180°,∴∠DEC=40°,∵AD∥BC,∴∠ADE=∠DEC=40°,在△PDE中,∠EPD=180°-∠DEP-∠AED=50°,即∠EPD=50°.【点睛】本题主要考查平行线的判定和性质,熟练掌握平行线的判定和性质,角平分线的性质等知识点是解题的关键.二十四、解答题24.(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)秒,画图见解析【分析】(1)用角的度数除以转动速度即可得;(2)求出∠AON=60°,结合旋转速度可得时间t;(3)设∠AON=3解析:(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)703秒,画图见解析【分析】(1)用角的度数除以转动速度即可得;(2)求出∠AON=60°,结合旋转速度可得时间t;(3)设∠AON=3t,则∠AOC=30°+6t,由题意列出方程,解方程即可;(4)根据转动速度关系和OC平分∠MOB,由题意列出方程,解方程即可.【详解】解:(1)∵30÷3=10,∴10秒后ON与OC重合;(2)∵MN∥AB∴∠BOM=∠M=30°,∵∠AON+∠BOM=90°,∴∠AON=60°,∴t=60÷3=20∴经过t秒后,MN∥AB,t=20秒.(3)如图3所示:∵∠AON+∠BOM=90°,∠BOC=∠BOM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON=3t,则∠AOC=30°+6t,∵OC与OM重合,∵∠AOC+∠BOC=180°,可得:(30°+6t)+(90°-3t)=180°,解得:t=20秒;即经过20秒时间OC与OM重合;(4)如图4所示:∵∠AON+∠BOM=90°,∠BOC=∠COM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON=3t,∠AOC=30°+6t,∵∠BOM+∠AON=90°,∴∠BOC=∠COM=12∠BOM=12(90°-3t),由题意得:180°-(30°+6t)=12( 90°-3t),解得:t=703秒,即经过703秒OC平分∠MOB.【点睛】此题考查了平行线的判定与性质,角的计算以及方程的应用,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.二十五、解答题25.∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α –β,理由见解析.【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C解析:∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α –β,理由见解析.【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)化成图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案.【问题探究】解:∠DPC=α+β如图,过P作PH∥DF∵DF∥CE,∴∠PCE=∠1=α,∠PDF=∠2∵∠DPC=∠2+∠1=α+β【问题迁移】(1)70(图1)(图2) (2) 如图1,∠DPC=β -α∵DF∥CE,∴∠PCE=∠1=β,∵∠DPC=∠1-∠FDP=∠1-α.∴∠DPC=β -α如图2,∠DPC= α -β∵DF∥CE,∴∠PDF=∠1=α∵∠DPC=∠1-∠ACE=∠1-β.∴∠DPC=α - β。
人教版七年级数学下册期末考试测试卷(含答案)精选全文
精选全文完整版(可编辑修改)人教版七年级数学下册期末考试测试卷(含答案)班级: 姓名: 得分:时间:120分钟 满分:120分一、选择题(共10小题,每题3分,共30分)1.如果m 是任意实数,则点P (m ﹣4,m+3)一定不在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.实数a 在数轴上的位置如图所示,则|a -2.5|=( )A .a -2.5B .2.5-aC .a +2.5D .-a -2.5 3.下列选项中的式表示正确的是( )A.255=±B. 255±=C. 255±=±D.2(5)-=-5 4.以下问题,不适合用全面调查的是( )A .旅客上飞机前的安检B .学校招聘教师,对应聘人员的面试C .了解全校学生的课外读书时间D .了解一批灯泡的使用寿命 5.如图,下列条件中:(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.能判定AB ∥CD 的条件个数有( ) A .1 B .2 C .3 D .46.如图,已知AC ∥BD ,∠CAE=35°,∠DBE=40°,则∠AEB 等于( )A .30°B .45°C .60°D .75°7.以方程组21y x y x =-+⎧⎨=-⎩的解为坐标的点(,)x y 在平面直角坐标系中的位置是 ( )A .第一象限B .第二象限C .第三象限D .第四象限8.小颖家离学校1 200米,其中一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时,若设小颖上坡用了x 分钟,下坡用了y 分钟,可列方程组为 ( )A.35120016x y x y +=⎧⎨+=⎩B.35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩C.35 1.216x y x y +=⎧⎨+=⎩D.351200606016x y x y ⎧+=⎪⎨⎪+=⎩ 9.若点P(2k-1,1-k)在第四象限,则k的取值范围为( ) A 、k>1 B 、k<21 C 、k>21 D 、21<k<1 10.下列判断不正确的是( )A 、若a b >,则4a 4b -<-B 、若2a 3a >,则a 0<C 、若a b >,则22ac bc > D 、若22ac bc >,则a b > 二、填空题(共10小题,每题3分,共30分)11.如图是统计学生跳绳情况的频数分布直方图,如果跳 75次以上(含75次)为达标,则达标学生所占比例为 .12.81的算术平方根是 ,-8的立方根是 .13.当a=______时,P (3a+1,a+4)在x 轴上,到y 轴的距离是______ . 14.已知点A (2-a ,a +1)在第四象限,则a 的取值范围是15.如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC 的边时反弹,反弹时反射角等于入射角. 当小球第1次碰到矩形的边时的点为P 1,第2次碰到矩形的边时的点为P 2,……第n 次碰到矩形的边时的点为P n . 则点P 3的坐标是 ,点P 2015的坐标是 .16.如图,已知直线AD ,BE ,CF 相交于点O ,OG ⊥AD ,且∠BOC =35°,∠FOG =30°,则∠DOE =________.17.如图,直线l 1//l 2,AB ⊥CD ,∠1=34°,那么∠2的度数是 .18.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x 人,到瑞金的人数为y 人,请列出满足题意的方程组是 .19.关于x 、y 的方程组x m 6y 3m +=⎧⎨-=⎩中,x y += .20.我们定义a b c d=ad -bc ,例如2345=2×5-3×4=10-12=-2.若x 、y 均为整数,且满足1<14x y <3,则x +y 的值是________.三、解答题(共60分)21.(5分)计算:(-1)2438--3)2︱22.(10分)解下列二元一次方程组(1)⎩⎨⎧=-+=01032y x x y (2) ⎩⎨⎧-=-=+421y x y x23.(6分)解不等式组:()()⎪⎩⎪⎨⎧>+-+≤-213351623x x x x ,并把不等式组解集在数轴上表示出来.24.(6分)如图,蚂蚁位于图中点A (2,1)处,按下面的路线移动:(2,1)→(2,4)→(7,4)→(7,7)→(1,7)→(1,1)→(2,1).请你用线段依次把蚂蚁经过的路线描出来,看看它是什么图案,并括号内写出来.( )25.(6分)如图,直线AB ∥CD ,∠GEB 的平分线EF 交CD 与点F ,∠HGF=40°,求∠EFD 的度数.HEFGD CBA26.(9分)已知直线21//l l ,直线3l 与1l 、2l 分别交于C 、D 两点,点P 是直线3l 上的一动点如图,若动点P 在线段CD 之间运动(不与C 、D 两点重合),问在点P 的运动过程中是否始终具有213∠=∠+∠这一相等关系?试说明理由;如图,当动点P 在线段CD 之外且在的上方运动(不与C 、D 两点重合),则上述结论是否仍成立?若不成立,试写出新的结论,并说明理由;321C P DAB321CP DAB 1l 2l 1l 2l 3l l 图①图②27.(9分)某学校准备购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个足球和3个篮球共需340元,购买5个足球和2个篮球共需410元.(1)购买一个足球、一个篮球各需多少元?(2)根据学校的实际情况,需购买足球和篮球共96个,并且总费用不超过5720元.问最多可以购买多少个篮球?28.(9分)第一中学组织七年级部分学生和老师到苏州乐园开展社会实践活动,租用的客车有50座和30座两种可供选择.学校根据参加活动的师生人数计算可知:若只租用30座客车x辆,还差5人才能坐满;(1)则该校参加此次活动的师生人数为(用含x的代数式表示);(2)若只租用50座客车,比只租用30座客车少用2辆,求参加此次活动的师生至少有多少人?(3)已知租用一辆30座客车往返费用为400元,租用一辆50座客车往返费用为600元,学校根据师生人数选择了费用最低的租车方案,总费用为2200元,试求参加此次活动的师生人数.答案.26.(9分)已知直线21//l l ,直线3l 与1l 、2l 分别交于C 、D 两点,点P 是直线3l 上的一动点如图,若动点P 在线段CD 之间运动(不与C 、D 两点重合),问在点P 的运动过程中是否始终具有213∠=∠+∠这一相等关系?试说明理由;如图,当动点P 在线段CD 之外且在的上方运动(不与C 、D 两点重合),则上述结论是否仍成立?若不成立,试写出新的结论,并说明理由;【答案】(1)∠3+∠1=∠2成立,理由见解析;(2)∠3+∠1=∠2不成立,新的结论为∠3-∠1=∠2.【解析】(2)∠3+∠1=∠2不成立,新的结论为∠3-∠1=∠2.理由如下:过点P 作PE ∥l 1,∴∠1=∠APE ;∵l 1∥l 2,∴PE ∥l 2,∴∠3=∠BPE ;又∵∠BPE-∠APE=∠2,∴∠3-∠1=321C P DAB321CP DAB 1l 2l 1l 2l 3l 3l 图①图②∠2.考点:平行线的性质.27.(9分)某学校准备购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个足球和3个篮球共需340元,购买5个足球和2个篮球共需410元.(1)购买一个足球、一个篮球各需多少元?(2)根据学校的实际情况,需购买足球和篮球共96个,并且总费用不超过5720元.问最多可以购买多少个篮球?【答案】(1)购买一个足球需要50元,购买一个篮球需要80元;(2)最多可以购买30个篮球.【解析】考点:1、二元一次方程组的应用;2、不等式的应用.28.(9分)第一中学组织七年级部分学生和老师到苏州乐园开展社会实践活动,租用的客车有50座和30座两种可供选择.学校根据参加活动的师生人数计算可知:若只租用30座客车x辆,还差5人才能坐满;(1)则该校参加此次活动的师生人数为(用含x的代数式表示);(2)若只租用50座客车,比只租用30座客车少用2辆,求参加此次活动的师生至少有多少人?(3)已知租用一辆30座客车往返费用为400元,租用一辆50座客车往返费用为600元,学校根据师生人数选择了费用最低的租车方案,总费用为2200元,试求参加此次活动的师生人数.【答案】(1)3x-5;(2)145;(3)175.【解析】试题分析:(1)直接含x的代数式表示该校七年级学生的总数即可;(2)根据题意列出不等式,即可求解.(3)分别设出客车的数量,列出方程,求解,分别进行讨论即可得出结论. 试题解析:(1)30x-5;(2)由题意知:50(x-2)≥30x-5,∴x≥194,∵当x越小时,参加的师生就越少,且x为整数.∴当x=5时,参加的师生最少,即30×5-5=145人.考点:1.一元一次不等式的应用;2.二元一次方程的应用.在这一学年中,不仅在业务能力上,还是在教育教学上都有了一定的提高。
2024年最新人教版七年级数学(下册)期末考卷及答案(各版本)
2024年最新人教版七年级数学(下册)期末考卷及答案(各版本)一、选择题:每题1分,共5分1. 一个等差数列的前三项分别是2,5,8,那么第10项是______。
A. 29B. 30C. 31D. 322. 如果一个三角形的两边分别是8和15,那么第三边的长度可能是______。
A. 6B. 7C. 17D. 233. 下列哪一个数是有理数______?A. √2B. √3C. √5D. √94. 下列哪一个比例是正确的______?A. 3 : 4 = 6 : 8B. 4 : 5 = 8 : 9C. 5 : 6 = 10 : 12D.6 :7 = 12 : 145. 下列哪一个图形是平行四边形______?A. 矩形B. 正方形C. 梯形D.菱形二、判断题:每题1分,共5分1. 任何两个奇数之和都是偶数。
()2. 任何两个有理数相乘都是无理数。
()3. 一个等边三角形的三个角都是60度。
()4. 两个锐角之和一定大于90度。
()5. 任何两个等腰三角形的底角相等。
()三、填空题:每题1分,共5分1. 一个等差数列的第5项是15,第10项是______。
2. 如果一个三角形的两边分别是5和12,那么第三边的长度可能是______。
3. 下列哪一个数是无理数______。
4. 如果一个比例是3 : 4 = 6 : 8,那么比例的外项是______。
5. 下列哪一个图形是矩形______。
四、简答题:每题2分,共10分1. 简述等差数列的定义和通项公式。
2. 简述勾股定理及其应用。
3. 简述有理数的定义和性质。
4. 简述平行四边形的性质和判定。
5. 简述等边三角形的性质和判定。
五、应用题:每题2分,共10分1. 一个等差数列的前三项分别是2,5,8,求第10项。
2. 如果一个三角形的两边分别是8和15,那么第三边的长度可能是多少?3. 下列哪一个数是有理数?4. 下列哪一个比例是正确的?5. 下列哪一个图形是平行四边形?六、分析题:每题5分,共10分1. 分析并证明等差数列的前n项和公式。
新人教版七年级数学下册期末考试及完整答案
新人教版七年级数学下册期末考试及完整答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .22.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124°3.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A .9B .8C .5D .44.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到方程组为A .x y 50{x y 180=-+=B .x y 50{x y 180=++=C .x y 50{x y 90=++=D .x y 50{x y 90=-+= 5.若数a 使关于x 的不等式组232x a x a ->⎧⎨-<-⎩无解,且使关于x 的分式方程5355ax x x-=---有正整数解,则满足条件的整数a 的值之积为( ) A .28 B .﹣4 C .4D .﹣26.实数a,b在数轴上对应点的位置如图所示,化简|a|+2()a b+的结果是( )A.﹣2a-b B.2a﹣b C.﹣b D.b7.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.8.比较2,5,37的大小,正确的是()A.3257<<B.3275<<C.3725<<D.3752<<9.若|abc|=-abc,且abc≠0,则||||ba ca b c++=()A.1或-3 B.-1或-3 C.±1或±3 D.无法判断10.已知2,1=⎧⎨=⎩xy是二元一次方程组7,{1ax byax by+=-=的解,则a b-的值为A.-1 B.1 C.2 D.3二、填空题(本大题共6小题,每小题3分,共18分)1.81的平方根是________.2.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b++=________.3.已知AB//y轴,A点的坐标为(3,2),并且AB=5,则B的坐标为________.4.若()2320m n -++=,则m+2n 的值是________.5.对于任意实数a 、b ,定义一种运算:a ※b=ab ﹣a+b ﹣2.例如,2※5=2×5﹣2+5﹣2=ll .请根据上述的定义解决问题:若不等式3※x <2,则不等式的正整数解是________.6.已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是________. 三、解答题(本大题共6小题,共72分)1.解分式方程:33122x x x-+=--.2.已知A =3x 2+x+2,B =﹣3x 2+9x+6. (1)求2A ﹣13B ; (2)若2A ﹣13B 与32C -互为相反数,求C 的表达式; (3)在(2)的条件下,若x =2是C =2x+7a 的解,求a 的值.3.如图,正比例函数y =2x 的图象与一次函数y =kx +b 的图象交于点A (m ,2),一次函数图象经过点B (﹣2,﹣1),与y 轴的交点为C ,与x 轴的交点为D .(1)求一次函数解析式;(2)求C 点的坐标;(3)求△AOD 的面积.4.如图,已知∠ACD=70°,∠ACB=60°,∠ABC=50°.试说明:AB∥CD.5.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?6.某检修小组乘一辆汽车沿东西方向检修路,约定向东走为正,某天从A地出发到收工时行走记录(单位:km):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6,求:(1)收工时检修小组在A地的哪一边,距A地多远?(2)若汽车耗油3升/每千米,开工时储存180升汽油,用到收工时中途是否需要加油,若加油最少加多少升?若不需要加油到收工时,还剩多少升汽油?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、C5、B6、A7、B8、C9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、±32、()()2a b a b++.3、(3,7)或(3,-3)4、-15、16、5三、解答题(本大题共6小题,共72分)1、x=1.2、(1)7x2﹣x+2;(2)﹣14x2+2x﹣1;(3)﹣5773、(1)y=x+1;(2)C(0,1);(3)14、证明略5、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.6、(1)收工时在A地的正东方向,距A地39km;(2)需加15升.。
人教版七年级数学下册期末考试测试卷(含答案)
人教版七年级数学下册期末考试测试卷(含答案)班级 姓名 成绩(考试时间:120分钟 )第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在实数3.14,),之间依次增加一个两个,,,,26...(262262226.4-0,57.1,9-722-π其中无理数的个数是( ) A .2B .3C .4D .52.9的平方根是( )A .3B .3±C .3D .3±3.为了了解全校七年级300名学生的视力情况,骆老师从中抽查了50名学生的视力情况、针对这个问题,下面说法正确的是( )A 、300名学生是总体B 、每名学生是个体C 、50名学生是所抽取的一个样本D 、这个样本容量是504.如图,把三角板的直角顶点放在直尺的一边上,若∠1=27°,则∠2的度数是( )A .53°B .63°C .73°D .27°5.若a <b ,则下列不等式中成立的是( )A .a +5>b +5B .﹣5a >﹣5bC .3a >3bD .6.若方程()133a 2=++-y xa 是关于x ,y 的二元一次方程,则a 的值为( )A.-3B.2±C.3±D.3 7.点P(-3,4)到x 轴的距离是( )A 、-3B 、3C 、4D 、5. 8.若点P (a,a -3)在第四象限,则a 的取值范围是( )A.0a 3<<-B.3a 0<<C.3a >D.0a <9.已知⎩⎨⎧=-=12y x 是方程52=+y kx 的一个解,则k 的值为( )23.-A 23.B 32.-C 32.D 10.某种商品的进价为600元,出售时标价为900元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最低可打( )A.6折B.7折C.8折D.9折11.如图,a//b,M,N 分别在a,b 上,P 为两平行线间一点,那么=∠+∠+∠321( )︒180.A ︒270.B ︒360.C ︒540.D12.若不等式组⎩⎨⎧->-≥-2210x x x a 有解,则a 的取值范围是( )A.1a ->B.1a -≥C.1a ≤D.1a <第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分) 13.比较大小:13___________3 (填“>,=,<”) ;14. P(3, −4)到y 轴的距离是___________.15.已知二元一次方程2x -3y=6,用关于x 的代数式表示y ,则y=______.16.已知:如图,AB ∥CD ,EF ∥CD,且∠ABC =20°,∠CFE =30°,则∠BCF 的度数是___________.17.若y 同时满足y +1>0与y -2<0,则y 的取值范围是 .三、解答题(本大题共7小题,共49分.解答应写出文字说明、证明过程或演算步骤) 18.计算(5分)3336463-1125.041-0-27-++19.解方程组(5分)237342x y x y +=⎧⎨-=⎩20.(6分)解下列不等式组,并把解集在数轴上表示出来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学下册期末考试试卷一、选择题(每小题3分,满分24分,每小题只有一个选项符合题意)1、下列各数中没有平方根的是 ( )A.()-23 B.0 C.18 D.36-2、如果,a b c 0><,那么下列不等式成立的是 ( )A.a c b c +>+B.c a c b ->-C.ac bc >D.a b c c> 32237π、、中,无理数有 ( )个A.1B.2C.3D.44、已知点()A 12AC x⊥,,轴于点C ,则点C 的坐标为( )A.(),10B.(),20C.(),02D.(),01 5、空气是由多种气体混合而成的,为了简明扼要地介绍空气的组成情况,较好地描述数据,最适合使用的统计图是 ( )A.条形统计图B.折线统计图C.扇形统计图D.以上都可以6、如图,已知12355∠=∠=∠=,则4∠的度数为( )A.55°B.75°C.105°D.125°7、方程组2x y x y 3+=⎧⎨+=⎩的解为x 2y =⎧⎨=⎩ ,则被遮盖的前后两个数分别为A.1、2B.1、5C. 5、1D.2、48、某种商品的进价为800元,出售标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最多可打 ( )A.6折B.7折C.8折D.9折二、填空题(本题有6个小题,每小题3分,共计18分)9、在方程x 2y 5+=中,用含x 的代数式表示y 为 .10、不等式62x 4-≥的解集是 .11. 如图,已知直线AB CD 、 相交于点O ,OB 平分DOE ∠,DOE 80∠=,则AOC ∠ = .12、若点(),P m 3m 1-+在第二象限,则m 的取值范围是 .13、甲、乙两种水果单价分别为20元/千克,15元/千克,若购买甲、乙两种水果共30千克,恰好用去500元,则购买甲水果 千克,乙水果 千克.14、规定符号[]a 表示实数a 的整数部分,[],.=1041543⎡⎤=⎢⎥⎣⎦.按此规定2⎤⎦的值为 .三、解答题(本题有5个小题,每小题5分,共计25分)1516、解方程组:()()()x 33y 1022x 32y 110-⎧--=⎪⎨⎪---=⎩17.解不等式组5x 0x 12x 12->⎧⎪⎨-≥+⎪⎩,并将其解集在数轴上表示出来.18、推理填空:如图,已知,12B C ∠=∠∠=∠,可推得AB CD ,理由如下:∵12∠=∠(已知),且14∠=∠( ) ∴24∠=∠( ) ∴CEBF ( )∴C 3∠=∠( ) 又∵B C ∠=∠(已知) ∴3B ∠=∠(等量代换) ∴ABCD ( )19、在同一平面内,垂直于同一条直线的两条直线平行吗?为什么?四、解答题(本题有3道小题,每小题6分,共计18分)20、某中学为促进课堂教学,提高教学质量,对七年级学生进行了一次“你最喜欢的课堂教学方式”的问卷调查.根据收回的答卷,学校绘制了“频率分布表”和“频数分布条形图”.请你根据图表中提供的信息,解答下列问题. ⑴.补全“频率分布表”;C⑵.在“频数分布条形图”中,将代号为“4”的部分补充完整; ⑶.你最喜欢以上哪种教学方式或另外的教学方式,请提出你的建议,并简要说明理由(字数在20字以内)21、已知:()()()A 01B 20C 43,,,,,. ⑴.求ABC 的面积;⑵.设点P 在坐标轴上,且ABP 与ABC 的面积相等,求点P 的坐标.22、为建设节约型、环境友好型社会,克服因干旱而造成的电力紧张困难,切实做好节能减排工作.某地决定对居民家庭用电实行“阶梯电价”,电力公司规定:居民家庭每月用电量在80千瓦时以下(含80千瓦,1千瓦时俗称1度)时,实行“基本电价”;当居民家庭月用电量超过80千瓦时时,超过的部分实行“提高电价”.⑴.小张2011年4月份用电100千瓦时,上缴电费68元;5月份用电120千瓦时,上缴电费88元,求“基本电价”和“提高电价”分别为多少元/千瓦时?⑵.若6月份小张家预计用电130千瓦时,请预算小张家6月份应上缴的电费.五、解答下列各题(第23题7分,第24题8分,共计15分)23、解不等式-x 21≤时,我们可以采用下面的解法:①.当x 20-≥时,x 2x 2-=- ∴原不等式可以化为x 21-≤可得不等式组x 20x 21-≥⎧⎨-≤⎩解得 2x 3≤≤②. 当x 20-<时,x 22x -=- ∴原不等式可以化为2x 1-≤可得不等式组x 20x 21-<⎧⎨-≤⎩解得 1x 2≤≤综上可得原不等式的解集为 1x 3≤≤.请你仿照上面的解法,尝试解不等式 -x 12≤x y–1–2–3–4–5123456789–1–212345O24、在平面直角坐标系中,()()(),,,,A a0B b0C12-,(见图1),且2a b10+++=⑴.求a b、的值;⑵.①.在x轴的正半轴上存在一点M,使COM的面积=12ABC的面积,求出点M的坐标;②.在坐标轴的其它位置是否存在点M,使COM的面积=12ABC的面积仍然成立,若存在,请直接写出符合条件的点M的坐标;⑶.如图2,过点C作CD y⊥轴交y轴于点D,点P为线段CD延长线上的一动点,连接OP,OE平分AOP OF OE∠⊥,.当点P运动时,OPDDOE∠∠的值是否会改变?若不变,求其值;若改变,说明理由.图 2参考答案及评分标准一、选择题(每小题3分,共24分)二、填空题(每小题3分,共18分) 9.25xy -=;10.1≤x ; 11.40°; 12.31<<-m ; 13. 10,20; 14. 5.三、解答题(每小题5分,共计25分)15、解:原式=33)2(23+---……(4分) =27 ……(5分)16、解:原方程组化为:⎪⎩⎪⎨⎧=---=---②y x ①y x 5)1()3(0)1(6)3( ……(1分)①-②: 5)1(5-=--y 2=y ……(3分) 将2=y 代入 得: 9=x ……(4分)∴ 原方程组的解为⎩⎨⎧==29y x ……(5分) 17、解: ⎩⎨⎧-≤<15x x ……(2分)∴ 原不等式组的解集为 1-≤x ……(3分)……(5分)18、解:依次填写 (对顶角相等) (等量代换) (同位角相等,两直线平行) (两直线平行,同位角相等)(内错角相等,两直线平行) ……(错一个扣1分) 19、解:平行. ……(1分)已知:如图,直线CD ⊥直线AB 于点M ,直线EF ⊥直线AB 于点N 求证:CD ∥EF , ……(2分)证明:∵ CD ⊥AB题 号 12345678答 案D A C A C D C B4321AB F E D NMABE∴ ∠CMB =90° ……(3分) 又∵ EF ⊥AB∴ ∠ENB =90° ……(4分)∴ ∠CMB=∠ENB ∴ CD ∥EF ……(5分)四、解答题(每小题6分,共18分)20、解:⑴.(2分); ⑵.(2分); ⑶.略.(2分).21、解:(1).ABC S S S S ∆∆∆=--梯形422132********⨯⨯-⨯⨯-⨯⨯-⨯ =43112---= 4 ……(2分)(2). ∵ ABC ABP S S ∆∆= ∴ 4=∆ABP S∴421421=⋅=⋅BO PA AO PB 或 ……(3分) ∴ 8=PB 或 4=PA ……(4分)∴ )0,6(1-P )0,10(2P )5,0(3P )3,0(4-P ……(6分) 22、解:⑴.设基本电价为x 元/千瓦时,提高电价为y 元/千瓦时.⎩⎨⎧=+=+884080682080y x y x 解这个方程组,得 ⎩⎨⎧==16.0y x 答:基本电价为0.6元/千瓦时,提高电价为1元/千瓦时. ……(4分) ⑵.1)80130(6.080⨯-+⨯=48+50×1=98(元)答: 小张家6月份应上缴98元电费. ……(6分)五、解答下列各题(23小题7分,24小题8分,共计15分)23、解:⑴. 当01<-x ,即1<x 时 x x -=-1|1|∴ 原不等式化为: 21≤-x 可得不等式组 ⎩⎨⎧≤-<-2101x x 解得11<≤-x ……(3分)⑵. 当01≥-x ,即1≥x 时 1|1|-=-x x500. 50∴ 原不等式化为:21≤-x 可得不等式组 ⎩⎨⎧≥-≤-0121x x 解得31≤≤x ……(6分)综上可得原不等式的解集为 31≤≤-x . ……(7分)24、解:⑴.依题意得 ⎩⎨⎧=-+=++042012b a b a ⎩⎨⎧=-=32b a ……(2分)⑵.①∵ABC COM S S ∆∆=21且M 在x 轴正半轴上 ∴||2121||210c y AB y OM ⨯⨯=⋅∴25|)2(3|2121=--⨯==AB OM又∵ M 在正半轴上 ∴ )0,25(M ……(4分)②存在)0,25(1-M ,)5,0(2M )5,0(3-M ……(5分)⑶.DOEOPD∠∠的值不会改变理由如下:设α=∠OPD β=∠DOE (见下面示意图)∵CP ∥AB ∴ POB ∠=∠α ∵︒=∠+∠901EOP ∴︒=∠+∠902AOE又∵AOE EOP ∠+∠ ∴ 21∠=∠ ∴ 12∠=α ……(6分)又∵ ︒=∠+∠+9013β︒=∠+903α∴1∠+=βα ∴ 1∠-=αβ1112∠=∠-∠= ……(7分)∴2112=∠∠==∠∠βαDOE OPD∴DOEOPD∠∠的值不会改变,且比值为2. ……(8分)。