小升初专题--分数的巧算
(完整版)小升初巧算专项训练
学员姓名:专项1:小数分数运算律的运用①)—(—179127.3178273.6+②75.0137341413713—)(—+③75.97643925.0975—⨯+⨯④999999×222222+333333×333334⑤45×2.08+1.5×37.6⑥1381137138137139⨯+⨯⑦72×2.09—1.8×73.6⑧53.5×35.3+53.5×43.2+78.5×46.5小升初巧算专项训练①66666④20122—20112⑤999×274+6274⑥()(94751137673198++÷++⑥9117594171⨯+⨯⑦239238238238÷⑧21315116715183157⨯+⨯+⨯专项4:裂项求和 ①50491131211211111101⨯++⨯+⨯+⨯ΛΛ②4213012011216121+++++③2081130170128141++++专项5:计算综合 ①111128*********16131++++++……6667③⎪⎭⎫ ⎝⎛-1011专项6:超大数的巧算阅读⑴12321=111×1111234321=1111×1111123454321=11111×11111④20102010×1999—2010×19991999⑤12345679×63⑥72×12345679③×专项8:牢记设字母代入法①(1+0.21+0.32)×(0.21+0.32+0.43)-(1+0.21+0.32+0.43)×(0.21+0.32)②(10.34)③⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛+++⨯⎪⎭⎫ ⎝⎛+++413121514131211514131214131211—④⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛+++⨯⎪⎭⎫ ⎝⎛+++411311211511411311211111511411311211411311211111—专项9:利用ba b a =÷巧算 ①(6.4×480×33.3)÷(3.2×120×66.6)②⎪⎭⎫ ⎝⎛+÷⎪⎭⎫ ⎝⎛+5343415514①100991431321211⨯++⨯+⨯+⨯ΛΛ②1191751531311⨯++⨯+⨯+⨯ΛΛ③4213012011216121+++++④1×2+2×3+3×4+…+99×100⑤1×2×3+2×3×4+3×4×5+…+9×10×③765432166543215543214432133212211⨯⨯⨯⨯⨯⨯+⨯⨯⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯+⨯⨯+⨯① ⎝⎛1⎪⎭⎫1001专项13:定义新运算3、[A]54=0.⎝⎭()()115613231=--+x x x x 23221223=⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-81079+=-x x 4412.021+=-x x x专项15:等差数列需牢记公式:末项=首项+(项数-1)×公差首项=末项-(项数-1)×公差项数=(末项-首项)÷公差+1数列和=(首项+末项)×项数÷2①已知等差数列5、8、11、14、17、……,它的第25项是什么?第42项是什么?②已知等差数列7、12、17、……、122,问这个数列共有多少项?④计算1+3+5+7+…+20072007-3-6-9-…-51-54(2+4+6+…+100)-(1+3+5+ (99)⑤1001个队员参加数学奥林匹克赛,每两个队员握一次手,他们一共握了多少次手?②求777777×888888×999999的尾数是多少?③11+22+33+44+55+66+77+88+99的个位数字是多少?④199加上一个两位数,使结果是完全平方数,这样的两位数一共有几个?②已知A=1997119811198011+++Λ求A 的整数部分是多少?。
小升初-分数的简便运算与解方程
小升初-分数的简便运算与解方程知识点1、分数的简便运算知识点、拆分法:运用拆分法解题主要是使拆开后的一些分数互相抵消,达到简化运算的目的。
一般地,形如1a ×(a+1) 的分数可以拆成1a -1a+1 ;形如1a ×(a+n )的分数可以拆成1n ×(1a -1a+n ),形如a+b a ×b 的分数可以拆成1a +1b等等。
同学们可以结合例题思考其中的规律。
例题1、计算:11×2 +12×3 +13×4 +…..+199×100原式=(1-12 )+(12 -13 )+(13 -14 )+…..+(199 -1100) =1-12 +12 -13 +13 -14 +…..+199 -1100=1-1100=99100练习1计算下面各题:1. 14×5 +15×6 +16×7 +…..+139×402. 110×11 +111×12 +112×13 +113×14 +114×153. 12 +16 +112 +120 +130 +142例题2、计算:12×4 +14×6 +16×8 +…..+148×50原式=(22×4 +24×6 +26×8 +…..+248×50 )×12=【(12 -14 )+(14 -16 )+(16 -18 )…..+(148 -150 )】×12=【12 -150 】×12=625练习2、计算下面各题:1.13×5 +15×7 +17×9 +…..+197×992. 11×4 +14×7 +17×10 +…..+197×100例题3、计算:113 -712 +920 -1130 +1342 -1556原式=113 -(13 +14 )+(14 +15 )-(15 +16 )+(16 +17 )-(17 +18) =113 -13 -14 +14 +15 -15 -16 +16 +17 -17 -18=1-18=78练习3计算下面各题:1. 112 +56 -712 +920 -11302. 114 -920 +1130-1342 +1556 3. 19981×2 +19982×3 +19983×4 +19984×5 +19985×6例题4、计算:12 +14 +18 +116 +132 +164原式=(12 +14 +18 +116 +132 +164 +164 )-164=1-164=6364练习4、计算下面各题:1. 12 +14 +18 +………+12562.23 +29 +227 +281 +2243例题5。
小升初数学分数计算的技巧
分数计算中的技巧1、等差数列公式:总和=(首项+末项)×项数÷2项数=(末项-首项)÷公差+1末项=首项+公差×(项数-1)2、小数与分数的互换:(1)纯循环小数化分数:分子是一个循环节的数字所组成的数;分母的各位数字都是9,9的个数与循环节的数字的个数相同。
(2)混循环小数化分数:分子是小数点后面第一个数字到第一个循环节末端的数字所组成的数减去不循环数字所组成的数的差;分母的头几个数字是9,末几位上的数字是0,9的个数与循环节中的数字的个数相同,0的个数和不循环部分的数字的个数相同。
(3)判断分数能否化成有限小数:把它化成最简分数后,把分母分解质因数,如质因数只有2、5,则能化成有限小数;除2、5外还有其它质因数则不能。
3、繁分数:分子和分母中也含有分数、小数或四则运算的分数叫做繁分数。
繁分数的化解有两种方法:(1)先找出主分数线,确定分子部分和分母部分,然后对这两部分分别进行计算,每部分的计算结果能约分的要约分,最后形成“分子部分÷分母部分”的形式,再求出结果。
(2)根据分数的基本性质,将繁分数的分子部分和分母部分同时扩大相同的部分(分子部分和分母部分所有分母的最小公倍数),从而去掉分子部分和分母部分的分母,然后通过计算化为最简分数或整数。
例题精讲:例1:1000+999-998-997+996+995-994-993+…+108+107-106-105+104+103-102-101试一试:1、(1+3+5+7+…+2009+2011)-(2+4+6+8+…2008+2010)优秀是一种习惯!优秀是一种习惯!2、100+99-98-97+96+95-94-93+……+8+7-6-5+4+3-2-13、(1+12 +13 +14 +……+120 )+(12 +13 +14 +……+120 )+(13 +14+……+120 )+……+(119 +120 )+120例2:(100+621+739+458)×(621+739+458+378)-(100+621+739+458+378)×(621+739+458)试一试:1、(1+)131121111++121111()1411311211111()141131121111(+⨯++++-+++⨯+)1312、(1+2+3+...+2011)×(2+3+4+...+2012)-(1+2+3+ (2012)×(2+3+4+ (2011)例3:1006×97.75+2012×1.125 9999×7778+3333×6666优秀是一种习惯!试一试:1、纯循环小数写成最简分数时,分子和分母的和是58,则三位数是多少?2、计算所有分母是2009的最简真分数的和是多少?3、小于5分母为12的所有最简分数的和是多少?例4:3×4×5+6×8×10+9×12×15+12×16×205×6×7+10×12×14+15×18×21+20×24×28试一试: 1×2×3+2×4×6+3×6×93×4×5+6×8×10+9×12×151×2×3+2×4×6+3×6×92×4×6+4×8×12+6×12×18优秀是一种习惯!例5:如果A#B 表示3B A + 照这样的规定,6#(8#5)的结果是多少?试一试:1、A*B=B A B A ÷+ 在X*(5*1)=6中,X 的值是多少?2、设a b *表示12a b b a ++,计算:(1992996)(996498)***=例6:对于任意的整数X 、Y 定义新运算“¥”X ¥Y=YMX XY 26+(其中M 是一个固定的值)如果1¥2=2,那么4¥9=?试一试:1、对于正整数a 与b ,规定a*b=a×(a +1)×(a +2)×…×(a+b -1)。
分数巧算知识点总结
分数巧算知识点总结一、分数的基本概念1.1 分数的定义分数是指两个整数之比,其中被除数为分子,除数为分母,可以用a/b表示,其中a为分子,b为分母,b不能等于0.1.2 分数的性质(1)分子和分母是整数,分母不能为0;(2)分数可以表示小数,也可以表示百分数;(3)分数的大小与所表示的数的大小有关。
1.3 分数的大小比较对于两个分数 a/b 和 c/d 来说,(1)如果 a/b = c/d,那么a*d = b*c;(2)如果 a/b > c/d,那么a*d > b*c;(3)如果 a/b < c/d,那么a*d < b*c。
1.4 一般分数的化简一般分数指分子和分母的除数不能被整除的分数,例如 4/6、2/5等。
化简分数是将分数的分子和分母同时除以它们的最大公约数(即分子和分母的所有公约数中最大的那个数)的过程。
二、分数的加减乘除2.1 分数的加减(1)当两个分数的分母相同时,直接将分子相加或相减,分母保持不变;(2)当两个分数的分母不同时,需要先将它们通分,然后再进行加减运算。
例如:1/3 + 2/3 = 3/3 = 12/5 - 1/5 = 1/52/3 + 3/4 = 8/12 + 9/12 = 17/122.2 分数的乘法两个分数相乘时,将它们的分子相乘得到新的分子,分母相乘得到新的分母,然后化简得到最简分数。
例如:2/3 * 3/4 = 6/12 = 1/22.3 分数的除法两个分数相除时,将第一个分数的分子乘以第二个分数的分母得到新的分子,分母乘以分母得到新的分母,然后化简得到最简分数。
例如:2/3 ÷ 3/4 = 8/9三、分数的巧算技巧3.1 练习整数乘分数在计算时,我们可以将整数转化为分数,然后再进行乘法运算,最后将得到的分数化简即可。
例如:2 * 2/3 = 2/1 * 2/3 = 4/33.2 乘除组合法则在进行复杂的分数运算时,我们可以先把分数转化为小数进行计算,然后再将得到的结果转化为分数。
分数的速算方法
分数的速算方法
分数的速算方法是一种能够帮助我们快速计算分数的技巧。
在日常生活和学习中,我们需要经常进行分数的运算,但有时分数的运算较为繁琐,这时候就需要一些简便的方法来进行计算。
下面将介绍几种常见的分数速算方法:
一、通分法
通分法是将两个分数的分母化为相同的数,然后再进行运算。
这种方法适用于相加、相减的分数运算。
举例:计算1/3 + 1/4。
首先,将1/3和1/4通分,即将1/3乘以4/4,将1/4乘以3/3。
1/3 + 1/4 = 4/12 + 3/12 = 7/12
二、简便法
简便法是通过把分数化成整数、分数混合数或者分数百分数的形式来进行计算,适用于加、减、乘、除的分数运算。
举例:计算2/3 × 3/4。
将2/3化成混合数,即2/3 = 1 1/3,将3/4化成百分数,即3/4 = 0.75
则:2/3 × 3/4 = 1 1/3 × 0.75 = 1.00
三、折半法
折半法是将一个分数折半成两个相等的分数,然后再进行运算。
这种方法适用于分数的加减运算。
举例:计算7/8 - 5/8。
将7/8折半成两个相等的分数,即7/8 = 4/8 + 3/8。
则:7/8 - 5/8 = 4/8 + 3/8 - 5/8 = 2/8 = 1/4。
以上是几种常见的分数速算方法,通过运用这些方法,能够让我们在分数的运算中更加熟练和高效。
小升初专题--分数的巧算
年级
六
性别
课题
分数的巧算
教学
目标
知识点:进一步掌握分数的计算方法
考点:解决有关的简便运算问题
能力:分析问题、解决问题能力
方法:分析法、讲解法
难点
重点
灵活解决问题
课
堂
教
学
过
程
课前
检查
作业完成情况:优□良□中□差□建议__________________________________________
过
程
1、介绍有关速算与巧算的几种方法与常见题型:
见后面所附资料
3、几种比较特殊题型补充:1、2、源自3、4、5、
课堂
检测
听课及知识掌握情况反馈_________________________________________________________。
测试题(累计不超过20分钟)_______道;成绩_______;教学需:加快□;保持□;放慢□;增加内容□
课后
巩固
作业_____题;巩固复习____________________ ;预习布置_____________________
签字
教学组长签字:学习管理师:
老师
课后
赏识
评价
老师最欣赏的地方:
老师想知道的事情:
老师的建议:
分数运算简便方法
分数运算简便方法分数运算是数学中的一种重要运算方式,简便方法可以帮助我们更快速、准确地进行分数运算。
下面我将介绍几种常用的分数运算简便方法。
一、分数的相加与相减1.找到两个分数的公共分母,如果两个分数的分母相同,则直接将分子相加或相减即可;2.如果两个分数的分母不同,则需要通过找到最小公倍数将两个分数的分母转化为相同的数,然后将分子相加或相减;3.如果两个分数的分子相同,则直接将分母相加或相减。
二、分数的相乘与相除1.分数相乘时,将两个分数的分子相乘得到新的分子,分母也相乘得到新的分母;2.分数相除时,将除数的分子乘于被除数的分母得到新的分子,除数的分母乘于被除数的分子得到新的分母;3.注意化简分数,将结果一般化简为最简分数形式。
三、分数的比较与排序1.比较分数大小时,可以将两个分数的分子相乘得到新的分子,分母也相乘得到新的分母,然后比较两个新的分数大小。
例如,分数1/2与2/3比较时,可以计算1×3=3与2×2=4,因为3<4,所以1/2<2/3;2.排序分数时,可以将分数化为相同的分母,然后按照分子大小进行排序。
四、分数的运算规律1.分数的分子与分母乘以相同的数,分数的值不变。
例如,分数1/2乘以2/2得到2/4,其值依然为1/2;2.分数的分子与分母同时除以相同的数,分数的值不变。
例如,分数2/4除以2/2得到1/2,其值依然为1/2;3.对于分数的加减乘除运算,先将分数化为最简分数,然后按照整数的运算规律进行计算,最后化简结果。
五、分数的应用1.在日常生活中,分数可以用来表示比例关系,比如:1/4表示四分之一,1/2表示一半;2.在商业计算中,分数可以用来表示价格折扣、比例利润等;3.在科学研究中,分数可以用来表示几何比例、物质比例等。
总结:分数运算虽然看似复杂,但是掌握了分数运算的简便方法,我们可以更加轻松、准确地进行分数的加减乘除运算。
通过寻找公共分母、化简分数、化为最简分数等技巧,可以帮助我们在分数运算中节省时间、减少错误。
分数的巧算
分数的速算与巧算(一)分数巧算(求和)分数求和的常用方法:1、公式法,直接运用一些公式来计算,如等差数列求和公式等。
2、图解法,将算式或算式中的某些部分的意思,用图表示出来,从而找出简便方法。
3、裂项法,在计算分数加、减法时,先将其中的一些分数做适当的拆分,使得其中一部分分数可以互相抵消,从而使计算简便。
4、分组法,运用运算定律,将原式重新分组组合,把能凑整或约分化简的部分结合在一起简算。
5、代入法,将算式中的某些部分用字母代替并化简,然后再计算出结果。
典型例题一、公式法: 计算:20081+20082+20083+20084+…+20082006+20082007二、图解法: 计算:21 +41+81+161+321+641三、裂项法1、计算:21+61+121+201+301+……+901+1101 分析:由于每个分数的分子均为1,先分解分母去找规律:2=1×2,6=2×3,12=3×4,20=4×5,30=5×6,……110=10×11,这些分母均为两个连续自然数的乘积。
再变数型:因为21=211⨯=1-21,61=321⨯=21-31,121=431⨯=31-41,……,1101=11101⨯=101-111。
这样将连加运算变成加减混合运算,中间分数互相抵消,只留下头和尾两个分数,给计算带来方便。
21+61+121+201+301+……+901+1101 =1-21+21-31+31-41+……+91-101+101-111 =1-111 =11102、计算:511⨯+951⨯+1391⨯+……+33291⨯+37331⨯3、计算:21-34-154-354-634-994-1434-1954-25544、计算:21+65+1211+2019+3029+……+97029701+990098995、计算:1+432113211211+++++++++……+100......3211++++6、计算:+⨯⨯+⨯⨯+⨯⨯543143213211…+10099981⨯⨯四、分组法:计算20041+20042-20043-20044+20045+20046-20047-20048+20049+200410-……-20041999-20042000+20042001+20042002五、代入法:计算(1+413121++)×(51413121+++)-(1+51413121+++)×(413121++)热点习题计算:1、49134911499497495493491++++++【1】2、12816413211618141211-------【1281】3、4213012011216121+++++【76】4、200920081200820071......199119901199019891198919881⨯+⨯++⨯+⨯+⨯4、3937137351......191711715115131⨯+⨯++⨯+⨯+⨯6、2+421133011120171215613++++7、565542413029201912116521++++++8、3994003233242552561951961431449910063643536151634+++++++++9、1102190197217561542133011209127651-+-+-+-+-10、20021+20022+20023+20024-20025-20026-20027-20028+20029+200210+…+20021995+20021996-20021997-20021998-20021999-20022000+20022001+2002200211、(1+51413121+++)×(6151413121++++)-(1+6151413121++++)×(51413121+++)12、)54535251()434241()3231(21++++++++++…+(20192018...203202201+++++)13、2001年是中国共产党建党80周年,20011921是个有特殊意义的分数。
六年级奥数专题01:分数的巧算
一、分数的巧算(一)年级 班 姓名 得分一、填空题1.计算:=÷-⨯+⨯2582.432.02588.6 . 2.=⨯÷⎪⎭⎫ ⎝⎛++1919989898199800980019001900980980190190989898191919 . 3.1000减去它的一半,再减去余下的三分之一,再减去余下的四分之一,依此下去,直到余下的五百分之一,最后剩下 .4.计算:=⨯+⋅⋅⋅+⨯+⨯+⨯100991431321211 . 5.计算:=+++++++496124811241621311814121 . 6.计算:=+--+321131211 . 7.计算:=⨯+⨯+⨯655161544151433141 . 8.计算:=++⋅⋅⋅+++++⋅⋅⋅+++199719953991199619943989537425313199719961995199619951994543432321 . 9.计算:=⎪⎭⎫ ⎝⎛-⨯-⎪⎭⎫ ⎝⎛+⨯+⎪⎭⎫ ⎝⎛-⨯761231537615312353123176 . 10.计算: ⎪⎭⎫ ⎝⎛+++-⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛+++-⎪⎭⎫ ⎝⎛+++20115110151161121814112191613181614121 = .二、解答题11.尽可能化简427863887116690151.12.计算:⎪⎭⎫ ⎝⎛+⋅⋅⋅+-+-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛-+914637281941322314312213211211.13.计算:1999321132112111+⋅⋅⋅++++⋅⋅⋅++++++.14.计算: ⎪⎭⎫ ⎝⎛⨯-⨯⎪⎭⎫ ⎝⎛⨯-⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛⨯-⨯⎪⎭⎫ ⎝⎛⨯-⨯⎪⎭⎫ ⎝⎛⨯-⨯⎪⎭⎫ ⎝⎛⨯-9997319896317531643153314231.一、分数的巧算(二)年级 班 姓名 得分一、填空题1.计算:13471711613122374⨯+⨯+⨯= . 2.计算:⎪⎭⎫ ⎝⎛⨯+÷⨯⎪⎭⎫ ⎝⎛+-25.1522546.79428.0955= . 3.计算:25114373611125373185444.4⨯+÷+÷= . 4.计算:()()015.06.32065.022.0013.000325.0⨯÷-÷= . 5.计算: ⎪⎭⎫ ⎝⎛-⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛+⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+9115113111011611411211= . 6.计算:222345567566345567+⨯⨯+= . 7.计算:322131433141544151655161766171⨯+⨯+⨯+⨯+⨯= . 8.计算:4513612812111511016131+++++++= . 9.计算:()()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⋅⋅⋅⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⋅⋅⋅⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++293112831133112311311312913029132912291291= . 10.计算:217665544332217665544332212⨯⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+++++ ⎪⎭⎫ ⎝⎛++++⨯⎪⎭⎫ ⎝⎛++++++-76655443327665544332211= .二、问答题11.用简便方法计算:421330112091276523-+-+-.12.计算:()1999119981997199919985.19935.1995÷⨯÷-.(得数保留三位小数)13.计算:⋅⋅⋅+++⋅⋅⋅+++++++++1999219991313233323121222111 1999119992199919981999199919991998++⋅⋅⋅++++.14.计算:299810001299799912001312000211999111999119981199714131211++++⋅⋅⋅+++++++-+⋅⋅⋅+-+-.———————————————答 案一—————————————————————— 1. 513. 原式()12.48.62582582.42582588.6-+=-⨯+⨯= 51351610258==⨯=. 2. 19915. 原式101191019898191000198001000119001001980100119010101981010119⨯⨯⨯÷⎪⎭⎫ ⎝⎛⨯⨯+⨯⨯+⨯⨯= 19981998981998199819⨯⨯⎪⎭⎫ ⎝⎛++= 19915192941998199898193==⨯⨯⨯=. 3. 2 1000减去它的一半,余下⎪⎭⎫ ⎝⎛-⨯2111000,再减去余下的31, 余下⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯3112111000,再减去余下的41, 余下⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯4113112111000,…, 直到减去余下的五百分之一,最后剩下: ⎪⎭⎫ ⎝⎛-⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯500114113112111000 5004994332211000⨯⋅⋅⋅⨯⨯⨯⨯= 2=4. 10099. 原式⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=100199199198141313121211 1009910011=-=.5. 16. 原式⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=124162162131131181414121211 ⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+4961248124811241 4961311311811-++-= 163131187161231187⨯+=⎪⎭⎫ ⎝⎛-⨯+=161516187=+=.6. 542. 原式5425144758745873153116311631==⨯==-+=+--+=.7. 123. 原式655660544550433440⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛+= 123150140130=+++++=.8. 21. 原式⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=19972399219962399052842632419971199619961199551441331221=.9. 1原式=()()()532376123765315376231+⨯+-⨯--⨯ 1111=+-=.10. 144. 原式⎪⎭⎫ ⎝⎛+++⨯-⎪⎭⎫ ⎝⎛+++⨯+⎪⎭⎫ ⎝⎛+++⨯-⎪⎭⎫ ⎝⎛+++⨯=413121151413121141413121131413121121 ⎪⎭⎫ ⎝⎛-+-⨯⎪⎭⎫ ⎝⎛+++=514131214131211 1446560131225201611234612=⨯=⎪⎭⎫ ⎝⎛+⨯+++=. 11. 分子数字之和等于30,故它可以被3整除,分母奇位上数字之和与偶位上数字之和的差为32-21=11,所以它可以被11整除,把这此因数提出,得:1131138896717338896717=⨯⨯.12.原式=⎪⎭⎫ ⎝⎛+⋅⋅⋅++-⎪⎭⎫ ⎝⎛+⋅⋅⋅+++⎪⎭⎫ ⎝⎛+⋅⋅⋅++-⎪⎭⎫ ⎝⎛+⋅⋅⋅++++4642413732312822211914131211 91828173727164636261555251+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛+++-⎪⎭⎫ ⎝⎛+⋅⋅⋅+++ 9183761061265512764128731298212109+-+⨯-⨯⨯+⨯⨯-⨯⨯+⨯⨯-⨯=9183763534213281845+-+-+-+-= 91837641532730+-+-+= 504533=.13.因为2)1(21+=+⋅⋅⋅++n n n ,所以 原式=200019992432322212⨯+⋅⋅⋅+⨯+⨯+⨯ ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=2000119991413131212112 100099912000112=⎥⎦⎤⎢⎣⎡-=.14.因为()()()()()()()()()11311131111312+---=+--+-=+--K K K K K K K K K ()()()()()()112211222+-+-=+--=K K K K K K K ,所以 原式()()()()()()()()()()()()()()()()()()()()198198298298197197297297151525251414242413132323+-+-⨯+-+-⨯⋅⋅⋅⨯+-+-⨯+-+-⨯+-+-= 99971009698969995647353624251⨯⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯⨯⨯⨯⨯⨯⨯=97259710041=⨯=.———————————————答 案二——————————————————————1. 16 原式162874131413122374=⨯=⎪⎭⎫ ⎝⎛++⨯=.2. 90 原式⎪⎭⎫ ⎝⎛⨯+⨯⨯⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛+=45522455378.0942955 ()⎪⎭⎫ ⎝⎛+⨯⨯-=522537458.08 90457210452.7=⨯=⨯⨯=.3. 9. 原式25114373625114373137825114⨯+⨯+⨯= ⎪⎭⎫ ⎝⎛++⨯=37363731378251149377525114=⨯=.4. 1 原式1100131351536325=⨯⨯⨯⨯=.5. 1.1 原式1.110119854321011674523==⨯⋅⋅⋅⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯=6. 1.原式()2223455663455663455672223451566566345567++⨯⨯+=+⨯+⨯+=1567566345566345567=+⨯⨯+=.7. 205. 原式322330433440544550655660766770⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛+= 205120130140150160=+++++++++=.8. 54 原式1092542432322⨯+⋅⋅⋅+⨯+⨯+⨯= ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=101915141413131212 54101212=⎪⎭⎫ ⎝⎛-=.9. 1. 原式2960285933423313231603059332231130⨯⨯⋅⋅⋅⨯⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯= 13130321605934333229283216059323130=⨯⨯⋅⋅⋅⨯⨯⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯=.10.21. 令a =+++++766554433221,则 原式⎪⎭⎫ ⎝⎛-⨯+-⨯+=21)1(212a a a a 2121212122=⎪⎭⎫ ⎝⎛-+-+=a a a a .11. 原式767665655454434332322121⨯+-⨯++⨯+-⨯++⨯+-⨯+= ⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=71616151514141313121211 76711=-=.12. 原式199919981200019982⨯⎪⎭⎫ ⎝⎛-⨯= 199811998199824000+⨯⎪⎭⎫ ⎝⎛-= ⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛-=199811199824000 1998199821998240004000⨯--+= 1998199821998224000⨯-++= 001.4002≈.13. 因为kk k k k k k k k k k k k k k -+⋅⋅⋅+++=+++⋅⋅⋅+-++-+⋅⋅⋅+++)321(212311321 k kk k k =-+=)1(,所以, 原式19990002200019991999321=÷⨯=+⋅⋅⋅+++=.14. 分子⎪⎭⎫ ⎝⎛+⋅⋅⋅+++⨯-⎪⎭⎫ ⎝⎛+++⋅⋅⋅++++=1998161412121999119981199714131211 ⎪⎭⎫ ⎝⎛+⋅⋅⋅+++-⎪⎭⎫ ⎝⎛+⋅⋅⋅+++=9991312111999131211 199911001110001+⋅⋅⋅++= 分母3998139961200412002120001++⋅⋅⋅+++= ⎪⎭⎫ ⎝⎛+⋅⋅⋅++⨯=1999110011100012 原式211999110011100012199911001110001=⎪⎭⎫ ⎝⎛+⋅⋅⋅++⨯+⋅⋅⋅++=.。
分数简便计算方法和技巧
分数简便计算方法和技巧
1. 嘿,你知道吗,分数计算有时候就像走迷宫,找对方法那可太关键啦!比如说,遇到同分母分数相加,那不是很简单嘛,就像 1/5+3/5,直接把
分子相加就行啦,等于 4/5,这多容易呀!
2. 哇塞,分数简便计算里乘法分配律可好用啦!来看这个,3/4×(4+2),那就等于3/4×4+3/4×2,结果一下子就出来啦,是不是很神奇?
3. 哎呀呀,约分可是个好技巧呢!像 6/8 约分之后就是 3/4,一下子就简单多啦,这种感觉难道不爽吗?
4. 你们有没有发现,有时候把一个分数拆分开来计算会更方便呀!例如 1/6 可以拆成 1/2 - 1/3,这就像变魔术一样呢!
5. 嘿,朋友,分数简便计算中凑整也是很牛的哟!比如计算 7/8 + 1/8 -
3/5,先把前面凑整得 1,再减 3/5,是不是轻松多啦?
6. 哇哦,把带分数化成假分数也超有用的!像 2 又 1/3,化成假分数就是
7/3,这样计算起来不就更顺手啦?
7. 哎呀,分数计算里通过通分可以解决很多难题呢!比如说 1/3 和 1/4,通分一下就可以相加啦,多厉害呀!
8. 哈哈,分数简便计算的方法和技巧真的是我们的好帮手呀!像看到
4/9×9 那不是一眼就知道等于 4 嘛,多简单粗暴!
9. 总之呢,掌握了这些分数简便计算方法和技巧,那计算分数就不再是让人头疼的事啦!快用起来吧!。
分数的巧算
分数的速算与巧算(一)分数巧算(求和)分数求和的常用方法:1、公式法,直接运用一些公式来计算,如等差数列求和公式等。
2、图解法,将算式或算式中的某些部分的意思,用图表示出来,从而找出简便方法。
3、裂项法,在计算分数加、减法时,先将其中的一些分数做适当的拆分,使得其中一部分分数可以互相抵消,从而使计算简便。
4、分组法,运用运算定律,将原式重新分组组合,把能凑整或约分化简的部分结合在一起简算。
5、代入法,将算式中的某些部分用字母代替并化简,然后再计算出结果。
典型例题一、公式法: 计算:20081+20082+20083+20084+…+20082006+20082007二、图解法: 计算:21 +41+81+161+321+641三、裂项法1、计算:21+61+121+201+301+……+901+1101 分析:由于每个分数的分子均为1,先分解分母去找规律:2=1×2,6=2×3,12=3×4,20=4×5,30=5×6,……110=10×11,这些分母均为两个连续自然数的乘积。
再变数型:因为21=211⨯=1-21,61=321⨯=21-31,121=431⨯=31-41,……,1101=11101⨯=101-111。
这样将连加运算变成加减混合运算,中间分数互相抵消,只留下头和尾两个分数,给计算带来方便。
21+61+121+201+301+……+901+1101 =1-21+21-31+31-41+……+91-101+101-111 =1-111 =11102、计算:511⨯+951⨯+1391⨯+……+33291⨯+37331⨯3、计算:21-34-154-354-634-994-1434-1954-25544、计算:21+65+1211+2019+3029+……+97029701+990098995、计算:1+432113211211+++++++++……+100......3211++++6、计算:+⨯⨯+⨯⨯+⨯⨯543143213211…+10099981⨯⨯四、分组法:计算20041+20042-20043-20044+20045+20046-20047-20048+20049+200410-……-20041999-20042000+20042001+20042002五、代入法:计算(1+413121++)×(51413121+++)-(1+51413121+++)×(413121++)热点习题计算:1、49134911499497495493491++++++【1】2、12816413211618141211-------【1281】3、4213012011216121+++++【76】4、200920081200820071......199119901199019891198919881⨯+⨯++⨯+⨯+⨯4、3937137351......191711715115131⨯+⨯++⨯+⨯+⨯6、2+421133011120171215613++++7、565542413029201912116521++++++8、3994003233242552561951961431449910063643536151634+++++++++9、1102190197217561542133011209127651-+-+-+-+-10、20021+20022+20023+20024-20025-20026-20027-20028+20029+200210+…+20021995+20021996-20021997-20021998-20021999-20022000+20022001+2002200211、(1+51413121+++)×(6151413121++++)-(1+6151413121++++)×(51413121+++)12、)54535251()434241()3231(21++++++++++…+(20192018...203202201+++++)13、2001年是中国共产党建党80周年,20011921是个有特殊意义的分数。
分数的简便计算知识点
分数的简便计算知识点分数是数学中常见的数值表示方式之一,它由分子和分母组成,表示了一个整体被分成若干等份的情况。
分数的计算在很多数学题型中都会涉及,在解题过程中掌握一些简便计算知识点可以极大地提高计算效率。
本文将介绍一些分数的简便计算方法和技巧。
1. 分数的加减要计算分数的加减,首先需要确保分母相同。
如果分母不同,需要找到它们的最小公倍数,将分数统一成相同分母后再进行计算。
在计算过程中可以利用分数的相等性质进行转化和简化,例如:例子1:计算1/4 + 2/3首先找到两个分数的最小公倍数为12,将分数转化为相同分母为12的形式,得到:3/12 + 8/12 = 11/12。
例子2:计算5/6 - 1/3同样找到两个分数的最小公倍数为6,将分数转化为相同分母为6的形式,得到:5/6 - 2/6 = 3/6 = 1/2。
2. 分数的乘法分数的乘法相对简单,只需要将分子相乘得到新的分子,分母相乘得到新的分母。
在计算过程中可以尽可能地约分,以简化结果。
例如:例子3:计算3/4 * 2/5将分子相乘得到新的分子为6,分母相乘得到新的分母为20,结果可以约分得到3/10。
3. 分数的除法分数的除法可以通过将除法转化为乘法来进行计算。
将除法转化为倒数的乘法,即被除数乘以除数的倒数。
例如:例子4:计算3/4 ÷ 2/5将除法转化为乘法,得到3/4 * 5/2 = 15/8。
4. 分数的约分分数的约分是将分子和分母的公约数约去,使得分数的表示更简洁。
在约分过程中,可以通过找到分子和分母的最大公约数,然后同时除以最大公约数来进行操作。
例如:例子5:将12/16约分为最简分数形式首先找到12和16的最大公约数为4,然后同时除以4,得到3/4。
5. 分数的整数化有时我们需要将分数转化为整数或混合数的形式。
当分子大于等于分母时,可以将分数转化为整数和真分数的和。
例如:例子6:将17/5转化为混合数形式17/5 = 3 + 2/5,即17/5可以表示为混合数3 2/5。
分数的巧算和速算
分数的巧算和速算 Prepared on 22 November 2020分数的速算与巧算【专题解析】在分数的简便计算中,掌握一些常用的简算方法,可以提高我们的计算能力,达到速算、巧算的目的。
(1)约分法:在分数乘除法运算中,如果先约分再计算,可以使计算过程更简便。
两个整数相除(后一个不为0)可以直接写成分数的形式。
两个分数相除,可以根据分数的运算性质,将其写成一个分数乘另一个分数的倒数的形式。
(2)错位相减法:根据算式的特点,将原算式扩大一个整数倍(0除外),用扩大后的算式同原算式相减,可以使复杂的计算变得简便。
【典型例题】例1. 计算:(1)5698÷8 (2)166201÷41分析与解:(1)直接把5698拆写成(56+98),除以一个数变成乘以这个数的倒数,再利用乘法分配率计算。
(2)把题中的166201分成41的倍数与另一个较小的数相加的形式,再利用除法的运算性质使计算简便。
(1)5698÷8=(56+98)÷8=(56+98)×81=56×81+98×81=7+91=791 (2)166201÷41 = (164 +2041)×411= 164×411+2041×411= 4201【举一反三】计算:(1)64178÷8 (2)14575÷12 (3)5452÷17 (4)170121÷13例2. 计算:200412004200420052006÷+分析与解:数太大了,不妨用常规方法计算一下,先把带分数化成假分数。
分母200420052004⨯÷,这算式可以运用乘法分配律等于20042006⨯,又可以约分。
聪明的同学们,如果你的数感很强的话,不难看出÷2004200420052005的被除数与除数都含有2004,把他们同时除于2004得到11÷12005也是很好算的,这一方法就留给你们吧!12006⨯÷+20042006原式=20042005 1200620051200620061⨯+⨯=+=2005=200420042006 【举一反三】计算:(5)2000÷200020012000+20021(6)238÷238239238+2401例3. 计算:199419921993119941993⨯+-⨯分析与解:仔细观察分子和分母中各数的特点,可以考虑将分子变形。
小升初数学奥赛专题:分数计算技巧
第 1 页 共 2 页分数的计算技巧(2)一、 知识要点。
在进行分数、小数的四则混合运算时,要根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,把较复杂的四则混合运算化繁为简,化难为易。
在数学学习中,转化思想很重要。
二、知识运用典型例题。
1、考考你,请用简便方法计算下列各题。
(1)7÷ 7 9 - 7 9 ÷7 (2) 15÷ 8 9 +15× 7 8(3)3― 5 18 × 27 40 - 13 16 (4)975×0.25+934 ×76-9.75(5)211⨯+321⨯+431⨯+...+1011001⨯例1:计算2222×29100—3333×0.04+6666×0.09例2:计算:12 +14 +18 +116 +132 +164例3:用简便方法计算:211+2121202+21212150505+2121212113131313例4:(89 +137 +611 )÷(311 +57 +49 )三、知识运用课堂训练。
(华杯赛题)2、计算下列各题:(1)413⨯+743⨯+1073⨯+13103⨯+16133⨯+19163⨯+22193⨯(2)322013⨯+432013⨯+542013⨯+...+201320122013⨯(3)43202.75.19542⨯+⨯(华杯赛题)(4)12 +14 +18 +………+1256第 2 页 共 2 页课后训练 等级1、用简便方法计算下列各题:(1)421⨯+641⨯+861⨯+...+100981⨯ (2)6×712 -920 ×6+ 1130 ×6 (3)(927 +729 )÷(57 +59 ) (4) 1371531631248163264++++++ 华杯赛题:如下图,四个小三角形的顶点处有六个圆圈。
最新分数的巧算和速算
1分数的速算与巧算【专题解析】在分数的简便计算中,掌握一些常用的简算方法,可以提高我们的计算能力,达到速算、巧算的目的。
(1)约分法:在分数乘除法运算中,如果先约分再计算,可以使计算过程更简便。
两个整数相除(后一个不为0)可以直接写成分数的形式。
两个分数相除,可以根据分数的运算性质,将其写成一个分数乘另一个分数的倒数的形式。
(2)错位相减法:根据算式的特点,将原算式扩大一个整数倍(0除外),用扩大后的算式同原算式相减,可以使复杂的计算变得简便。
【典型例题】例1. 计算:(1)5698÷8 (2)166201÷41分析与解:(1)直接把5698拆写成(56+98),除以一个数变成乘以这个数的倒数,再利用乘法分配率计算。
(2)把题中的166201分成41的倍数与另一个较小的数相加的形式,再利用除法的运算性质使计算简便。
(1)5698÷8=(56+98)÷8=(56+98)×81=56×81+98×81=7+91=791 (2)166201÷41 = (164 +2041)×411= 164×411+2041×411= 4201 【举一反三】计算:(1)64178÷8 (2)14575÷12 (3)5452÷17 (4)170121÷13例2. 计算:200412004200420052006÷+分析与解:数太大了,不妨用常规方法计算一下,先把带分数化成假分数。
分母200420052004⨯÷,这算式可以运用乘法分配律等于20042006⨯,又可以约分。
聪明的同学们,如果你的数感很强的话,不难看出÷2004200420052005的被除数与除数都含有2004,把他们同时除于2004得到11÷12005也是很好算的,这一方法就留给你们吧! 12006⨯÷+20042006原式=2004200521200620051200620061⨯+⨯=+=2005=200420042006 【举一反三】计算:(5)2000÷200020012000+20021(6)238÷238239238+2401例3. 计算:199419921993119941993⨯+-⨯分析与解:仔细观察分子和分母中各数的特点,可以考虑将分子变形。
小学生数学习题练习巧算分数的技巧
小学生数学习题练习巧算分数的技巧数学是一门重要的学科,对于小学生而言,学好数学是他们学习的基础。
其中,学习分数的技巧是小学生数学习题中的一个重要内容。
本文将介绍一些巧算分数的技巧,帮助小学生更好地掌握分数的运算。
一、分数的基本概念在学习分数之前,我们首先需要了解分数的基本概念。
分数由一个分子和一个分母组成,分子表示被分成的相等的份数,分母表示整体被分成的份数。
例如,1/2表示整体被分成2份,其中的1份为分子。
二、相同分母的分数相加当需要计算相同分母的分数相加时,可以直接将分子相加,并保持分母不变。
例如,计算1/4 + 3/4,我们只需要将1和3相加,再将结果4作为分母,得到的结果为4/4,即等于1。
三、分数的化简有时候,我们可以将分数化简为最简形式。
最简形式的分数是指分子和分母没有公因数,即它们的最大公约数为1。
化简分数的方法是找到分子和分母的最大公约数,然后将其同时除以这个最大公约数。
例如,将4/8化简为最简形式,我们可以找到它们的最大公约数为4,然后将分子和分母同时除以4,得到的结果为1/2。
四、分数的比较当需要比较两个分数的大小时,我们可以先将它们的分数化成相同的分母,然后比较它们的分子的大小。
例如,比较1/3和1/2的大小,我们可以将1/3和1/2的分母都化成6,得到1/6和3/6,由于3/6大于1/6,所以1/2大于1/3。
五、分数的整数部分和小数部分有时候,我们需要将分数转换成整数部分和小数部分。
转换的方法是将分子除以分母得到的商作为整数部分,将余数除以分母得到的商作为小数部分。
例如,将7/4转换成整数部分和小数部分,我们可以计算7除以4的商为1,余数为3,然后将3除以4得到的商为0.75,所以7/4可以表示为1整3/4或1.75。
六、分数的乘法和除法在进行分数的乘法和除法运算时,我们可以将分子与分子相乘,并将分母与分母相乘。
例如,计算1/3乘以2/5,我们可以计算1乘以2得到的结果为2,3乘以5得到的结果为15,所以1/3乘以2/5等于2/15。
小升初专题--分数的巧算
姓名年级六性别课题分数的巧算
教学目标知识点:进一步掌握分数的计算方法考点:解决有关的简便运算问题
能力:分析问题、解决问题能力
方法:分析法、讲解法
难点
重点
灵活解决问题
课堂教学过程课前
检查作业完成情况:优□良□中□差□建议__________________________________________
过
程
一、介绍有关速算与巧算的几种方法与常见题型:
见后面所附资料
三、几种比较特殊题型补充:
1、
186
548
362
361
548
362
-
⨯
⨯
+
2、
1
1989
1988
1987
1989
1988
-
⨯
⨯
+
3、
4、
5、
66666
66666
1
2
3
4
5
6
4
3
2
1
⨯
+
+
+
+
+
+
+
+
+
课堂检测听课及知识掌握情况反馈_________________________________________________________。
测试题(累计不超过20分钟)_______道;成绩_______;教学需:加快□;保持□;放慢□;增加内容□
课后
巩固
作业_____题; 巩固复习____________________ ; 预习布置_____________________签字教学组长签字:学习管理师:
老师课后赏识评价老师最欣赏的地方:老师想知道的事情:老师的建议:。
分数巧算基础知识
分数巧算基础知识进行分数简便运算时,运用分数的基本性质、结合四则运算定律进行计算;也可在分数值不变的情况下,将分数分拆,使运算简便。
一、基础知识1、 分数的基本性质:分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变。
这叫做分数的基本性质。
2、常用运算定律加法交换律:a +b =b +a加法结合律:a +b +c = (a +b)+c a + (b +c)= (a +c)+b乘法交换律:ab =ba乘法结合律:abc = (ab)c =a(bc)= (ac)b乘法分配律:a(b +c)=ab +ac ab +ac= a(b +c)减法的运算性质:a -b -c =a - (b +c)除法的运算性质:a ÷b ÷c =a ÷(b ×c) a ÷(b ×c)= a ÷b ÷c= a ÷c ÷ba ÷b ×c =a ÷(b ÷c) a ÷(b ÷c)= a ÷b ×c3、 分数变形:分子是1,分母是非零的自然数的真分数叫分数单位。
运算时可以把分数拆分成单位分数,以方便运算。
11×2 =1-21 12×3 =21-31 13×4 =31-41 21+31=3232X =65(分子是1的两个分数相加,和的分子是两分母之和,和的分母是两分母的乘积)12×4 =(21-41)×21 (分母两数差为2,所以乘以21) 15×9 =(51-91)×41 (分母两数差为4,所以乘以41) 第二节 分数巧算方法1、凑整法在整数简单运算中,是把数字凑成整十、整百、整千等整数。
而在小分和分数运算中,是把分数凑成整数,便于计算。
例题:341+632+143+831 =(341+143)+(632+831) =5+15=202、改顺序通过改变分数式中的先后顺序,使运算算简便。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
姓名年级六性别课题分数的巧算
教学目标知识点:进一步掌握分数的计算方法考点:解决有关的简便运算问题
能力:分析问题、解决问题能力
方法:分析法、讲解法
难点
重点
灵活解决问题
课堂教学过程课前
检查作业完成情况:优□良□中□差□建议__________________________________________
过
程
一、介绍有关速算与巧算的几种方法与常见题型:
见后面所附资料
三、几种比较特殊题型补充:
1、
186
548
362
361
548
362
-
⨯
⨯
+
2、
1
1989
1988
1987
1989
1988
-
⨯
⨯
+
3、
4、
5、
66666
66666
1
2
3
4
5
6
4
3
2
1
⨯
+
+
+
+
+
+
+
+
+
课堂检测听课及知识掌握情况反馈_________________________________________________________。
测试题(累计不超过20分钟)_______道;成绩_______;教学需:加快□;保持□;放慢□;增加内容□
课后
巩固
作业_____题; 巩固复习____________________ ; 预习布置_____________________签字教学组长签字:学习管理师:
老师课后赏识评价老师最欣赏的地方:老师想知道的事情:老师的建议:。