数字频率计的设计与实现
数字频率计的设计及制作
绪论数字频率计是一种用十进制数字显示频率的数字测量仪器,它的根本功能是测量正弦波信号,方波信号和尖脉冲信号以及其他各种单位时间内变化的物理量,它的用途十分广泛。
本设计主要由多谐振荡器、整形电路、闸门电路、计数器和数字显示几个模块组成,利用Proteus 软件完成设计与仿真之后在实验室进展调试,验收。
2 设计指标要求设计并制作一个简易的数字频率计电路。
技术指标要求是: 1.测量信号: 正弦波、方波信号,信号幅度Vxm=(0.2-5V) ; 2.测量频率X 围: 1Hz-9,999Hz ; 3.频率准确度3102-⨯±≤∆xf f4.显示方式: 4位十进制数显示;5.时基电路由555 振荡器产生1HZ 脉冲信号。
3 数字频率计的设计数字频率计的主要功能是测量周期信号的频率。
频率是单位时间〔 1S 〕内信号发生周期变化的次数。
如果我们能在给定的 1S 时间内对信号波形计数,并将计数结果显示出来,就能读取被测信号的频率。
数字频率计首先必须获得相对稳定与准确的时间,同时将被测信号转换成幅度与波形均能被数字电路识别的脉冲信号,然后通过计数器计算这一段时间间隔内的脉冲个数,将其换算后显示出来。
这就是数字频率计的根本原理。
3.1 数字频率计组成框图数字频率计的组成框图如图3-1所示:图3-1 数字频率计的组成框图3.2秒脉冲的设计利用一片555芯片可以通过多谐振荡器电路产生高电平为1S的脉冲,其电路图如图3-2所示:图3-2 多谐振荡器3.3整形电路的设计波形整形可以采用过零触发电路将全波整流波形变为矩形波,也可采用施密特触发器进展整形。
本次设计采用施密特触发器进展整形,原理图如图3-3所示:图3-3 整形电路3.4清零信号的设计本设计采用单稳态触发器产生清零信号,其原理图如图3-4所示:图3-4 清零信号的设计3.5控制门的设计控制门用于控制输入脉冲是否送计数器计数。
它的一个输入端接标准秒信号,一个输入端接被测脉冲。
简易数字频率计设计与实现
王昊鹏 , : 易数 字频 率计 设计 与 实现 等 简
t = . ( +R ) . 0 7 Rl 2 C和 t = .R C, 2 0 7 2 可计算 出电阻 R 、2 电 lR 及
容 C的值 。 若取 电容 C:1 , 0 则
Rl= 0 L C—R R 7 2z
.
8 7
来实现分频 。正 弦分 频器 除在输 入信 噪 比低 和频率极 高 的
大 、 种 很 多 的 产 品 , 计 算 机 、 讯 设 备 、 频 视 频 等 科 研 品 是 通 音
频率计完 成一次测量所需要 的时间 , 括准备 、 包 计数 、 锁 存 和复位 时间 J 。
12 基 本 电 路 设 计 .
数字 频 率 计 的 基 本 框 图 如 图 1所 示 , 部 分 作 用 各
展 电 路 扩 大 了测 量 范 围 。
关键词 : 率 ; 频 集成 电路 ; 译码 ; 单稳触发器 ; 稳压 电源
中图 分 类 号 :M 3 . 3 T 9 5 1 文 献 标 识码 : A 文 章 编 号 :0 6—00 (0 1 0 0 8 0 10 7 7 2 1 )9— 0 6— 6
场合 已很少使用 。对 于任何 一个 Ⅳ 次分频 器 , 在输 入信 号 不变 的情况下 , 出信 号可 以有 Ⅳ 种 间隔 为 2 / 的相位 。 输 wN
3 ・ n 取标称值 3 Q 57k 6k
Rl=4 n, 1 0 k2 7 k = 0 1 Rp 取
这种现象是分频 作用 所 固有 的 , 与分 频器 的具体 电路 无关 , 称为分频器输 出相位 多值性 。脉 冲分频 器有很 宽 的工作 频
4 )测 量 时 间
数字频率计是 一种用 十进 制数 字显示 被 测信 号频 率 的
数字频率计的设计与实现
摘要本文介绍了使用VHDL开发FPGA的一般流程,重点介绍了频率计的基本原理和相应的测量方案,最终采用了一种基于FPGA的数字频率的实现方法。
该设计采用硬件描述语言VHDL,在软件开发平台ISE上完成,可以在较高速时钟频率(100MHz)下正常工作。
该设计的频率计能准确的测量频率在1Hz 到100MHz之间的信号。
使用ModelSim仿真软件对VHDL程序做了仿真,并完成了综合布局布线,最终下载到芯片Spartan-II上取得良好测试效果。
关键词:FPGA,VHDL,ISE,自顶向下。
IAbstractThis paper, introducing a general process to develop FPGA product with VHDL, focuses on the basic principle and measurement scheme of digital cymometer. A scheme achieved by FPGA is adopted. In this design plan, we use a popular hardware description language-VHDL and finish the program on the development platform ISE. The final production can measure t he signal’s frequency between 1Hz and 100MHz. This system uses the simulation tool-ModelSim to run and debug the VHDL program, and design the circuit placement. A good result can be achieved when the program was burnt on the chip Spartan-II.Keywords: FPGA, VHDL, ISE, Top-down。
数字频率计的设计与实现课程设计
课程设计任务书学生:专业班级:通信指导教师:工作单位:信息工程学院题目: 数字频率计的设计与实现初始条件:本设计既可以使用集成脉冲发生器、计数器、译码器、单稳态触发器、锁存器、放大器、整形电路和必要的门电路等,也可以使用单片机系统构建简易频率计。
用数码管显示频率计数值。
要求完成的主要任务: (包括课程设计工作量及技术要求,以及说明书撰写等具体要求)1、课程设计工作量:1周。
2、技术要求:1)设计一个频率计。
要求用4位7段数码管显示待测频率,格式为0000Hz。
2)测量频率围:10~9999Hz。
3)测量信号类型:正弦波、方波和三角波。
4)测量信号幅值:0.5~5V。
5)设计的脉冲信号发生器,以此产生闸门信号,闸门信号宽度为1s。
6)确定设计方案,按功能模块的划分选择元、器件和中小规模集成电路,设计分电路,画出总体电路原理图,阐述基本原理。
3、查阅至少5篇参考文献。
按《理工大学课程设计工作规》要求撰写设计报告书。
全文用A4纸打印,图纸应符合绘图规。
时间安排:1、2013年5 月17日,布置课设具体实施计划与课程设计报告格式的要求说明。
2、2013 年 6 月18 日至2013 年6 月22 日,方案选择和电路设计。
3、2013 年6 月22 日至2013 年7 月1 日,电路调试和设计说明书撰写。
4、2013年7月5日,上交课程设计成果及报告,同时进行答辩。
指导教师签名:年月日系主任(或责任教师)签名:年月日目录摘要 (3)1电路的设计思路与原理 (4)1.1电路设计方案的选择 (4)1.1.1方案一:利用单片机制作频率计 (4)1.1.2方案二:利用锁存器与计数器制作频率计 (5)1.1.3方案三:利用定时电路与计数器制作频率计 (6)1.1.4方案确定 (7)1.2 原理及技术指标 (8)1.3 单元电路设计及参数计算 (9)1.3.1时基电路 (9)1.3.2放大整形电路 (10)1.3.3逻辑控制电路 (11)1.3.4计数器 (13)1.3.5锁存器 (15)1.3.6译码电路 (16)2仿真结果及分析 (16)2.1仿真总图 (16)2.2单个元电路仿真图 (17)2.3测试结果 (20)3测试的数据和理论计算的比较分析 (20)4制作与调试中出现的故障、原因及排除方法 (20)4.1故障a (20)4.2故障b (21)4.3故障c (21)4.4故障d (21)4.5故障e (22)5 心得体会 (22)6参考文献 (23)数字频率计设计摘要数字频率计是一种用十进制数字,显示被测信号频率的数字测量仪器。
基于单片机的数字频率计的设计与实现
基于单片机的数字频率计的设计与实现摘要随着电子信息产业的发展,信号作为其最基础的元素,其频率的测量在科技研究和实际应用中的作用日益重要,而且需要测频的范围也越来越宽。
传统的频率计通常采用组合电路和时序电路等大量的硬件电路构成,产品不但体积较大,运行速度慢,而且测量范围低,精度低。
因此,随着对频率测量的要求的提高,传统的测频的方法在实际应用中已不能满足要求。
因此我们需要寻找一种新的测频的方法。
随着单片机技术的发展和成熟,用单片机来做为一个电路系统的控制电路逐渐显示出其无与伦比的优越性。
本文阐述了以AT89C51单片机为控制器件的频率测量方法,并用汇编语言进行设计,采用单片机智能控制,结合外围电子电路,用以实现高低信号频率的测量。
本文设计的是一个简易数字频率计,被测信号可以是正弦波、三角波、方波。
首先,我们把待测信号经过放大整形;然后把信号送入单片机的定时计数器里进行计数,获得频率值;最后把测得的频率数值送入显示电路里进行显示。
本文从频率计的原理出发,介绍了基于单片机的数字频率计的设计方案,选择了实现系统得各种电路元器件,并对硬件电路进行了仿真。
关键词单片机;频率计;测量-Design and implementation of Digital FrequencyMeter Based on Single Chip MircrocomputeAbstractAlong with the development of electronic information industry, signal as the basic elements, the frequency measurement in scientificresearch and practical application is increasingly important, but also need the scope of frequency measurement is becoming more and more wide. The traditional frequency plan usually adopts combinational circuits and the sequential circuits of the hardware circuit structure, product not only large size, speed is slow, and measuring range, and low accuracy of low. Therefore, as for frequency measurement requirements, thetraditional method of frequency measurement in practical application already cannot satisfy requirements. Therefore, we need to find a new measuring method of frequency. Along with the development of technology and mature, use a singleship as a circuit system of control circuit shown its incomparable advantages.In this paper, with AT89C51 microcontroller to control the frequency of measurement devices and assembly language design, intelligent control using single chip, combined with the external electronic circuit, can be high and low frequency measurements. This paper designs a simple digital frequency, the measured signal can be sine wave , square wave. Firstly, the rectangular pulse, which the measured signal is amplified and reshaped, is used as control throttle valve. Then, the frequency counter counts the number of the periods using the internal timer/counter of signal is chip so as to gain the frequency value of measured signal. Finally, the frequency value of measured signal is displayed through static display circuits.From the analysis of theory, and introduces the digital frequency plan based on single chip design, selection of the system, and have all kinds of circuit components of hardware circuit simulaion.Keywords Micor- computer;Frequency;Measure-目录摘要...... ................................................................. (I)Abstract ........................................................... .. (II)第1章绪论 ..................................................................... .. (1)1.1 课题背景 ..................................................................... . (1)1.2 单片机的发展及特点 ..................................................................... .................1 1.3 频率计的基础知识 ..................................................................... .....................1 1.4 论文研究内容 ..................................................................... .............................2 第2章单片机简介及方案论证 ..................................................................... ...........3 2.1 AT89C51单片机简介 ..................................................................... ..................3 2.1.1 单片机及其引脚说明 ..................................................................... ...........3 2.1.2 AT89C51的定时/计数器原理 (5)2.1.3 定时/计数器的工作模式 ..................................................................... (6)2.1.4 定时,计数器的特殊功能控制寄存器 (6)2.1.5 定时,计数器(T0,T1)的控制寄存器 (7)2.2 数字频率计设计的几种方案 ..................................................................... (8)2.3 几种方案的优劣讨论 ..................................................................... .................8 2.4 本次设计采用的方案 ..................................................................... .................9 2.5 本章小结 ..................................................................... .....................................9 第3章系统硬件设计 ..................................................................... ........................ 10 3.1 数字频率计工作原理及结构框图 (10)3.1.1 一般数字式频率计的原理 ......................................................................10 3.1.2 基于单片机的数字频率计原理 .............................................................. 10 3.2 电路原理图 ..................................................................... ............................... 11 3.3 放大整形电路 ..................................................................... ........................... 11 3.3.1 放大整形电路的必要性 ..................................................................... ..... 11 3.3.2 放大整形电路的原理 ..................................................................... ......... 11 3.4 分频电路 ..................................................................... ................................... 15 3.4.1 分频电路介绍 ..................................................................... .................... 15 3.5 四选一电路 ..................................................................... ............................... 16 3.6 显示电路 ..................................................................... ................................... 17 3.6.1 显示原理 ..................................................................... ............................ 17 3.6.2 显示电路图 ..................................................................... ........................ 19 3.7 本章小结 ..................................................................... ................................... 20 第4章系统软件设计 ..................................................................... ........................ 21 4.1 软件流程图 ..................................................................... ............................... 21 4.2 测频软件实现原理 ..................................................................... . (21)-4.3 几个重要的分程序 ..................................................................... ................... 22 4.4 本章小结 ..................................................................... ................................... 23 结论 ..................................................................... ..................................................... 24 致谢 ..................................................................... ..................................................... 25 参考文献 ..................................................................... ............................................. 26 附录A ...................................................................... ................................................ 27 附录B ...................................................................... ................................................ 33 附录C ...................................................................... ................................................ 39 附录D ...................................................................... (40)第1章绪论1.1 课题背景在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关,,因此频率计在教学、科研、测量仪器、工业控制[1]等方面都有较广泛的应用。
数字频率计的设计与实现
基于单片机的数字频率计的设计摘要本文论述了基于单片机的数字频率计的实现,介绍了开发频率计所需要的各种软件.详细阐明了频率计的设计步骤以及方法,通过以89C52单片机为核心,利用单片机的算术运算和控制功能并采用LED数码管将所测频率显示出来。
本频率计设计简洁,适用范围广.关键词单片机;数字频率计;计数器引言随着电子信息产业的发展,频率的测量在科技研究和实际应用中的作用日益重要.频率是电子技术领域的一个基本参数,同时也是一个非常重要的参数. 由于科学技术的不断发展提高,人们对科技产品的要求也相应的提高,数字化的电子产品越来越受到欢迎.频率计作为比较常用和实用的电子测量仪器,广泛应用于科研机构、学校、家庭等场合,因此它的重要性和普遍性勿庸质疑。
数字频率计具有体积小、携带方便,功能完善、测量精度高等优点,因此在以后的时间里,必将有着更加广阔的发展空间和应用价值。
比如将数字频率计稍作改进,就可制作成既可测频率,又能测周期、占空比、脉宽等功能的多用途数字测量仪器.将数字频率计和其他电子测量仪器结合起来,通过传感器制成各种智能仪器仪表,应用于航空航天等科研场所,对各种频率参数进行计量;应用在高端电子产品上,对其中的频率参数进行测量等等.研究数字频率计的设计和开发,有助于频率计功能的不断改进、性价比的提高和实用性的加强.国际上数字频率计的分类很多。
按功能分类,因计数式频率计的测量功能很多,用途很广。
所以根据仪器具有的功能,电子计数器有通用和专用之分。
通用型计数器是一种具有多种测量功能、多种用途的万能计数器。
专用计数器指专门用来测量某种单一功能的计数器。
数字频率计按频段分类(1)低速计数器:最高计数频率<10MHz;(2)中速计数器:最高计数频率10-100MHz;(3)高速计数器:最高计数频率>100MHz;(4)微波频率计数器:测频范围1—80GHz或更高。
1 频率计概述1.1 频率计原理频率就是周期性信号在单位时间(1s)内变化的次数。
简单数字频率计的设计与制作
简单数字频率计的设计与制作1结构设计与方案选择1.1设计要求(1)要求用直接测量法测量输入信号的频率(2)输入信号的频率为1~9999HZ1.2设计原理及方案数字频率计是直接用十进制的数字来显示被测信号频率的一种测量装置。
它不仅可以测量正弦波、方波、三角波和尖脉冲信号的频率,而且还可以测量它们的周期。
所谓频率就是在单位时间(1s)内周期信号的变化次数。
若在一定时间间隔T内测得周期信号的重复变化次数为N,则其频率为f=N/T(1-1)据此,设计方案框图如图1所示:图1 数字频率计组成框图图中脉冲形成的电路的作用是将被测信号变成脉冲信号,其重复频率等于被。
时间基准信号发生器提供标准的时间脉冲信号,若其周期为测信号的频率fX1s,则们控电路的输出信号持续时间亦准确的等于1s。
闸门电路由标准秒信号进行控制当秒信号来到时,闸门开通,被测脉冲信号通过闸门送到计数器译码显示电路。
秒信号结束时闸门关闭,技计数器得的脉冲数N是在1秒时间内的累计= N Hz。
数,所以被测频率fX被测信号f经整形电路变成计数器所要求的脉冲信号○1,其频率与被测信X号的频率相同。
时基电路提供标准时间基准信号○2,其高电平持续时间t1=1 秒,当l秒信号来到时,闸门开通,被测脉冲信号通过闸门,计数器开始计数,直到l秒信号结束时闸门关闭,停止计数。
若在闸门时间1s内计数器计得的脉冲个数为N,则被测信号频率f=NHz,如图2(a)所示,即为数字频率计的组成框图。
图2(a)数字频率计的组成框图图2(b)数字频率计的工作时序波形逻辑控制单元的作用有两个:其一,产生清零脉冲④,使计数器每次从零开始计数;其二,产生所存信号⑤,是显示器上的数字稳定不变。
这些信号之间的时序关系如图2(b)所示数字频率计由脉冲形成电路、时基电路、闸门电路、计数锁存和清零电路、译码显示电路组成。
1.3数字频率计的主要技术指标1.3.1 频率准确度:一般用相对误差来表示,本文设计的频率准确度并没有要求。
简易数字频率计设计
简易数字频率计设计简易数字频率计是一种统计计算工具,用于频率统计,使用适当的算法来测量特定序列中给定元素或者元素组合出现的频率,主要用于数据分析和统计工作,帮助使用者深入分析数据,得到较为精准的结果。
本文将详细说明一种简易的数字频率计的设计实现过程和分步流程。
设计步骤第一步:准备设计简易数字频率计所需要的硬件设备设计简易数字频率计需要的硬件设备有:计算机、网络设备、数据存储器、输入输出设备等。
计算机配备相应的硬件设备和软件,网络设备用于连接多台计算机,数据存储器用于存储数据,输入输出设备允许输入和输出各种不同类型的数据。
第二步:制定相应的算法根据具体情况,应制定出相应的算法,用于计算数据序列中给定元素或者元素组合出现的频率,主要包括排序算法,查找算法,求和算法,概率分布算法等。
比如:可以使用冒泡排序或者快速排序对数据序列进行排序,使用二分查找等技术快速查找元素,在运算时可以使用求和、乘法、平方等算法来计算数据,使用贝叶斯理论等方法来求取概率分布。
第三步:实现数据处理根据设计上的算法,使用计算机及其相应的软件和硬件设备,进行数据处理,对相关的数据序列进行相应的操作,实现频率的统计计算,得到精准的统计结果。
第四步:测试并可视化在完成简易数字频率计的设计之后,应当对数据处理过程进行测试,以验证所编写算法的正确性和可靠性。
完成测试之后,可以通过图表和表格的方式可视化频率计算结果,更加直观地显示出数据之间的关系以及频率变化趋势。
以上就是一种简易数字频率计的设计实现过程,它可以为使用者提供准确的统计数据和频率结果,促进数据深入分析等工作,为企业的发展带来重要的帮助。
数字频率计的设计与制作
数字频率计地设计与制作一、任务和目地1、问题引入许多情况下,要对信号地频率进行测量,利用示波器可以粗略测量被测信号地频率,精确测量则要用到数字频率计.2、设计目地:通过本设计与制作项目可以进一步加深我们对数字电路应用技术方面地了解与认识,进一步熟悉数字电路系统设计、制作与调试地方法和步骤.3、设计要求:设计并制作出一种数字频率计,其技术指标如下:(1)频率测量范围:10~9999Hz.(2)输入电压幅度>300mV.(3)输入信号波形:任意周期信号.(4)显示位数:4位.(5)电源:220V、50Hz二、方法和步骤1、设计内容(1)数字频率计地基本原理数字频率计地主要功能是测量周期信号地频率.频率是单位时间(1S)内信号发生周期变化地次数.如果我们能在给定地1S时间内对信号波形计数,并将计数结果显示出来,就能读取被测信号地频率.数字频率计首先必须获得相对稳定与准确地时间,同时将被测信号转换成幅度与波形均能被数字电路识别地脉冲信号,然后通过计数器计算这一段时间间隔内地脉冲个数,将其换算后显示出来.这就是数字频率计地基本原理.(2)系统框图从数字频率计地基本原理出发,根据设计要求,得到如图2.1所示地电路框图.图2.1数字频率计框图下面介绍框图中各部分地功能及实现方法○1电源与整流稳压电路框图中地电源采用50Hz地交流市电.市电被降压、整流、稳压后为整个系统提供直流电源.系统对电源地要求不高,可以采用串联式稳压电源电路来实现.○2全波整流与波形整形电路本频率计采用市电频率作为标准频率,以获得稳定地基准时间.按国家标准,市电地频率漂移不能超过0.5Hz,即在1%地范围内.用它作普通频率计地基准信号完全能满足系统地要求.全波整流电路首先对50Hz交流市电进行全波整流,得到如图2.2(a)所示100Hz地全波整流波形.波形整形电路对100Hz信号进行整形,使之成为如图2.2(b)所示100Hz地矩形波.图2.2全波整流与波形整形电路地输出波形波形整形可以采用过零触发电路将全波整流波形变为矩形波,也可采用施密特触发器进行整形.○3分频器分频器地作用是为了获得1S地标准时间.电路首先对图2.2所示地100Hz信号进行100分频得到如图2.3(a)所示周期为1S地脉冲信号.然后再进行二分频得到如图2.3(b)所示占空比为50%脉冲宽度为1S地方波信号,由此获得测量频率地基准时间.利用此信号去打开与关闭控制门,可以获得在1S时间内通过控制门地被测脉冲地数目.图2.3分频器地输出波形分频器可以采用由计数器通过计数获得.二分频可以采用触发器来实现.○4信号放大、波形整形电路为了能测量不同电平值与波形地周期信号地频率,必须对被测信号进行放大与整形处理,使之成为能被计数器有效识别地脉冲信号.信号放大与波形整形电路地作用即在于此.信号放大可以采用一般地运算放大电路,波形整形可以采用施密特触发器.○5控制门控制门用于控制输入脉冲是否送计数器计数.它地一个输入端接标准秒信号,一个输入端接被测脉冲.控制门可以用与门或或门来实现.当采用与门时,秒信号为正时进行计数,当采用或门时,秒信号为负时进行计数.○6计数器计数器地作用是对输入脉冲计数.根据设计要求,最高测量频率为9999Hz,应采用4位十进制计数器.可以选用现成地10进制集成计数器.○7锁存器在确定地时间(1S)内计数器地计数结果(被测信号频率)必须经锁定后才能获得稳定地显示值.锁存器地作用是通过触发脉冲控制,将测得地数据寄存起来,送显示译码器.锁存器可以采用一般地8位并行输入寄存器,为使数据稳定,最好采用边沿触发方式地器件.○8显示译码器与数码管显示译码器地作用是把用BCD码表示地10进制数转换成能驱动数码管正常显示地段信号,以获得数字显示.选用显示译码器时其输出方式必须与数码管匹配.(3)实际电路根据系统框图,设计出地电路如图2.4所示.7414组成非对称多谐振荡器,产生100Hz标准信号,对100Hz信号地分频得到1Hz信号,这里采用7位二进制计数器74HC4024组成100进制计数器来实现.计数脉冲下降沿有效.在74HC4024地Q7、Q6、Q3端通过与门加入反馈清零信号,当计数器输出为二进制数1100100(十进制数为100)时,计数器异步清零.实现100进制计数.为了获得稳定地分频输出,清零信号与输入脉冲“与”后再清零,使分频输出脉冲在计数脉冲为低电平时保持一段时间(10mS)为高电平.电路中采用双JK触发器74HC109中地一个触发器组成触发器,它将分频输出脉冲整形为脉宽为1S、周期为2S地方波.从触发器Q端输出地信号加至控制门,确保计数器只在1S地时间内计数.从触发器端输出地信号作为数据寄存器地锁存信号被测信号通过741组成地运算放大器放大20倍后送施密特触发器整形,得到能被计数器有效识别地矩形波输出,通过由74HC11组成地控制门送计数器计数.为了防止输入信号太强损坏集成运放,可以在运放地输入端并接两个保护二极管.图2.4数字频率计电路图频率计数器由两块双十进制计数器74HC4511组成,最大计数值为9999Hz.由于计数器受控制门控制,每次计数只在JK触发器Q端为高电平时进行.当JK触发器Q端跳变至低电平时,端地由低电平向高电平跳变,此时,8D锁存器74HC374(上升沿有效)将计数器地输出数据锁存起来送显示译码器.计数结果被锁存以后,即可对计数器清零.由于74HC4518为异步高电平清零,所以将JK触发器地同100Hz脉冲信号“与”后地输出信号作为计数器地清零脉冲.由此保证清零是在数据被有效锁存一段时间(10mS)以后再进行.显示译码器采用与共阴数码管匹配地CMOS电路74HC4511,4个数码管采用共阴方式,以显示4位频率数字,满足测量最高频率为9999Hz地要求.2、方法与步骤(1)器件检测用数字集成电路检测仪对所要用地IC进行检测,以确定每个器件完好.如有兴趣,也可对LED数码管进行检测,检测方法由自己确定.(2)电路连接在自制电路板上将IC插座及各种器件焊接好;装配时,先焊接IC等小器件,最后固定并焊接变压器等大器件.电路连接完毕后,先不插IC.(3)电源测试将与变压器连接地电源插头插入220V电源,用万用表检测稳压电源地输出电压.输出电压地正常值应为+5V.如果输出电压不对,应仔细检查相关电路,消除故障.稳压电源输出正常后,接着用示波器检测产生基准时间地全波整流电路输出波形.正常情况应观测到如图2.2(a)所示波形.(4)基准时间检测关闭电源后,插上全部IC.依次用示波器检测由U1(74HC4024)与U3A组成地基准时间计数器与由U2A组成地触发器地输出波形,并与图2.3所示波形对照.如无输出波形或波形形状不对,则应对U1、U3,U2各引脚地电平或信号波形进行检测,消除故障.(5)输入检测信号从被测信号输入端输入幅值在1V左右频率为1KHz左右地正弦信号,如果电路正常,数码管可以显示被测信号地频率.如果数码管没有显示,或显示值明显偏离输入信号频率,则作进一步检测.(6)输入放大与整形电路检测用示波器观测整形电路U1A(74HC14)地输出波形,正常情况下,可以观测到与输入频率一致、信号幅值为5V左右地矩形波.如观测不到输出波形,或观测到地波形形状与幅值不对,则应检测这一部分电路,消除故障.如该部分电路正常,或消除故障后频率计仍不能正常工作,则检测控制门.(7)控制门检测检测控制门U3C(74HC11)输出信号波形,正常时,每间隔1S时间,可以在荧屏上观测到被测信号地矩形波.如观测不到波形,则应检测控制门地两个输入端地信号是否正常,并通过进一步地检测找到故障电路,消除故障.如电路正常,或消除故障后频率计仍不能正常工作,则检测计数器电路.(8)计数器电路地检测依次检测4个计数器74HC4518时钟端地输入波形,正常时,相邻计数器时钟端地波形频率依次相差10倍.如频率关系不一致或波形不正常,则应对计数器和反馈门地各引脚电平与波形进行检测.正常情况各电平值或波形应与电路中给出地状态一致.通过检测与分析找出原因,消除故障.如电路正常,或消除故障后频率计仍不能正常工作,则检测锁存器电路.(9)锁存电路地检测依次检测74HC374锁存器各引脚地电平与波形.正常情况各电平值应与电路中给出地状态一致.其中,第11脚地电平每隔1S钟跳变一次.如不正常,则应检查电路,消除故障.如电路正常,或消除故障后频率计仍不能正常工作,则检测锁存器电路.(10)显示译码电路与数码管显示电路地检测检测显示译码器74HC4511各控制端与电源端引脚地电平,同时检测数码管各段对应引脚地电平及公共端地电平.通过检测与分析找出故障.三、项目验收1.把作品包装成一个简易产品;2.重新测试逻辑功能,看是否正常;3.启动电路,检查运行情况;4.提供用户使用;5.老师评价.。
数字频率计课程设计
数字频率计课程设计引言数字频率计是一种用来测量波形信号频率的仪器。
在本次课程设计中,我们将设计并实现一个基于微控制器的数字频率计。
在设计过程中,我们将使用Arduino开发板以及相应的传感器和电路组件。
本文档将介绍该课程设计的目标、设计思路、实现步骤以及预期的结果。
目标本次课程设计的目标是通过设计一个数字频率计来实现以下功能: 1. 测量输入的波形信号的频率。
2. 将测量结果以数字形式在液晶显示屏上显示。
设计思路1.硬件设计:•使用Arduino开发板作为主控制器。
•使用一个脉冲传感器作为输入信号源。
•使用一个液晶显示屏来显示测量结果。
2.软件设计:•使用Arduino编程语言编写程序。
•通过读取脉冲传感器的信号来计算输入信号的频率。
•将计算得到的频率值通过串口传输给液晶显示屏。
实现步骤1.硬件连接:•将脉冲传感器的输出引脚连接到Arduino开发板的数字输入引脚。
•将液晶显示屏的控制引脚连接到Arduino开发板的对应输出引脚。
2.软件编程: ```c // 引入LiquidCrystal库 #include<LiquidCrystal.h>// 定义液晶显示屏的引脚 LiquidCrystal lcd(12, 11, 5, 4, 3, 2);// 定义脉冲传感器的引脚 int pulsePin = 7;// 定义变量存储频率值 float frequency = 0;void setup() { // 初始化液晶显示屏 lcd.begin(16, 2);// 设置脉冲传感器引脚为输入状态 pinMode(pulsePin, INPUT);// 设置波特率为9600 Serial.begin(9600); }void loop() { // 定义变量存储脉冲计数值 int pulseCount = 0;// 计算脉冲计数值 while (pulseCount < 1000) { if (digitalRead(pulsePin) == HIGH) { pulseCount++; delayMicroseconds(100); } }// 计算频率值 frequency = pulseCount / 1000.0;// 在串口上发送频率值 Serial.println(frequency);// 清除液晶屏内容 lcd.clear();// 在液晶屏上显示频率值 lcd.setCursor(0, 0); lcd.print(。
基于 fpga 的数字频率计的设计与实现
基于 FPGA 的数字频率计的设计与实现随着现代科技的不断发展,我们对数字信号处理的需求也越来越高。
数字频率计作为一种用来测量信号频率的仪器,在许多领域有着广泛的应用,包括无线通信、雷达系统、声音处理等。
在这些应用中,精确、高速的频率测量常常是至关重要的。
而基于 FPGA 的数字频率计正是利用了 FPGA 高速并行处理的特点,能够实现高速、精确的频率计算,因此受到了广泛关注。
本文将从设计思路、硬件实现和软件调试三个方面,对基于 FPGA 的数字频率计的设计与实现进行详细讲解。
一、设计思路1.1 频率计原理数字频率计的基本原理是通过对信号进行数字化,然后用计数器来记录单位时间内信号的周期数,最后根据计数器的数值和单位时间来计算信号的频率。
在 FPGA 中,可以通过硬件逻辑来实现这一过程,从而实现高速的频率计算。
1.2 FPGA 的优势FPGA 作为一种可编程逻辑器件,具有并行处理能力强、时钟频率高、资源丰富等优点。
这些特点使得 FPGA 在数字频率计的实现中具有天然的优势,能够实现高速、精确的频率测量。
1.3 设计方案在设计数字频率计时,可以采用过采样的方法,即对输入信号进行过取样,得到更高精度的测量结果。
还可以结合 PLL 锁相环等技术,对输入信号进行同步、滤波处理,提高频率测量的准确性和稳定性。
二、硬件实现2.1 信号采集在 FPGA 中,通常采用外部 ADC 转换芯片来对输入信号进行模数转换。
通过合理的采样率和分辨率设置,可以保证对输入信号进行精确的数字化处理。
2.2 计数器设计频率计最关键的部分就是计数器的设计。
在 FPGA 中,可以利用计数器模块对输入信号进行计数,并将计数结果送入逻辑单元进行进一步的处理。
2.3 频率计算通过对计数结果进行适当的处理和归一化,可以得到最终的信号频率。
在这一过程中,需要注意处理溢出、误差校正等问题,以保证频率测量的准确性和稳定性。
三、软件调试3.1 FPGA 开发环境在进行基于 FPGA 的数字频率计设计时,可以选择常见的开发工具,例如 Xilinx Vivado 或 Quartus II 等。
数字频率计设计报告
数字频率计设计报告数字频率计设计报告一、设计目标本次设计的数字频率计旨在实现对输入信号的准确频率测量,同时具备操作简单、稳定性好、误差小等特点。
设计的主要目标是实现以下功能:1. 测量频率范围:1Hz至10MHz;2. 测量精度:±0.1%;3. 具有数据保持功能,可在断电情况下保存测量结果;4. 具有报警功能,可设置上下限;5. 使用微处理器进行控制和数据处理。
二、系统概述数字频率计系统主要由以下几个部分组成:1. 输入信号处理单元:用于将输入信号进行缓冲、滤波和整形,以便于微处理器进行准确处理;2. 计数器单元:用于对输入信号的周期进行计数,并通过微处理器进行处理,以得到准确的频率值;3. 数据存储单元:用于存储测量结果和设置参数;4. 人机交互单元:用于设置参数、显示测量结果和接收用户输入。
三、电路原理数字频率计的电路原理主要包括以下步骤:1. 输入信号处理:输入信号首先进入缓冲器进行缓冲,然后通过低通滤波器进行滤波,去除高频噪声。
滤波后的信号通过整形电路进行整形,以便于微处理器进行计数。
2. 计数器单元:整形后的信号输入到计数器,计数器对信号的周期进行计数。
计数器的精度直接影响测量结果的精度,因此需要选择高精度的计数器。
3. 数据存储单元:测量结果和设置参数通过微处理器进行处理后,存储在数据存储单元中。
数据存储单元一般采用EEPROM或者Flash 存储器。
4. 人机交互单元:人机交互单元包括显示屏和按键。
用户通过按键设置参数和查看测量结果。
显示屏用于显示测量结果和设置参数。
四、元器件选择根据系统设计和电路原理,以下是一些关键元器件的选择:1. 缓冲器:采用高性能的运算放大器,如OPA657;2. 低通滤波器:采用一阶无源低通滤波器,滤波器截止频率为10kHz;3. 整形电路:采用比较器,如LM393;4. 计数器:采用16位计数器,如TLC2543;5. 数据存储单元:采用EEPROM或Flash存储器,如24LC64;6. 显示屏:采用带ST7565驱动的段式液晶显示屏,如ST7565R。
数字频率计的设计实验报告
数字频率计的设计实验报告实验名称:数字频率计的设计实验日期:2021年7月1日实验目的:设计并实现一个基于计数器的数字频率计,使用计数器测量输入信号的频率,并将结果显示在数码管上。
实验器材:FPGA开发板、数字频率计模块、计数器模块、数码管模块。
实验原理:1. 计数器模块设计一个计数器模块,用于计数示波器输入脉冲信号的时间。
计数器的计数时间可以根据需要进行调整。
2. 数字频率计模块设计一个数字频率计模块,用于将计数器的计数时间转换为输入信号的频率。
通过计算计数器的计数值来计算频率,并将结果显示在数码管上。
3. 数码管模块设计一个数码管模块,用于将数字频率计模块计算出的频率值转换为可以在数码管上显示的数码。
实验步骤:1. 搭建实验电路将FPGA开发板连接到计数器模块、数字频率计模块和数码管模块。
2. 编写Verilog代码根据上述原理,编写计数器模块、数字频率计模块和数码管模块的Verilog代码。
3. 编译代码并下载到FPGA开发板使用Xilinx Vivado软件将Verilog代码编译成比特流文件,并将比特流文件下载到FPGA开发板中。
4. 测试实验将示波器的输出信号连接到数字频率计的输入端,并将数字频率计连接到数码管。
通过计算数字频率计的输出,验证数字频率计的测量准确性。
实验结果:经过测试,数字频率计的测量准确度在实验误差范围内。
输入不同频率的信号时,数码管能够正确显示频率值。
实验总结:通过本次实验,成功设计并实现了一个基于计数器的数字频率计。
该实验不仅巩固了计数器、数码管等模块的设计知识,也提高了学生的Verilog编程能力。
在实验中,学生还学习了如何使用FPGA开发板进行数字电路实验,以及测试和验证数字电路的方法和技巧。
一种100mhz数字频率计的设计与实现
一种100mhz数字频率计的设计与实现
数字频率计是一种用于量测单个被测信号的频率和时钟信号的常见仪器,它的测量精
度取决于采样数量和时间。
设计一种100mhz数字频率计,实现其解决被测信号的采样、
频率测定等过程。
首先,应该在100mhz的被测信号上采用非常高的采样率和长的采样时间来实现较高
的测量精度,可以采用200MHZ的采样频率,采样时间设定为至少10ms。
为了保证信号采
集的准确性,还应将低通滤波器安装在被测信号线路上,以去除高频噪声干扰,以保证采
样数据的真实性和准确性。
其次,进行数字信号处理,可采用FPGA / DSP来实现,以确定被测信号的频率,对
采集的数字信号进行快速傅里叶变换FFT。
通过FFT变换可以获得一组频率带宽分布,从
而可以从该组带宽分布中获取最强频率信号,从而得到被测信号的频率。
除了FFT变换外,还可以使用更加精细的算法,例如最大傅里叶系数法(MFCC)和最小斜率非线性推理算法(SLNIS)等,以提高对被测信号的测量精度。
最后,将检测出的信号频率通过软件界面显示出来,同时处理信号可以与实际的数据
库进行比对,以进行实验计算。
综上所述,设计一种100mhz数字频率计的步骤如下:首先,在被测信号上采用高采
样率和长采样时间,并使用低通滤波器去除噪声干扰;其次,采用FPGA/DSP等芯片实现
快速傅里叶变换FFT以确定被测信号的频率;最后,通过软件界面显示出检测出的频率,
并与数据库进行比对以进行实验计算。
数字频率计的设计与实现_毕业论文
摘要:电子信息产业的日新月异,使得信号频率的测量在科研和日常生活中扮演着越来越重要的角色。
传统的频率计大多以逻辑电路和时序电路来实现,运行速度较慢,且测量频率的范围较小。
为了避免上述弊端,本论文设计以AT89S52单片机为控制核心的数字频率计,采用直接测频法,用放大电路、整形电路、单片机和数字显示线路组成的硬件部分来实现。
该方案测频范围满足设计要求。
可测方波、正弦波、三角波,频率范围为1HZ~9999HZ。
关键词:数字频率计 AT89S52单片机测量Abstract:Electronic information industry with each passing day, make the signal frequency measurement playing a more and more important role in scientific research and daily life.Most of traditional frequency meter with logic circuits and sequential circuits to realize, so it run slower and measure the range of measuring frequency is less .In order to avoid these problems, this paper designs the AT89S52 single chip microcomputer as the core of digital frequency meter, the direct frequency measurement method is adopted, with amplifying circuit, shaping circuit and digital display circuit, single-chip computer hardware parts.The scheme frequency measuring range meet the design requirements.Measurable square wave, sine wave, triangle wave, 1 HZ ~ 9999 HZ frequency range.Key words: digital frequency meter AT89S52 single chip microcomputer measurement目录第一章绪论 (1)1.1 频率计的研究背景 (1)1.2 本课题数字频率计的研究内容 (1)第二章直接测频法与间接周期测频法 (1)2.1 数字频率计的原理 (1)2.2 方案比较与论证 (2)2.3设计思路 (3)第三章系统硬件设计 (4)3.1系统设计概述 (4)3.2主芯片模块 (4)3.3放大整形模块 (5)3.4数字显示模块 (7)3.5系统总体原理图 (10)3.6 系统复位电路 (11)第四章系统软件设计 (11)4.1 系统软件框图 (11)第五章系统调试 (13)5.1 硬件调试 (13)5.2 软件介绍 (13)5.3 软件仿真结果 (14)第六章结束语 (16)参考文献 (17)致谢 (18)附录 (19)第一章绪论1.1 频率计的研究背景频率是电子信息领域的一个基本且重要的参数。
数字频率计设计实训报告
一、实训目的1. 熟悉数字频率计的原理和设计方法。
2. 学会使用数字电路设计工具进行电路设计。
3. 提高实际动手能力,培养创新思维。
4. 增强团队协作意识。
二、实训内容本次实训以设计一款简易数字频率计为目标,主要内容包括:1. 确定设计指标和功能要求。
2. 设计数字频率计的硬件电路。
3. 编写程序实现频率计的功能。
4. 进行电路调试和测试。
三、设计指标和功能要求1. 频率测量范围:1Hz~99.99kHz。
2. 波形测量:正弦波、方波、三角波等。
3. 数码显示:LCD1602液晶显示屏。
4. 量程选择:手动切换。
5. 误差:≤±1%。
四、硬件电路设计1. 信号输入电路:采用LM324运算放大器作为信号放大和整形电路,确保信号幅度在1Vpp以上。
2. 分频电路:采用74HC390计数器进行分频,将输入信号频率降低到计数器可计数的范围内。
3. 计数电路:采用74HC595移位寄存器实现计数功能,计数结果通过串口输出。
4. 显示电路:采用LCD1602液晶显示屏显示频率值。
5. 控制电路:采用AT89C52单片机作为主控制器,负责信号处理、计数、显示和量程切换等功能。
五、程序设计1. 初始化:设置计数器初值、波特率、LCD1602显示模式等。
2. 主循环:检测信号输入、计数、计算频率、显示结果。
3. 信号处理:对输入信号进行放大、整形、分频等处理。
4. 计数:根据分频后的信号频率,对计数器进行计数。
5. 计算频率:根据计数结果和分频系数计算实际频率。
6. 显示:将计算出的频率值通过串口发送到LCD1602显示屏。
7. 量程切换:根据手动切换的量程,调整分频系数。
六、电路调试与测试1. 调试信号输入电路,确保信号幅度在1Vpp以上。
2. 调试分频电路,确保分频后的信号频率在计数器可计数的范围内。
3. 调试计数电路,确保计数器能够正确计数。
4. 调试显示电路,确保LCD1602显示屏能够正确显示频率值。
数字频率计(51单片机)
数字频率计(51单片机)数字频率计(51单片机)数字频率计(Digital Frequency Counter)是一种常用的电子测量仪器,可用于测量信号的频率。
在本文中,我们将介绍如何使用51单片机实现一个简单的数字频率计。
一、原理简介数字频率计的基本原理是通过计算信号波形周期内的脉冲数来确定频率。
在实际应用中,我们通常使用51单片机作为微控制器,通过计数器和定时器模块来实现频率计算。
二、硬件设计1.信号输入首先,我们需要将待测信号输入到频率计中。
可以使用一个输入接口电路,将信号连接到51单片机的IO口上。
2.计时模块我们需要使用51单片机的定时器/计数器来进行计时操作。
在这里,我们选择使用定时器0来进行计数,同时可以利用定时器1来进行溢出次数的计数,以扩展计数范围。
3.显示模块为了显示测量结果,我们可以使用数码管、LCD液晶显示屏等显示模块。
通过将结果以可视化的方式呈现,方便用户进行观察和读数。
三、软件设计1.定时器配置首先,我们需要对定时器进行配置,以确定计时器的计数间隔。
通过设置定时器的工作模式、计数范围和时钟频率等参数,可以控制定时器的计数精度和溢出时间。
2.中断服务程序当定时器溢出时,会触发中断,通过编写中断服务程序,实现对计数器的相应操作,例如将计数值累加,记录溢出次数等。
3.数字频率计算根据计数器的值和溢出次数,我们可以计算出信号的频率。
通过简单的公式计算,即可得到测量结果。
四、实验步骤1.搭建硬件电路,将待测信号连接到51单片机的IO口上,并连接显示模块。
2.根据硬件设计要求,配置定时器的工作模式和计数范围。
3.编写中断服务程序,实现对计数器的相应操作。
4.编写主程序,实现数字频率计算和显示。
5.下载程序到51单片机,进行测试。
五、实验结果与分析通过实验,我们可以得到信号的频率测量结果,并将结果以数码管或LCD屏幕的形式进行显示。
通过对比实际频率和测量频率,可以评估数字频率计的准确性和稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录1. 引言 (1)2.设计任务书 (1)3. 数字频率计基本原理 (1)3.1 设计思路 (1)3.2 原理框图 (2)4. 设计步骤及实现方法 (2)4.1 信号拾取与整形 (2)4.2 计数电路 (3)4.3 锁存电路 (5)4.4 译码显示电路 (6)4.5 时钟电路及波形设计 (7)5 总体电路图及工作原理 (10)6 元器件的检测与电路调试缺点分析 (12)7 心得体会 (12)参考文献 (13)1. 引言数字频率计是一种基础测量仪器,在许多情况下,要对信号的频率进行测量,利用示波器可以粗略测量被测信号的频率,精确测量则要用到数字频率计。
本设计项目可以进一步加深我们对数字电路应用技术方面的了解与认识,进一步熟悉数字电路系统设计与调试的方法和步骤。
2.设计任务书1、设计题目:数字频率计2、设计出一个数字频率计,其技术指标如下:( 1 )频率测量范围: 10 ~ 9999Hz 。
( 2 )输入电压幅度 >300mV 。
( 3 )输入信号波形:任意周期信号。
( 4 )显示方式:4位十进制数显示。
( 5 )电源: 220V 、 50Hz 。
3、给定仪器设备及元器件示波器、音频信号发生器、逻辑笔、万用表、数字集成电路测试仪、直流稳压电源。
4.电路原理要求简单,便于制作调试,元件成本低廉易购。
3. 数字频率计基本原理3.1 设计思路(1)利用光电开关管做电机转速的信号拾取元件,在电机的转轴上安装一圆盘,在圆盘上挖一小洞,小洞上下分别对应着光发射和光接受开关,圆盘转动一圈既光电管导通一次,利用此信号做为脉冲计数所需。
(2)计数脉冲通过计数电路进行有效的计数,按照设计要求每一秒种都必须对计数器清零一次,因为电路实行秒更新,所以计数器到译码电路之间有锁存电路,在计数器进行计数的过程中对上一次的数据进行锁存显示,这样做不仅解决了数码显示的逻辑混乱,而且避免了数码显示的闪烁问题。
(3)对于脉冲记数,有测周和测频的方式。
测周电路的测量精度主要受电路系统的脉冲产生电路的影响,对于低频率信号,其精度较高。
测频电路其对于正负一的信号差比较敏感,对于低频率信号的测量误差较大,但是本电路仍然采用测频方式,原因是本电路对于马达电机转速精度要求较低,本电路还有升级为频率计使用,而测频方式对高频的精度还是很高的。
时钟实现方法很多,本电路采用晶振电路,已求得高精度的时钟需求。
3.2 原理框图图3-1 系统框图4. 设计步骤及实现方法4.1 信号拾取与整形图4-1 信号拾取基本原理图电路核心由一个光电开关管组成,平时电机转轮静止,发光二极管所发出的光被轮子挡住,所以接收管处于截止状态,1端为高电平。
当电机转动一圈,会使接收管导通一次,1端输出一个低电平,1端波形在实际电机工作状态中,会受到各方面的干扰,波形会存在许多杂波成分,需要对波形进行处理,处理成符合记计数器所需要的矩型波。
波形处理电路有一个施密特触发器组成,如上图。
当输入电压逐步升高时,致使VI>施密特上VT+,内部触发器发生翻转。
当VI逐步下降时,致使VI<VT-,电路再次发生翻转,通常VT+>VT-。
所以只要VI<VT-电路就能稳定在低电平,VI>VT+电路就稳定在高电平,这样就有效的防止了杂波的干扰,并使输出得到矩形脉冲,符合了下级计数的需求。
本施密特触发器选用40106,管脚如下,可以看出内部含有六路同样的施密特触发器,我们只使用其中一组,图4-3 本施密特触发器选用40106管脚4.2 计数电路本电路采用四个同步计数器接成串行工作方式,查数字电路产品资料后,准备采用CD4518,管脚如下图,该IC是一种同步加数器,在一个封装中含有两个可互换二/十进制计数器,其功能引脚分别是⑴~⑺和⑼~⒂。
该计数器是单路系列脉冲输入(1或2脚;9或10脚),4路BCD码输出(3~6脚;11~14脚)。
其工作波形如下:图4-4 图4-5从4518应用手册给出的真值表看出,CD4518有两个时钟输入端CP和EN(ENABLE A或B),若用时钟上升沿触发,信号从CP 端输入,此时EN端接高电平“1”,若用时钟下降沿触发,信号从EN端输入,此时CP端应接低电平“0”,不仅如此,清零端(RESET)也应该保持低电平“0”,只有满足了这些条件,电路才会处于计数状态。
图4-6我们还从真值表里可以得出,利用EN端下降沿触发的特点组成N位十进制计数器。
从波形分析,当输入端的计数脉冲到第10个时,电路自动复位0000状态,因为4518没有进位功能的引脚,所以应该充分利用第6或14脚输出脉冲的下降沿,利用该脉冲和EN端相连,就可以实现电路进位的功能,根据分析结果,电路设计如下:图4-74.3 锁存电路锁存集成有电平和边沿触发之分,设计时要充分考虑进去,内部构造大都采用D触发器形式,使用电平或者脉冲方式来触发。
而从前面的分析看,本次设计的锁存电路必须采用边沿触发方式的集成电路来实现,因为假如采用电平方式的话,那么在秒脉冲的正半周(既高电平)会使锁存器一直处于导通状态,不能正常显示测量值。
因此采用边沿触发就可以在极短的时间内将所需要的数据进行传送,而在其它时间内处于封闭状态。
查阅数据集成资料并,发现8D锁存器74LS324正适合要求,这款集成多在计算机电路中运用,而且容易购买,此集成为20脚封装,内部有8个D锁存器,采用两个这样的集成便可以实现4位10进制的的数据传输,它以上升沿作为CP端(即CLK)的有效触发,将8个D输入同时打到输出Q端,在输出端加有三态驱动,其内部其管脚排列如下右图,内部构造(单个D触发器)如下右图图4-7 图4-8从此集成参数和真值表(如下),在其(1)脚使能端加上低电平才能有效得使输出端得到所需的数据,其他状态不传送数据,也可从上图分析此(1)脚是控制三态门的,相当于电路的通断开关,只有接低电平,电路才能正常工作。
图 4-94.4 译码显示电路市场上比较多见数码显示器件是LED数码管,它有亮度高、售价低等特点,非常适合本电路制作。
数码管的外形尺寸和内部构造如图所示,图4-11 图4-12主要参数如下:1.6V~4.2V;功耗≤400mW,工作电流≤10mA;分共阳共阴两种极性,本电路选用共阴。
其引脚按顶视图的(1)脚开始,顺时针读数,(3)脚和(8)脚为公共脚,其中(5)脚为小数点,本电路不做连接。
引脚分别如下:图4 -13根据管脚分布和译码参数及管脚分布,电路设计如下:图4-15 电路图4.5 时钟电路及波形设计根据以上各电路功能模块的需求,时钟电路总共需要产生两路输出信号,一路是频率为1秒的标准矩形脉冲,利用其上沿对锁存器进行锁存,另一路是计数器的清零脉冲,要求脉冲宽度≥250ns才可以有效得将计数器清零,频率仍然是1秒。
各部分设计如下:1)时钟产生电路时钟产生方式很多,可以由各种门电路,环谐振电路,也可以由触发器、555集成构成,谐振可以是电容,晶体。
为了电路调试方便,综合条件,采用CMOS集成加晶振,晶振采用平常较为多见的时钟晶振,谐振频率为32.786k。
查阅数据集成资料,发现CD4046符合各方面的要求,它内部含有14级的二进制串行计数器,可以进行214分频,32.768k谐振频率经过内部14级计数器214=16372分频后可以得到2HZ的精确频率。
现在所需要的1秒的时钟,因此2HZ 的脉冲需在经过一个二分频电路就可以输出准确1秒脉冲。
图4-16左图便是CD4060的应用接线图,(11)和(10)脚内部电路和外围组成典型的石英晶体门振荡电路,产生32.678KHZ的频率信号进入14级计数器后,在3脚输出2HZ的频率方波。
C1和C2做频率微调,输出频率主要取决于石英晶体。
对于2HZ的方波仍然无法让电路正常工作,需要进行2分频才能产生1秒的时钟,因此本电路设计一个JK触发器进行2分频,分频后的方波可以直接用来控制锁存电路的工作。
本电路采用CD4027作为2分频的器件,其管脚分布为:从左图可知,内部含有两套相同的JK触发器,(1)和(2)为输出端,(3)脚为前级时钟输入,(4)和(7)脚分别是更新和复位脚,本电路要将其接低电平,(5)和(6)脚为JK端,需接高电平。
从(1)脚输出的信号既是所需要的1HZ方波。
图4-172)单稳态设计从4027第(3)脚输出的方波仍然无法进行正常清零的工作,此脚需要接一单稳态处理后才能进行清零。
从前面的设计需求出发,单稳态电路输出的波形宽度至少要达到250ns 才能正常清零。
查询有关集成库发现CD4528是一种双可重触发单稳态器件,它的管脚及真值表分别如下:图 4-18CD4528里同样有两组单稳态电路,(1)和(2)是微分定时输入,(3)脚是 使能端,(4)和(5)组成与门电路,(5)脚与(4)脚反相,因为此电路只需要一只脚 输入端,我们使用(4)脚同相端输入,将(5)脚接高电平即可。
(6)和(7)是输出端 。
根据真值表,需要将第(3)脚即clear 脚接高电平, 电路接线如下:图4-19左图R3和C3组成微分定时,单稳态输出波形宽度为=0.2*R3*C3*(VDD-VSS),本电路由10K 和0.01UF 组成,输出TW 宽度为25us (标准值 ),远远满足计数器所需要的250ns 的时间宽度。
2HZ 信号从(4)脚输入,250ns 方波从第6脚输出至计数器清零端根据以上分析画出 时钟电路总接线图,如下所示:。