高中数学解题方法系列:解析几何中减少计算量的10种方法
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
OQ
ON
OP
2
R2
∴ OM OQ OQ OM cos OQ ON R 2
即 OM OQ R 2 .
y
R Q
Nα
O
x
P
图3
(4)减少参数
【题 4】(北京西城元月考.13 题)双曲线 C : x2 y2 1 的渐近线方程为
既是两椭圆焦点相同,那么 c12 c22 a12 b12 a22 b22 a12 a22 b12 b22 .∴结论③
正确;
4
结论①:两椭圆没有公共点等价于两曲线方程组成的方程组无解.
x2
a12 x2
a22
y2 b12 y2 b22
1
高中数学解题方法系列:解析几何中减少计算量的十种方法
在数学试卷中,解析几何题的繁杂运算是令学生感到头痛的首要问题. 其实,许多解析几何题中的繁杂计算,不是不可避免的.常见的策略是:
(1)设而不求.
【题 1】(湖北黄冈,元月考,10 题) 已知直线 l 交椭圆 4x2+5y2=80 于 M、N 两点,
=0.
最后的方程无解,,这就证明了结论①是正确的. 要考察结论④是否正确,仅从数据推理是困难的,需采用数形结合的方法.
既然结论①正确,即两椭圆没有公共点.已知 a1 a2 ,所以椭圆 1 在
椭圆 2 的外面. 如图 6,设两椭圆公共右焦点为 F,上顶点分别为
B1, B2,FB1B2中,FB1 - FB2 B1B2 , 故必 a1 a2 b1 b2
PF2 =r,则 PF1 3r,2a 3 1 r , 但是F1PF2 90,
2 2 2
PF1 PF2 F1F2 ,即
3r 2 r 2 4,得r 1.
图5
于是 a 3 1 ,e c 2 3 1 ,选 D
y P
标有 4 个未知量,计算太过繁杂.故考虑减少未知量,使运算量减半.
【解析】设 P x1, y1 ,Q x2 , y2 .当 PA 2AQ 时,
y1 2 y2 0 .设直线 PQ : y k x 1 .令 x=y,得
y
k
y
1, y1
36 27
2
P2(x2,y2) P1(x1,y1) H1 120° θ
OF
x
P3(x3,y3)
图 8-2
如 图 8-2 设 P1 x1, y1 , P2 x2 , y2 , P3 x3 , y3 为 椭 圆 上 符 合 条 件 的 三 点 , 令
1
x2
百度文库
1 a12
1 a22
y
2
1 b12
1 b22
0
x2
a22 a12 a12 a2 2
y
2
b22 b12 b12b22
0
既然结论③正确,且已知 a1
a2
, a22
a12
b22
b12
0,
故必
x2 a12a2
2
y2 b12b22
正确的解题途径是: (1)利用椭圆的第二定义;(2)题中有 3 个相等的角
y
l
度,应不失时机地引入三角知识. 【解析】椭圆的半焦距 c=3,右准线 x = 12
a2 12, a2 12 3 36, b2 a2 c2 27 . c
故椭圆方程为: x2 y2 1 ,其离心率 e 1 .
AR 的中点
Q
3
2
a
,
a 2
符合所设条件且在直线
y=-x
上,
3a 2
a 2
,
得P
3 2
,
3 2
,
k
PQ
3 0
2 3
1
3
2
(5)回归定义
【题 5】(山西师大附中,元月考,8
题)设 F1,F2 是双曲线
x2 a2
y2 b2
1a 0,b 0
)
1
A.2
B.3
C.4
D.5
【分析】按常规求 m 值,必先求向量 AF与FB 之长.由于双曲线的
方程无法确定,又必须使用参数,其计算量之大是让人望而生畏的.
注意到本题最终要求的是比值,根据相似原理,比值只与图形的形
状有关.也就是说,无论将原图放缩多少倍,都不影响最终的计算结果.
若用常规方法,须设直线的点斜式方程,代入椭圆方程,而后利用韦达定
理及线段的中点公式求之.显然这个计算量是不菲的.更好的方法是:
y B(0,4)
O
F(2,0)N x
C(3,-2)
M
【解析】由 4x2 5y2 80 x2 y2 1 .∴椭圆上顶点
20 16
图1
B(0,4),右焦点 F(2,0).为△BMN 的重心,故线段 MN 的中点为 C(3,-2).
设直线
l
的斜率为
k.,点
M
x1,
y1 ,
N
x2 ,
y2
在椭圆上,∴
44xx1222
5y12 5y22
80 80
4 x1 x2 x1 x2 5 y1 y2 y1 y2 0 k
y1 y2 x1 x2
若双曲线 C 的右顶点为 A ,过 A 的直线 l 与双曲线 C 的两条渐近线交于 P,Q 两点,且 PA 2AQ ,则直线 l 的斜率为
2
【分析】第一空,简单;难点是第二问.
按常规,为求直线 l 的斜率,必先确定 P 或 Q 的坐标.但由现有
条件却确定不了,因此退而求 P,Q 两坐标之间的关系.但是两点的坐
所以我们可以通过取特值,让方程具体化.
【解析】 e c 6 .不妨设 a 5, c 6,c 2 =a 2 +b2,b 11 ,双曲线 a5
方程为: x2 y2 1 ,其右焦点 F 6, 0 ,设 A 6 t, 3t ,代入双曲线方程: 25 11
116 t 2 25 3t 2 2511 64t2 132t 121 0
② a1 b1 ; a2 b2
③ a12 a2 2 b12 b2 2 ;
④ a1 a2 b1 b2 .其中,所有正确结论的序
号是(
)
A.②③④
B. ①③④
C.①②④
D. ①②③
【分析】各选项都需鉴别 3 个命题,太繁了. 此外,正面论证哪 3 个命题正确,太费事
了.于是将原命题转换为:…其中不正确结论的序号是:
b2
a2 b2
【评注】以上的解题方法,简单得太过离奇了,因此有人怀疑,这种解法是否合理.
首先,在考场上,这种解法是完全站得住脚的.既然结论②在特殊情况下是不正确的,
那么在一般情况下就绝无正确的可能,这是因为:任何真命题都是“放之四海而皆准”的.
以下,我们再用直接法(即通法)论证:其他 3 个结论的正确性.
(2)使用特值
6
【 题 2 】( 湖 北 重 点 中 学 4 月 联 考 , 理 科 8 题 ) 在 离 心 率 为 的 双 曲 线
5
x2 a2
y2 b2
1a
b
0 中,F 为右焦点,过
F 点倾斜角为
60
゜的直线与双曲线右支相交于
A,B 两点,且点 A 在第一象限,若 AF mFB, 则 m =(
A. ①
B. ②
C.③
D.④
此外,4 个选项中,最容易用特值否定的是②,故有
【解析】构造椭圆 C1
:
x2 25
y2 16
1及C2
: x2 10
y2
1.显然C1与C2焦点相同.
但是 a1 5 10 2, b1 4.这里 a1 b1 ,故结论②不成立,选 B.
a2 10 2
椭圆与 y 轴的正半轴交于 B 点,若△BMN 的重心恰好落在椭圆的右焦点上,则直线 l 的方
程是 (
)
A.6x-5y-28=0 B.6x+5y-28=0 C.5x+6y-28=0
D.5x-6y-28=0
【分析】如图,椭圆的右焦点既是△BMN 的重心,容易求出边 MN 的中点
坐标,那么求直线 l 的方程,关键在求该直线的斜率.
y
【分析】根据向量加法的平行四边形法则, OP OF2 =OQ,
P Q
OQ F2P 且OQ必过F2P的中点 .可知 PF1F2 为直角三角形.
M
这就为用定义法求离心率创造了条件.
F1
O
F2
x
【解析】不妨设双曲线的半焦距 c=1,.令
3
2
a 3 1
(6)正难则反
【题
6】(北京海淀,5
月考,7
题)若椭圆
C1
:
x2 a12
y2 b12
1 ( a1
b1
0 )和椭圆
C2
:
x2 a22
y2 b2 2
1( a2
b2
0 )的焦点相同且 a1 a2 .给出如下四个结论:①椭圆 C1 和
椭圆 C2 一定没有公共点;
点 Q,则 OM OQ = 。
【分析】与圆有关的问题可以优先利用平面几何知识.题设条件 中既有垂线又有切线,容易构成直角三角形,故求两向量的数量积
容易想到直角三角形中成比例的线段.
【解析】如图 4,连 OP,则 OP⊥PQ.但是 OQ⊥PR 于 N,根据
直角三角形的射影性质有:
使 P1FP2 P2 FP3 P3 FP1 ,证明
1 1 1 为定值,并求此定值. | FP1 | | FP 2 | | FP 3 |
【分析】本题选自 07.重庆卷.22 题,是压轴题.
难度很大.动手前一定要选择好恰当的破题路径,
否则将陷入繁杂的计算而不得自拔.
图 8-1
有关的 3 条线段都是焦半径,企图用椭圆的第一定义或两点距离公式出发将是徒劳的.
)
(A) 2
(B) 3
(C) 2
(D) 3
【分析】既是已知圆与双曲线的渐近线相切,故不妨先画出图形再考查其数量关系
【解析】如图,圆 C 的圆心为 C(0,2),且半径 r=1.
双曲线的渐近线 l : y b x 切圆 C 于点 A,则△AOC 是含 30•角的 a
直角三角形,AOx 60,于是 b tan 60 3, a
4 5
x1 x2 y1 y2
4 6 5 4
6 5
所求直线方程为 y 2 6 x 3 6x 5y 28 0 ,选 A.
5
【评注】我们用参数设置了 M,N 两点的坐标,但在解题过程中没有也不必要去求这些参
数,而是根据它们应该满足的题设条件剖析出所需要的结果.这种的解题方法叫做设而不求.
k k 1
令
x=-y,得
y
k y
1 ,
y2
k k 1
于是:
k
k 1
2k k 1
0k
0, k
1 1
k
2 1
0
O
x A( 1, 0)
Q
图4
k 1 2 k 1 0 得 k=3.
【别解】(巧用中点公式)如图设 P(a,a),则 P 关于 A(1,0)的对称点为 R(2-a,-a),
y
B2 B1
O
F
x
这就是说,结论④也是正确的.既然结论①③④正确,故选 B. 图6
请各位分析一下,两种解法效果相同,可是付出的代价,是不是有天壤之别呢?
(7)数形结合
【题
7】(北京西城.5
月考,5 题)双曲线
x2 a2
y2 b2
1的渐近线与圆 x2
(y
2)2
1相
切,则双曲线离心率为(
y A
B1
O
F A1 x
B
图2
16t
11
4t
11
0.于是
t1
11 4
,t2
11 , m 16
t1 t2
4 ,故选 C.
(3)平几给力
【题 3】(武汉四月调考.15 题)过圆 C: x2 y2 R2内一定点M (x0 , y0 ) 作一动直线
交圆 C 于两点 P、R,过坐标原点 O 作直线 ON⊥PM 于点 N,过点 P 的切线交直线 ON 于
c2 a2 a2
3
e
2
,选
C.
(8)三角代换
y
y =bx a
C0(2,)
A
O
x
y
图7 l
【题 8】(重庆卷,22 题)如图,中心在原点 O 的椭圆的右焦点为 F(3,0),
P2
P1
5
OF
x
P3
右准线 l 的方程为:x = 12。(1)求椭圆的方程;(2)在椭圆上任取三个不同点 P1 , P2 , P3 ,
的左,右两个焦点,若双曲线右支上存在一点 P,使 OP OF2 F2P 0.(O 为坐标原点),
且 PF1 3 PF2 ,则双曲线的离心率是(
)
A. 3 2
B. 3 2
C. 3 1
D. 3 1
2
2