七年级数学下册平方根第三课时课件新人教版
合集下载
七年级数学人教版下册课件平方根3
一、算术平方根的概念
一般地,如果一个正数x的平方等于a, 即x2=a,那么这个正数x叫做 a的算术平方根.
即: x2 a(x 0)
则X叫做a的算术平方根,记作: x a
1.因为22=4 ,所以4的算术平方根是_2 ;
2.下列说法正确的是( ① )
①5是25的算术平方根.
② 0.01是0.1的算术平方根.
有志的人战天斗地,无志的人怨天恨地。
卒子过河,意在吃帅。
岂能尽如人意,但求无愧我心.
褴褛衣内可藏志。
胸无大志,枉活一世。
5. 121的算术平方根是 11 ;
0.25的算术平方根是 0.5 ;
的算术平方根是
;
1 一个人如果胸无大志,既使再有壮丽的举动也称不上是伟人。
也就是说,非负数的“算术平方根”是非负数。
x-1=0,y-2=0, 所以x=1,y=2. 所以x-y=1-2=-1.
【互动总结】算术平方根、绝对值和平方式都具有非负性,
即 a ≥0,|a|≥0,a2≥0,当几个非负数的和为0时,各数
均为0.
算术平方根的概念
算术平 方根
算术平方根的应用
海纳百川有容乃大壁立千仞无欲则刚
探究
6. 100的算术平方根是 10 ; (2)因为 = ,所以 的算术平方根是 ,即 =
(3)因为0.
所以x-y=1-2=-1.
49 的算术平方根是 7 ;
64
8
0.81的算术平方根是 0.9 ;
八、1.求下列各数的算术平方根:
64 (1)169; (2) 49 ; (3) 0.0001.
解:(1)因为132 =169,所以169的算术平方根是13,
即 169 13.
一般地,如果一个正数x的平方等于a, 即x2=a,那么这个正数x叫做 a的算术平方根.
即: x2 a(x 0)
则X叫做a的算术平方根,记作: x a
1.因为22=4 ,所以4的算术平方根是_2 ;
2.下列说法正确的是( ① )
①5是25的算术平方根.
② 0.01是0.1的算术平方根.
有志的人战天斗地,无志的人怨天恨地。
卒子过河,意在吃帅。
岂能尽如人意,但求无愧我心.
褴褛衣内可藏志。
胸无大志,枉活一世。
5. 121的算术平方根是 11 ;
0.25的算术平方根是 0.5 ;
的算术平方根是
;
1 一个人如果胸无大志,既使再有壮丽的举动也称不上是伟人。
也就是说,非负数的“算术平方根”是非负数。
x-1=0,y-2=0, 所以x=1,y=2. 所以x-y=1-2=-1.
【互动总结】算术平方根、绝对值和平方式都具有非负性,
即 a ≥0,|a|≥0,a2≥0,当几个非负数的和为0时,各数
均为0.
算术平方根的概念
算术平 方根
算术平方根的应用
海纳百川有容乃大壁立千仞无欲则刚
探究
6. 100的算术平方根是 10 ; (2)因为 = ,所以 的算术平方根是 ,即 =
(3)因为0.
所以x-y=1-2=-1.
49 的算术平方根是 7 ;
64
8
0.81的算术平方根是 0.9 ;
八、1.求下列各数的算术平方根:
64 (1)169; (2) 49 ; (3) 0.0001.
解:(1)因为132 =169,所以169的算术平方根是13,
即 169 13.
新人教版七年级数学下册第六章《平方根(3)》精品课件
2 (2) 3
2
4 9
2 , 3
2
4 9
;
(3)(0.8)2= 0.64 ,(-0.8)2= 0.64 。
显然 乘方是已知底数和指数,求幂。 如: 42已知底数4及指数2,求幂16。
反过来:如果已知一个数平方等于16,怎 样求这个数?即知已指数2及幂16,求底数? 设这个数为x 则 x 2 =16 ∵4
a
任 何 幂 数
正数的平方是 正 数; 零的平方是 0 ; 负数的平方是 正 数.
4.如何求一个数的平方根?
例1 . 求下列各数的平方根: 16 (1)81;(2) ; (3)0.49; 25 解:(1)∵ (±9)2=81, ∴81的平方根为±9.
4 2 16 ( ) ( 2) 5 25
解:100 10
1 1
36 6 121 11
2
0 0
0.0025没有算术平方根; ( 3) 9 3 25没有算术平方根;
活动一:复习巩固 3.什么叫乘方?什么叫幂? 答:求相同因数的积的运算叫做乘方;乘方 的运算结果叫做幂。 4. 填空 (1)42= 16 ,(-4)2= 16 ;
16
C、 -4
D、4或-4
3、数0.25的平方根是( D) A、0.5 B、0.05 C、-0.5 D、0.5或-0.5 4、数(-6)2的平方根是( C ) A、-6 B、6 C、6或-6 D、无平方根
三.判断下列说法是否正确:
(1)-9的平方根是-3; ( ×
) 负数没有平方根
(2)49的平方根是7 ;
活动二:自学并讨论
预习P45回答下列问题
• • • • • • 1.什么叫平方根? 2如何表示一个数的平方根? 3.什么叫开平方?开平方与平方是什么关系? 4.如何求一个数的平方根? 5.平方根有什么性质? 6.平方根与算术平方根有什么异同?
2
4 9
2 , 3
2
4 9
;
(3)(0.8)2= 0.64 ,(-0.8)2= 0.64 。
显然 乘方是已知底数和指数,求幂。 如: 42已知底数4及指数2,求幂16。
反过来:如果已知一个数平方等于16,怎 样求这个数?即知已指数2及幂16,求底数? 设这个数为x 则 x 2 =16 ∵4
a
任 何 幂 数
正数的平方是 正 数; 零的平方是 0 ; 负数的平方是 正 数.
4.如何求一个数的平方根?
例1 . 求下列各数的平方根: 16 (1)81;(2) ; (3)0.49; 25 解:(1)∵ (±9)2=81, ∴81的平方根为±9.
4 2 16 ( ) ( 2) 5 25
解:100 10
1 1
36 6 121 11
2
0 0
0.0025没有算术平方根; ( 3) 9 3 25没有算术平方根;
活动一:复习巩固 3.什么叫乘方?什么叫幂? 答:求相同因数的积的运算叫做乘方;乘方 的运算结果叫做幂。 4. 填空 (1)42= 16 ,(-4)2= 16 ;
16
C、 -4
D、4或-4
3、数0.25的平方根是( D) A、0.5 B、0.05 C、-0.5 D、0.5或-0.5 4、数(-6)2的平方根是( C ) A、-6 B、6 C、6或-6 D、无平方根
三.判断下列说法是否正确:
(1)-9的平方根是-3; ( ×
) 负数没有平方根
(2)49的平方根是7 ;
活动二:自学并讨论
预习P45回答下列问题
• • • • • • 1.什么叫平方根? 2如何表示一个数的平方根? 3.什么叫开平方?开平方与平方是什么关系? 4.如何求一个数的平方根? 5.平方根有什么性质? 6.平方根与算术平方根有什么异同?
6.1 平方根 课件 2023-2024学年人教版数学七年级下册
∴1.4 < < 1.5.
②∵1.412 = 1.9881,1.422 = 2.0164,
而 1.9881 < 2 < 2.0164,
∴1.41 <
< 1.42.
③∵1.4142 = 1.999396,1.4152 = 2.002225,
而 1.999396 < 2 < 2.002225,
∴1.414 <
解:∵|a+7|≥0, − − ≥0,
∴a+7=0,且2a-3b-4=0,
解得a=-7,b=-6.
∴ − = =13.
练习
1.下列说法正确的是 ( A )
A.25是625的算术平方根
B.±4是16的算术平方根
C.-6是(-6)2的算术平方根
D.0.01是0.1的算术平方根
1
1
4
2
0.36
0.6
表一:已知一个正数,求这个正数的平方.
表二:已知一个正数的平方,求这个正数.
表一和表二
中的两种运
算有什么关
系?
探究新知
填表:
正方形的面积/dm2
1
9
16
36
正方形的边长/dm
1
3
4
6
实际上是已知一个正数的平方,
求这个正数的问题.
知识归纳
算术平方根的概念
(1) 一般地,如果一个正数x的平方等于a,即x2=a,那么
关系?你从中得出什么结论?
知识归纳
平方根的概念、开平方
(1)一般地,如果一个数的平方等于 a,那么这个数叫做
a 的平方根或二次方根.
●这就是说 x2 = a,那么 x 叫做 a 的平方根.
②∵1.412 = 1.9881,1.422 = 2.0164,
而 1.9881 < 2 < 2.0164,
∴1.41 <
< 1.42.
③∵1.4142 = 1.999396,1.4152 = 2.002225,
而 1.999396 < 2 < 2.002225,
∴1.414 <
解:∵|a+7|≥0, − − ≥0,
∴a+7=0,且2a-3b-4=0,
解得a=-7,b=-6.
∴ − = =13.
练习
1.下列说法正确的是 ( A )
A.25是625的算术平方根
B.±4是16的算术平方根
C.-6是(-6)2的算术平方根
D.0.01是0.1的算术平方根
1
1
4
2
0.36
0.6
表一:已知一个正数,求这个正数的平方.
表二:已知一个正数的平方,求这个正数.
表一和表二
中的两种运
算有什么关
系?
探究新知
填表:
正方形的面积/dm2
1
9
16
36
正方形的边长/dm
1
3
4
6
实际上是已知一个正数的平方,
求这个正数的问题.
知识归纳
算术平方根的概念
(1) 一般地,如果一个正数x的平方等于a,即x2=a,那么
关系?你从中得出什么结论?
知识归纳
平方根的概念、开平方
(1)一般地,如果一个数的平方等于 a,那么这个数叫做
a 的平方根或二次方根.
●这就是说 x2 = a,那么 x 叫做 a 的平方根.
人教版七年级数学下册第六章《平方根 》优质课课件3
思考题:
1、当x
,y
时, √ 4- x +√ y-1 有意义。
2、求下列各式中 x 的值:
(1) x 2- 225 = 0
(2) 25x2- 144 = 0
小结:这节课我们学习了以下主要内容:
1、平方根的定义
(1) 一个正数有两个平方根, 它们互为相反数
2、平方根的性质
(2) 0 只有一个平方根,它 就是0本身
问题1、( + 9)2 = 81
( + 0.5 )2 =0.25
(+
2 3
2
)
=
4 9
+9叫做81的平方根 zxxk
+0.5叫做( 0.25)的平方根
(
+
2 3
)叫做
(
4 9
)的平方根
思考:如果 x2 = a ,那么( x )叫做(a)的平方根?
语言叙述:如果一个数的平方等于a ,那么这个数
就叫做 a 的平方根。
求一个数的平方根的运算,叫做开平方
例如: + √100 = +10
(+10)2 = 100
开平方与平方互为逆运算。
例题:求下列各数的平方根:
(1) 0 ; (2) 25 ;
(3)
16 81
; (4) 0.01 ;
解: (1) 0 的平方根是0
(5) (-8)2
(2) ∵(+5)2=25 ∴25的平方根是+5 即+ √25=+5
1、平方根的定义
(1) 一个正数有两个平方根,
它们互为相反数
2、平方根的性质 (2) 0 只有一个平方根,它
就是0本身
人教版七年级数学下册教学课件《平方根》(第3课时)
下列各式有意义吗?
(1) 144 (; 2) 0.0225 ;(3)± 121;(4) (7) .
196
有意义
有意义
有意义 无意义
求下列各式的值.
169 13 100 _1__0__
(3)2 ____3_; 62 82 _1_0_
链接中考
6.1 平方根
1. 9的平方根是( B )
A.3
∴100的平方根是±10; ∴0.25的平方根是±0.5.
(2)
∵(±
3 4
)2= 9
16
,
∴ 9 的平方根是±3 ;
16
4
巩固练习
判断下列说法是否正确:
(1)0的平方根是0;
(√ )
(2)1的平方根是1;
(× )
(3)-1的平方根是-1;
(×)
(4)0.01是0.1的一个平方根.( × )
填表:
2. 能正确区分平方根与算术平方根的意义.
1. 了解平方根的概念,掌握平方根的特征.
探究新知 知识点 1
平方根的概念及性质
6.1 平方根
要做一张边长是3分米的方桌 面,它的面积是多少?
这个问题实际上就是求:
32 ?
答:9平方分米. 乘方运算
这是已知底数和指数,求幂的运算.
3分米
探究新知
6.1 平方根
如果有一个数x,使得x2=a,那么我们把x叫作a的一个平方 根,也叫作二次方根.
例如: (±1)2=1,1的平方根为±1. 平方根的性质: 如果x是正数a的一个平方根,那么a的平方根有且只有两 个:x与-x.即平方根互为相反数.
探究新知
6.1 平方根
1. 121的平方根是什么? 11
算数平方根-七年级数学下册课件(人教版)
即
0.0001 0.01 .
能力提升:
1
1
7.已知 2a+1 的算术平方根是 0,b-a 的算术平方根是 ,求 ab 的算术平方根.
2
2
解: 因为 0=0, 2a+1=0,所以 2a+1=0,
1
解得 a=- .
2
因为
1
2
1
= ,所以
4
1 1
= .
4 2
1
1
因为 b-a= ,所以 b-a= .
2
Hale Waihona Puke 496478
= .
(3) 由于 0.012=0.0001,因此 0.0001 = 0.01 .
被开方数越大,对应的算术平方根也越大.
新知探究
知识点2:算术平方根的性质
合作与交流:
1.一个正数的算术平方根有几个?
一个正数的算术平方根有1个
2.0的算术平方有几个?
0的算术平方根有一个,是0.
3.-1有算术平方根吗?负数有算术平方根?
所以 + 2 = 4,
解得 = 2,
所以 2 + 5 = 2 × 2 + 5 = 9.
课堂小结
概念
算
术
平
方
根
双重非负性
一般地,如果一个正数 x 的平方
等于 a,即 x2=a,那么这个正数
x 叫做 a 的算术平方根.
a ≥0
≥0
应用
几个非负数的和为0,则
每个数均为0.
当堂检测
基础练习:1.数 4 的算术平方根是( A
8
问题1: (1)因为_____
8
8
即 64 =______.
人教版七年级数学课件《平方根》
1.包含关系:平方根包含算术平方根,算术平方根是平方根的一种.
联系
2.只有非负数才有平方根和算术平方根.
3.0的平方根是0,算术平方根也是0.
区别
1.个数不同:一个正数有两个平方根,但只有一个算术平方根.
2.表示法不同:平方根表示为± ,而算术平方根表示为 .
达标检测
人教版数学七年级下册
1.下列各数中没有平方根的数是( D)
∴2 − 1 = 9, − 1 = 16,
∴ = 5, = 17.
∵是 13的整数部分,3 < 13 < 4,
∴ = 3.
∴ + 2 − = 5 + 17 × 2 − 3 = 36.
∵36的平方根是±6.
∴ + 2 − 的平方根为±6.
总结提升
人教版数学七年级下册
平方根与算术平方根的联系与区别:
∴原来正方形的边长为16.
小结梳理
人教版数学七年级下册
一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或
二次方根. 这就是说,如果x2=a,那么x叫做a的平方根.
求一个数a的平方根的运算,叫做开平方.
1.正数有两个平方根,它们互为相反数;
2.0的平方根是0;
3.负数没有平方根.
正数a的算术平方根可以表示为 ,正数a的负的平方根,可以表
则有2a+1+a-4=0,即3a-3=0,
解得a=1.
所以这个数为(2a+1)2=(2+1)2=9.
典例解析
人教版数学七年级下册
例4.已知2 − 1的算术平方根是3, − 1的平方根是±4,
是 13的整数部分,求 + 2 − 的平方根.
解:∵2 − 1的算术平方根是3; − 1的平方根是±4,
联系
2.只有非负数才有平方根和算术平方根.
3.0的平方根是0,算术平方根也是0.
区别
1.个数不同:一个正数有两个平方根,但只有一个算术平方根.
2.表示法不同:平方根表示为± ,而算术平方根表示为 .
达标检测
人教版数学七年级下册
1.下列各数中没有平方根的数是( D)
∴2 − 1 = 9, − 1 = 16,
∴ = 5, = 17.
∵是 13的整数部分,3 < 13 < 4,
∴ = 3.
∴ + 2 − = 5 + 17 × 2 − 3 = 36.
∵36的平方根是±6.
∴ + 2 − 的平方根为±6.
总结提升
人教版数学七年级下册
平方根与算术平方根的联系与区别:
∴原来正方形的边长为16.
小结梳理
人教版数学七年级下册
一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或
二次方根. 这就是说,如果x2=a,那么x叫做a的平方根.
求一个数a的平方根的运算,叫做开平方.
1.正数有两个平方根,它们互为相反数;
2.0的平方根是0;
3.负数没有平方根.
正数a的算术平方根可以表示为 ,正数a的负的平方根,可以表
则有2a+1+a-4=0,即3a-3=0,
解得a=1.
所以这个数为(2a+1)2=(2+1)2=9.
典例解析
人教版数学七年级下册
例4.已知2 − 1的算术平方根是3, − 1的平方根是±4,
是 13的整数部分,求 + 2 − 的平方根.
解:∵2 − 1的算术平方根是3; − 1的平方根是±4,
人教七年级下数学_《第3课时_平方根》精品课件
合作学习
开平方的概念 求一个数a的平方根的运算,叫做开平方. 平方与开平方互为逆运算.
例题示范
例1. 求下列各数的平方根.
(1)100 ;(2) 9 ;(3)0.25 ;(4)2 1 ;(5)0.
16
4
例2. 判断下列说法是否正确,并说明理由. (1)49的平方根是7; (2)2是4的平方根; (3)-5是25的平方根; (4)64的平方根是±8; (5)-16的平方根是-4.
6.1 第3课时 平方根
课前检测
1. 4的算术平方根为( ).
A.16
B.2
C.±2
D. ±16
2. 81 ______, 0.01 ______ .
3. 若2x+1的算术平方根是3,求x的值.
合作学习
问题1 如果一个数的平方等于9,那么这个数是多少? 即若 x2=9,则x 是多少?
因为32=9 ,(-3)2=9 ,所以如果一个数的平方等于9, 那么这个数是3或-3 .
合作学习
追问1 根据刚才对于问题1的解决,请同学们填写下表,并请各小组长 统计正确的人数.
x2
1
16 36 49
4
25
x
合作学习
追问2 如果x2=2 ,那么x 是多少?
因为 ( 2)2 2,所以 x是 2 或 2 .
合作学习
问题2 如果我们把±5,±1,±6, 2 分别叫做25,1,36, 4 的平方根,
目标检测
6.1 第3课时 平方根 目标检测
同学们要认真答题哦!
课后作业
详见课后作业
基础训练 提升训练 衔接中考
登陆优教平台,点击查看、使用 更多分层训练
感谢您的观看
; (2) 0.81 ; (3)
6.1平方根(课时3)课件(新人教版七年级数学下)
6.1 平方根(第三课时)学案
【学习目标】
1.掌握平方根的概念,明确平方根与算术平方根的联系与区别. 能用符号正 确地表示一个数的平方根 2.理解开平方与平方间的互逆关系.根据这种互逆关系求一个数的平方根.
.
【重点难点】
重点:平方根的概念; 求一个数的平方根. 难点:平方根的概念; 求一个数的平方根.
9
数学活动二:数学活动二:求一个数的平方根
把求一个数a的平方根的运算,叫做开平方,而平方运算与开平方运算互 为逆运算.根据这种运算关系,可以求一个数的平方根. 例如当 2 时,x=±1; 当 2 时,则x=±4,
x = 16 x =1 2 2 当x = 36 时,x=±6; 当 x = 49 时,x=±7; 2 4 4 2 当x = ,则 ± 为 的平方根,它们的对应关系如图所示. 25 5 25
【当堂达标】
1. 169 的平方根是多少?
2.
16 的值为多少?16的平方根为多少? 16 的平方根呢?
3.若 35 的整数部分为a,小数部分为b,求a、b的值.
4. 有一长方形花坛,长是宽的4倍,其面积为 25m2 ,求长和宽
平方 开平方
数学活动三:应用
1 (2) (3)0 36
2. 121的平方根是多少?
(4)0.01
3.
49
的算术平方根是多少?
【学习体会】
1.本节课你独立思考了那些知识?参与讨论了哪些知识?还 有那些疑惑? 2.本节课你最成功的地方是什么?说给你小组成员听听.
创设情景
1.如果一个数的平方等于9,则这个数是________;
2.填表
【课中探究】
数学活动一:阅读教材,理解平方根的概念:
一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根, 即若 x 2 = a ,则x为a的平方根,记为 x = 为±3 是9的平方根,表示为 ? 3
【学习目标】
1.掌握平方根的概念,明确平方根与算术平方根的联系与区别. 能用符号正 确地表示一个数的平方根 2.理解开平方与平方间的互逆关系.根据这种互逆关系求一个数的平方根.
.
【重点难点】
重点:平方根的概念; 求一个数的平方根. 难点:平方根的概念; 求一个数的平方根.
9
数学活动二:数学活动二:求一个数的平方根
把求一个数a的平方根的运算,叫做开平方,而平方运算与开平方运算互 为逆运算.根据这种运算关系,可以求一个数的平方根. 例如当 2 时,x=±1; 当 2 时,则x=±4,
x = 16 x =1 2 2 当x = 36 时,x=±6; 当 x = 49 时,x=±7; 2 4 4 2 当x = ,则 ± 为 的平方根,它们的对应关系如图所示. 25 5 25
【当堂达标】
1. 169 的平方根是多少?
2.
16 的值为多少?16的平方根为多少? 16 的平方根呢?
3.若 35 的整数部分为a,小数部分为b,求a、b的值.
4. 有一长方形花坛,长是宽的4倍,其面积为 25m2 ,求长和宽
平方 开平方
数学活动三:应用
1 (2) (3)0 36
2. 121的平方根是多少?
(4)0.01
3.
49
的算术平方根是多少?
【学习体会】
1.本节课你独立思考了那些知识?参与讨论了哪些知识?还 有那些疑惑? 2.本节课你最成功的地方是什么?说给你小组成员听听.
创设情景
1.如果一个数的平方等于9,则这个数是________;
2.填表
【课中探究】
数学活动一:阅读教材,理解平方根的概念:
一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根, 即若 x 2 = a ,则x为a的平方根,记为 x = 为±3 是9的平方根,表示为 ? 3
人教版七年级数学下册《6.1 平方根 第三课时》课件ppt
1.开平方:
求一个数a 的平方根的运算,叫做开平方, a 叫做被开方数.
2.要点精析: (1)一个正数的正的平方根就是它的算术平方根. (2)平方与开平方是互逆运算.开平方与加、减、乘、除、乘方 一样是一种运算,即: 运算名称:加、减、乘、除、乘方、开平方(非负数). 运算结果:和、差、积、商、幂、平方根(互为相反数).
边长是多少?.
解:正方形的面积是边长的平方,根据算术平方根
的定义可得:正方形的边长是 A (A>0).
2 如果x 2=a,那么下列说法错误的是( B ) A. 若x 确定,则a 的值是唯一的 B. 若a 确定,则x 的值是唯一的 C. a 是x 的平方 D. x 是a 的平方根
3 4的平方根是( C ) A.16 C.±2
1. 定义:若x2=a,则x 叫做a 的平方根.
2. 性质:一个正数有两个平方根,它们互为相反数, 0的平方根是0,负数没有平方根.
3. 平方根与开平方间的关系: (1)开平方是求平方根的运算; (2)平方根是开平方运算的结果.
求一个非负数的平方根的方法:
① 求一个非负数a 的平方根,就是要把平方后等于a 的 数找出来,从而求出a 的所有平方根;
因为152=225,所以225的算术平方根是15.
(2)
2 1 9 44
.因为
3 2
2
9 4
,
所以
2 1 4
的平方根是±
3 2
.
因为
3 2
2
9 4
,所以 2 1 4
的算术平方根是
3 2.
(3)因为
1
2 3
2
1
2 3
2
,
所以
1
求一个数a 的平方根的运算,叫做开平方, a 叫做被开方数.
2.要点精析: (1)一个正数的正的平方根就是它的算术平方根. (2)平方与开平方是互逆运算.开平方与加、减、乘、除、乘方 一样是一种运算,即: 运算名称:加、减、乘、除、乘方、开平方(非负数). 运算结果:和、差、积、商、幂、平方根(互为相反数).
边长是多少?.
解:正方形的面积是边长的平方,根据算术平方根
的定义可得:正方形的边长是 A (A>0).
2 如果x 2=a,那么下列说法错误的是( B ) A. 若x 确定,则a 的值是唯一的 B. 若a 确定,则x 的值是唯一的 C. a 是x 的平方 D. x 是a 的平方根
3 4的平方根是( C ) A.16 C.±2
1. 定义:若x2=a,则x 叫做a 的平方根.
2. 性质:一个正数有两个平方根,它们互为相反数, 0的平方根是0,负数没有平方根.
3. 平方根与开平方间的关系: (1)开平方是求平方根的运算; (2)平方根是开平方运算的结果.
求一个非负数的平方根的方法:
① 求一个非负数a 的平方根,就是要把平方后等于a 的 数找出来,从而求出a 的所有平方根;
因为152=225,所以225的算术平方根是15.
(2)
2 1 9 44
.因为
3 2
2
9 4
,
所以
2 1 4
的平方根是±
3 2
.
因为
3 2
2
9 4
,所以 2 1 4
的算术平方根是
3 2.
(3)因为
1
2 3
2
1
2 3
2
,
所以
1
人教版七年级数学下册第六章《平方根》课件
也是无限不循环小数 5038……
21.414213 56
31.73205 08
52.23606 79
72.64575 13
例:求 31的整数部分和小数部。分
解:31的整数部分是5
31的小数部分是 31 5
小数部分=原数―整数部分
思考:7 7的整数部分与小数部分。
利用计算器计算:
0.06250.25 0.625 0.791
2 是一个无限不循环小数
∵ 12=1, 22=4
∴ 1 < 2< 4 ∵ 1.42=1.96, 1.52=2.25 ∴ 1.4 < 2 < 1.5 ∵ 1.412=1.9881, 1.422=2.0164
无限不循环小数 是指小数位数无 限,且小数部分 不循环的小数?
∴ 1.41 < 2 < 1.42
1 1
1 1
2的引入——一种方法:
a2 2
a 2 a
探究: 2 =?
2 的引入——另一种方法:
面积为49cm2的正方形的边长为______cm. 面积为25cm2的正方形的边长为______cm. 面积为4cm2的正方形的边长为______cm. 面积为2cm2的正方形的边长为______cm.
A.正数 B.负数 C.非负数 D. 非正数
问题1:
(1)你能用两个面积为1的正方形拼成一个 大正方形吗?
(2)这个大正方形的面积是多少?
(3)这个大正方形的边长是多少?
2 (4)你能估计
的大小吗? Zx,xk
2的引入——一种方法:学
科网
把两个边长为1的小正方形通过 剪、拼,设法得到一个大正方形
1 下列说法中不正确的个数有 ( C )
初中数学人教版七年级下册《平方根》PPT课件
知识拓展
三、一个正数x的平方根是2a-3与5-a
求 2x a 的平方根
解:依题意:2a-3+5-a=0, a=-2,
x=(2a-3)2=49. 2x a =10 2x a 的平方根为 10
知识拓展
四、计算
2 3 64 1 3
五、已知 5x y 9 互为相反数
则x+y= 答案3
3x y 1
知识拓展
开平方与平方
指数
根号 开
平
平 方 运
x2 底a
数
x 互为
逆运算
a方
运
算
算
幂
a的平方根 被开方数
知识拓展
平方根的概念
平方根
平方根的性质
开平方及相关运算
4 家庭作业
家庭作业 请完成课后相关练习。
人教版七年级数学下册
课程结束
授课老师:XXX
到目前为止,表示非负数的式子有:a≥0, |a|≥0, a2 ≥0, a ≥0,
算术平方根
例3 计算:
(1) 49 2 7 1 ; (2) 4 9 +3-4=1
算术平方根
例4.用大小完全相同的240块正方形地板砖,铺一间面积 为60 m2的会议室的地面,每块地板砖的边长是多少? 解:设每块地板砖的边长为x m.由题意得
算术平方根的双重非负性
非负数 a 0
a的算术平方根 a
非负数 a 0
算术平方根具有双重非负性
算术平方根
下列各式中哪些有意义?哪些无意义?为什么?
5, 3, 3, 32
解: 3 无意义,因为被开方数不是非负数.
被开方数为非负数.
算术平方根
例2 若|m-1| + n 3 =0,求m+n的值. 解: 因为|m-1| ≥0, n 3 ≥0,又|m-1| + n 3 =0,
湖北省荆门市钟祥市兰台中学七年级数学下册《6.1 平方根(3)》课件 (新版)新人教版
第六章
实
数
6.1 平方根(3)
活动一 复习回顾 引入新知
(1)什么是算术平方根?怎样表示?
如果一个正数x的平方等于a,那么这个正 数x叫做a的算术平方根. a的算术平方根表示为: 0的算术平方根是0
a a 0
负数没有算术平方根
活动一 复习回顾 引入新知
(2)256的算术平方根是 16 ,5的算
64 8 (3) 81 9
活动五 归纳小结 深化新知
小结与提升:
本节课你学习了哪些知识?在探索知
识的过程中,你用了哪些方法?对你
今后的学习有什么帮助?
活动五 归纳小结 深化新知
小结与提升:
• 知识方面:平方根的概念、表示方法、求法及平方 根的性质. • 思维方法:平方运算和开平方运算互为逆运算,可 以互相检验. • 探究策略:由特殊到一般,再由一般到特殊,是发 现问题和解决问题的基本方法和途径. • 用定义解决问题也是常用的方法.
2 1 x
2
1 ; 2
(3)
1 2 2x 3 52 . 4
活动五 归纳小结 深化新知
课外探究:
解下列方程: (1)4x2=9;(2)x2-81=0;(3)(x+1)2=1.
活动六 分层作业 提高能力
9 16
作业(必做题):
(3) 0.25 (4)0 (5) 5
2
1.下列各数有平方根吗?如果有,求出它的平方根,如果没有说明理由. (1) 100 (2) (6)
一般地,如果一个数的平方等于a,那么这个 数叫做a的平方根或二次方根,这就是说,如果
x2=a,那么x叫做a的平方根.
例如:3和-3是9的平方根,简记为±3是9的平方根.
实
数
6.1 平方根(3)
活动一 复习回顾 引入新知
(1)什么是算术平方根?怎样表示?
如果一个正数x的平方等于a,那么这个正 数x叫做a的算术平方根. a的算术平方根表示为: 0的算术平方根是0
a a 0
负数没有算术平方根
活动一 复习回顾 引入新知
(2)256的算术平方根是 16 ,5的算
64 8 (3) 81 9
活动五 归纳小结 深化新知
小结与提升:
本节课你学习了哪些知识?在探索知
识的过程中,你用了哪些方法?对你
今后的学习有什么帮助?
活动五 归纳小结 深化新知
小结与提升:
• 知识方面:平方根的概念、表示方法、求法及平方 根的性质. • 思维方法:平方运算和开平方运算互为逆运算,可 以互相检验. • 探究策略:由特殊到一般,再由一般到特殊,是发 现问题和解决问题的基本方法和途径. • 用定义解决问题也是常用的方法.
2 1 x
2
1 ; 2
(3)
1 2 2x 3 52 . 4
活动五 归纳小结 深化新知
课外探究:
解下列方程: (1)4x2=9;(2)x2-81=0;(3)(x+1)2=1.
活动六 分层作业 提高能力
9 16
作业(必做题):
(3) 0.25 (4)0 (5) 5
2
1.下列各数有平方根吗?如果有,求出它的平方根,如果没有说明理由. (1) 100 (2) (6)
一般地,如果一个数的平方等于a,那么这个 数叫做a的平方根或二次方根,这就是说,如果
x2=a,那么x叫做a的平方根.
例如:3和-3是9的平方根,简记为±3是9的平方根.
最新人教版七年级数学下册《平方根第三课时》优质教学课件
方根和负 非负数
方根0 一定这个数的
的平方跟)
算数平方根
随堂练习
判断下列各式计算是否正确,并说明理由。
(1)
(×
4 = ±2;
(2) ± 4 = ±2;
(3) − 4 = ±2
)
(√ )
。
(
×
4表示的是4
的算术平方根,
所以 4 = 2
)− 4表示的是4
的负的平方根,
所以 − 4 = −2
例题讲解
表示,读作“正、负根号a”
注意: 表示的是正的平方根,而 − 表
示的是负的平方根,而 ± 表示a的平方根.
即
表示a的正的平方根 (算术平方根)
− 表示a的负的平方根
a﹙a≥0﹚的平方根表示为±
记作±
随堂练习
天空:
(1) 2的算术平方根是
2
。
(2) 2的负的平方根是 − 2 。
(3) 2的平方根是 ± 2
如:±3是9的平方根,或说成9的平方根是±3.
求一个数a的平方根的运算,叫做开平方。
探素新知
请完成图1和图2,并说明两图中的运算有什么关系?
开方
平方
+1
-1
+2
-2
+3
-3
1
1
4
4
9
9
+1
-1
+2
-2
+3
-3
比较图1和图2 中两种运算的特点,你能发现什么?
开平方运算与平方运算互为逆运算.
并依据这种互逆关系,可以求一个非负数的平方根。
请与同伴交流!
课堂总结
你有什么收获?
方根0 一定这个数的
的平方跟)
算数平方根
随堂练习
判断下列各式计算是否正确,并说明理由。
(1)
(×
4 = ±2;
(2) ± 4 = ±2;
(3) − 4 = ±2
)
(√ )
。
(
×
4表示的是4
的算术平方根,
所以 4 = 2
)− 4表示的是4
的负的平方根,
所以 − 4 = −2
例题讲解
表示,读作“正、负根号a”
注意: 表示的是正的平方根,而 − 表
示的是负的平方根,而 ± 表示a的平方根.
即
表示a的正的平方根 (算术平方根)
− 表示a的负的平方根
a﹙a≥0﹚的平方根表示为±
记作±
随堂练习
天空:
(1) 2的算术平方根是
2
。
(2) 2的负的平方根是 − 2 。
(3) 2的平方根是 ± 2
如:±3是9的平方根,或说成9的平方根是±3.
求一个数a的平方根的运算,叫做开平方。
探素新知
请完成图1和图2,并说明两图中的运算有什么关系?
开方
平方
+1
-1
+2
-2
+3
-3
1
1
4
4
9
9
+1
-1
+2
-2
+3
-3
比较图1和图2 中两种运算的特点,你能发现什么?
开平方运算与平方运算互为逆运算.
并依据这种互逆关系,可以求一个非负数的平方根。
请与同伴交流!
课堂总结
你有什么收获?
七年级-人教版-数学-下册-第3课时-平方根
一般地,如果一个数的平方等于 a,那么这个数叫做 a 的 平方根或二次方根.
这就是说,如果 x2=a,那么 x 叫做 a 的平方根.
例如,3和-3是 9 的平方根,简记为±3 是 9 的平方根.
那么,36,
1 64
,0
的平方根又是多少?负数有平方根吗?
36 的平方根是±6;
1 的平方根是 ±1.
64
8
因为02=0,并且任何一个不为0的数的平方都不等于 0,所以
0 的平方根是 0.
正数的平方是正数,0 的平方是 0,负数的平方也是正数,即 在我们所认识的数中,任何一个数的平方都不会是负数,所以负 数没有平方根.
正数有两个平方根,它们互为相反数; 0 的平方根是 0 ; 负数没有平方根.
我们知道,正数 a 的算术平方根可以用 a 表示;正数 a 的负 的平方根,可以用符号“- a ”表示,故正数 a 的平方根可以用 符号“± a ”表示,读作“正、负根号 a”.例如, 9 3 , 25 5 .
4.被开方数的小数点向右或向左移动 2 位,它的算术平方根 的小数点就相应地_向__右__或__向__左__移__动___1_位___.
如果一个数的平方等于 9,这个数是多少? 从前面我们知道,这个数可以是 3. 除了3以外,还有没有别的数的平方也等于 9 呢? 由于(-3)2=9,这个数也可以是-3. 如果一个数的平方等于 9,那么这个数是 3或-3.
求一个数的平方根,注意三点免出错 (1)求一个正数的平方根,不能只考虑正的平方根而把负的 平方根遗漏. (2)如果被开方数为带分数,要先把它化成假分数. (3)若一个正数 a 不能写成一个数的平方的形式,则可以将 a 的平方根表示为± a.
思考 当 a≥0 时, a ,- a 和± a 有什么区别?
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.例题解析
例1 求下列各数的平方根:
( 1 ) 1 0 0 ; ( 2 ) 9 ;( 3 ) 0 .2 5 ;( 4 ) 2 1 ;( 5 ) 0 .
1 6
4
解:(3)因为0.520.25 ,
所以0.25的平方根是 0.5 .
即0.250.5.
3.例题解析
例1 求下列各数的平方根:
( 1 ) 1 0 0 ; ( 2 ) 9 ;( 3 ) 0 .2 5 ;( 4 ) 2 1 ;( 5 ) 0 .
(4)64的平方根是 8 ;
(5)-16的平方根是-4.
4.归纳数的平方根的特征
正数的平方根有什么特点?
正数的平方根有两个,它们互为相反数;
0的平方根是多少?
0的平方根就是0 ;
负数有平方根吗?
负数没有平方根.
为什么?
5.平方根的表示
我们已经学过一个正数的算术平方根的表示方 法,你能表示一个正数的平方根吗?
携手共进,齐创精品工程
Thank7、 2分别叫做
5
1、16、36、49、4 的平方根,你能类比算术
25
平方根的概念,给出平方根的概念吗?
1.归纳平方根的概念
一般地,如果一个数的平方等于a,那么这 个数叫做a的平方根或二次方根.这就是说,
如果 x,2 那a么x 叫做a的平方根.
例如:3和-3是 9的平方根,
正数a的算术平方根可以表示用 a 表示; 正数a的负的平方根,可以用符号 a 表示, 正数a的平方根用符号 a 表示. 读作“正、负根号a ”.
6.例题解析
例3 判断下列各式计算是否正确,并说明理由.
(1) 4 2; (2) 4 2; (3) 4 2.
6.例题解析
例4 说出下列各式的意义,并求它们的 值:
七年级数学下册平方根第三课时课件新人 教版
课件说明
本课主要学习平方根的概念、平方根的特 征.本课既是前面学习的算术平方根的延续, 又是用直接开平方法、公式法解一元二次方程 的基础,同时本节课也为更好地理解立方根的 概念和求法提供了思路和研究方法.
课件说明
学习目标: (1)了解平方根的概念;掌握平方根的特征. (2)能利用开平方与平方互为逆运算的关系, 求某些非负数的平方根.
1 6
4
解:(4)因为
3 2
2
9 4
,
所以 2 1 的平方根是 3 .
4
2
即 9 3 .
42
3.例题解析
例1 求下列各数的平方根:
( 1 ) 1 0 0 ; ( 2 ) 9 ;( 3 ) 0 .2 5 ;( 4 ) 2 1 ;( 5 ) 0 .
1 6
4
解:(5)因为 0 2 0 ,
所以0的平方根是0.
( 1 ) 36; ( 2 ) 0.81; ( 3 ) 49. 9
解:(1) 36 6 ;
(2)0.810.9;
(3)
49 7 93
.
6.思考
如果知道一个数的算术平方根就可以 立即写出它的负的平方根,为什么?
7.归纳小结
你能总结一下平方根与算术平方根的 概念的区别与联系吗?
8.布置作业 教科书 习题6.1第3、4、7、8题
简记 3是9的平方根.
2.认识开平方运算
填空:求平方
1 1
1
2 2
4
3
9
3
求平方根
1
1 1
4
2 2
9
3
3
两图中的运算有什么关系呢?
3.例题解析
例1 求下列各数的平方根:
( 1 ) 1 0 0 ; ( 2 ) 9 ;( 3 ) 0 .2 5 ;( 4 ) 2 1 ;( 5 ) 0 .
1 6
4
解:(1)因为102 100 ,
学习重点: 平方根的概念.
1.归纳平方根的概念 如果一个数的平方等于9,这个数是多少?
由于 3 2=9,
所以这个数是3或-3.
3是前面学习过的9的算术平方根, -3与9的算术平方根有什么关系?
1.归纳平方根的概念
根据上面的研究过程填表:
x2 1
16
36 49
4 25
x 1 4 6 7 2 5
即 0 0 .
3.例题解析
例1 求下列各数的平方根:
( 1 ) 1 0 0 ; ( 2 ) 9 ;( 3 ) 0 .2 5 ;( 4 ) 2 1 ;( 5 ) 0 .
1 6
4
解:(1)因为102 100 ,
所以100的平方根是 10 .
即 10010.
3.例题解析
例2 判断下列说法是否正确,并说明理由. (1)49的平方根是7; (2)2是4的平方根; (3)-5是25的平方根;
所以100的平方根是 10 .
即 10010.
3.例题解析
例1 求下列各数的平方根:
( 1 ) 1 0 0 ; ( 2 ) 9 ;( 3 ) 0 .2 5 ;( 4 ) 2 1 ;( 5 ) 0 .
1 6
4
解:(2)因为
3 4
2
9 16
,
所以 9 的平方根是 3 .
16
4
即 9 3 .
16 4