2011年高考理科数学函数、导函数试题汇编
2011-2018高考数学导数分类汇编(理)(完整资料).doc
【最新整理,下载后即可编辑】2011-2018新课标(理科)导数压轴题分类汇编【2011新课标】21. 已知函数ln ()1a xb f x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。
(1)求a 、b 的值;(2)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围。
【解析】 (1)221(ln )'()(1)x x b x f x x x α+-=-+由于直线230x y +-=的斜率为12-,且过点(1,1),故(1)1,1'(1),2f f =⎧⎪⎨=-⎪⎩ 即1,1,22b a b =⎧⎪⎨-=-⎪⎩解得1a =,1b =。
(2)由(1)知ln 11xx x++,所以 22ln 1(1)(1)()()(2ln )11x k k x f x x x x x x---+=+--。
考虑函数()2ln h x x =+2(1)(1)k x x --(0)x >,则22(1)(1)2'()k x x h x x -++=。
(i)设0k ≤,由222(1)(1)'()k x x h x x +--=知,当1x ≠时,'()0h x <。
而(1)0h =,故当(0,1)x ∈时,()0h x >,可得21()01h x x>-;当x ∈(1,+∞)时,h (x )<0,可得211x- h (x )>0从而当x>0,且x ≠1时,f (x )-(1ln -x x +x k )>0,即f (x )>1ln -x x +xk .(ii )设0<k<1.由于当x ∈(1,k-11)时,(k-1)(x 2 +1)+2x>0,故h’(x )>0,而h (1)=0,故当x ∈(1,k -11)时,h (x )>0,可得211x-h(x )<0,与题设矛盾。
2011年高考数学真题分类汇编-4---函数与导数
2011年高考数学真题分类汇编——函数与导数 (4)一、选择题1.(全国Ⅱ理8)曲线21xy e -=+在点(0,2)处的切线与直线0y =和y x =围成的三角形的面积为 (A)13 (B)12 (C)23 (D)12.(全国Ⅱ理9)设()f x 是周期为2的奇函数,当01x ≤≤时,()2(1)f x x x =-,则5()2f -=(A)12-(B)14-(C)14 (D)123.(山东理9)函数2sin 2xy x =-的图象大致是4.(山东理10)已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3()f x x x =-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为(A )6 (B )7 (C )8 (D )95.(山东文4)曲线311y x =+在点P(1,12)处的切线与y 轴交点的纵坐标是 (A )-9 (B )-3 (C )9 (D )156.(陕西理3)设函数()f x (x ∈R )满足()()f x f x -=,(2)()f x f x +=,则函数()y f x =的图像是 ( )7.(陕西文4) 函数13y x =的图像是 ( )8.(上海理16)下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数是( )(A )1ln||y x =. (B )3y x =. (C )||2x y =. (D )cos y x =.9.(上海文15)下列函数中,既是偶函数,又在区间(0,)+∞上单调递减的函数是( )(A )2y x -= (B )1y x -= (C )2y x = (D )13y x =10.(四川理7)若()f x 是R 上的奇函数,且当0x >时,1()()12x f x =+,则()f x 的反函数的图象大致是11.(四川文4)函数1()12x y =+的图象关于直线y=x 对称的图象像大致是 12.(天津理2)函数()23x f x x=+的零点所在的一个区间是( ). A.()2,1--B.()1,0- C.()0,1D.()1,2二、填空题13.(陕西文11)设lg ,0()10,0xx x f x x >⎧=⎨⎩…,则((2))f f -=______. 14.(陕西理11)设20lg 0()30ax x f x x t dt x >⎧⎪=⎨+⎪⎩⎰…,若((1))1f f =,则a = .15.(陕西理12)设n N +∈,一元二次方程240x x n -+=有整数根的充要条件是n = .16.(山东理16)已知函数f x ()=log (0a 1).a x xb a +-≠>,且当2<a <3<b <4时,函数f x ()的零点*0(,1),,n=x n n n N ∈+∈则 .三、选做题:17.(广东文19) 设0>a ,讨论函数x a x a a x x f )1(2)1(ln )(2---+=的单调性. 18.(湖北理17)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20020≤≤x 时,车流速度v 是车流密度x 的一次函数.(Ⅰ)当2000≤≤x 时,求函数()x v 的表达式;(Ⅱ)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)()()x v x x f ⋅=可以达到最大,并求出最大值.(精确到1辆/小时) 17.解:函数f(x)的定义域为(0,+∞)本题主要考查函数、最值等基础知识,同时考查运用数学知识解决实际问题的能力.解析:(Ⅰ)由题意:当200≤≤x 时,()60=x v ;当20020≤≤x 时,设()b ax x v +=,显然()b ax x v +=在[]200,20是减函数,由已知得⎩⎨⎧=+=+60200200b a b a ,解得⎪⎪⎩⎪⎪⎨⎧=-=320031b a 故函数()x v 的表达式为()x v =()⎪⎩⎪⎨⎧≤≤-<≤.20020,20031,200,60x x x(Ⅱ)依题意并由(Ⅰ)可得()=x f ()⎪⎩⎪⎨⎧≤≤-<≤.20020,20031,200,60x x x x x当200≤≤x 时,()x f 为增函数,故当20=x 时,其最大值为12002060=⨯;当20020≤≤x 时,()()()310000220031200312=⎥⎦⎤⎢⎣⎡-+≤-=x x x x x f ,当且仅当x x -=200,即100=x 时,等号成立.所以,当100=x 时,()x f 在区间[]200,20上取得最大值310000. 综上,当100=x 时,()x f 在区间[]200,0上取得最大值3333310000≈,即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时.18221212122(1)2(1)1'(),112(1)2(1)1012(1)()310,'()23110,220'()0,()(0,)(,)a a x a x f x xa a a x a x a a a f x x x a a x x x x f x f x x x ---+=≠---+=∆=--<∆>=>=<<>>+∞当时,方程的判别式①当0<时,有个零点且当或时,在与内为增函数121212'()0,(),)110,'()0,()(0,)311'()0(0),()(0,)1110,0,0,'()22x x x f x f x x x a f x f x a f x x f x xa x x f x x a a <<<≤<∆≤≥+∞==>>+∞>∆>==+;当时,在(内为减函数当时,在内为增函数;当时,在内为增函数;当时,所以在定义域内有唯一零点②③④11111;0'()0,()(0,)'()0,()(,)x x f x f x x x x f x f x x <<>><+∞且当时,在内为增函数;当时,在内为减函数;综(其中121122x x a a ==)。
2011高考试题分类汇编导函数解答题及答案
2011年高考理科函数解答题一.北京18.(本小题共13分)已知函数2()()x kf x x k e =-。
(Ⅰ)求()f x 的单调区间;(Ⅱ)若对于任意的(0,)x ∈+∞,都有()f x ≤1e,求k 的取值范围。
解:(Ⅰ).)(1)(122xe k x kx f -=' 令()00='f ,得k x ±=.当k>0时,)()(x f x f '与的情况如下 x(k -∞-,)k -(k -,k) k ),(+∞k)(x f ' + 0— 0 + )(x f↗124-e k↘↗所以,)(x f 的单调递减区间是(k -∞-,)和),(+∞k ;单高层区间是),(k k -当k<0时,)()(x f x f '与的情况如下 x(k -∞-,)k -(k -,k) k ),(+∞k)(x f '— 0 + 0— )(x f↘↗124-e k↘所以,)(x f 的单调递减区间是(k -∞-,)和),(+∞k ;单高层区间是),(k k -(Ⅱ)当k>0时,因为e e k f k1)1(11>=++,所以不会有.1)(),,0(ex f x ≤+∞∈∀ 当k<0时,由(Ⅰ)知)(x f 在(0,+∞)上的最大值是.4)(2ek k f =- 所以ex f x 1)(),,0(≤+∞∈∀等价于.14)(2e e k k f ≤=-- 解得021<≤-k . 故当.1)(),,0(e x f x ≤+∞∈∀时,k 的取值范围是).0,21[-二.湖北21.(本小题满分14分)(Ⅰ)已知函数()()ln 1,0,f x x x x =-+∈+∞求函数()f x 的最大值; (Ⅱ)设(),1,2,,k k a b k n = 均为正数,证明:(1)若112212n n n a b a b a b b b b +++≤+++ ,则12121nb bbn a a a ∴≤(2) 若121n b b b +++= ,则1222212121n b b b n n b b b b b b n≤≤+++ 。
高考数学试题分类汇编 专题函数与导数 理
2011年高考试题数学(理科)函数与导数一、选择题:1. (2011年高考山东卷理科5)对于函数(),y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“y =()f x 是奇函数”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要 【答案】B【解析】由奇函数定义,容易得选项B 正确. 2. (2011年高考山东卷理科9)函数2sin 2xy x =-的图象大致是【答案】C【解析】因为'12cos 2y x =-,所以令'12cos 02y x =->,得1cos 4x <,此时原函数是增函数;令'12cos 02y x =-<,得1cos 4x >,此时原函数是减函数,结合余弦函数图象,可得选C正确.3. (2011年高考山东卷理科10)已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3()f x x x =-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为(A )6 (B )7 (C )8 (D )9 【答案】B【解析】因为当02x ≤<时, 3()f x x x =-,又因为()f x 是R 上最小正周期为2的周期函数,且(0)0f =,所以(6)(4)(2)(0f f f f ====,又因为(1)0f =,所以(3)0f =,(5)0f =,故函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为7个,选B.4.(2011年高考安徽卷理科3)设()f x 是定义在R 上的奇函数,当x ≤0时,()f x x x 2=2-,则()f 1=(A )-3 (B) -1 (C)1 (D)3 (A )-3 (B) -1 (C)1 (D)3 【命题意图】本题考查了函数的奇偶性和求值,是容易题.【解析】∵设()f x 是定义在R 上的奇函数,当x ≤0时,()f x x x 2=2-, ∴(1)f =(1)f --=2[2(1)(1)]-⨯---=-3,故选A.5.(2011年高考安徽卷理科10)函数()f x =(1)m n ax x - 在区间[0,1]上的图像如图所示,则m,n 的值可能是(A )m=1, n=1 (B )m=1, n=2(C )m=2, n=1 (D )m=3, n=1【命题意图】本题考查利用导数判定函数的单调性的有关知识,考查识图、用图能力,难度较大.【解析】观察图像已知,a >0,()f x 在(0,1)上先增后减,但在[0,12]上有增有减且不对称.对于选项A ,()f x =(1)ax x -是二次函数,图像关于直线12x =对称,不符合题意. 对于选项B ,()f x =(1)ax x -=32(2)a x x x -+,()f x '=21(341)3()(1)3a x x a x x -+=--,知()f x 在[0, 13]是增函数,在[13,1]是减函数,符合题意,选B.对于选项C, ()f x =2(1)ax x -=23()a x x -,()f x '=2(23)a x x -=23()3a x x --,在[0,23]上是增函数,不适合;对于选项D ,()f x =3(1)ax x -=34()a x x -,()f x '=23(34)a x x -=234()4ax x --,在[0,34]是增函数,不适合.【解题指导】排除法解决存在问题和不确定问题很有效6.(2011年高考辽宁卷理科9)设函数f (x )=⎩⎨⎧≤,>,,,1x x log -11x 22x -1则满足f (x )≤2的x 的取值范围是( )(A )[-1,2] (B )[0,2] (C )[1,+∞) (D )[0,+∞) 答案: D解析:不等式等价于11,22xx -≤⎧⎨≤⎩或21,1log 2,x x >⎧⎨-≤⎩解不等式组,可得01x ≤≤或1x >,即0x ≥,故选D.8.(2011年高考浙江卷理科1)设函数2,0,()()4,0.x x f x f x x α-≤⎧==⎨>⎩若,则实数α=(A )-4或-2 (B )-4或2 (C )-2或4 (D )-2或2 【答案】 B【解析】:当2042,a a a >=⇒=时,044a a a ≤=⇒=-当时,-,故选B9. (2011年高考全国新课标卷理科2)下列函数中,既是偶函数又是区间),0(+∞上的增函数的是( )A 3x y = B 1+=x y C 12+-=x y D xy -=2【答案】B解析:由偶函数可排除A ,再由增函数排除C,D,故选B ;点评:此题考查复合函数的奇偶性和单调性,因为函数x y x y -==和都是偶函数,所以,内层有它们的就是偶函数,但是,它们在),0(+∞的单调性相反,再加上外层函数的单调性就可以确定。
(完整word版)2011年-2019年全国二卷理科数学函数与导数分类汇编,推荐文档.docx
2011 年— 2019 年新课标全国卷Ⅱ理科数学试题分类汇编7.函数与导数一、选择题( 2019·4) 2019 年 1 月 3 日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日 L 2 点的轨道运行. L 2 点是平衡点, 位于地月连线的延长线上.设地球质量为 M 1 ,月球质量为 M 2 ,地月距离为 R , L 2 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:M 1M 2(R r )M 1.设r 的值(R r ) 2r 23,由于RR很小,因此在近似计算中333 453 3 ,则 r 的近似值为(1)2A .M2RB .M 2 RM 12M 1C . 3 3M 2 RD . 3M 2 RM 13M 1( 2019·6)若 a>b ,则A . ln(a- b)>0B . 3a <3bC .a 3- b 3>0D . │a │ >b ││(2019·12)设函数 f ( x) 的定义域为 R ,满足 f (x 1)2 f (x) ,且当 x (0,1] 时,f (x)x(x 1) .若对任意 x ( , m] ,都有 f ( x)8,则 m 的取值范围是9A .,9B .,743C .,5D .,823(2018·3)函数 e x e xf ( x)2的图象大致为x(2018·11)已知f (x) 是定 域 ( ,) 的奇函数, 足f (1 x) f (1 x) .若 f (1)2 ,f (1) f (2) f (3) Lf (50)A . 50B . 0C . 2D . 50(2017·11)若 x2 是函数 f ( x) ( x 2 ax1)e x 1` 的极 点, f ( x) 的极小 ()A. 1B. 2e 3C. 5e 3D.1( 2016·12)已知函数f ( x)( x R ) 足 f ( x)2 f (x) ,若函数 yx 1与 yf (x) 像的x交点 ( x 1 , y 1 ) , (x 2 , y 2 ) ,⋯, ( x m , y m ) ,m( x i y i )()i 1A . 0B .mC . 2mD .4m(2015·5) 函数 f ( x)1 log2 (2x) ( x1) 2) f (l og 2 12) ()2x1( x, f (1)A . 3B . 6C .9D . 12( 2015·10)如 , 方形 ABCD 的 AB=2,BC=1,O 是 AB 的中点,点 P 沿着 BC ,CD 与DA 运 , ∠ BOP=x. 的 像大致(将 点 P 到 A , B 两点距离之和表示 x 的函数 f ( x ), f ( x ))A .B .C .D .( 2015·12)函 数f ( x) 是 奇 函 数f (x)(xR) 的函 数 , f (1)0 , 当x>0,xf ( x)f (x)0 , 使得f (x) >0 成立的x 的取 范 是()A . ( , 1) U (0,1)B . (1,0)U (1, )C . (, 1)U ( 1,0)D . (0,1)U (1,)( 2014·8)设曲线 y=ax- ln(x+1)在点 (0,0)处的切线方程为 y=2x ,则 a=( )A . 0B . 1C .2D . 3(2014·12)设函数 f ( x)3 sinx,若存在 f (x) 的极值点 x 0 满足 x 02[ f ( x 0 )] 2 m 2 ,则mm 的取值范围是( )A . ( , 6) U (6,+ )B . (, 4) U (4,+ )C .( , 2) U (2,+)D . (, 1)U (4,+)(2013·8)设 a log 3 6 , b log 5 10 , c log 7 14 ,则()A. c b aB. b c aC. a c bD. a b c(2013·10)已知函数 f (x)32bxc ,下列结论中错误的是()xaxA. x 0R, f (x 0 )B. 函数 y f (x) 的图像是中心对称图形C. 若 x 0 是 f ( x) 的极小值点,则 f (x) 在区间 ( , x 0 ) 单调递减D. 若 x 0 是 f ( x) 的极值点,则f ( x 0 ) 0(2012·10)已知函数 f ( x)1,则 yf ( x) 的图像大致为()ln( x 1)xy y y y 1111o 1xo 1xo 1xo 1xA.B.C.D.(2012·12)设点 P 在曲线 y1 e x 上,点 Q 在曲线 y ln(2 x) 上,则 | PQ |的最小值为()2A. 1 ln 2B.2 (1 ln 2)C. 1 ln 2D. 2(1 ln 2)(2011·2)下列函数中,既是偶函数又在 ( 0,+ ))x 2单调递增的函数是(. y x 3 . y | x | 1 . y 1 . y 2 |x|A B CD(2011·9)由曲线 yx ,直线 y x2 及 y 轴所围成的图形的面积为()A .10B . 4C .16D . 633(2011·12)函数 y1 的图像与函数 y2sin x,( 2 x4) 的图像所有交点的横坐标之x 1和等于()A . 2B . 4C .6D . 8二、填空题(· )已知 f ( x) 是奇函数,且当 x 0时,ax8 ,则 a2019 14f (x)e . 若 f (ln 2)__________.(2018·13)曲线 y 2ln( x 1) 在点 (0, 0) 处的切线方程为__________ .(2014·15)已知偶函数 f (x)在[0, +∞)单调递减, f (2)=0. 若 f (x- 1)>0,则 x 的取值范围是_________.(2016·16)若直线 y = kx+b 是曲线 y = lnx+2 的切线,也是曲线 y = ln(x+1)的切线,则 b =.三、解答题(2019·20)已知函数x1 f x ln x.x 1(1)讨论 f(x)的单调性,并证明 f(x)有且仅有两个零点;( 2)设 x0是 f(x)的一个零点,证明曲线 y=lnx 在点 A(x0,lnx0)处的切线也是曲线y e x的切线 .(2018·21)已知函数 f (x)e x ax2 .( 1)若 a 1 ,证明:当x ≥ 0时, f ( x) ≥ 1;( 2)若 f(x) 在 (0, )只有一个零点,求 a .(2017·21)已知函数f ( x)ax2ax x ln x, 且 f (x)0 .( 1)求 a;( 2)证明:f ( x)存在唯一的极大值点x0,且 e 2 f (x0 ) 2 2.(2016·21)(Ⅰ)讨论函数f (x)x 2 e x的单调性,并证明当 x >0时,( x 2) e x x 2 0 ;x2e x ax a( x 0)有最小值 .设 g (x)的最小值为h( a) ,(Ⅱ)证明:当 a [0,1) 时,函数 g( x)=x2求函数 h( a) 的值域.(2015·21)设函数 f (x) e mx x2mx .(Ⅰ)证明: f (x)在( - ∞, 0)单调递减,在(0, +∞)单调递增;(Ⅱ)若对于任意 x1,, x2∈ [- 1,1],都有| f(x1)- f (x2)|≤e- 1,求 m 的取值范围.(2014·21)已知函数 f (x)e x e x2x .(Ⅰ)讨论 f ( x)的单调性;(Ⅱ)设 g ( x) f (2 x)4bf (x) ,当x0 时,g( x)0 ,求b的最大值;(Ⅲ)已知 1.41422 1.4143,估计 ln2 的近似值(精确到0.001) .(2013·21)已知函数 f (x)e x ln( x m) .(Ⅰ)设 x0 是 f (x) 的极值点,求m ,并讨论 f ( x)的单调性;(Ⅱ)当 m 2 时,证明 f (x)0 .x 112(2012·21)已知函数f ( x) f (1)e f (0) x x .(Ⅰ)求 f (x) 的解析式及单调区间;(Ⅱ)若 f (x) 1 x2ax b ,求 (a1)b 的最大值.2( 2011·21)已知函数f ( x)a ln x b,曲线y f (x)在点(1, f (1))处的切线方程为x 1 xx 2 y 30 .(Ⅰ)求a、 b 的值;(Ⅱ)如果当 x0 ,且 x 1 时, f (x)ln x k,求 k 的取值范围 .x 1x。
2011届高考数学复习资料汇编:第2单元 函数、导数(真题解析+最新模)
2011年最新高考+最新模拟——函数、导数1.【2010²上海文数】若是方程式的解,则属于区间()A.(0,1)B.(1,1.25)C.(1.25,1.75)D.(1.75,2)【答案】D【解析】,,知属于区间(1.75,2).2.【2010²湖南文数】函数y=ax2+ bx与y= (ab ≠0,| a |≠| b |)在同一直角坐标系中的图像可能是()s【答案】D3.【2010²浙江理数】设函数的集合,平面上点的集合,则在同一直角坐标系中,中函数的图象恰好经过中两个点的函数的个数是()A.4B.6C.8D.10【答案】B【解析】本题主要考察了函数的概念、定义域、值域、图像和对数函数的相关知识点,对数学素养有较高要求,体现了对能力的考察,属中档题.当a=0,b=0;a=0,b=1;a=,b=0; a=,b=1;a=1,b=-1;a=1,b=1时满足题意,故答案选B.4.【2010²全国卷2理数】若曲线在点处的切线与两个坐标围成的三角形的面积为18,则()A.64B.32C.16D.8【答案】A【解析】本试题主要考查求导法则、导数的几何意义、切线的求法和三角形的面积公式,考查考生的计算能力.,切线方程是,令,,令,,∴三角形的面积是,解得.故选A.5.【2010²全国卷2理数】函数的反函数是()A. B.C. D.【答案】D【解析】本试题主要考察反函数的求法及指数函数与对数函数的互化.由原函数解得,即,又;∴在反函数中,故选D.6.【2010²陕西文数】某学校要招开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y与该班人数x 之间的函数关系用取整函数y=[x]([x]表示不大于x的最大整数)可以表示为()A.y=[]B.y=[]C.y=[]D.y=[]【答案】B【解析】法一:特殊取值法,若x=56,y=5,排除C、D,若x=57,y=6,排除A,所以选B. 法二:设,,所以选B.7.【2010²陕西文数】下列四类函数中,个有性质“对任意的x>0,y>0,函数f(x)满足f(x +y)=f(x)f(y)”的是()A.幂函数B.对数函数C.指数函数D.余弦函数【答案】C【解析】本题考查幂的运算性质.8.【2010²辽宁文数】已知点在曲线上,为曲线在点处的切线的倾斜角,则的取值范围是()A.[0,)B.C.D.【答案】D【解析】,,即,9.【2010²辽宁文数】设,且,则()A. B.10 C.20 D.100【答案】A【解析】又10.【2010²辽宁文数】已知,函数,若满足关于的方程,则下列选项的命题中为假命题的是()A. B.C. D.【答案】C【解析】函数的最小值是,等价于,所以命题错误.11.【2010²辽宁理数】已知点P在曲线y=上,a为曲线在点P处的切线的倾斜角,则a的取值范围是()A.[0,)B.C.D.【答案】D【解析】本题考查了导数的几何意义,求导运算以及三角函数的知识.因为,即tan a≥-1,所以.12.【2010²全国卷2文数】若曲线在点处的切线方程是,则()A. B. C. D.【答案】A【解析】本题考查了导数的几何意思,即求曲线上一点处的切线方程.∵,∴,在切线,∴.13.【2010²全国卷2文数】函数y=1+ln(x-1)(x>1)的反函数是A.y=-1(x>0)B.y=+1(x>0)C.y=-1(x R)D.y=+1 (x R)【答案】D【解析】本题考查了函数的反函数及指数对数的互化,∵函数y=1+ln(x-1)(x>1),∴.14.【2010²江西理数】如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t时刻五角星露出水面部分的图形面积为,则导函数的图像大致为()【答案】A【解析】本题考查函数图像、导数图、导数的实际意义等知识,重点考查的是对数学的探究能力和应用能力。
2011高考数学-导数题+答案
导数应用的解答题一、导数的基本应用(一)研究含参数的函数的单调性、极值和最值基本思路:定义域 →→ 疑似极值点 →→ 单调区间 →→ 极值 →→ 最值 基本方法: 一般通法:利用导函数研究法特殊方法:(1)二次函数分析法;(2)单调性定义法本组题旨在强化对函数定义域的关注,以及求导运算和分类讨论的能力与技巧 【例题】(2008北京理18/22)已知函数22()(1)x bf x x -=-,求导函数()f x ',并确定()f x 的单调区间. 解:242(1)(2)2(1)()(1)x x b x f x x ----'=-3222(1)x b x -+-=-32[(1)](1)x b x --=--.令()0f x '=,得1x b =-.当11b -=,即2b =时,2()1f x x =-,所以函数()f x 在(1)-∞,和(1)+∞,上单调递减.当11b -<,即2b <时,()f x '的变化情况如下表:当11b ->,即2b >时,()f x '所以,2b <时,函数()f x 在(1)b -∞-,和(11)b -,上单调递增,2b =时,函数()f x 在(1)-∞,和(1)+∞,上单调递减. 2b >时,函数()f x 在(1)-∞,和(1)b -+∞,上单调递减,在(11)b -,上单调递增.本组题旨在强化对导函数零点进行分类讨论的意识、能力和技巧【例题】(2008福建文21/22)已知函数32()2f x x mx nx =++-的图象过点(1,6)--,且函数()()6g x f x x '=+的图象关于y 轴对称.(Ⅰ)求m n 、的值及函数()y f x =的单调区间;(Ⅱ)若0a >,求函数()y f x =在区间(1,1)a a -+内的极值.解:(Ⅰ)由函数()f x 图象过点(1,6)--,得3m n -=-,……… ①由32()2f x x mx nx =++-,得2()32f x x mx n '=++,则2()()63(26)g x f x x x m x n '=+=+++; 而()g x 图象关于y 轴对称,所以-26023m +=⨯,所以3m =-, 代入①得 0n =.于是2()363(2)f x x x x x '=-=-.由()0f x '>得2x >或0x <,故()f x 的单调递增区间是(,0)-∞,(2,)+∞; 由()0f x '<得02x <<,故()f x 的单调递减区间是(0,2). (Ⅱ)由(Ⅰ)得()3(2)f x x x '=-,令()0f x '=得0x =或2x =. 当x 变化时,()f x '、()f x 的变化情况如下表:由此可得:当01a <<时,()f x 在(1,1)a a -+内有极大值(0)2f =-,无极小值;当1a =时,()f x 在(1,1)a a -+内无极值;当13a <<时,()f x 在(1,1)a a -+内有极小值(2)6f =-,无极大值; 当3a ≥时,()f x 在(1,1)a a -+内无极值.综上所述,当01a <<时,()f x 有极大值2-,无极小值;当13a <<时,()f x 有极小值6-,无极大值;当1a =或3a ≥时,()f x 无极值.点评:本题是前面两个例题的变式,同样考查了对导函数零点的分类讨论,但讨论的直接对象变为了函数自变量的研究范围,故此题思路不难,旨在帮助学生加深对此类问题本质的认识,并提升其详尽分类,正确计算的水平.(二)利用函数的单调性、极值、最值,求参数取值范围基本思路:定义域 →→ 单调区间、极值、最值 →→ 不等关系式 →→ 参数取值范围 基本工具:导数、含参不等式解法、均值定理等【例题】(2009四川文20/22)已知函数32()22f x x bx cx =++-的图象在与x 轴交点处的切线方程是510y x =-. (I )求函数()f x 的解析式;(II )设函数1()()3g x f x mx =+,若.()g x 的极值存在.....,求实数m 的取值范围以及函数()g x 取得极值时对应的自变量x 的值.解:(I )由已知,切点为(2,0),故有(2)0f =,即430b c ++=……①又2()34f x x bx c '=++,由已知(2)1285f b c '=++=得870b c ++=……② 联立①②,解得1,1b c =-=.所以函数的解析式为32()22f x x x x =-+-(II )因为321()223g x x x x mx =-+-+令21()34103g x x x m '=-++= 当函数有极值时,........方程..2134103x x m -++=有实数解.....则4(1)0m ∆=-≥,得1m ≤. ①当1m =时,()0g x '=有实数23x =,在23x =左右两侧均有()0g x '>,故()g x 无极值②当1m <时,()0g x '=有两个实数根1211(2(2x x ==(),()g x g x '情况如下表:所以在(,1)∈-∞m 时,函数()g x 有极值;当1(23=x 时,()g x 有极大值;当1(23=+x 时,()g x 有极小值; 点评:(1) 本题第一问是求曲线切线的逆向设问,解题过程进一步强化了对切点的需求.(2) 本题第二问是函数求极值的逆向设问,解题方法本质仍然是求含参数的函数的极值,难度不大. ★【例题】(2008全国Ⅱ文21/22) 设a ∈R ,函数233)(x ax x f -=. (Ⅰ)若2=x 是函数)(x f y =的极值点,求a 的值;(Ⅱ)若函数()()()[02]g x f x f x x '=+∈,,,在0=x 处取得最大值,求a 的取值范围.解:求出g(0)=0,将问题转化为g(x)≤0的恒成立问题,点评:本题是求函数最值的逆向问题,答案所用的解法是一种比较特殊的方法,具有一定的思维难度.(三)导数的几何意义(2008海南宁夏文21/22)设函数()bf x ax x=-,曲线()y f x =在点(2,(2))f 处的切线方程为74120x y --=.(Ⅰ)求()y f x =的解析式;(Ⅱ)证明:曲线()y f x =上任一点处的切线与直线0x =和直线y x =所围成的三角形面积为定值,并求此定值.解:(Ⅰ)方程74120x y --=可化为734y x =-,当2x =时,12y =; 又()'2b f x a x =+,于是1222744b a b a ⎧-=⎪⎪⎨⎪+=⎪⎩,解得13a b =⎧⎨=⎩, 故()3f x x x =-(Ⅱ)设()00,P x y 为曲线上任一点,由'231y x=+知曲线在点()00,P x y 处的切线方程为 ()002031y y x x x ⎛⎫-=+- ⎪⎝⎭,即()00200331y x x x x x ⎛⎫⎛⎫--=+- ⎪ ⎪⎝⎭⎝⎭令0x =,得06y x =-,从而得切线与直线0x =的交点坐标为060,x ⎛⎫- ⎪⎝⎭; 令y x =,得02y x x ==,从而得切线与直线y x =的交点坐标为()002,2x x ; 所以点()00,P x y 处的切线与直线0,x y x ==所围成的三角形面积为0016262x x -=; 故曲线()y f x =上任一点处的切线与直线0,x y x ==所围成的三角形面积为定值6.二、导数应用的变式与转化 (一)函数的零点存在与分布问题问题设置:根据函数零点或方程实数根的个数求参数取值范围 基本方法: 通性通法:函数最值控制法特殊方法:(1)二次函数判别式法;(2)零点存在性定理二次函数(1) 本组题旨在加深对二次函数零点存在性与分布问题的认识; (2) 本题旨在提升对函数与方程关系问题的认识水平; (3) 研究二次函数零点分布问题时,除了判别式法以外,应补充极值(最值)控制法,为三次函数零点分布研究做方法上的铺垫. 【例题】(2009广东文21/21)已知二次函数)(x g y =的导函数的图像与直线2y x =平行,且)(x g y =在x =-1处取得最小值m -1(m 0≠).设函数xx g x f )()(=(1)若曲线)(x f y =上的点P 到点Q(0,2)的距离的最小值为2,求m 的值; (2))(R k k ∈如何取值时,函数kx x f y -=)(存在零点....,并求出零点. 解:(1)设()2g x ax bx c =++,则()2g x ax b '=+;又()g x '的图像与直线2y x =平行 22a ∴=,解得1a =又()g x 在1x =-取极小值,∴12b-=-,解得2b = ()1121g a b c cm ∴-=-+=-+=-,解得c m =;所以()()2g x mf x x x x==++, 设(),o oP x y ,则()22222000002m PQx y x x x ⎛⎫=+-=++ ⎪⎝⎭22020222m x x =++≥24∴=,解得m =; (2)由()()120my f x kx k x x =-=-++=,得()2120k x x m -++=()* 当1k =时,方程()*有一解2m x =-,函数()y f x k x =-有一零点2mx =-; 当1k ≠时,方程()*有二解()4410m k ⇔∆=-->, 若0m >,11k m >-,()y f x kx =-有两个零点x 若0m <,11k m <-,()y f x kx =-有两个零点x ; 当1k ≠时,方程()*有一解()4410m k ⇔∆=--=,即11k m =-,()y f x kx =-有一零点11x k =-点评:(1) 本题第一问是涉及均值定理的最值问题,题目计算量中等,思维难度不大;(2) 第二问涉及到的函数为二次函数,故而用含参二次方程的根系关系研究根的分布问题,是本部分的原型问题和重点问题. 【例题】(07广东文21/21)已知a 是实数,函数()a x ax x f --+=3222,如果函数()x f y =在区间...[]1,1-上有..零点..,求a 的取值范围. 解:若0a = , ()23f x x =- ,显然函数在[]1,1-上没有零点.若0a ≠,令 ()248382440a a a a ∆=++=++=, 解得 a=①当 32a -±=时, ()y f x =恰有一个零点在[]1,1-上; ②当()()()()05111<--=⋅-a a f f ,即15a <<时,()y f x =在[]1,1-上也恰有一个零点. ③当()y f x =在[]1,1-上有两个零点时, 则()()208244011121010a a a a f f >⎧⎪∆=++>⎪⎪-<-<⎨⎪≥⎪⎪-≥⎩ 或 ()()208244011121010a a a a f f <⎧⎪∆=++>⎪⎪-<-<⎨⎪≤⎪⎪-≤⎩解得5a ≥或32a --<,综上,所求实数a 的取值范围是1a >或32a -≤. 点评:本题以二次函数为载体,设定在区间范围上的零点存在性问题,解答时依零点个数进行分类讨论,涉及到含参二次方程根的分布研究、零点存在性定理. 是原型问题和重点题. 【例题】(2009浙江文21/22)已知函数32()(1)(2)f x x a x a a x b =+--++ (,)a b ∈R . (I )若函数()f x 的图象过原点,且在原点处的切线斜率是3-,求,a b 的值; (II )若函数()f x 在区间(1,1)-上不单调...,求a 的取值范围.三次函数(1) 本组题旨在加深对二次函数零点存在性与分布问题的认识; (2) 本题旨在提升对函数与方程关系问题的认识水平;(3) 本组题旨在加深对二次函数、三次函数零点分布问题的认识,进而深化对导数方法、极值、最值的理解. 【例题】(2009陕西文20/22)已知函数3()31,0f x x ax a =--≠ (I )求()f x 的单调区间;(II )若()f x 在1x =-处取得极值,直线y=m 与()y f x =的图象有三个不同的交点.........., 求m 的取值范围.解:(1)'22()333(),f x x a x a =-=-当0a <时,对x R ∈,有'()0,f x >所以()f x 的单调增区间为(,)-∞+∞当0a >时,由'()0f x >解得x <x >'()0f x <解得x <<所以()f x的单调增区间为(,)-∞+∞,单调减区间为(.(2)因为()f x 在1x =-处取得极大值, 所以'2(1)3(1)30, 1.f a a -=⨯--=∴= 所以3'2()31,()33,f x x x f x x =--=-由'()0f x =解得121,1x x =-=.由(1)中()f x 的单调性可知,()f x 在1x =-处取得极大值1,在1x =处取得极小值-3.因为直线y m =与函数()y f x =的图象有三个不同的交点, 所以m 的取值范围是(3,1)-.点评: (1) 本题是三次函数零点存在性问题的典型变式题,涉及图象交点向函数零点的转化关系; (2) 本题最终将问题转化为研究三次函数根的分布,采用极值(最值)控制法; (3) 在这里应结合上面例题进一步揭示研究二次方程与三次方程实根分布问题在方法上的本质关系,以便进一步加深对函数极值(最值)的认识和对利用导数研究函数性质.【例题】(2007全国II 理22/22)已知函数3()f x x x =-.(1)求曲线()y f x =在点(())M t f t ,处的切线方程;(2)设0a >,若过点()a b ,可作曲线....()y f x =的三条切线.....,证明:()a b f a -<< 解:(1)()f x 的导数2()31x x f '=-.曲线()y f x =在点(())M t f t ,处的切线方程为:()()()y f t f t x t '-=-,即23(31)2y t x t =--.(2)如果有一条切线过点()a b ,,则存在t ,使23(31)2b t a t =--.若过点()a b ,可作曲线()y f x =的三条切线, 则方程32230t at a b -++=有三个相异的实数根.记32()23g t t at a b =-++,则2()66g t t at '=-6()t t a =-. 当t 变化时,()()g t g t ',变化情况: ()g t 的单调性,当极大值0a b +<或极小值由()0b f a ->时,方程()0g t =最多有一个实数根;当0a b +=时,解方程()0g t =得302at t ==,,即方程()0g t =只有两个相异的实数根; 当()0b f a -=时,解方程()0g t =得2a t t a =-=,,即方程()0g t =只有两个相异的实数根.综上所述,如果过()a b ,可作曲线()y f x =三条切线,即()0g t =有三个相异的实数根,则0()0.a b b f a +>⎧⎨-<⎩,即()a b f a -<<.点评: (1) 本题是前一个问题的延伸,其以导数几何意义为载体; (2) 本题最终将问题转化为研究三次函数根的分布,采用极值(最值)控制法; (3) 在这里应结合上面例题进一步揭示研究二次方程与三次方程实根分布问题在方法上的本质关系,以便进一步加深对函数极值(最值)的认识和对利用导数研究函数性质.(二)不等式恒成立与存在解问题问题设置:当不等关系在某个区间范围内恒成立或存在解为条件,求参数的取值范围 基本思路:转化为函数最值与参数之间的不等关系问题 基本方法: 通性通法:变量分离法、变量转换、最值控制法特殊方法:二次函数判别式法、二次函数根的分布研究(2007湖北理20/21)已知定义在正实数集上的函数21()22f x x ax =+,2()3ln g x a x b =+,其中0a >.设两曲线()y f x =,()y g x =有公共点,且在该点处的切线相同. (I )用a 表示b ,并求b 的最大值;(II )求证:...f(x )....≥. g(x)....,其中x > 0. 解:(Ⅰ)设()y f x =与()(0)y g x x =>在公共点00()x y ,处的切线相同.()2f x x a '=+∵,23()a g x x'=,由题意00()()f x g x =,00()()f x g x ''=. 即22000200123ln 232x ax a x b a x a x ⎧+=+⎪⎪⎨⎪+=⎪⎩,,由20032a x a x +=得:0x a =,或03x a =-(舍去). 即有222221523ln 3ln 22b a a a a a a a =+-=-. 令225()3ln (0)2h t t t t t =->,则()2(13ln )h t t t '=-.于是当(13ln )0t t ->,即130t e <<时,()0h t '>;当(13ln )0t t -<,即13t e >时,()0h t '<.故()h t 在130e ⎛⎫⎪⎝⎭,为增函数,在13e ⎛⎫+ ⎪⎝⎭,∞为减函数,于是()h t 在(0)+,∞的最大值为123332h e e ⎛⎫= ⎪⎝⎭.(Ⅱ)设221()()()23ln (0)2F x f x g x x ax a x b x =-=+-->, 则()F x '23()(3)2(0)a x a x a x a x x x-+=+-=>. 故()F x 在(0)a ,为减函数,在()a +,∞为增函数,于是函数()F x 在(0)+,∞上的最小值是000()()()()0F a F x f x g x ==-=. 故当0x >时,有()()0f x g x -≥,即当0x >时,()()f x g x ≥. 点评:(1) 本题以曲线的切线问题的载体,在第一问中考查了函数最值的求法; (2) 第二问是恒成立问题的应用. 补注:此处缺存在性问题(三)“零点存在与分布问题”与“恒成立、存在解问题”之间的关系(1) 研究对象的本质相同,因此解题方向一致:函数的极值或最值控制是解决这两类问题的通性通法,针对特殊类型的函数,如二次函数,又都可以用相应的函数性质进行研究; (2) 研究对象的载体不同,因此解题方法不同:前者是函数与其所对应的方程之间关系的问题,后者是函数与其所对应的不等式之间关系的问题;(3)原型问题是根本,转化命题是关键:二者都可以进一步衍生出其他形式的问题,因此往往需要先将题目所涉及的问题转化为原型问题,然后利用通性通法加以解决,在转化过程中应注意命题的等价性. 【例题】(2009天津文21/22)设函数0),(,)1(31)(223>∈-++-=m R x x m x x x f 其中 (Ⅰ)略;(Ⅱ)求函数的单调区间与极值;(Ⅲ)已知函数)(x f 有三个互不相同的零点0,21,x x ,且21x x <.若对任意的],[21x x x ∈,)1()(f x f >恒成立,求m 的取值范围.解:(2)12)(22'-++-=m x x x f ,令0)('=x f ,得到m x m x +=-=1,1因为m m m ->+>11,0所以,当x 变化时,)(),('x f x f 的变化情况如下表:)(x f 在)1,(m --∞和),1(+∞+m 内减函数,在)1,1(m m +-内增函数.函数)(x f 在m x +=1处取得极大值)1(m f +,且)1(m f +=313223-+m m 函数)(x f 在m x -=1处取得极小值)1(m f -,且)1(m f -=313223-+-m m(3)解:由题设, ))((31)131()(2122x x x x x m x x x x f ---=-++-=所以方程13122-++-m x x =0由两个相异的实根21,x x ,故321=+x x ,且0)1(3412>-+=∆m ,解得21)(21>-<m m ,舍因为123,32,221221>>=+><x x x x x x 故所以若0)1)(1(31)1(,12121≥---=<≤x x f x x 则,而0)(1=x f ,不合题意若,121x x <<则对任意的],[21x x x ∈有,0,021≤-≥-x x x x 则0))((31)(21≥---==x x x x x x f 又0)(1=x f ,所以函数)(x f 在],[21x x x ∈的最小值为0,于是对任意的],[21x x x ∈,)1()(f x f >恒成立的充要条件是031)1(2<-=m f ,解得3333<<-m 综上,m 的取值范围是)33,21(。
2011年高考数学试题分类汇编_专题三角函数_理
2011年高考试题数学(理科)三角函数一、选择题:1. (2011年高考山东卷理科3)若点(a,9)在函数3x y =的图象上,则tan=6a π的值为(A )【答案】D【解析】由题意知:9=3a,解得a =2,所以2tantan tan 663a πππ===故选D. 2. (2011年高考山东卷理科6)若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω= (A )3 (B )2 (C )32 (D )23【答案】C【解析】由题意知,函数在3x π=处取得最大值1,所以1=sin3ωπ,故选C.3.(2011年高考安徽卷理科9)已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若()()6f x f π≤对x R ∈恒成立,且()()2f f ππ>,则()f x 的单调递增区间是(A ),()36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ (B ),()2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦ (C )2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(D ),()2k k k Z πππ⎡⎤-∈⎢⎥⎣⎦ 【答案】C.【命题意图】本题考查正弦函数的有界性,考查正弦函数的单调性.属中等偏难题. 【解析】若()()6f x f π≤对x R ∈恒成立,则()sin()163f ππϕ=+=,所以,32k k Z ππϕπ+=+∈,,6k k Z πϕπ=+∈.由()()2f f ππ>,(k Z ∈),可知(A) 答案: D解析:由正弦定理得,sin 2AsinB+sinBcos 2,即sinB (sin 2A+cos 2A ),故,所以ba= 5.(2011年高考辽宁卷理科7)设sin1+=43πθ(),则sin 2θ=( ) (A) 79- (B) 19- (C) 19 (D)79答案: A解析:217sin 2cos 22sin 121.2499ππθθθ⎛⎫⎛⎫=-+=+-=⨯-=- ⎪ ⎪⎝⎭⎝⎭ 6.(2011年高考浙江卷理科6)若02πα<<,02πβ-<<,1cos()43πα+=,cos()42πβ-=cos()2βα+=(A )3 (B )3- (C )9 (D )9-【答案】 C 【解析】:()()2442βππβαα+=+-- cos()cos[()()]2442βππβαα∴+=+--cos()cos()442ππβα=+-sin()sin()442ππβα+++1333399=⨯+== 故选C 7. (2011年高考全国新课标卷理科5)已知角θ的顶点与原点重合,始边与横轴的正半轴重合,终边在直线x y 2=上,则,=θ2cos ( )A 54-B 53-C 32D 43 解析:由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++选B8.(2011年高考全国新课标理11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则(A )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 (C )()f x 在0,2π⎛⎫⎪⎝⎭单调递增 (D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 解析:()2s i n ()4f x x πωϕ=++,所以2ω=,又f(x)为偶函数,,424k k k z πππϕπϕπ∴+=+⇒=+∈,())2f x x x π∴=+=,选A9. (2011年高考天津卷理科6)如图,在△ABC 中,D 是边AC上的点,且,2,2AB AD AB BC BD ==,则sin C 的值为( )ABCD【答案】D【解析】设BD a =,则由题意可得:2,BC a =AB AD ==,在ABD ∆中,由余弦定理得:222cos 2AB AD BD A AB AD +-==⋅2232a a ⨯-13,所以sin A=3,在△ABC 中,由正弦定理得,sin sin AB BC C A =,所以2sin C =,解得sin CD.10.(2011年高考湖北卷理科3)已知函数()cos ,f x x x x R -∈,若()1f x ≥,则x 的取值范围为A.{|,}3x k x k k z ππππ+≤≤+∈ B.{|22,}3x k k k z ππππ+≤+∈C.5{|,}66x k x k k z ππππ+≤≤+∈ D. 5{|22,}66x k x k k z ππππ+≤≤+∈ 答案:Bcos 1x x -≥,即1sin()62x π-≥,解得522,666πππππ+≤-≤+∈k x k k z ,即22,3k x k k z ππππ+≤≤+∈,所以选B.11.(2011年高考陕西卷理科6)函数()cos f x x =在[0,)+∞内(A )没有零点 (B )有且仅有一个零点 (C )有且仅有两一个零点(D )有无穷个零点 【答案】B 【解析】:令1y =2cos y x =,则它们的图像如图故选B12.(2011年高考重庆卷理科6)若ABC ∆的内角,,A B C 所对的边,,a b c 满足22()4a b c +-=,且060C =,则ab 的值为(A )43(B) 8-(C)1 (D) 23解析:选A 。
2011年全国各地高考数学试题及解答分类汇编大全(04导数及其应用)
2011年全国各地高考数学试题及解答分类汇编大全(04导数及其应用)一、选择题:1.(2011安徽文)函数2)1()(x ax x f n -=在区间〔0,1〕上的图像如图所示,则n 可能是( ) (A )1 (B) 2 (C) 3 (D) 41.A 【解析】法一:本题主要考查了函数图像、利用导数求函数最值、均值不等式等知识,属于难题。
解题时根据四个选项中的n 先确定函数解析式,再利用导数求出最值点即可利用排除法找到答案。
由函数图像可知0a >,当1n =时,()232()(1)2f x ax x a x x x =-=-+,()(31)(1)f x a x x '=--,所以函数的最大值点为10.53<,所以A 可能;当2n =时,函数22()(1)f x ax x =-的图像关于直线12x =对称,由图像知B 错误;当3n =时,()32543()(1)2f x ax x a x x x =-=-+,()()()222()583531f x ax x x ax x x '=-+=--,最大值点为30.55>,股C 错误;当4n =时,()42654()(1)2f x ax x a x x x =-=-+,()()()5433()61042321f x a x x x ax x x '=-+=--,函数的最大值点为20.53>,由图像知D 不可能.法二:法三: 【技巧点拨】本题利用函数图像提供给学生的重要信息是最值点小于0.5,很多学生解题时不知道先确定函数解析式,然后利用导数工具求出函数的极值点,再用最值点小于0.5这一关键信息对选项进行排除不能把握最值点小于0.5这一关键信息,解题受阻。
同时还有注意题干中函数“可能”,“是否”等这些不确定性词语时,解题常用的技巧是把答案带入进行验证。
2. (2011安徽理)函数n m x ax x f )1()(-=在区间〔0,1〕上的图像如图所示,则m ,n 的值可能是( ) (A )1,1m n == (B) 1,2m n ==(C) 2,1m n == (D) 3,1m n ==2. B 【命题意图】本题考查导数在研究函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大. 【解析】代入验证,当1,2m n ==,)2()1()(232x x x a x ax x f +-=-=,则()()f x a x x 2'=3-4+1,由()()f x a x x 2'=3-4+1=0可知,121,13x x ==,结合图像可知函数应在10,3⎛⎫ ⎪⎝⎭递增,在1,13⎛⎫⎪⎝⎭递减,即在13x =取得最大值,由()()f a 21111=⨯1-=3332g ,知a 存在.故选B.3. (2011福建文)若a>0, b>0, 且函数f(x)=4x 3-ax 2-2bx+2在x=1处有极值,则ab 的最大值等于( ) A. 2 B. 3 C. 6 D. 93.解析:2()1222,(1)12220,6f x x ax b f a b a b ''=--=--=+=≥9ab ≤,当且仅当3a b ==时等号成立,答案应选D 。
高考数学试题分类汇编专题函数与导数理
2011年高考试卷数学(理科)函数与导数一、选择题:1. (2011年高考山东卷理科5)对于函数(),y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“y =()f x 是奇函数”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要 【答案】B【解读】由奇函数定义,容易得选项B 正确. 2. (2011年高考山东卷理科9)函数2sin 2xy x =-的图象大致是【答案】C【解读】因为'12cos 2y x =-,所以令'12cos 02y x =->,得1cos 4x <,此时原函数是增函数。
令'12cos 02y x =-<,得1cos 4x >,此时原函数是减函数,结合余弦函数图象,可得选C 正确.3. (2011年高考山东卷理科10)已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3()f x x x =-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为(A )6 (B )7 (C )8 (D )9 【答案】B【解读】因为当02x ≤<时, 3()f x x x =-,又因为()f x 是R 上最小正周期为2的周期函数,且(0)0f =,所以(6)(4)(2)(0f f f f ====,又因为(1)0f =,所以(3)0f =,(5)0f =,故函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为7个,选B.4.(2011年高考安徽卷理科3)设()f x 是定义在R 上的奇函数,当x ≤0时,()f x x x 2=2-,则()f 1=(A )-3 (B) -1 (C)1 (D)3 (A )-3 (B) -1 (C)1 (D)3 【命题意图】本题考查了函数的奇偶性和求值,是容易题.【解读】∵设()f x 是定义在R 上的奇函数,当x ≤0时,()f x x x 2=2-, ∴(1)f =(1)f --=2[2(1)(1)]-⨯---=-3,故选A.5.(2011年高考安徽卷理科10)函数()f x =(1)m n ax x - 在区间[0,1]上的图像如图所示,则m,n 的值可能是(A )m=1, n=1 (B )m=1, n=2(C )m=2, n=1 (D )m=3, n=1【命题意图】本题考查利用导数判定函数的单调性的有关知识,考查识图、用图能力,难度较大.【解读】观察图像已知,a >0,()f x 在(0,1)上先增后减,但在[0,12]上有增有减且不对称.对于选项A ,()f x =(1)ax x -是二次函数,图像关于直线12x =对称,不符合题意. 对于选项B ,()f x =(1)ax x -=32(2)a x x x -+,()f x '=21(341)3()(1)3a x x a x x -+=--,知()f x 在[0, 13]是增函数,在[13,1]是减函数,符合题意,选B.对于选项C, ()f x =2(1)ax x -=23()a x x -,()f x '=2(23)a x x -=23()3a x x --,在[0,23]上是增函数,不适合;对于选项D ,()f x =3(1)ax x -=34()a x x -,()f x '=23(34)a x x -=234()4ax x --,在[0,34]是增函数,不适合.【解题指导】排除法解决存在问题和不确定问题很有效6.(2011年高考辽宁卷理科9)设函数f (x )=⎩⎨⎧≤,>,,,1x x log -11x 22x -1则满足f (x )≤2的x 的取值范围是( )(A )[-1,2] (B )[0,2] (C )[1,+∞) (D )[0,+∞) 答案: D解读:不等式等价于11,22xx -≤⎧⎨≤⎩或21,1log 2,x x >⎧⎨-≤⎩解不等式组,可得01x ≤≤或1x >,即0x ≥,故选D.8.(2011年高考浙江卷理科1)设函数2,0,()()4,0.x x f x f x x α-≤⎧==⎨>⎩若,则实数α=(A )-4或-2 (B )-4或2 (C )-2或4 (D )-2或2 【答案】 B【解读】:当2042,a a a >=⇒=时,044a a a ≤=⇒=-当时,-,故选B9. (2011年高考全国新课标卷理科2)下列函数中,既是偶函数又是区间),0(+∞上的增函数的是( )A 3x y = B 1+=x y C 12+-=x y D xy -=2【答案】B解读:由偶函数可排除A ,再由增函数排除C,D,故选B ;点评:此题考查复合函数的奇偶性和单调性,因为函数x y x y -==和都是偶函数,所以,内层有它们的就是偶函数,但是,它们在),0(+∞的单调性相反,再加上外层函数的单调性就可以确定。
2011年高考数学分类汇编2——函数与导数
2011年高考数学试题分类汇编:函数与导数一、选择题1.(安徽理3) 设()f x 是定义在R 上的奇函数,当x ≤0时,()f x x x 2=2-,则()f 1= (A )-3 (B) -1 (C)1 (D)3 【答案】A【命题意图】本题考查函数的奇偶性,考查函数值的求法.属容易题.【解析】2(1)(1)[2(1)(1)]3f f =--=----=-.故选A. 2.(安徽理10) 函数()()m nf x ax x =1-在区间〔0,1〕上的图像如图所示,则m ,n 的值可能是(A )1,1m n == (B) 1,2m n == (C) 2,1m n == (D) 3,1m n ==【答案】B 【命题意图】本题考查导数在研究 函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大.【解析】代入验证,当1,2m n ==,()()()f x ax x n x x x 232=1-=-2+,则 ()()f x a x x 2'=3-4+1,由()()f x a x x 2'=3-4+1=0可知,121,13x x ==,结合图像可知函数应在10,3⎛⎫ ⎪⎝⎭递增,在1,13⎛⎫ ⎪⎝⎭递减,即在13x =取得最大值,由 ()()f a 21111=⨯1-=3332,知a 存在.故选B.3.(安徽文5)若点(a,b)在lg y x = 图像上,a ≠1,则下列点也在此图像上的是(A )(a 1,b ) (B) (10a,1-b) (C) (a 10,b+1) (D)(a2,2b)【答案】D 【命题意图】本题考查对数函数的基本运算,考查对数函数的图像与对应点的关系.【解析】由题意lg b a =,lg lg b a a 22=2=,即()2,2a b 也在函数lg y x = 图像上. 4.(安徽文10) 函数()()n f x ax x 2=1-在区间〔0,1〕上的图像如图所示,则n 可能是(A )1 (B) 2 (C) 3 (D) 4【答案】A 【命题意图】本题考查导数在研究函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大. 【解析】代入验证,当1n =时,()()()f x ax x a x x x 232=1-=-2+ ,则()()f x a x x 2'=3-4+1,由()()f x a x x 2'=3-4+1=0可知,121,13x x ==,结合图像可知函数应在10,3⎛⎫ ⎪⎝⎭递增,在1,13⎛⎫ ⎪⎝⎭递减,即在13x =取得最大值,由()()f a 21111=⨯1-=3332,知a 存在.故选A.5.(北京理6)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为()x A f x x A <=≥(A ,c 为常数)。
2011-2018高考数学导数分类汇编(理)
2011-2018新课标(理科)导数压轴题分类汇编【2011新课标】21. 已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。
(1)求a 、b 的值;(2)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围。
【解析】(1)221(ln )'()(1)x x b x f x x xα+-=-+ 由于直线230x y +-=的斜率为12-,且过点(1,1), 故(1)1,1'(1),2f f =⎧⎪⎨=-⎪⎩ 即1,1,22b a b =⎧⎪⎨-=-⎪⎩解得1a =,1b =。
(2)由(1)知ln 11x x x++,所以22ln 1(1)(1)()()(2ln )11x k k x f x x x x x x---+=+--。
考虑函数()2ln h x x =+2(1)(1)k x x--(0)x >,则22(1)(1)2'()k x x h x x -++=。
(i)设0k ≤,由222(1)(1)'()k x x h x x +--=知,当1x ≠时,'()0h x <。
而(1)0h =,故当(0,1)x ∈时,()0h x >,可得21()01h x x>-; 当x ∈(1,+∞)时,h (x )<0,可得211x - h (x )>0从而当x>0,且x ≠1时,f (x )-(1ln -x x +x k )>0,即f (x )>1ln -x x +x k.(ii )设0<k<1.由于当x ∈(1,k-11)时,(k-1)(x 2 +1)+2x>0,故h’ (x )>0,而h (1)=0,故当x ∈(1,k -11)时,h (x )>0,可得211x-h (x )<0,与题设矛盾。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年高考理科数学函数、导函数试题汇编一、选择题:1. 【2011安徽理】(3)设)(x f 是定义在R 上的奇函数,当0≤x 时,x x x f -=22)(,则=)1(f(A)-3(B)-1(C) 1(D)32.【2011安徽理】(10)函数n m x ax x f )1()(-=在区间[0,1]上的图像如图所示,则m,n 的值可能是(A) m=1,n=1(B) m=1,n=2 (C) m=2,n=1 (D) m=3,n=13. 【2011北京理】6.根据统计,一名工作组装第x 件某产品所用的时间(单位:分钟)为⎪⎪⎩⎪⎪⎨⎧≥<=Ax Ac A x x c x f ,,,)((A ,C 为常数)。
已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么C 和A 的值分别是A .75,25B .75,16C .60,25D .60,164.【2011广东理】4. 设函数()f x 和()g x 分别是R上的偶函数和奇函数,则下列结论恒成立的是A.()()f x g x +是偶函数 B.()()f x g x -是奇函数 C.()()f x g x +是偶函数 D.()()f x g x -是奇函数5.【2011湖北理】6.已知定义在R 上的奇函数()f x 和偶函数()g x 满足()()222f x g x a a -+=-+(a >0,且0a ≠).若()2g a =,则()2f = A .2 B .154C .174D .2a6.【2011湖南理】8.设直线x t =与函数2(),()ln f x x g x x ==的图像分别交于点,M N ,则当||MN 达到最小时t 的值为( )A .1B .12 CD7.【2011江西理】3.若()f x =,则()f x 的定义域为A .(,)1-02B .(,]1-02C .(,)1-+∞2D .(,)0+∞8.【2011江西理】4.若()ln f x x x x 2=-2-4,则'()f x >0的解集为A .(,)0+∞B .-+10⋃2∞(,)(,)C .(,)2+∞D .(,)-109.【2011辽宁理】9.设函数⎩⎨⎧>-≤=-1,log 11,2)(21x x x x f x ,则满足2)(≤x f 的x 的取值范围是A .1[-,2]B .[0,2]C .[1,+∞]D .[0,+∞]10.【2011辽宁理】11.函数)(x f 的定义域为R ,2)1(=-f ,对任意R ∈x ,2)(>'x f ,则42)(+>x x f 的解集为A .(1-,1)B .(1-,+∞)C .(∞-,1-)D .(∞-,+∞)11.【2011全国理】2.函数0)y x =≥的反函数为A .2()4x y x R =∈B .2(0)4x y x =≥C .24y x =()x R ∈D .24(0)y x x =≥12. 【2011全国理】9.设()f x 是周期为2的奇函数,当0≤x≤1时,()f x =2(1)x x -,则5()2f -=A .-12B .1 4-C .14D .1213.【2011山东理】9.函数2sin 2xy x =-的图象大致是14.【2011山东理】10.已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3()f x x x =-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为 A .6B .7C .8D .915.【2011陕西理】3.设函数()()f x x R ∈满足()(),(2)(),f x f x f x f x -=+=,则()y f x =的图像可能是16.【2011陕西理】6.函数f (x )cosx 在[0,+∞)内A .没有零点B .有且仅有一个零点C .有且仅有两个零点D .有无穷多个零点17.【2011上海理】16、下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数为( ) A 1ln||y x = B 3y x = C ||2x y = D cos y x = 18.【2011四川理】5、函数()f x 在点0x x =处有定义是()f x 在点0x x =处连续的 (A)充分而不必要的条件 (B)必要而不充分的条件 (C)充要条件 (D)既不充分也不必要的条件19.【2011四川理】7.已知()f x 是R 上的奇函数,且当0x >时,1()()12xf x =+,则()f x 的反函数的图像大致是20.【2011四川理】11.已知定义在[)0,+∞上的函数()f x 满足()3(2)f x f x =+,当[)0,2x ∈时,2()2f x x x =-+.设()f x 在[)22,2n n -上的最大值为(*)n a n N ∈,且{}n a 的前n 项和为n S ,则lim n n S →∞=(A )3 (B )52 (C )2 (D )3221.【2011天津理】7.已知324log 0.3log 3.4log 3.615,5,,5a b c ⎛⎫=== ⎪⎝⎭则A .a b c >>B .b a c >>C .a c b >>D .c a b >>22.【2011全国新课标】2.下列函数中,既是偶函数哦、又在(0,)单调递增的函数是 A .2y x = B .1y x =+C .21y x =-+D .2xy -=23.【2011全国新课标】12.函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于 A .2 B .4C .6D .824.【2011浙江理】1.设函数2,0,()()4,0.x x f x f x x α-≤⎧==⎨>⎩若,则实数α=A .-4或-2B .-4或2C .-2或4D .-2或225.【2011重庆理】5.下列区间中,函数f x =(2)In x -()在其上为增函数的是A .(-,1∞]B .41,3⎡⎤-⎢⎥⎣⎦C .)30,2⎡⎢⎣ D .[)1,226.【2011北京理】13.已知函数32,2()(1),2x f x x x x ⎧≥⎪=⎨⎪-<⎩若关于x 的方程f(x)=k 有两个不同的实根,则数k 的取值范围是_______27.【2011广东理】12. 函数2()31f x x x =-+在x=____________处取得极小值。
28.【2011山东理】16.已知函数f x ()=log (0a 1).a x x b a +-≠>,且当2<a <3<b <4时,函数f x ()的零点*0(,1),,n=x n n n N ∈+∈则 .29.【2011陕西理】11.设若2lg ,0,()3,0,ax x f x x t dt x >⎧⎪=⎨+≤⎪⎩⎰((1))1f f =,则a = 30.【2011上海理】13、设()g x 是定义在R 上、以1为周期的函数,若()()f x x g x =+在[3,4]上的值域为[2,5-,则()f x 在区间[10,1-上的值域为 。
31.【2011四川理】13.计算121(lg lg 25)100=4--÷ .32.【2011四川理】16.函数f x ()的定义域为A ,若1212x x A f x =f x ∈,且()()时总有 12x =x f x ,则称()为单函数.例如,函数f x ()=2x+1(x R ∈)是单函数.下列命题: ① 函数f x ()=2x (x ∈R )是单函数;② 若f x ()为单函数,121212x x A x x f x f x ∈≠≠,且,则()(); ③ 若f :A →B 为单函数,则对于任意b ∈B ,它至多有一个原象; ④ 函数f (x )在某区间上具有单调性,则f (x )一定是单函数. 其中的真命题是 .(写出所有真命题的编号)33.【2011浙江理】11.若函数2()f x x x a =-+为偶函数,则实数a = = 。
34.【2011安徽理】(16)(本小题满分12分)设21)(ax e x f x +=,其中a 为正实数.(Ⅰ)当34=a 时,求)(x f 的极值点; (Ⅱ)若)(x f 为R 上的单调函数,求a 的取值范围35.【2011北京理】18.(本小题共13分) 已知函数2()()xkf x x k e =-。
(Ⅰ)求()f x 的单调区间;(Ⅱ)若对于任意的(0,)x ∈+∞,都有()f x ≤1e,求k 的取值范围。
36.【2011福建理】18.(本小题满分13分)某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式210(6)3ay x x =+--,其中3<x<6,a 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克。
(I )求a 的值(II )若该商品的成品为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大。
37.【2011湖北理】17.(本小题满分12分)提高过江大桥的车辆通行能力可改善整个城市的交通状况。
在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数。
当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明;当20200x ≤≤时,车流速度v 是车流密度x 的一次函数. (Ⅰ)当0200x ≤≤时,求函数()v x 的表达式;(Ⅱ)当车流密度x 为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/每小时)()().f x x v x =可以达到最大,并求出最大值(精确到1辆/小时)38.【2011湖南理】20. 如图6,长方形物体E 在雨中沿面P (面积为S )的垂直方向作匀速移动,速度为(0)v v >,雨速沿E 移动方向的分速度为()c c R ∈。
E 移动时单位时间....内的淋雨量包括两部分:(1)P 或P 的平行面(只有一个面淋雨)的淋雨量,假设其值与v c -×S 成正比,比例系数为110;(2)其它面的淋雨量之和,其值为12,记y 为E 移动过程中的总淋雨量,当移动距离d=100,面积S=32时。
(Ⅰ)写出y 的表达式(Ⅱ)设0<v ≤10,0<c ≤5,试根据c 的不同取值范围,确定移动速度v ,使总淋雨量y 最少。
39.【2011湖南理】22.(本小题满分13分)已知函数f (x ) =3x ,g (x )=x(Ⅰ)求函数h (x )=f (x )-g (x )的零点个数,并说明理由;(Ⅱ)设数列*{}()n a n N ∈满足1(0)a a a =>,1()()n n f a g a +=,证明:存在常数M,使得对于任意的*n N ∈,都有n a ≤ M .40.【2011江西理】19.(本小题满分12分)设()f x x x ax 3211=-++232(1)若()f x 在(,2+∞3)上存在单调递增区间,求a 的取值范围;(2)当a 0<<2时,()f x 在[,]14上的最小值为16-3,求()f x 在该区间上的最大值.41.【2011辽宁理】21.(本小题满分12分)已知函数x a ax x x f )2(ln )(2-+-=. (I )讨论)(x f 的单调性; (II )设0>a ,证明:当a x 10<<时,)1()1(x af x a f ->+; (III )若函数)(x f y =的图像与x 轴交于A ,B 两点,线段AB 中点的横坐标为x 0,证明:f '(x 0)<0.42.【2011全国理】22.(本小题满分12分)(注意:在试题卷上作答无效.........) (Ⅰ)设函数2()ln(1)2xf x x x =+-+,证明:当0x >时,()0f x >; (Ⅱ)从编号1到100的100张卡片中每次随即抽取一张,然后放回,用这种方式连续抽取20次,设抽得的20个号码互不相同的概率为p .证明:19291()10p e <<43.【2011山东理】21.(本小题满分12分)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为803π立方米,且2l r ≥.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为(3)c c >千元,设该容器的建造费用为y 千元. (Ⅰ)写出y 关于r 的函数表达式,并求该函数的定义域; (Ⅱ)求该容器的建造费用最小时的r .44.【2011陕西理】21.(本小题满分14分)设函数()f x 定义在(0,)+∞上,(1)0f =,导函数1(),()()().f x g x f x f x x''==+ (Ⅰ)求()g x 的单调区间和最小值; (Ⅱ)讨论()g x 与1()g x的大小关系; (Ⅲ)是否存在00x 〉,使得01()()g x g x x-∠对任意0x >成立?若存在,求出0x 的取值范围;若不存在,请说明理由.45.【2011上海理】20、(12分)已知函数()23x x f x a b =⋅+⋅,其中常数,a b 满足0ab ≠。