平方差公式和完全平方公式习题

合集下载

平方差公式与完全平方公式试题含答案

平方差公式与完全平方公式试题含答案

仁(2-1 )解:(2+1) (22+1) (24+1) =2=16102420482 +1) +12048(2 +1) +1乘法公式的复习一、复习:(a+b)(a-b)=a 2-b2 (a+b) 2=a2+2ab+b2 (a-b) 2=a2-2ab+b2归纳小结公式的变式,准确灵活运用公式:① 位置变化,(X4y y+X px2_y2 ② 符号变化,(以+y X4_y”_x j_y2= x 2_y2③ 指数变化,(X2*y2)(x2-y2尸x4y ④ 系数变化,(2a+b[2a—b)=4a2_b2⑤换式变化,Ry 飞z+m p[xy_(z+m)H xy)-(z+m j= X2y2-( z2+2zm+m)=x2y2—z2—2zmn^⑥增项变化,(x-y+z 胚―y—z R X—y j_z2以2-2xy +y2-z2⑦连用公式变化,x y x_y x2 y2 = x2_y2 x2 y2 =x^y4⑧逆用公式变化,(X-y+z 匚(X4y-Z $=[[x-y+z)飞x+y-z 卩耿-y+z 卜(x+y-z)]=2x(_2y +2z)一 4xy +4xz例1已知a • b = 2,ab =1,求a2 b2的值。

解:T (a b)2 =a22ab b2二a2b2 = (a b)2-2abI a b = 2, ab =1二a2b2=22_2 1 = 2例2•已知a=8,ab =2,求(a -b)2的值。

解:••• (a b)2=a22ab b2(a -b)2二a2-2ab b22 2 2 2(a b) 「(a -b) = 4ab 二(a b) - 4ab = (a -b)2 2■/ a b=8,ab = 2 • (a-b)2= 82- 4 2 =56例3:计算199*2000 X 1998〖解析〗此题中2000=1999+1, 1998=1999-1,正好符合平方差公式。

解:19992-2000 X 1998 =1999 2- (1999+1)X( 1999-1 )=1999 2- (19992-1 2) =199口19992+1 =1例4:已知a+b=2, ab=1,求a2+b2和(a-b) 2的值。

平方差公式与完全平方公式试题(含答案)

平方差公式与完全平方公式试题(含答案)

乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2(a+b)2=a 2+2ab+b 2(a-b)2=a 2-2ab+b 2归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=x 2-y 2② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4④ 系数变化,(2a +b )(2a -b )=4a 2-b 2⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2= x 2y 2-(z 2+2zm +m 2)=x 2y 2-z 2-2zm -m 2⑥ 增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2=x 2-2xy +y 2-z 2⑦ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z ) =-4xy +4xz例1.已知2=+b a ,1=ab ,求22b a +的值。

解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。

解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。

平方差和完全平方公式经典例题

平方差和完全平方公式经典例题

平方差和完全平方公式经典例题专题一:平方差公式我们来计算下列各整式乘法:①位置变化:$(7x+3y)(3y-7x)$改写为:$(3y-7x)(7x+3y)$③数字变化:$98\times102$改写为:$(100-2)\times(100+2)$②符号变化:$(-2m-7n)(2m-7n)$改写为:$-(2m-7n)(2m-7n)$④系数变化:$(4m+)(2m-)$这一段明显有问题,删除。

⑤项数变化:$(x+3y+2z)(x-3y+2z)$ 改写为:$(x+2z+3y)(x+2z-3y)$⑥公式变化:$(m+2)(m-2)(m+4)$改写为:$(m^2-4)(m+4)$变式拓展训练:变式1】$(-y-x)(-x+y)(x+y)(x+y)$变式2】$(2a-)-(-4a)$专题二:平方差公式的应用我们来计算 $2\frac{2}{4b^3}$ 的值:改写为:$\frac{2}{4}\times\frac{1}{b}\times\frac{1}{b}\times\frac{1}{b} \times\frac{1}{b}\times b^2$化简得:$\frac{1}{2b^2}$变式拓展训练:变式1】$(x-y+z)-(x+y-z)$变式2】$301\times(302+1)\times(302+1)222$变式3】$(2x+y-z+5)(2x-y+z+5)$专题三:完全平方公式我们来计算下列各整式乘法:①位置变化:$(-x-y)(y+x)$改写为:$(x+y)(x+y)$③数字变化:$1972^2$改写为:$(2000-28)^2$②符号变化:$(-3a-2b)^2$改写为:$(3a+2b)^2$④方向变化:$(-3+2a)^2$改写为:$(2a-3)^2$⑤项数变化:$(x+y-1)$这一段明显有问题,删除。

⑥公式变化:$(2x-3y)+(4x-6y)(2x+3y)+(2x+3y)^2$改写为:$9x^2-10xy+9y^2$变式拓展训练:变式1】已知 $a+b=4$,则$a+2ab+b$ 的值为?解:$a+2ab+b=a+b(2a+1)=4(2a+1)=8$答案为 A。

平方差公式和完全平方公式(习题及答案)

平方差公式和完全平方公式(习题及答案)

③ (2 x + 3 y − 1)(2 x − 3 y + 1) ;
④ ( a − b)3 ;
m m ⑤ + 2 − − 2 ; 3 3
2
2
⑥ 1012 − 992 .
2
思考小结
1. 在利用平方差公式计算时要找准公式里面的 a 和 b, 我们把完 全相同的 “项” 看作公式里的 “_____” , 只有符号不同的 “项” 看作公式里的“ _____” ,比如 ( x + y − z )( x − y − z ) , _______ 是公式里的“a” ,_______是公式里的“b” ;同样在利用完全 平方公式的时候,如果底数首项前面有负号,要把底数转为 它的______去处理,比如 (−a − b) 2 = (_______) 2 2. 根据两大公式填空:
思考小结在利用平方差公式计算时要找准公式里面的a和b我们把完全相同的项看作公式里的只有符号不同的项看作公式里的比如是公式里的a是公式里的b
平方差公式和完全平方公式(习题)
例题示范
例 1:计算: 3(−a + 1)(−a − 1) − 2(a + 1) 2 . 【操作步骤】 (1)观察结构划部分: 3(−a + 1)(−a − 1) − 2(a + 1) 2 ① ② (2)有序操作依法则:辨识运算类型,依据对应的法则运算. 第一部分: −a 和 −a 符号相同,是公式里的“a” ,1 和-1 符号相 反,是公式里的“b” ,可以用平方差公式; 第二部分:可以用完全平方公式,利用口诀得出答案. (3)每步推进一点点. 【过程书写】
若 (2 x + 3 y ) 2 =4 x 2 + 12 xy + n 2 y 2 ,则 n=__________. 若 (ax − y ) 2 = 4 x 2 + 4 xy + y 2 ,则 a=________. 计算:

(完整版)实用版平方差、完全平方公式专项练习题(精品)

(完整版)实用版平方差、完全平方公式专项练习题(精品)

其中 x=1.5
1.平方差公式( a+b)(a- b) =a2- b2 中字母 a, b 表示( )
A .只能是数
B.只能是单项式
C.只能是多项式 D.以上都可以
2.下列多项式的乘法中,可以用平方差公式计算的是(

(3) (2a b) 2
(2a b)(a b) 2(a
2b )( a
2b) ,其中 a
2、已知 (a b)2 16, ab 4, 求 a2 b2 与 (a b)2 的值。 3
- 3-
练一练 1 .已知 (a b) 5, ab 3 求 (a b)2 与 3(a2 b2) 的值。 2 .已知 a b 6, a b 4 求 ab 与 a2 b2 的值。
3、已知 a b 4, a2 b2 4 求 a2b 2 与 (a b)2 的值。
2.利用平方差公式计算: (1)2009 ×2007- 20082.
2007
20072

2008 2006
20072

2008 2006 1
502 49 2 48 2 47 2
2 2 12ຫໍສະໝຸດ 3.解方程: x (x+2) +(2x+1 )( 2x- 1) =5( x2+3).
三、实际应用题
4.广场内有一块边长为 2a 米的正方形草坪,经统一规划后,南北方向要缩短
4a2
b2 (
)( 2)
1 x
1
1 x1
2
2
1 x2 1 ( ) 2
( 3) 3x y 3x y 9x 2 y 2 ( )( 4) 2x y 2x y 4x 2 y 2 ( )
( 5) a 2 a 3 a2 6 ( ) ( 6) x 3 y 3 xy 9 ( )

平方差、完全平方公式专项练习题

平方差、完全平方公式专项练习题

平方差公式专项练习题一、基础题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示( )A.只能是数B.只能是单项式C.只能是多项式 D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(13a+b)(b-13a)D.(a2-b)(b2+a)3.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.A.1个 B.2个C.3个D.4个4.若x2-y2=30,且x-y=-5,则x+y的值是( )A.5B.6 C.-6 D.-5二、填空题5.(-2x+y)(-2x-y)=______.6.(-3x2+2y2)(______)=9x4-4y4.7.(a+b-1)(a-b+1)=(_____)2-(_____)2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题9.利用平方差公式计算:2023×2113.10.计算:(a+2)(a2+4)(a4+16)(a-2).二、提高题1.计算:(1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.利用平方差公式计算:2009×2007-20082.(1)22007200720082006-⨯.(2)22007200820061⨯+.3.解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).三、实际应用题4.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?四、经典中考题5.下列运算正确的是( )A.a3+a3=3a6B.(-a)3·(-a)5=-a8C.(-2a2b)·4a=-24a6b3 D.(-13a-4b)(13a-4b)=16b2-19a26.计算:(a+1)(a-1)=______.拓展题型1.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b )(a +b )=_______. ②(a -b)(a 2+ab+b 2)=______.③(a -b )(a3+a 2b+ab 2+b 3)=______.2.(结论开放题)请写出一个平方差公式,使其中含有字母m ,n和数字4.完全平方公式变形的应用完全平方式常见的变形有:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)( bc ac ab c b a c b a 222)(2222---++=++1、已知m 2+n 2-6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。

实用版平方差完全平方公式专项练习题精品

实用版平方差完全平方公式专项练习题精品

平方差与完全平方式一、平方差公式:(a+b)(a-b)=a2-b2两数和与这两数差的积,等于它们的平方之差。

2、即:(a+b)(a-b) = 相同符号项的平方 - 相反符号项的平方3、平方差公式可以逆用,即:a2-b2=(a+b)(a-b)。

3、能否运用平方差公式的判定①有两数和与两数差的积即:(a+b)(a-b)或(a+b)(b-a)②有两数和的相反数与两数差的积即:(-a-b)(a-b)或(a+b)(b-a)③有两数的平方差即:a2-b2 或-b2+a2二、完全平方公式:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

1、完全平方公式也可以逆用,即a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或(a-b)2或(-a-b)2或(-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。

即:a2+2ab+b2或a2-2ab+b2-a2-2ab-b2或-a2+2ab-b2随堂练习:1.下列各式中哪些可以运用平方差公式计算(1)()()caba-+(2)()()xyyx+-+(3)()()abxxab---33(4)()()nmnm+--2.判断:(1)()()22422baabba-=-+()(2)1211211212-=⎪⎭⎫⎝⎛-⎪⎭⎫⎝⎛+xxx()(3)()()22933yxyxyx-=+--()(4)()()22422yxyxyx-=+---()(5)()()6322-=-+aaa()(6)()()933-=-+xyyx()3、计算:(1))4)(1()3)(3(+---+aaaa(2)22)1()1(--+xyxy(3))4)(12(3)32(2+--+aaa(4))3)(3(+---baba(5)22)3(xx-+(6)22)(yxy+-4.先化简,再求值:⑴(x+2)2-(x+1)(x-1),其中x=1.5(3) )2)(2(2))(2()2(2b a b a b a b a b a +--+--+,其中2,21-==b a .(4) (2a -3b)(3b +2a)-(a -2b )2,其中:a=-2,b=35..有这样一道题,计算:2(x+y )(x -y)+[(x+y )2-xy]+ [(x -y )2+xy]的值,其中x=2006,y=2007;某同学把“y=2007”错抄成“y=2070”但他的计算结果是正确的,请回答这是怎么回事?试说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平方差公式
一、选择题
1.下列各式能用平方差公式计算的是:()
A. B.
C. D.
2.下列式子中,不成立的是:()
A.
B.
C.
D.
3.,括号内应填入下式中的().
A. B. C. D.
4.对于任意整数n,能整除代数式的整数是().A.4 B.3 C.5 D.2
5.在的计算中,第一步正确的是().
A. B.
C. D.
6.计算的结果是().
A.B.C.D.
7.的结果是().
A.B.C.D.
二、填空题
1..
2..
3..
4..
5..
6..
7..
8..
9.,则
10..
11.(1)如图(1),可以求出阴影部分的面积是_________.(写成两数平方差的形式)
12.如图(2),若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是________,长是________,面积是___________.(写成多项式乘法的形式)
13.比较两个图阴影部分的面积,可以得到乘法公式__________.(用式子表达)
三、判断题
1..()
2..()
3..()
4..()
5..()
6..()
7..()
四、解答题
1.用平方差公式计算:
(1);(2);
(3);
(4);
(5);(6).
2.计算:
(1);
(2);
(3);
(4);
(5);
(6).
3.先化简,再求值,其中
4.解方程:.
5.计算:.
6.求值:.
五、新颖题
1.你能求出的值吗?
2.观察下列各式:
根据前面的规律,你能求出的值吗?
参考答案:
一、1.B 2.B 3.A 4.C 5.C 6.D 7.B
二、1.x ,4; 2 ; 3.
4. 5.
6. 7.
; 8.
; 9. ; 10.0.9999
11.
12.
13.
三、1.× 2.√ 3.× 4.× 5.× 6.× 7.√
四、1.(1) ;(2) ;(3) ;(4) ;
(5)8096(提示: );(6) .
2.(1)1;(2) ;(3) ;
(4) ;(5) ;(6) .
3.原式= .
4.

5.5050.
6. .
五、1. .提示:可以乘以 再除以 .
2.
完全平方公式
【知识要点】
1.完全平方公式:①()2
222a b a ab b +=++;②()2
222a b a ab b -=-+.即:两数
和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,这个公式叫做乘法的完全平方公式.
2.完全平方公式的结构特征:公式的左边是一个二项式的完全平方;右边是三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍.。

相关文档
最新文档