高中数学人教A版(课件)必修四 第二章 平面向量 2.4.1
人教版高中数学必修4A版平面向量基本定理课件
B
A
O
小结:三点共线的结论
若A、B、C三点共线,O是其所在直线外一点, 则存在唯一的实数t,使 OA =(1-t)OB +tOC,反之亦成立。
(1)若P是AB靠近A的三等分点, 则OP
2 1 OP a+ b 3 3
知识点 2 : 平面向量的坐标表示
在平面直角坐标系内,分别取x轴、y轴方向相同 的两个单位向量i、j作为基底,对于平面上的一个 向量a,由平面向量基本定理可知,有且只有一对 实数x、y,使得a xi + yj, 这样,平面内的任一向 量a都可由x、y唯一确定,我们把有序数对(x , y) 叫做向量a的(直角)坐标,记作a (x、y), x叫做a在x轴上的坐标,y叫做a在y轴上的坐标, 把a (x、y)叫做向量的坐标表示。
(7)已知 a (3,-1), b (1,-2), c 2a + b 则c 的坐标是 (8)已知点A, B, C的坐标分别为(2,-4) (0,6), (-8,10), 则 AB + 2 BC ; 1 BC - AC . 2 (9)已知 a + b (m, n), a - b ( p, q ), 则 a ; b .
不共线的向量,那么对于这一平面内
的任意向量 a ,存在唯一一对实数 a1
、a2 ,使
a = a1 e1 + a2 e2
» 探究定理 1. 基底 e1、e2 条件: 不共线向量 内涵 基底组数: 无数组
2.定理中a1, a 2的值是否唯一?
3.定理的价值何在?
例1. 已知:
ABCD的两条对角线相交于点M, 且 AB = a ,AD = b ,用 a ,b 表示 MA和 MD
说课课件第二章 平面向量 2.1平面向量的实际背景及基本概念
老鼠由A向东北方向以6m/s的速度逃窜,而猫由B 向正东方向10m/s的速度追. 问猫能否抓到老鼠?
嘻嘻!大笨猫!
C
唉, 哪儿去了?
A
B
猫的速度再快也没用,因为方向错了.
D
12
情景引入
南辕北辙——战国时,有个北方人要到南方的楚国去.他从太行山脚下出发, 乘着马车一直往北走去.有人提醒他“到楚国应该朝南走,你怎能往北呢?” 他却说“不要紧,我有一匹好马!”问:北方人能到达楚国吗?
4
重点 难点
教学重难点
向量概念、向量的几何表示、以及相 等向量、平行向量、共线向量的概念;
让学生感受向量、平行向量或共线向量及 相等向量概念形成过程;
5
教学目标
01 知识技能 02 过程与方法
情感态度与价
03
值观
知识技能 (1) 理解平面向量的概念,学会平面向量的表示方法; (2) 理解零向量、单位向量、相等向量、平行向量的含义。
a
b
l
c
C
OB A
平行向量也叫做共线向量!
22
设计意图——根据目标选择合适题型, 检测学生本节课的学习情况。
23
小试牛刀
1.如图, D、E、F分别是△ABC各边上的中点,在 以A、B、C、D、E、F为端点的有向线段表示 A 的向量中,请分别写出:
(1)与向量 DE 相等的向量有__个, E
F
分别是___________;
()
(6)模相等的两个平行向量是相等的向量;
()
(7)共线向量一定在同一直线上;
()
25
课堂小结
向量的概念; 向量的表示方法; 零向量、单位向量概念; 平行向量、共线向量定义; 共线向量与平行向量关系;
2014年人教A版必修四课件 2.4 平面向量的数量积
则 q =135.
问题1. 向量的数量积与向量的数乘有什么区别? 向量的数量积是向量还是数量? 向量的数乘是一个向量, 而向量的数量积是一个 数量, 是三个数量的乘积. 几何意义: | a | cosq 表示 a 在 b 方向上的投影 (如图), |OC | = | a |cosq . A a a 方向上的投影, | b | cosq 表示 b 在 D | OD | = | b | cosq . q 即 a b =|Байду номын сангаасa | | b | cosq B O C b =OC· OB =OD· OA.
即两向量的夹角为锐角时, 数量积为正, 夹角为钝角时, 数量积为负, 夹角为直角时, 数量积为零.
两非零向量垂直 数量积为零.
练习: (课本106页) 2. 已知△ABC中, AB =a, AC =b, 当 a· b<0 或 a· b=0 时, 试判断△ABC的形状. 解: a b =| a | | b | cos A, 当 a b 0 时, cosA < 0, 则角A为钝角, ∴△ABC为钝角三角形. 当 a b = 0 时, cosA = 0, 则角A为直角, ∴△ABC为直角三角形.
练习: (课本106页) 3. 已知 |a|=6, e 为单位向量, 当 a、e 之间的夹角 q 分别等于 45、90、135 时, 画图表示 a 在 e 方向 上的投影, 并求其值. 解: 各图中的投影用OA表示. | a |= 6 (1) 当q =45º 时, | a |= 6 2 45º OA = | a | cos 45= 6 O 2 A e =3 2 . (1) O e (A) (2) 当q =90º 时, (2) OA = | a | cos 90=0. | a |= 6
高中数学 第二章 平面向量 2.3.1 平面向量基本定理课件 新人教A版必修4
1.若向量 a,b 不共线,则 c=2a-b,d=3a-2b, 试判断 c,d 能否作为基底. 解:设存在实数 λ,使 c=λd, 则 2a-b=λ(3a-2b), 即(2-3λ)a+(2λ-1)b=0, 由于向量 a,b 不共线, 所以 2-3λ=2λ-1=0,这样的 λ 是不存在的, 从而 c,d 不共线,c,d 能作为基底.
探究点二 用基底表示平面向量
如图所示,在▱ABCD 中,点 E,F
分别为 BC,DC 边上的中点,DE 与 BF 交 于点 G,若A→B=a,A→D=b,试用 a,b 表 示向量D→E,B→F.
[解] D→E=D→A+A→B+B→E =-A→D+A→B+12B→C
=-A→D+A→B+12A→D=a-12b.
4.若 a,b 不共线,且 la+mb=0(l,m∈R),则 l=________, m=________. 答案:0 0 5.若A→D是△ABC 的中线,已知A→B=a,A→C=b,若 a,b 为基底,则A→D=________. 答案:12(a+b)
探究点一 对基底的理解
设 O 是平行四边形 ABCD 两对角线的交点,给出下列向
解:D→E=D→C+C→E=2F→C+C→E=-2C→F+C→E=-2b+a.
B→F=B→C+C→F=2E→C+C→F
=-2C→E+C→F=-2a+b.
用基底表示向量的两种方法 (1基底表示为止. (2)通过列向量方程或方程组的形式,利用基底表示向量的唯一 性求解.
对基底的理解 (1)两个向量能否作为一组基底,关键是看这两个向量是否共 线.若共线,则不能作基底,反之,则可作基底. (2)一个平面的基底若确定,那么平面上任意一个向量都可以由 这组基底唯一线性表示出来,设向量 a 与 b 是平面内两个不共 线的向量,若 x1a+y1b=x2a+y2b,则xy11==yx22.,
高中数学第二章平面向量2.4平面向量的数量积(1)课件新人教A版必修4
第十页,共35页。
3.已知向量a,b满足(mǎnzú)|a|=1,|b|=4,且a·b=2,则a与b的夹角为 ________.
第十六页,共35页。
解析: (1)a·b=|a||b|cos 120°=3×4×-12=-6. (2)a2-b2=|a|2-|b|2=32-42=-7.
(3)(2a-b)·(a+3b)=2a2+5a·b-3b2=2|a|2+5|a||b|·cos 120°-3|b|2=2×32+
5×3×4×-12-3×42=-60.
第三十一页,共35页。
[拓展练]☆ 3.(1)已知向量 a,b 满足(a+2b)·(a-b)=-6,且|a|=1,|b|=2,则 a 与 b 的夹角为________; (2)已知非零向量 a,b 满足 a+3b 与 7a-5b 互相垂直,a-4b 与 7a-2b 互 相垂直,求 a 与 b 的夹角.
第六页,共35页。
2.数量积的几何意义及数量积的符号
(1)按照投影的定义,非零向量 b 在 a 方向上的投影为|b|cos θ,其具体情况,
我们也可以借助下面图形分析:
θ 的范围
θ=0° 0°<θ<90° θ=90° 90°<θ<180° θ=180°
图形
b 在 a 上的 投影的正负
正数
正数
0
第七页,共35页。
|2a+b|2=(2a+b)(2a+b)=4|a|2+|b|2+4a·b=4|a|2+|b|2+4|a||b|cos 60°=175. ∴|2a+b|=5 7.
高中数学第二章平面向量2.4平面向量的数量积(2)课件新人教A版必修4
(2) 若 点
A(x1
,
y1)
,
B(x2
,
y2)
,
则
→ AB
=
(x2
-
x1
,
y2
-
y1)
,
所
以
|
→ AB
|
=
(x2-x1)2+(y2-y1)2,即|A→B|的实质是 A,B 两点间的距离或线段 AB 的长
(2)坐标表示下的运算,若 a=(x,y),则|a|= x2+y2.
第二十一页,共37页。
2.(1)已知向量 a=(1,2),b=(-3,2),则|a+b|=________,|a-b|=________;
(2)设平面向量 a=(1,2),b=(-2,y),若 a∥b,则|2a-b|等于( )
A.4
第二十六页,共37页。
[归纳升华] 用坐标求两个向量夹角与垂直问题的步骤
(1)用坐标求两个向量夹角的四个步骤: ①求 a·b 的值; ②求|a||b|的值; ③根据向量夹角的余弦公式求出两向量夹角的余弦; ④由向量夹角的范围及两向量夹角的余弦值求出夹角.
第二十七页,共37页。
(2)利用向量解决垂直问题的四个步骤: ①建立平面直角坐标系,将相关的向量用坐标表示出来; ②找到解决问题所需的垂直关系的向量; ③利用向量垂直的相关公式列出参数满足的等式,解出参数值; ④还原到所要解决的几何问题中.
答案:
(1)-15
3 (2)2
第三十页,共37页。
[变式练]☆ 2.已知平面向量 a=(3,4),b=(9,x),c=(4,y),且 a∥b,a⊥c. (1)求 b 与 c; (2)若 m=2a-b,n=a+c,求向量 m,n 的夹角的大小.
高中数学 第二章 平面向量 2.4.1 平面向量数量积的物理背景及其含义课后习题 新人教A版必修4
2.4.1 平面向量数量积的物理背景及其含义一、A组1.已知向量a,b满足|a|=2,|b|=,a与b的夹角为30°,则a·(a-2b)=()A.2-2B.4-2C.-4D.-2解析:a·(a-2b)=a2-2a·b=|a|2-2|a||b|cos 30°=4-2×2×=4-6=-2.答案:D2.已知|a|=2,|b|=1,|a+2b|=2,则a与b的夹角为()A.B.C.D.解析:∵|a+2b|=2,∴(a+2b)2=a2+4a·b+4b2=12.∵|a|=2,|b|=1,∴a·b=1.设a与b的夹角为θ,则|a||b|cos θ=2cos θ=1,∴cos θ=.又0≤θ≤π,∴θ=.答案:B3.(2016·新疆阿克苏高一期末)已知|a|=6,|b|=3,a·b=-12,则向量a在向量b方向上的投影是()A.-4B.4C.-2D.2解析:根据投影的定义,可得向量a在向量b方向上的投影为|a|cos α==-4,其中α为a与b的夹角.故选A.答案:A4.若向量a与b的夹角为60°,|b|=4,(a+2b)·(a-3b)=-72,则向量a的模为()A.2B.4C.6D.12解析:∵(a+2b)·(a-3b)=a2-a·b-6b2=|a|2-|a|·4cos 60°-6×16=|a|2-2|a|-96=-72,即|a|2-2|a|-24=0,∴|a|=6或|a|=-4(舍去),故选C.答案:C5.已知平面上三点A,B,C满足||=3,||=4,||=5,则的值等于()A.-25B.-20C.-15D.-10解析:由已知可得△ABC为直角三角形,则的夹角为,=0,∴·()==-||2=-25.答案:A6.已知向量a,b,且|a|=|b|=1,|a-b|=1,则|a+b|=.解析:∵|a-b|=1,∴a2-2a·b+b2=1.又|a|=|b|=1,∴a·b=.∴|a+b|2=(a+b)2=a2+2a·b+b2=1+2×+1=3,∴|a+b|=.答案:7.已知e1,e2是夹角为的两个单位向量,a=e1-2e2,b=k e1+e2,若a·b=0,则k的值为.解析:∵a·b=(e1-2e2)·(k e1+e2)=k-2k e1·e2+e1·e2-2=k-2k·-2=2k-=0.∴k=.答案:8ABC中,AB=2,AC=3,D是边BC的中点,则=. 解析:∵D是边BC的中点,∴).又,∴)·()=)=×(32-22)=.答案:9.已知向量a,b的长度|a|=4,|b|=2.(1)若a,b的夹角为120°,求|3a-4b|;(2)若|a+b|=2,求a与b的夹角θ.解:(1)∵a·b=|a||b|cos 120°=4×2×=-4.又|3a-4b|2=(3a-4b)2=9a2-24a·b+16b2=9×42-24×(-4)+16×22=304,∴|3a-4b|=4.(2)∵|a+b|2=(a+b)2=a2+2a·b+b2=42+2a·b+22=(2)2,∴a·b=-4,∴cos θ==-.又θ∈[0,π],∴θ=.10.已知向量a,b不共线,且|2a+b|=|a+2b|,求证:(a+b)⊥(a-b).证明:∵|2a+b|=|a+2b|,∴(2a+b)2=(a+2b)2.∴4a2+4a·b+b2=a2+4a·b+4b2,∴a2=b2.∴(a+b)·(a-b)=a2-b2=0.又a与b不共线,a+b≠0,a-b≠0,∴(a+b)⊥(a-b).二、B组1.(2016·山东淄川一中阶段性检测)若向量a,b满足|a|=|b|=1,a⊥b,且(2a+3b)⊥(k a-4b),则实数k的值为()A.-6B.6C.3D.-3解析:由题知,(2a+3b)·(k a-4b)=0,即2k a2+(3k-8)a·b-12b2=0,即2k-12=0,k=6.故选B.答案:B2.(2016·江西赣州期末考试)在平行四边形ABCD中,AD=1,∠BAD=60°,E为CD的中点.若=1,则AB的长为()A.2B.1C. D.解析:在平行四边形ABCD中,,∴=()·=1,∴1-×1×||×cos 60°=1,解得||=.答案:D3.在△ABC中,AB⊥AC,AC=1,点D满足条件,则等于()A. B.1C. D.解析:∵AB⊥AC,∴=0.∴·()==0+=·()=)=×(1-0)=.答案:A4.(2016·新疆阿克苏高一期末)已知向量a和b的夹角为120°,|a|=1,|b|=3,则|a-b|=()A.2B.C.4D.解析:因为向量a和b的夹角为120°,|a|=1,|b|=3,所以a·b=-.所以|a-b|2=a2-2a·b+b2=13.所以|a-b|=.答案:D5.已知a,b为共线的两个向量,且|a|=1,|b|=2,则|2a-b|=.解析:|2a-b|=.∵a,b为共线的两个向量,设a,b的夹角为θ,则θ=0°或180°,当θ=0°时,a·b=2;当θ=180°时,a·b=-2.∴|2a-b|=0或4.答案:0或46.已知|a|=|b|=2,a,b的夹角为60°,则使向量a+λb与λa+b的夹角为锐角的λ的取值范围是.解析:由a+λb与λa+b的夹角为锐角,得(a+λb)·(λa+b)>0,即λa2+(λ2+1)a·b+λb2>0,从而λ2+4λ+1>0,解得λ<-2-或λ>-2+.当λ=1时,a+λb与λa+b共线同向,故λ的取值范围是(-∞,-2-)∪(-2+,1)∪(1,+∞).答案:(-∞,-2-)∪(-2+,1)∪(1,+∞)7.已知|a|=3,|b|=2,a与b的夹角为60°,c=3a+5b,d=m a-3b.(1)当m为何值时,c与d垂直?(2)当m为何值时,c与d共线?解:(1)由向量c与d垂直,得c·d=0,而c·d=(3a+5b)·(m a-3b)=3m a2+(5m-9)a·b-15b2=27m+3(5m-9)-60=42m-87=0,∴m=,即m=时,c与d垂直.(2)由c与d共线,得存在实数λ,使得c=λd,∴3a+5b=λ(m a-3b),即3a+5b=λm a-3λb.又∵a与b不共线,∴解得即当m=-时,c与d共线.8)如图,在平面内将两块直角三角板接在一起,已知∠ABC=45°,∠BCD=60°,记=a,=b.(1)试用a,b表示向量;(2)若|b|=1,求.解:(1)=a-b,由题意可知,AC∥BD,BD=BC=AC.∴b,则=a+b,=a+(-1)b.(2)∵|b|=1,∴|a|=,a·b=cos 45°=1,则=a·[a+(-1)b]=a2+(-1)a·b=2+-1=+1.。
人教版高中数学必修4(A版) 平面向量基本定理 PPT课件
问题提出
1. 向量加法与减法有哪几种几何运算 法则? 2.怎样理解向量的数乘运算λa?
(1)|λ a|=|λ ||a|; (2)λ >0时,λa与a方向相同;
λ<0时,λa与a方向相反;
λ=0时,λa=0.
3.平面向量共线定理是什么?
非零向量a与向量b共线 存在唯 一实数λ ,使b=λa. 4.如图,光滑斜面上一个木块受到的重 力为G,下滑力为F1,木块对斜面的压 力为F2,这三个力的方向分别如何? 三者有何相互关系?
理论迁移
例1 如图,已知向量e1、e2,求作向 量-2.5e1+3e2.
C e1 e2 3e2 A -2.5e 1 O B
例2 如图,在平行四边形ABCD中, AB =a, AD =b,E、M分别是AD、DC的中 点,点F在BC上,且BC=3BF,以a,b为 基底分别表示向量 AM 和 EF .
若e1、e2是同一平面内的两个不共线向量, 则对于这一平面内的任意向量a,有且只有 一对实数λ1,λ 2,使a=λ1e1+λ2e2.
思考8:上述定理称为平面向量基本定理, 不共线向量e1,e2叫做表示这一平面内所 有向量的一组基底. 那么同一平面内可 以作基底的向量有多少组?不同基底对 应向量a的表示式是否相同?
a
e2 a
a=λ1e1+0e2
a =0 e1 + λ 2 e2
思考7:根据上述分析,平面内任一向 量a都可以由这个平面内两个不共线的 向量e1,e2表示出来,从而可形成一个 定理.你能完整地描述这个定理的内容 吗?
若e1、e2是同一平面内的两个不共线向量, 则对于这一平面内的任意向量a,有且只有 一对实数λ1,λ 2,使a=λ1e1+λ2e2.
人教A版高中数学必修四课件:第二章2.3.1平面向量基本定理 (共16张PPT)
x
e2
O
a 3e1 2e2
3 a x 4y 2
yn
A
a 3m 2n
当a 0时, 有且只有1 2 0时可使 0 1 e1 2 e2 , (e1 , e2不共线).
若1与2中只有一个为零 , 情况会是怎样?
若2 0, 则a 1 e1 ,即a与e1共线, 若1 0, 则a 2 e2 ,即a与e2共线,
本题在解决过程中用到了两向量共 线的等价条件这一定理,并用基向量表 示有关向量,用待定系数法列方程,通 过消元解方程组。这些知识和考虑问题 的方法都必须切实掌握好。
课堂总结 1.平面向量基本定理可以联系物理 学中的力的分解模型来理解,它说明在
同一平面内任一向量都可以表示为不共
线向量的线性组合,该定理是平面向量
D
A
N M B
C
例2.用向量的方法证明: 1 平行四边形OACB中, BD BC , OD与BA 3 1 相交于E , 求证 : BE BA. 4 D B C E
O
A
例3.证明: 向量OA, OB, OC的终点A, B, C共线 的等价条件是存在实数 、 且 1, 使得 OC OA OB.
问题 3 : 设 e1 , e2 是同一平面内两个不共 线的向量, a是这一平面内的任一向 量, 我们来通过作图研 究a与e1 , e2 之间的关系?
平面向量基本定理: 如果e1 , e2 是同一平面内两个不共 线的向量, 那 么对于平面内的任一向 量a , 有且只有一对实数
1 , 2 , 使得a 1 e1 2 e2 .
坐标表示的基础,其本质是一个向量在
其他两个向量上的分解。
2. 在实际问题中的指导意义在于
人教A版高中数学必修4第二章 平面向量2.1 平面向量的实际背景及基本概念习题(4)
2.1平面向量的实际背景及基本概念一、选择题1.【题文】下列各量中不是向量的是( ) A .浮力 B .风速 C .位移D .密度2.【题文】在下列判断中,正确的是( )①长度为的向量都是零向量;②零向量的方向都是相同的;③单位向量的长度都相等; ④单位向量都是同方向;⑤任意向量与零向量都共线. A .①②③ B .②③④ C .①②⑤ D .①③⑤3.【题文】若AB AD =且BA CD =,则四边形ABCD 的形状为( ) A .平行四边形 B .矩形 C .菱形 D .等腰梯形4.【题文】已知:如图,D ,E ,F 依次是等边三角形ABC 的边AB ,BC ,CA 的中点,在以A ,B ,C ,D ,E ,F 为起点或终点的向量中,与向量AD 共线的向量有()A .个B .个C .个D .个5.【题文】下列说法正确的有( )①方向相同的向量叫相等向量;②零向量的长度为;③共线向量是在同一条直线上的向量;④零向量是没有方向的向量;⑤共线向量不一定相等;⑥平行向量方向相同. A .个 B .个 C .个 D .个6.【题文】给出下列说法:①AB 和BA 的模相等;②方向不同的两个向量一定不平行;③向量就是有向线段;④0=0;⑤AB CD >,其中正确说法的个数是( )A. B. C. D.7.【题文】若四边形ABCD 是矩形,则下列说法中不正确的是 ( ) A .AB 与CD 共线B .AC 与BD 共线C .AD 与CB 是相反向量 D .AB 与CD 的模相等8.【题文】下列说法正确的是( )A .有向线段AB 与BA 表示同一向量 B .两个有公共终点的向量是平行向量C .零向量与单位向量是平行向量D .对任一向量,aa是一个单位向量 二、填空题9.【题文】如图,正六边形ABCDEF 中,点O 为中心,以,,,,,,A B C D E F O 为起点与终点的向量中,与向量AB 平行的向量有个(含AB ).10.【题文】给出下列四个条件:①=a b ;②=a b ;③与的方向相反;④0=a 或0=b ,其中能使a b 成立的条件有________.11.【题文】下列说法中,正确的是 . ①向量AB 的长度与BA 的长度相等;②向量a与向量b平行,则a与b的方向相同或相反;③两个有共同起点的单位向量,其终点必相同;④向量AB与向量CD是相等向量,则A、B、C、D能构成平行四边形.三、解答题12.【题文】如图,D,E,F分别是△ABC的边AB,BC,CA的中点,在以A,B,C,D,E,F为起点和终点的向量中:(1)找出与向量EF相等的向量;(2)找出与向量DF相等的向量.13.【题文】如图,在△ABC中,D,E分别是边AB,AC的中点,F,G分别是DB,EC 的中点,求证:向量DE与FG共线.14.【题文】如图,EF是△ABC的中位线,AD是BC边上的中线,在以A,B,C,D,E,F为端点的有向线段表示的向量中请分别写出:(1)与向量CD共线的向量;(2)与向量DF的模相等的向量;(3)与向量DE相等的向量.2.1平面向量的实际背景及基本概念参考答案与解析一、选择题1.【答案】D【解析】根据向量的定义,从大小和方向两个方面考虑,可知密度不是向量.考点:平面向量的概念.【题型】选择题【难度】较易2.【答案】D【解析】由零向量与单位向量的概念知①③⑤正确.考点:零向量与单位向量.【题型】选择题【难度】较易3.【答案】C【解析】四边形ABCD中,∵BA CD=,∴BA CD,且BA CD=,∴四边形ABCD是平行四边形.又AB AD=,∴平行四边形ABCD是菱形.考点:相等向量.【题型】选择题【难度】较易4.【答案】C【解析】∵D,E,F分别为AB,BC,CA的中点,∴AD∥EF ,∴与向量AD共线的向量有AB,FE,EF,DA,BA,BD,DB,共7个.考点:共线向量.【题型】选择题【难度】较易5.【答案】A【解析】长度相等且方向相同的向量叫做相等向量,故①错误;长度为的向量叫零向量,故②正确;通过平移能够移到同一条直线上的向量叫共线向量,故③错误;零向量的方向是任意的,故④错误;共线向量方向相同或相反,⑤正确;平行向量方向相同或相反,故⑥错误,因此②与⑤正确,其余都是错误的,故选C.考点:相等向量,共线向量.【题型】选择题【难度】一般6.【答案】B【解析】①正确,AB与BA是方向相反、模相等的两个向量;②错误,方向不同包括共线反向的向量;③错误,向量用有向线段表示,但二者并不等同;④错误,是一个向量,而为一数量,应为0=0;⑤错误,向量不能比较大小.只有①正确,故选B.考点:向量的有关概念.【题型】选择题【难度】一般7.【答案】B【解析】∵四边形ABCD是矩形,∴AB CD且AB CD=,AD CB,∴AB 与CD共线,且模相等,AD与CB是相反向量,∵AC与BD相交,∴AC与BD不共线,故B错误.考点:共线向量,相等向量.【题型】选择题【难度】一般 8. 【答案】C【解析】向量AB 与BA 方向相反,不是同一向量;有公共终点的向量的方向不一定相同或相反;当=0a 时,aa无意义,故A 、B 、D 错误.零向量与任何向量都是平行向量,C 正确.考点:平行向量;单位向量. 【题型】选择题 【难度】较难二、填空题 9. 【答案】10【解析】正六边形ABCDEF 中,点O 为中心,以,,,,,,A B C D E F O 为起点与终点的向量中,与向量AB 平行的向量有,,,,,,,,,AB BA OC CO OF FO CF FC DE ED ,共10个. 考点:平行向量. 【题型】填空题 【难度】较易 10.【答案】①③④【解析】因为与为相等向量,所以a b ,即①能够使a b 成立;=a b 并没有确定与的方向,即②不能够使ab 成立;与方向相反时,a b ,即③能够使a b 成立;因为零向量与任意向量共线,所以0=a 或0=b 时,a b 能够成立.故使a b 成立的条件是①③④.考点:平行向量. 【题型】填空题 【难度】一般11. 【答案】①【解析】对于①,向量AB 与BA 互为相反向量,长度相等,正确;对于②,因为零向量与任何向量平行,但零向量的方向是任意的,不能说方向相同或相反,所以②错误;对于③,两个有共同起点的单位向量,其终点不一定相同,因为方向不一定相同,所以③错误; 对于④,向量AB 与向量CD 是相等向量,则A 、B 、C 、D 可能在同一直线上,则A 、B 、C 、D 四点不一定能构成平行四边形,所以④错误.综上,正确的是①. 考点:平面向量的概念. 【题型】填空题 【难度】一般三、解答题 12.【答案】(1),BD DA (2),BE EC【解析】(1)∵E ,F 分别为BC ,AC 的中点, ∴EFBA ,且12EF BA =,又D 是BA 的中点, ∴EF BD DA ==,∴与向量EF 相等的向量是,BD DA .(2)∵D ,F 分别为BA ,AC 的中点, ∴DFBC ,且12DF BC =, 又E 是BC 的中点,∴DF BE EC ==, ∴与向量DF 相等的向量是,BE EC . 考点:共线向量.【题型】解答题【难度】较易13.【答案】详见解析【解析】证明:∵D,E分别是边AB,AC的中点,∴DE是△ABC的中位线,∴DE BC,∴四边形DBCE是梯形.又∵F,G分别是DB,EC的中点,∴FG是梯形DBCE的中位线,∴FG DE.∴向量DE与FG共线.考点:向量共线.【题型】解答题【难度】一般14.【答案】(1),,,,,,BD BC EF DB CB FE DC(2),,,,FD AE EA EB BE(3),CF FA【解析】根据三角形中位线的性质及共线向量及相等向量的概念即可得到:(1)与向量CD共线的向量为,,,,,,BD BC EF DB CB FE DC.(2)与向量DF的模相等的向量为,,,,FD AE EA EB BE.(3)与向量DE相等的向量为,CF FA.考点:相等向量,平行向量. 【题型】解答题【难度】一般。
2015-2016学年人教A版必修四 平面向量的基本定理 课件(28张)
M b AC AB AD a b a A B DB DA AB AD AB b a 1 1 1 1 MA AC ( a b ) a b 2 2 2 2 1 1 1 1 MB DB (a b) a b 2 2 2 2 1 1 1 MC AC a b 2 2 2 1 1 1 MD MB DB a b 2 2 2
a b
向量b 与非零向量a共线, 当且仅当有唯一一个实 数,使b a .
观察如图三个不共线向 量e1、 a、 e2 , 它们之间会有 怎样的关系呢?
e1
aБайду номын сангаас
e2
将三个向量的起点移到同一点:
e1
a
M O
e1
A
B
a
C
e2
e2
N
显然:a OM ON
本节课是在学习了共线向量基本定理的前提下,进一步研 究平面内任一向量的表示,为今后平面向量的坐标运算打下坚实 的基础。从“如何求导弹竖直和水平方向速度?” 导入新课。通 过导弹的飞行方向和力的分解两个实例,将问题类比,引入本节 问题-向量的分解。为了帮助学生理解,提供了两段直观的视频, 直观形象。设计意图:借助实际与物理问题设置情境,引发学生 思考与想象,将问题类比,引入本节课题。 然后分组讨论合作探 究并提出问题,进入探究阶段。小组讨论完毕,由几个小组展示 研究成果。结合小组展示成果,借助多媒体展示,由师生共同探 究向量的分解。展示过程中,要重点强调平移共起点,借助平行 四边形法则解说分解过程,加深学生的直观映像,完成向量的分 解。通过向量的分解,由学生小组讨论,共同归纳本节的核心知 识—平面向量基本定理。最后设计了几道课后习题进行拓展延伸 ,培养学生的综合能力。
高中数学 人教A版必修4 第2章 2.4.1平面向量数量积的物理背景及含义(二)
a· c+b· c (分配律). (3)(a+b)· c=_________
研一研·问题探究、课堂更高效
2.4.1(二)
探究点一
本 课 时 栏 目 开 关
向量数量积运算律的提出 类比实数的运算律,向量的数量积是否具有类似的特
a· b=b· c(b≠0)⇒a=c 不成立,如图所示.
显然 a· b=b· c,且 a≠c.
研一研·问题探究、课堂更高效
2.4.1(二)
探究点二
向量数量积的运算律
已知向量 a,b,c 和实数 λ,向量的数量积满足下列运算律: ①a· b=b· a(交换律);
本 课 时 栏 目 开 关
②(λa)· b=λ(a· b)=a· (λb)(数乘结合律); ③(a+b)· c=a· c+b· c(分配律). 问题 1 证明 a· b=b· a.
|b|cos θ 叫做向量 b 在 a 方向上的投影. 的投影,_________
2.向量数量积的性质 设 a、b 为两个非零向量,e 是与 b 同向的单位向量.
|a|cos〈a,b〉 (1)a· e=e· a=_____________ ;
0 且 a· 0 ⇒a⊥b; (2)a⊥b⇒a· b=__ b=__
问题 1
征?先写出类比后的结论,再判断正误(完成下表):
运算律 交换律 结合律 分配律 实数乘法 ab=ba (ab)c=a(bc) (a+b)c=ac+bc 向量数量积 判断 正误
a· b=b· a (a· b)c=a(b· c) (a+b)· c=a· c+b· c
正确
错误 正确
b=b· c(b≠0)⇒a=c 错误 消去律 ab=bc(b≠0) ⇒a=c a·
人教A版数学必修四第二章2.3《平面向量的坐标表示与运算》(共20张PPT)
解:设c→=x→a+→yb,即 (4,2)=x(1,1)+y(-1,1) =(x,x)+(-y,y)
X-y=4
解得
X+y=2
X=3
y=-1
=(x-y,x+y) c→=3→a-→b,故选B
随堂演练:
1、下列说法正确的有( B )个 (1)向量的坐标即此向量终点的坐标。 (2)位置不同的向量其坐标可能相同。 (3)一个向量的坐标等于它的始点坐标减去它的终点坐标。 (4)相等的向量坐标一定相同。 A2、:已1 知M→NB=(:-21,2)C:,3则-3M→ND等:于4 ( C ) A3、、已(知-3a→,=3()1B,、3)(,-6→,b=3()-C2、,(1)3,,-则6)→b-Da→、等(于-(4,C-1)) A、(-3,2)B、(3,-2)C、(-3,-2)D、(-2,-3) 4、已知A→B=(5,7),λAB→=(10,14)则实数λ=___2_
探索研究
设得问出: 向已 量知a r向b r量,a ra r b r(,x1, λa→y的1)坐,标b r 表(示x2, 吗?y2),你能
r rrr rr 解 : a b ( x 1 i r y 1 j ) r( x 2 i y 2 j )
(x1 x2)i(y1y2)j
即 a b (x 1 x 2 ,y 1 y 2 ) 同理可得
a b (x 1 x 2 ,y 1 y 2)
结论:两个向量和与差的坐标分别等 于这两个向量相应坐标的和与差.
(2)实数与向量的积的坐标表示
r
已 知 R , 向 量 a (x , y ), 那 么
a r _ _ ( _ x _ r i _ _ _ y _ u j r _ ) _ _ _ _ x _ r i _ _ _ _ y _ r _ j
高中数学第二章平面向量2-4平面向量的数量积第2课时教学课件新人教A版必修4
(2)坐标表示下的运算.
若 a=(x,y),则 a·a=a2=|a|2=x2+y2,于是有|a|= x2+y2.
【互动探究】 本例中将“a∥b”改为“a·b=10”,求a的坐 标.解:设 a 的坐标为(x,y),由题意得x+x22+y=y2=101,0,
1.已知向量a与b同向,b=(1,2),a·b=10, 求:
(1)向量a的坐标; (2)若c=(2,-1),求(a·c)·b.
解:(1)∵a与b同向,且b=(1,2), ∴a=λb=(λ,2λ)(λ>0). 又∵a·b=10,∴λ+4λ=10.∴λ=2.∴a= (2,4). (2)∵a·c=2×2+(-1)×4=0,
与向量模有关的问题
已知|a|=10,b=(1,2),且a∥b,求a 的坐标.
思路点拨:
解:设 a 的坐标为(x,y),由题意得2xx-2+y=y2=0,10, 解得
x=2 y=4
5, 5
或xy= =- -24
5, 5,
所以 a=(2 5,4 5)或 a=(-2 5,-4 5).
求向量的模的两种基本策略
思路点拨:(1)按求向量夹角的步骤求解; (2)利用两向量垂直数量积为零来证明.
(1)解:由题意知,|a|=1,|b|=1,a·b=-12cos
α+
3 2 sin
α.
则
cos
θ
= |aa|·|bb|
=
-12cos α+ 1×1
3 2+
3 2 sin
α=
cos(120°-α). ∵0°≤α≤90°,∴30°≤120°-α≤120°.
(3)(a·b)·c. 思路点拨:首先求解相关向量的坐标,再代入 坐标运算表达式求解.
高中新课程数学(新课标人教A版)必修四《2.1.1平面向量的背景及其基本概念》课件
课前探究学习
课堂讲练互动
活页规范训练
规律方法 要充分理解与向量有关的概念, 明白它们各自所表示 的含义,搞清它们之间的区别是解决与向量概念有关问题的关 键.
课前探究学习
课堂讲练互动
活页规范训练
【变式 1】 下列说法正确的是(
).
A.数量可以比较大小,向量也可以比较大小 B.方向不同的向量不能比较大小,但同向的可以比较大小 C.向量的大小与方向有关 D.向量的模可以比较大小 解析 A 中不管向量的方向如何,它们都不能比较大小,∴A
课前探究学习 课堂讲练互动 活页规范训练
解析 (1)错误.由|a|=|b|仅说明 a 与 b 模相等,但不能说明它 们方向的关系. (2)错误.0 的模|0| =0. (3)正确.对于一个向量只要不改变其大小和方向,是可以任意 移动的. (4)错误.共线向量即平行向量,只要求方向相同或相反即可, → 、CD → 必须在同一直线上. 并不要求两个向量AB 答案 (3)
不能漏掉“→”.
课前探究学习
课堂讲练互动
活页规范训练
2.共线向量 (1)共线向量也就是平行向量,其要求是几个非零向量的方向相 同或相反,当然向量所在的直线可以平行,也可以重合,其中 “共线”的含义不同于平面几何中“共线”的含义. (2)共线向量有四种情况:方向相同且模相等,方向相同且模不 等,方向相反且模相等,方向相反且模不等.这样,也就找到 了共线向量与相等向量的关系, 即共线向量不一定是相等向量, 而相等向量一定是共线向量. (3)如果两个向量所在的直线平行或重合,则这两个向量是平行 向量.
课前探究学习
课堂讲练互动
活页规范训练
【变式 3】 如图所示,△ABC 的三边均不相等,E、F、D 分 别是 AC、AB、BC 的中点. → (1)写出与EF共线的向量; → (2)写出与EF的模相等的向量; → 相等的向量. (3)写出与EF
高中数学 人教A版必修4 第2章 2.4.1平面向量数量积的物理背景及含义(一)
其中 θ 是 a 与 b 的夹角. (2)规定:零向量与任一向量的数量积为 0 . (3)投影:设两个非零向量 a、b 的夹角为 θ,则向量 a 在 b
|a|cos θ , |b|cos θ 方向的投影是_______ 向量 b 在 a 方向上的投影是_______.
3.数量积的几何意义 a· b 的几何意义是数量积 a· b 等于 a 的长度|a|与 b 在 a 的方
|b|cos θ 的乘积. 向上的投影_______
研一研·问题探究、课堂更高效
2.4.1(一)
探究点一
本 课 时 栏 目 开 关
平面向量数量积的含义
已知两个非零向量 a 与 b,我们把数量|a||b|cos θ 叫做 a 与 b 的 数量积(或内积),记作 a· b,即 a· b=|a||b|cos θ,其中 θ 是 a 与 b 的夹角,θ∈[0,π].规定:零向量与任一向量的数量积为 0. 问题 1 如果一个物体在力 F 的作用下产生位移 s,那么力 F 所
∴a· b=|a|· |b|cos 180° =4×5×(-1)=-20. (2)当 a⊥b 时,θ=90° ,∴a· b=|a|· |b|cos 90° =0. (3)当 a 与 b 的夹角为 30° 时,a· b=|a|· |b|cos 30°
2.4.1(一)
【学法指导】 1.向量的数量积是一种新的乘法,和向量的线性运算有着显著的 区别,两个向量的数量积,其结果是数量,而不是向量.学习 本 课 时必须透彻理解数量积概念的内涵. 时 栏 目 2.向量的数量积与实数的乘积既有区别又有联系,概念内涵更丰 开 关 富,计算更复杂,实数乘法中的一些运算律在向量的数量积中 已经不再成立,不宜作简单类比,照搬照抄.书写格式也要严 格区分,a· b 中的“· ”不能省略.
2014年人教A版必修四课件 2.1 平面向量的实际背景及基本概念
向量的几何表示
返回目录
1. 什么是有向线段? 有向线段包含哪三个要素? 有向线段的记法和图形表示是怎样的? 2. 什么是向量? 它由几个要素构成? 3. 向量的几何表示与字母表示分别是怎样的? 4. 什么是零向量? 什么是单位向量? 零向量是 怎样表示的? 5. 什么是向量的模? 它是怎样表示法?
A (起点) B (终点)
(3) 字母表示:
① 用端点的大写字母表示, 如 向量 AB. ② 用印刷黑体小写字母表示, 如 a、b、c. ③ 用书写体加箭头表示, 如 a、 b 、 c.
a a
A
B
3. 向量的模: 向量 AB 的大小, 就是向量 AB 的长度, 也叫做向量的模, 记作 | AB | . 4. 零向量: 模为零的向量称为零向量, 记作0 ( 0 ), 零向量的 方向是任意的.
练习: (课本77页)
第 1、 3 题 .
练习: (77页) 1. 画有向线段, 分别表示一个竖直向上、大小为 18 N的力和一个水平向左、大小为28 N的力 (用1cm长 表示10 N ). 画图如下:
3 3 2 1 0
B
18 N
D
28 N
C
A | AB | 18 N .
2 1 0
| CD | 28 N .
5. 单位向量:
模为一个单位的向量称为单位向量. 如图是一个单位圆, 向量 OA, OB, OC 都是单位向量.
B A
C
O
例1. 如图, 试根据图中的比例尺以及三地的位置, 在图中分别用有向线段表示A地至B、C两地的位移(精 确到1km). 解: AB、AC 分别表示A地 到B地、C地的位移, 量得图上A、B两点 间的距离约为3cm, A、C两点间的距离 约为3.8cm, | AB | 0.038000000 240(km), | AC | 0.0388000000 万 ≈304(km).
高中数学第二章平面向量2.4.1平面向量数量积的物理背景及其含义课件新人教A版必修4
向量的数量积
定义
已知两个非零向量 a 与 b,我们把数量_|a_||_b_|c_o_s__θ叫作 a 与 b 的 数量积,记作_a_·_b_,即 a·b=_|a_||_b_|c_o_s__θ,其中 θ 是 a 与 b 的夹角.零 向量与任一向量的数量积为__0__.
几何意义
|a|cos θ(|b|cos θ)叫做向量 a 在 b 方向上(b 在 a 方向上)的 __投__影__.a·b 的几何意义:数量积 a·b 等于 a 的长度|a|与 b 在 a 的方 向上的投影|b|cos θ 的_乘__积___
为________,b 在 a 方向上的投影为________.
【解析】 (1)设B→A=a,B→C=b,则 a·b=12,|a|=|b|=1.D→E=12 A→C=12(b-a),D→F=32D→E=34(b-a),A→F=A→D+D→F=-12a+34(b-a) =-54a+34b,A→F·B→C=-54a·b+34b2=-58+34=18.答Leabharlann :(1)π3 (2)见解析性质
(1)a⊥b⇔___a_·_b___=0; (2)当 a 与 b 同向时,a·b=_|a_|_|b_|;当 a 与 b 反向时,a·b=__-__|a_||_b_|_; (3)a·a=|a|2 或|a|= a·a= a2;
a·b (4)cos θ=__|_a_|·_|b_|__; (5)|a·b|≤|a||b|
考试标准
课标要点
学考要求 高考要求
平面向量数量积的概念及其物理意义
b
b
平面向量投影的概念
a
a
平面向量数量积的性质及运算律
b
b
知识导图
学法指导 1.本节的重点是平面向量数量积的概念、向量的模及夹角的表 示,难点是平面向量数量积运算律的理解及平面向量数量积的应 用. 2.向量的数量积与数的乘法既有区别又有联系,学习时注意 对比,明确数的乘法中成立的结论在向量的数量积中是否成立.
人教A版高中数学必修4《二章 平面向量 2.1 平面向量的实际背景及基本概念 2.1.2 向量的几何表示》教案_14
向量的几何表示教学设计1.教学内容解析本节课是《普通高中课程标准实验教科书数学4》(人教A 版)第二章第一节“平面向量的实际背景及基本概念”第一课时。
平面向量的实际背景及基本概念是向量知识体系中的起始内容,起着为其他知识学习奠基的重要作用。
一方面,它能为其他向量知识的学习奠基,通过了解向量的实际背景,理解向量的含义及几何表示等内容,奠定学生学习向量的线性运算、平面向量的基本定理及坐标表示和平面向量数量积的知识基础;另一方面,它能为学习新的数学对象奠基,学生通过认识向量,形成向量相关概念的过程,可以获得认识其他数学对象的基本方法和途径,可以为学习和研究其他数学对象奠定方法基础。
所以,平面向量的实际背景及基本概念作为向量的起始课及概念型课,其教学必须要有“交代问题背景、引入基本概念、渗透研究方法、构建研究蓝图”的大气。
由于是第一课时,所以笔者重点在于章引言,向量概念的引入,向量的表示,零向量、单位向量和平行向量的教学,不讲相等向量和共线向量。
2.教学目标设置课堂教学目标如下.(1)从如何由A点确定B点的位置,速度既有大小和方向抽象出向量的概念并与数量区分;(2)经历从实数的表示到“带箭头的线段”,从有向线段到向量的几何表示,掌握向量的几何表示、符号表示,模的表示,感受类比的思想,体会数学的实用性、表达的简洁美;(3)理解从大小看:零向量、单位向量,从方向看:平行向量;(4)体会认识新的数学概念基本思路:1.归纳共性;2.抽象定义;3.符号表示;4.认识特殊;5.研究一般;进而提高提出问题、研究问题的能力;3.学生学情分析(1)在物理学中,已经知道速度,力,位移等是既有大小又有方向的物理量(矢量);(2)如何作力的图示;(3)已经经历并了解实数的形成过程;(4)对实际生活中的一些常见的量,能识别它们是否具有大小、方向;(5)在以前的学习中,能运用类比的思想发现问题、提出问题,进而解决问题。
但是,高一学生在思维辨析方面还比较薄弱,教师要适度加以引导,指导学生进行辨析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上一页
返回首页
下一页
π 已知|a|=3,向量 a 与 b 的夹角为 3 ,则 a 在 b 方向上的投影为________.
【解析】 【答案】
向量 a 在 b 方向上的投影为|a|cos θ=3×cos π3 =32.
3 2
上一页
返回首页
下一页
[质疑·手记] 预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问 1: 解惑: 疑问 2: 解惑: 疑问 3: 解惑:
上一页
返回首页
下一页
[再练一题] 1.给出下列判断:①若 a2+b2=0,则 a=b=0;②已知 a,b,c 是三个非 零向量,若 a+b=0,则|a·c|=|b·c|;③a,b 共线⇔a·b=|a||b|;④|a||b|<a·b;⑤a·a·a =|a|3;⑥a2+b2≥2a·b;⑦向量 a,b 满足:a·b>0,则 a 与 b 的夹角为锐角;⑧
上一页
返回首页
下一页
【自主解答】 由已知 a·b=|a||b|cos θ=4×2×cos 120°=-4,a2=|a|2
=16,b2=|b|2=4. (1)∵|a+b|2=(a+b)2=a2+2a·b+b2=16+2×(-4)+4=12,∴|a+b|=
2 3. (2)∵(a+b)·(a-2b)=a2-a·b-2b2=16-(-4)-2×4=12,∴|(a+b)·(a-
下一页
(3)如图,过 A 作 AD⊥BC,垂足为 D.
因为 AB=AC,
所以 BD=12BC=2,
于是|B→A|cos∠ABC=|B→D|
=12|B→C|=12×4=2.
所以B→A·B→C
=|B→A||B→C|cos∠ABC=4×2=8. 【答案】 (1)③④ (2)-152 -4 (3)8
上一页
以|a·c|=|b·c|,②正确;a,b 共线⇔a·b=±|a||b|,所以③不正确;
对于④应有|a||b|≥a·b; 对于⑤,应该是 a·a·a=|a|2a; ⑥a2+b2≥2|a||b|≥2a·b,故正确;
当 a 与 b 的夹角为 0 时,也有 a·b>0,因此⑦错;
|b|cos θ表示向量 b 在向量 a 方向上的投影的数量,而非投影长,故⑧错.综
∴a·b=0. (3)当 a 与 b 夹角为 135°时, a·b=|a||b|cos 135°=-10 2.
上一页
返回首页
下一页
1.求平面向量数量积的步骤是:①求 a 与 b 的夹角 θ,θ∈[0,π];②分 别求|a|和|b|;③求数量积,即 a·b=|a||b|cos θ.
2.非零向量 a 与 b 共线的条件是 a·b=±|a||b|.
上一页
返回首页
下一页
[探究共研型]
平面向量数量积的性质
探究 1 设 a 与 b 都是非零向量,若 a⊥b,则 a·b 等于多少?反之成立吗? 【提示】 a⊥b⇔a·b=0. 探究 2 当 a 与 b 同向时,a·b 等于什么?当 a 与 b 反向时,a·b 等于什么? 特别地,a·a 等于什么? 【提示】 当 a 与 b 同向时,a·b=|a||b|;当 a 与 b 反向时,a·b=-|a||b|;a·a =a2=|a|2 或|a|= a·a.
上一页
返回首页
下一页
【自主解答】 (1)由数量积的定义知 a·b=|a||b|cos θ(θ 为向量 a,b 的夹
角). ①若 a·b=0,则 θ=90°或 a=0 或 b=0,故①错; ②若 a·b<0,则 θ 为钝角或 θ=180°,故②错; ③由A→B·B→C=0 知 B=90°,故△ABC 为直角三角形,故③正确; ④由 a2=|a|2=1,b2=|b|2=1,故④正确.
上一页
返回首页
下一页
探究 3 |a·b|与|a||b|的大小关系如何?为什么?对于向量 a,b,如何求它们
的夹角 θ?
【提示】 |a·b|≤|a||b|,设 a 与 b 的夹角为 θ,则 a·b=|a||b|cos θ.
两边取绝对值得:
|a·b|=|a||b||cos θ|≤|a||b|. 当且仅当|cos θ|=1, 即 cos θ=±1,θ=0 或π时,取“=”,
为 a,b 夹角)求值.
上一页
返回首页
下一页
【自主解答】 设向量 a 与 b 的夹角为 θ,
(1)a∥b 时,有两种情况:
①若 a 和 b 同向,则 θ=0°,a·b=|a||b|=20; ②若 a 与 b 反向,则 θ=180°,a·b=-|a||b|=-20.
(2)当 a⊥b 时,θ=90°
[再练一题] 2.已知正三角形 ABC 的边长为 1,求: (1)A→B·A→C;(2)A→B·B→C; (3)B→C·A→C. 【解】 (1)A→B与A→C的夹角为 60°, ∴A→B·A→C=|A→B||A→C|cos 60° =1×1×12=12.
上一页
返回首页
下一页
图 2-4-2
由 c⊥d,知 c·d=0,
即 c·d=(3a+5b)·(ma-3b)=3ma2+(5m-9)a·b-15b2 =27m+3(5m-9)-60=42m-87=0, ∴m=2194,即 m=2194时,c 与 d 垂直.
上一页
返回首页
下一页
1.已知非零向量 a,b,若 a⊥b,则 a·b=0,反之也成立. 2.设 a 与 b 夹角为 θ,利用公式 cos θ=|aa|·|bb|可求夹角 θ,求解时注意向
阅读教材 P103~P104“例 1”以上内容,完成下列问题. 1.向量的数量积的定义 已知两个非零向量 a 与 b,它们的夹角为 θ,我们把数量__|_a_||b_|_c_o_s_θ____叫 做 a 与 b 的__数__量__积____(或_内__积___),记作_a_·_b__,即__a_·b_=__|_a_||_b_|c_o_s_θ_____. 规定零向量与任一向量的数量积为___0__.
所以|a·b|≤|a||b|.
cos θ=|aa|·|bb|.
上一页
返回首页
下一页
已知|a|=3,|b|=2,向量 a,b 的夹角为 60°,c=3a+5b,d=ma -3b,求当 m 为何值时,c 与 d 垂直?
【精彩点拨】 由条件计算 a·b,当 c⊥d 时,c·d=0 列方程求解 m. 【自主解答】 由已知得 a·b=3×2×cos 60°=3.
(2)A→B与B→C的夹角为 120°, ∴A→B·B→C=|A→B||B→C|cos 120° =1×1×-12=-12. (3)B→C与A→C的夹角为 60°, ∴B→C·A→C=|B→C||A→C|cos 60°=1×1×12=12.
上一页
返回首页
下一页
与向量模有关的问题
已知向量 a 与 b 的夹角为 120°,且|a|=4,|b|=2,求:(1)|a+b|; (2)|(a+b)·(a-2b)|. 【精彩点拨】 利用 a·a=a2 或|a|= a2求解.
上可知①②⑥正确. 【答案】 ①②⑥
上一页
返回首页
下一页
数量积的基本运算
已知|a|=4,|b|=5,当(1)a∥b;(2)a⊥b;(3)a 与 b 的夹角为 135
°时,分别求 a 与 b 的数量积. 【导学号:00680054】
【精彩点拨】 (1)当 a∥b 时,a 与 b 夹角可能为 0°或 180°.(2)当 a⊥b 时,a 与 b 夹角为 90°.(3)若 a 与 b 夹角及模已知时可利用 a·b=|a|·|b|·cos θ(θ
上一页
返回首页
下一页
[小组合作型] 与向量数量积有关的概念
(1)以下四种说法中正确的是________. ①如果 a·b=0,则 a=0 或 b=0; ②如果向量 a 与 b 满足 a·b<0,则 a 与 b 所成的角为钝角; ③△ABC 中,如果A→B·B→C=0,那么△ABC 为直角三角形; ④如果向量 a 与 b 是两个单位向量,则 a2=b2.
若 a,b 的夹角为 θ,则|b|cos θ表示向量 b 在向量 a 方向上的投影长.其中正
确的是:________.
上一页
返回首页
下一页
【解析】 由于 a2≥0,b2≥0,所以,若 a2+b2=0,则 a=b=0,故①正
确;
若 a+b=0,则 a=-b,又 a,b,c 是三个非零向量,所以 a·c=-b·c,所
上一页
返回首页
下一页
教材整理 2 向量的数量积的几何意义及运算律
阅读教材 P104 例 1 以下至 P105 例 2 以上内容,完成下列问题. 1.向量的数量积的几何意义 (1)投影的概念 如图 2-4-1 所示:O→A=a,O→B=b,过 B 作 BB1 垂直于直线 OA,垂足为 B1,则 OB1=_|_b_|c_o_s_θ___. _|_b_|c_o_s_θ_____叫做向量 b 在 a 方向上的投影,___|a_|c_o_s__θ___叫做向量 a 在 b 方向上的投影.
2b)|=12.
上一页
返回首页
下一页
1.此类求模问题一般转化为求模平方,与数量积联系. 2.利用 a·a=a2=|a|2 或|a|= a2,可以实现实数运算与向量运算的相互转化.
上一页
返回首页
下一页
[再练一题] 3.题干条件不变,求|a-b|. 【解】 因为|a|=4,|b|=2,且 a 与 b 的夹角 θ=120°. 所以|a-b|= (a-b)2= a2-2a·b+b2 = 42-2×4×2×cos 120°+22=2 7, 所以|a-b|=2 7.
上一页
图 2-4-1
返回首页
下一页
(2)数量积的几何意义: a·b 的几何意义是数量积 a·b 等于__a_的__长__度__|a_|____与 b 在 a 的方向上的投影