第6章 常微分方程.ppt
合集下载
《高数》第6章
把 x t t 0 1, x t t 0 3 代入 x t c1 cos t c2 sin t 和
x t c1 sin t c2 cos t 得 c1 1, c2 3 .故所求的解为: x t cos t 3sin t
得到通解
G ( y ) F ( x) c 1 其中G(y)与F(x)分别是 与f(x)的一个原函数, c是 g ( y) 任意常数,式(2)就是方程(1)的隐式通解. 第 三 步 , 在 第 一 步 中 , 用 g(y) 除 方 程 的 两 边 , 而 g(y)=0 是 不 能 做 除 数 的 , 所 以 对 g(y)=0 要 单 独 考 虑.由g(y)=0解出的y是常数,它显然满足原方程, 是原方程的特解,这种特解可能包含在所求出的通解 中,也可能不包含在所求出的通解中(此时要把它单 独列出). 例1 分方程 y 2 xy 的通解.
例3(推广普通话问题) 在某地区推广普通话,该地 区的需要推普的人数为N,设t时刻已掌握普通话的 人数为p(t),推普的速度与已推普的人数和还未推普 的人数之积成正比,比例常数为k>0于是得到 dp kp ( N p ) dt
此方程称为logisitic方程,在生物学,经济学等学科 领域有着广泛应用. 定义1 含有未知函数的导数(或微分)的方程叫微分方 程.未知函数为一元函数的微分方程称为常微分方 程.如 (1) y x dp kp ( N p ) (2) dt
y P ( x ) y Q ( x ) 的方程称为一阶线性微分方程,其中P(x)为Q(x)的已 知函数.当Q(x)不恒为0时,方程(5) 称为一阶线性非 齐次微分方程.当 Q( x) 0时,方程(5)变成 y P ( x ) y 0 该方程称为一阶线性齐次微分方程. 显然,一阶线性齐次微分方程是可分离变量的方 程.一阶线性非齐次微分方程的求解步骤如下: 第一步,先求解其对应的齐次方程: y P ( x ) y 0
《高等数学》第6章常微分方程
y x2 4 4 x2
想一想
一电机开动后,每分钟温度升高10 C,同时将按冷却定律不断发散
热量.设电机安置在15 C恒温的房子里,求电机温度与时间t的函
数关系.
6.3 二阶常系数线性微分方程
了解二阶常系数线性微分方程的 概念及分类;掌握二阶常系数齐 次、非齐次线性微分方程的求解 方法及分类;能够灵活运用公式 解决实际问题.
Cx x 1,两边积分得 : Cx 1 x 12 C.因此原方程通
2 解为 :
y
1 2
x
12
C x
12
1 2
x
14
Cx
12
(C为任意常数).
2. 求微分方程y 2 y x满足条件y2 0的特解.
x
解:先解方程y 2 y 0 dy 2 dx,两边积分得y Cx2.
方程. 这类方程的求解一般分为两步:
1 分离变量:化原方程为 dy f (x)dx的形式;
g( y)
2 两边积分: gd(yy) f (x)dx得到x与y的一个关系式,即通解.
例题
1. 求微分方程 dy 2xy的通解.
dx
解:分离变量为dy
y
2 xdx, 两边积分得
dy y
2xdx ln
同时,C1,C2为任意常数,故y C1ex C2e2x是微分方程的通解.
将条件代入通解中, 得CC11
C2 0 2C2 1
CC12
1 .
1
故所求特解为: y ex e2x.
想一想
建设绿地、防止土地沙漠化的环保意识已成为人 们的共识.现已查明,有一块土地正在沙化,并且 沙化的数量正在增加,其增加的速率与剩下的绿地 数量成正比.有统计得知,每年沙化土地的增长率 是绿地的 1 ,现有土地10万亩,试求沙化土地与
第6章常微分方程初值问题的解法
yk 1ykh 2 k[f(xk,yk)f(xk 1,yk 1)]
ykh 2 k[ (ykx k 1 ) ( yk 1x k 1 1 )]
yk11 29 1yk1k05110
预估-校正Euler方法:
y k 1 0 .90 y k 5 0 .00 k 9 0 .1 5
20
Euler方法
xk
yk
yk y(xk)
0.0 1.000000
0.0
梯形方法
yk
yk y(xk)
1.000000
0.0
续
预估-校正方法
yk
yk y(xk)
1.000000
0.0
0.1 1.000000 0.2 1.010000
4.8×10-3 8.7×10-3
1.004762 1.018594
y(0) 1
其解析解为: y1xe-t2dt x[0,1] 0 很难得到其解析解
4
例如:
y=x+y , x[0,1]
y(0) 1
其解析解为 yx12ex
只有一些特殊类型的微分方程问题能够得到用解析表达式 表示的函数解,而大量的微分方程问题很难得到其解析解。
因此,只能依赖于数值方法去获得微分方程的数值解。
例如:
y=x+y , x[0,1]
y(0) 1
其解析解为:yx12ex
3
但是, 只有一些特殊类型的微分方程问题能够得到用解析 表达式表示的函数解,而大量的微分方程问题很难得到其解 析解。
因此,只能依赖于数值方法去获得微分方程的数值解。
例如:
y =e-x2 ,
x[0,1]
7.5×10-5 1.4×10-4
ykh 2 k[ (ykx k 1 ) ( yk 1x k 1 1 )]
yk11 29 1yk1k05110
预估-校正Euler方法:
y k 1 0 .90 y k 5 0 .00 k 9 0 .1 5
20
Euler方法
xk
yk
yk y(xk)
0.0 1.000000
0.0
梯形方法
yk
yk y(xk)
1.000000
0.0
续
预估-校正方法
yk
yk y(xk)
1.000000
0.0
0.1 1.000000 0.2 1.010000
4.8×10-3 8.7×10-3
1.004762 1.018594
y(0) 1
其解析解为: y1xe-t2dt x[0,1] 0 很难得到其解析解
4
例如:
y=x+y , x[0,1]
y(0) 1
其解析解为 yx12ex
只有一些特殊类型的微分方程问题能够得到用解析表达式 表示的函数解,而大量的微分方程问题很难得到其解析解。
因此,只能依赖于数值方法去获得微分方程的数值解。
例如:
y=x+y , x[0,1]
y(0) 1
其解析解为:yx12ex
3
但是, 只有一些特殊类型的微分方程问题能够得到用解析 表达式表示的函数解,而大量的微分方程问题很难得到其解 析解。
因此,只能依赖于数值方法去获得微分方程的数值解。
例如:
y =e-x2 ,
x[0,1]
7.5×10-5 1.4×10-4
第6章常微分方程
Y 2 XY 2 X C2 ,(C2 C1 ) x X 3 再将 代回得所求解为: y Y 2 2x 2 2xy y 2 8x 2 y C (C C2 10)
2 2
2
4、一阶线性微分方程
定义 型如 y Pxy Q(x)
…… (2)
……(3)
由(1)可得: y x 2 C
所以 y x 2 1
……(4)
引例 2 火车以 20 米/秒行驶时,若以 04m / s2 . 的加速度刹车,则到停止时位移为多少?
解 设刹车后位移与时间关系为 s st ,
d 2s 则有 2 0.4 dt ds 且 20, s t 0 0 dt t 0
故 ln y x 2 C
y e
x 2 C
e e
C1e
C x2
x2
x2
即方程的通解为 y Ce
例3 求微分方程 x xy2 dx x 2 y ydy 0 满足
初始条件 y
x0
1 的特解.
x y 解 原方程变形为: 2 dx dy 2 x 1 1 y 1 x2 1 1 1 C1 lnx 2 1 ln y 2 1 C1 ln 2 2 y 1 2 2 2 即: x 1 C y2 1 1 y| x 0 1 C 2 x2 1 1 故所求特解为: 2 y 1 2
例6 解方程 2x y 4dx x y 1dy 0
dy 2x y 4 解 由原方程得: …(*) dx x y 1 x X h dx dX 令 ,则 ,代入方程(*)得: y Y k dy dY 2 h k 4 0 dY 2 X Y 2h k 4 ,又由 得: dX X Y h k 1 h k 1 0 x X 3 h 3 ,将 代入方程(*)得: y Y 2 k 2 dY 2X Y 2 Y 1 Y dX X Y x X
高等数学 第六章
(6-16)
式(6-16)就是通过常数变易法得到的式(6-12) 的通解. 我们不主 张读者在求解每一道阶线性微分方程的题目时都用该方法,而 是要求大家熟记并直接利用式(6-16)解题,前提是你首先需要把 所给的方程写成式(6-12)的形式或明确方程中哪些因子是p(x) 和q(x) . 公式中出现了三次不定积分的求解,结果都不需要带不 定常数,只需找一个原函数即可.
yn1 f (x)dx C1 F1 x C1
其中,假定F1(x) 为f(x) 的原函数. 现对yn-1 积分一次,则y(n-1) 可降一次阶,即
yn2 F1(x)dx C1x C2 F2 x C1x C2
6.1.4 高阶微分方程
其中,假定F2(x) 为F1(x)的原函数. 现对y(n-2) 积分一次,则n-2 可降一次阶,可得
解 方程两边同除以m 并整理得
dv k v g dt m 这是一阶线性微分方程,由式(6-16)得它的通解
v
e
k dt m
ge
k dt
m dt
C
e
k dt m
g
e
k m
dt
dt
C
kt
em
mg k
k gt
em
C
mg k
k gt
Ce m
例6.2.5 跳伞运动员降落过程的运动方程是
称
dy p(x) y 0 dx
(6-13)
为一阶齐次线性微分方程,简称为式(6-12)对应的齐次方程.
下面我们来求式(6-12)的通解. 为此,先求式(6-13)的通解. 分
离变量得 积分得
dy p(x)dx y
dy y
p( x)dx
即
第六章 常微分方程解法
yn1 yn h ( xn , yn , h)
§6.1 概述
常微分方程数值解法所考虑的主要问 题有:
(1) 方法推导。即用什么样的途径来导出 递推格式; (2) 收敛性。即差分方程的解能否充分逼 近微分方程初值问题的解; (3) 误差传播。在递推过程中,每一步 都会产生截断误差和舍入误差,这个误 差是否对后续各步产生严重影响。
第六章 常微分方程的数值解法
§6.4 改进欧拉方法
(modified Euler’s method)
§6.4 改进欧拉方法
梯形方法比欧拉方法更精确,但是一 种隐式方法,求解方程计算量大。 实际计算中,迭代初始值yn+1可取欧拉 方程结果,迭代一次即可,这样的计算 公式叫改进欧拉法。
§6.4 改进欧拉方法
§6.1 概述 理论做了系统阐述。在代数数论领域,他引进了相 应的符号表示法及其计算法则,建立起被称为“李 普希兹代数”的超复数系。在微分几何方面,他自 1869年起对黎曼关于n维流形的度量结构的工作做 出进一步阐述和推广,开创了微分不变量理论的研 究,因此被认为是协变微分的奠基人之一。他的工 作后来被里奇有效地用于张量分析。
§6.1 概述
本章我们将学习一阶常微分方程的初 值问题的数值解:
dy f ( x, y ) dx y ( x0 ) y0 (1) (2)
一般情况下,方程(1)有无穷多个解, 式(2)是确定解的初始条件。
§6.1 概述
定义: 如果一元函数y(x)对一切 a x b 满足 (1) ( x, y( x)) 平面区域D
计算方法 (力学系本科生)
第六章 常微分方程 的数值解法 (Integration of ordinary differential equations)
§6.1 概述
常微分方程数值解法所考虑的主要问 题有:
(1) 方法推导。即用什么样的途径来导出 递推格式; (2) 收敛性。即差分方程的解能否充分逼 近微分方程初值问题的解; (3) 误差传播。在递推过程中,每一步 都会产生截断误差和舍入误差,这个误 差是否对后续各步产生严重影响。
第六章 常微分方程的数值解法
§6.4 改进欧拉方法
(modified Euler’s method)
§6.4 改进欧拉方法
梯形方法比欧拉方法更精确,但是一 种隐式方法,求解方程计算量大。 实际计算中,迭代初始值yn+1可取欧拉 方程结果,迭代一次即可,这样的计算 公式叫改进欧拉法。
§6.4 改进欧拉方法
§6.1 概述 理论做了系统阐述。在代数数论领域,他引进了相 应的符号表示法及其计算法则,建立起被称为“李 普希兹代数”的超复数系。在微分几何方面,他自 1869年起对黎曼关于n维流形的度量结构的工作做 出进一步阐述和推广,开创了微分不变量理论的研 究,因此被认为是协变微分的奠基人之一。他的工 作后来被里奇有效地用于张量分析。
§6.1 概述
本章我们将学习一阶常微分方程的初 值问题的数值解:
dy f ( x, y ) dx y ( x0 ) y0 (1) (2)
一般情况下,方程(1)有无穷多个解, 式(2)是确定解的初始条件。
§6.1 概述
定义: 如果一元函数y(x)对一切 a x b 满足 (1) ( x, y( x)) 平面区域D
计算方法 (力学系本科生)
第六章 常微分方程 的数值解法 (Integration of ordinary differential equations)
第6章常微分方程
敬业
博爱Leabharlann 求是创新通解: 解中含有相互独立的任意常数且其个 数与方程阶数相等.
y
例: y=x2+C是方程y'=2x 的通解.
x2 y C1 x C 2 是 2
y=x2+C
方程y"=1的通解.
0
x
独立:
C1 C2 x C3 x 2
不独立: C1 x C2 x (C1 C2 ) x Cx
敬业
博爱
求是
创新
1 dx 1 d u x u
两端积分得: u ln u C1 ln x
y 将 u 代回有: x
y x
y ln y C1 x
C1 C e 即: y Ce ,其中 .
敬业
博爱
求是
创新
x 0
例6.
xy 求方程 y 2 满足 y 2 x y
敬业
博爱
求是
创新
初始条件: 用来确定通解中任意常数的条件.
例如:y(0)=0, y'(0)=1
特解: 通解中确定了任意常数的解.
例如:
y'=2x y(0)=0
初值问题
敬业
博爱
求是
创新
例 1. 验证:函数 x C1 cos kt C2 sin kt 是微分
d2x 方程 2 k 2 x 0 的解. 并求满足初始条件 dt dx x t 0 A, 0的特解. dt t 0 dx 解: kC1 sin kt kC2 cos kt , dt 2 d x 2 2 k C cos kt k C 2 sin kt , 1 2 dt 2 d x 将 2 和x的表达式代入原方程 , dt
第六章 常微分方程
中国劳动社会保障出版社
专题阅读
节菜单
6.1 可分离变量的微分方程 6.2 一阶线性微分方程 6.3 二阶常系数齐次线性微 分方程
中国劳动社会保障出版社
专题阅读
节菜单
6.1 可分离变量的微分方程 6.2 一阶线性微分方程 6.3 二阶常系数齐次线性微 分方程
中国劳动社会保障出版社
专题阅读
节菜单
6.1 可分离变量的微分方程 6.2 一阶线性微分方程 6.3 二阶常系数齐次线性微 分方程
中国劳动社会保障出版社
6.1 可分离变量的微分方程
节菜单
6.1 可分离变量的微分方程 6.2 一阶线性微分方程 6.3 二阶常系数齐次线性微 分方程
中国劳动社会保障出版社
6.1 可分离变量的微分方程 例题解析
节菜单
6.1 可分离变量的微分方程 6.2 一阶线性微分方程 6.3 二阶常系数齐次线性微 分方程
中国劳动社会保障出版社
6.2 一阶线性微分方程
节菜单
6.1 可分离变量的微分方程 6.2 一阶线性微分方程 6.3 二阶常系数齐次线性微 分方程
中国劳动社会保障出版社
6.2 一阶线性微分方程
节菜单
6.1 可分离变量的微分方程 6.2 一阶线性微分方程 6.3 二阶常系数齐次线性微 分方程
中国劳动社会保障出版社
6.2 一阶线性微分方程
节菜单
6.1 可分离变量的微分方程 6.2 一阶线性微分方程 6.3 二阶常系数齐次线性微 分方程
中国劳动社会保障出版社
6.2 一阶线性微分方程
节菜单
6.1 可分离变量的微分方程 6.2 一阶线性微分方程 6.3 二阶常系数齐次线性微 分方程
中国劳动社会保障出版社
高等数学微分方程的基本概念教学ppt讲解
(9)
2
这就是初速度为0的物体垂直下落时距离
s与时间t之间的函数关系.
Nanjing College of Information and Technology
9
第六章 常微分方程
二、微分方程的定义
第一节 微分方程的基本概念
微分方程: 凡含有未知函数的导数或微分的方程叫微分方程.
例 y xy, y 2 y 3 y e x , (t 2 x)dt xdx 0,
分类1:按自变量的个数,分为常微分方程和偏微分方程.
如果其中的未知函数只与一个自变量有关,就 称为常微分方程。
如 y′= x2 , y′+ xy2 = 0 , 都是常微分方程;
y(4) 4 y ' 4 y xex
Nanjing College of Information and Technology
11
第六章 常微分方程
第一节 微分方程的基本概念
如果未知函数是两个或两个以上自变量的函数, 并且在方程中出现偏导数
如
2u x2
2u y2
2u z2
0
就是偏微分方程;
本章我们只介绍常微分方程。
Nanjing College of Information and Technology
第六章 常微分方程
第一节 微分方程的基本概念
第六章 常微分方程
第一节 微分方程的基本概念 第二节 一阶微分方程 第三节 可降阶的高阶微分方程 第四节 二阶线性微分方程解的结构 第五节 二阶常系数线性齐次微分方程
Nanjing College of Information and Technology
常微分方程ppt (6)
例2 求方程
的通解.
解: 对应的齐次方程的特征根为 因此, 齐次方程通解为
再求非齐次方程的一个特解, 这里 因为 是特征方程的单根, 故特解形式为
将
代入方程得
因此, 原方程的特解为
因此, 原方程的通解为
二、非齐次项是多项式与指数函数之积
考虑方程 (3.4.7) 做变换 则方程(3.4.7)变为
由方程(3.4.2)的结果, 我们有(3.4.8) 有如下的 特解.
§3.4 线性非齐次常系数方程
线性非齐次常系数方程的待定系数法本 节我们将研究线性非齐次常系数方程,在 第2节给出的常数变易法比较繁琐,本节将 给出比较简单的解法.
考虑常系数非齐次线性方程
(3.4.1)
当 是一些数法来求解。
一、非齐次项是多项式 考虑方程 (3.4.2) 可取特解形式为 其中 把 是待定常数. 代入方程(3.4.2)左端为
则(3.4.10)变为
由解的叠加原理知
的解之和必为方程(3.4.10)的解.
又
,从而若
是解,那么
也是解,
所以方程的特解
形式为
其中
为t 的m次多项式,
当
不是方程(3.4.10)对应齐次方程
.
的特征根时,取 当
是方程(3.4.10)对应齐次方程 .
的特征根时,取
例5 求
解:先求对应齐次方程 特征方程 的根为
例3 求方程
的一个特解.
解: 对应的齐次方程的特征根为二重根 因此, 该方程特解的形式为
将
代入方程, 可得
因此, 原方程的一个特解为
例4 求
解: 做变换
的特解. 则原方程变为
对上面的方程积分得到一个特解
常微分方程ppt
1.微分方程的基本概念 2.一阶常微分方程 3.二阶线性微分方程
学科背景
十七世纪末,力学、天文学、物理 学及工程技术提出大量需要寻求函数 关系的问题。在这些问题中,函数关 系不能直接写出来,而要根据具体问 题的条件和某些物理定律,首先得到 一个或几个含有未知函数的导数的关 系式,即微分方程,然后由微分方程 和某些已知条件把未知函数求出来。
成正比, 并设降落伞离开跳伞塔时( t = 0 ) 速度为0, 求
降落伞下落速度与时间的函数关系.
解: 根据牛顿第二定律列方程
dv m mg kv
dt
初始条件为 v t 0 0
对方程分离变量, 然后积分 :
得
( 此处 mg k v 0 )
利用初始条件, 得 C 1 ln ( mg )
分离变量
cot u du dx x
两端积分
ln| sinu | ln| x | C1
sinu eC1x Cຫໍສະໝຸດ (C 0)由此又得到 y x arcsinC( x) (C 0)
注意: y 0 也是原方程的一个解, 所以可以有C 0
通解
y x arcsinC( x) (C R)
[例2] dy x y dx x y
特权福利
特权说明
VIP用户有效期内可使用VIP专享文档下载特权下载或阅读完成VIP专享文档(部分VIP专享文档由于上传者设置不可下载只能 阅读全文),每下载/读完一篇VIP专享文档消耗一个VIP专享文档下载特权。
年VIP
月VIP
连续包月VIP
VIP专享文档下载特权
享受60次VIP专享文档下买的VIP时长期间,下载特权不清零。
100W优质文档免费下 载
VIP有效期内的用户可以免费下载VIP免费文档,不消耗下载特权,非会员用户需要消耗下载券/积分获取。
学科背景
十七世纪末,力学、天文学、物理 学及工程技术提出大量需要寻求函数 关系的问题。在这些问题中,函数关 系不能直接写出来,而要根据具体问 题的条件和某些物理定律,首先得到 一个或几个含有未知函数的导数的关 系式,即微分方程,然后由微分方程 和某些已知条件把未知函数求出来。
成正比, 并设降落伞离开跳伞塔时( t = 0 ) 速度为0, 求
降落伞下落速度与时间的函数关系.
解: 根据牛顿第二定律列方程
dv m mg kv
dt
初始条件为 v t 0 0
对方程分离变量, 然后积分 :
得
( 此处 mg k v 0 )
利用初始条件, 得 C 1 ln ( mg )
分离变量
cot u du dx x
两端积分
ln| sinu | ln| x | C1
sinu eC1x Cຫໍສະໝຸດ (C 0)由此又得到 y x arcsinC( x) (C 0)
注意: y 0 也是原方程的一个解, 所以可以有C 0
通解
y x arcsinC( x) (C R)
[例2] dy x y dx x y
特权福利
特权说明
VIP用户有效期内可使用VIP专享文档下载特权下载或阅读完成VIP专享文档(部分VIP专享文档由于上传者设置不可下载只能 阅读全文),每下载/读完一篇VIP专享文档消耗一个VIP专享文档下载特权。
年VIP
月VIP
连续包月VIP
VIP专享文档下载特权
享受60次VIP专享文档下买的VIP时长期间,下载特权不清零。
100W优质文档免费下 载
VIP有效期内的用户可以免费下载VIP免费文档,不消耗下载特权,非会员用户需要消耗下载券/积分获取。
高等数学-第6章-常微分方程【可编辑全文】
6.3.3 形如 的y 方f 程y, y
6.4 二阶线性微分方程解的结构
6.4.1 二阶线性微分方程的一般形式 6.4.2 二阶线性齐次微分方程解的结构 6.4.3 二阶线性非齐次微分方程解的结构
6.4.1 二阶线性微分方程的一般形式
6.4.2 二阶线性齐次微分方程解的结构
6.4.2 二阶线性齐次微分方程解的结构
6.4.2 二阶线性齐次微分方程解的结构
6.4.2 二阶线性齐次微分方程解的结构
6.4.3 二阶线性非齐次微分方程解的结构
6.4.3 二阶线性非齐次微分方程解的结构
6.4.3 二阶线性非齐次微分方程解的结构
6.4.3 二阶线性非齐次微分方程解的结构
6.4.3 二阶线性非齐次微分方程解的结构
6.5.2 二阶常系数线性非齐次微分方程的求解
6.5.2 二阶常系数线性非齐次微分方程的求解
6.6 微分方程的简单应用
微分方程是利用一元微积分解决实际问题的重要数学工具.现实世 界中,能用微分方程建模研究的实际问题有很多,涉及的领域包括物理 学、化学、经济、生物、军事、资源等.下面举几个简单的例子,说明 如何运用微分方程解决实际问题.
6.3.1 形如 y'' f (x) 的方程 6.3.2 形如y'' f (x, y ') 的方程 6.3.3 形如y f y, y 的方程
6.3.1 形如 的y方'' 程f (x)
6.3.2 形如 的y''方f (程x, y ')
6.3.2 形如 的y''方f (程x, y ')
6.3.2 形如 的y''方f (程x, y ')
常微分方程PPT课件
8.1 常微分方程的基本概念
例
【例8-2】列车在平直线路上以20 m/s的速度行驶,当其制动时获得的加速度为 -0.4 m/s2 时,问开始制动后多长时间列车才能停住?在这段时间内列车行驶了多少路程? 解 设把列车刹车时的时刻记为t=0.设制动后t时刻列车行驶了s.显然直接求s=s(t)是困 难的,但由导数的物理意义可知d2s/dt2=-0.4 两端积分,得ds/dt=∫(-0.4)dt=-0.4t+C1 两端再积分,得s=-0.2t2+C1t+C2 其中C1,C2都是任意常数.现在需要确定C1,C2的值,根据题意知,未知函数s=s(t)满足 s0=0,v(0)=s′0=20 代入上面的两式,得C1=20,C2=0,因此s(t)=-0.2t2+20t 由于列车刹住时的速度为零,即s′(t)=-0.4t+20=0 求得t=50 s,于是列车所走的路程为s(50)=-0.2×502+20×50=500(m)
8.1 常微分方程的基本概念
上述两个实例讨论的都是已知未知函数导数(或微分)所满足的方程,求解未知函数的问 题,这就是微分方程问题.
定义8.1 含有未知函数导数或微分的方程称为微分方程.未知函数是一元函数的微 分方程称为常微分方程,简称为微分方程或方程;未知函数是多元函数的微分方程称 为偏微分方程.本书只讨论常微分方程.例8-1和例8-2中所建立的方程都是常微分方 程. 不同类型的微分方程在解法上有很大的差异.因此,在解微分方程之前必须正确识别 微分方程的类型.所谓微分方程的类型主要指方程的阶、线性与非线性、变系数与常 系数、齐次与非齐次等.
8.1 常微分方程的基本概念
例如 可以验证例8-1中,函数y=x2+C和y=x2+1都是方程dy/dx=2x的解,其中 y=x2+C是微分方程dy/dx=2x的通解,y=x2+1是微分方程dy/dx=2x的特解;例8-2 中的通解为s(t)=-0.2t2+C1t+C2,特解为s(t)=-0.2t2+20t. 在通解中说任意常数是独立的,其含义是指它们不能合并而使得任意常数的个 数减少.例如,函数y=C1sin x+C2sinx形式上有两个任意常数,但这两个常数并 不是独立的,事实上它可以写成y=(C1+C2)sinx=Csinx(其中C=C1+C2),因此 本质上它只含有一个任意常数. 显然,微分方程的通解给出了解的一般形式,若用未知函数及其各阶导数在某 个特定点的值将通解中的任意常数确定下来,就得到微分方程的特解.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
sin u
x
两边积分
cos u sin u
du
dx x
得
ln sin u ln x ln C sin u C x
故原方程的通解为 sin y C x y x arcsin Cx x
( 当C0时, y0也是方程的解)
08:34
12
例6.2.5 解微分方程 dy x y
dy u x du du dx
dx
dx (u) u x
08:34
11
例6.2.4 解微分方程 dy y tan y dx x x
解: 令 u y , 则y u x u, 代入原方程得 x u x u u tan u
分离变量
cos u du dx
解:在t到t+t这段时间内种群总数改变量为 y(t t) y(t) ny(t)t my(t)t
dy lim y(t t) y(t) (n m) y(t)
dt t0
t
采用可分离变量后,积分得
y Cert r ky
08:34
7
由y(0)y0确定常数C,可得生物总群自然增长规律
y x tan( x C)
08:34
15
6.2.2 一阶线性微分方程
一、一阶线性微分方程
定义3 如果方程中未知函数的导数(微分)的最高 阶数是一阶的,且所含未知函数及导数(微分)都是 一次幂的,则称这种方程为一阶线性微分方程。
一阶线性微分方程标准形式: dy P(x) y Q(x) dx
V e a
ln V0 V
C ln
V0
k
V ea
k eat 0
V Ve a
,
C
k a
V
k (1eat )
V V0e a
此为贡柏茨方程
08:34
10
二、可化为分离变量的某些方程*
1. 齐次方程 形如 dy ( y )
dx x 则称原方程为齐次微分方程。
令 : u y , 则 y xu ,两端对x求导数 , 得 : x
dV dt
aV ln V V
,
V (0) V0,
a 0,
V
k
V0e a
确定肿瘤生长规律。08:349源自解:V(ln
dV V
ln
V
)
adt
V
(ln
dV V
ln
V
)
adt
ln(ln
V
ln V )
at C1
ln
V V
Ceat
V (0) V0,
k eat
第六章 常微分方程
已知 y f (x) , 求 y — 积分问题 推广
已知含 y 及其若干阶导数的方程 , 求 y — 微分方程问题
08:34
1
6.1 微分方程的基本概念
几何问题 引例
物理问题
微分方程的基本概念
08:34
2
一. 两个例子
例6.1.1 已知一曲线过点A(1,3),且该曲线上任 意点P(x,y)处的切线斜率为2x,求此曲 线的方程。
2. 解非齐次方程 dy P(x) y Q(x) dx
改写为 dy Q(x) dx P(x)dx
yy
两边积分
ln
y
Q(x) y
dx
P(x)dx
令 Q(x) dx u(x) y eu(x)eP(x)dx y
6.2.1 可分离变量的微分方程
一、可分离变量的微分方程
形如 :
dy f (x) g( y)为可分离变量的微分方程 dx
dy g( y)
f
(x)dx
08:34
5
例6.2.1 (细菌繁殖模型)在一个理想的环境中,细
胞的繁殖率与细菌的数目成正比,若t0时细菌
的数目为x0,求系统的细菌繁殖规律。 解: 设x(t)表示在t时刻细菌数目,依题意有
解:
dy dx
1 1
y
x y
dx x y 令u y , 则y u xu
x
代入原方程得
x u
xu
1
u
x
du
1
2u
u2
1 u dx 1 u
(1 u)du
1 2u u2
dx x
1 ln 1 2u u2 2
ln
x
C1
ln (1 2u u2 )x2 C2 (1 2u u2 )x2 C
若Q(x) 0,称为齐次方程 ; 若Q(x) 0,称为非齐次方程。
08:34
16
1. 解齐次方程 dy P(x) y 0 dx
分离变量
两边积分得 故通解为
ln y P(x)dx C1
y Ce P(x)dx
P(x)dx 仅表示P(x)的一个原函数
08:34
17
y
k
r Cert
r y
k r ky0 ert
y0
此式称为Logistic方 程,其曲线参考图为
y r t
k
08:34
8
例6.2.3 (肿瘤生长模型)设V(t)是肿瘤体积。免疫 系统非常脆弱时,V呈指数式增长,但V长大到一定 程度后,因获取的营养不足使其增长受限制。描 述V的一种数学模型是:
dx kx (k 0) dt
两边积分
dx x
kdt
C 0或C eC1
ln x kt C1 即 x Cekt (C为任意常数) 又因x(0) x0为已知,故特解为 x x0ekt
08:34
6
例6.2.2 (自然生长模型) yy(t)表示一种生物在时 间t时种群总数,开始时种群总数y(0)y0, n,m分别表 示该总群的出生率和死亡率,实践证明nmrky,其 中r>0, k>0,试求该总群自然生长规律。
例6.1.2 质量为m的物体从空中自由落下,若略 去空气的阻力,求物体下落的距离s 与时间t的函数关系s s(t)。
08:34
3
二. 微分方程的几个概念
1. 微分方程 2. 微分方程的阶 3. 微分方程的解 4. 微分方程的通解 5. 微分方程的特解 6. 初始条件
08:34
4
6.2 一阶微分方程
x2 2xy y2 C
08:34
13
2. dy f (ax by c)型方程 dx
作变换
08:34
14
例6.2.6 解微分方程 dy (x y)2 dx
解: 令z x y dz 1 dy dx dx
dz dx
1
z2
dz 1 z2
dx
arctan z x C z tan( x C)