新人教版八年级下册第16章二次根式单元测试试卷A卷
八年级数学下册《第十六章 二次根式》单元测试卷及答案(人教版)
八年级数学下册《第十六章二次根式》单元测试卷及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列式子一定是二次根式是()3D.√7A.√−4B.πC.√a2.下列式子中,属于最简二次根式的是()A.√16B.√2C.√5D.√1.533.下列计算中,正确的是()A.√49=−7B.√(−3)2=3C.−√(−5)2=5D.√81=±9 4.若二次根式√x−2在实数范围内有意义,则x的取值范围是()A.x≥2B.x≤2C.x≠2D.x≥−25.计算:−√2×√7=()A.√14B.−√14C.2√7D.−2√7,b=√3则a与b的关系是()6.已知a=√33A.ab=1B.a=b C.a+b=0D.ab=−17.下列运算结果正确的是()A.√3+√2=√5B.√3×√2=√5C.3√5−√5=2D.√18÷√2=3 8.如图,已知一张矩形纸片由A,B两部分组成,阴影部分A是面积为32cm2的正方形.若矩形纸片的长为5√2cm,则B部分的面积为()A.6√3cm2B.10√2cm2C.8cm2D.5√2cm2二、填空题9.计算:(√3)2.10.当x=1时,二次根式√5−x的值为.11.若代数式x+√x+2有意义,则x的取值范围是.12.已知x=√5−1,则x2+2x=.13.已知a=√2+1,b=√2−1那么a2−ab=.三、解答题14.计算:(1)2√40−5√110−√10;(2)√48÷√3+2√15×√30−(2√2+√3)2.15.已知x=√5,y=√2,求(x−y)2的值.16.先化简,再求值:52√8x−6√x18+2x√2x,其中x=4.17.某居民小区有一块形状为长方形ABCD的绿地,长方形绿地的长BC为√162m,宽AB为√128m(即图中阴影部分),长方形花坛的长为(√13+1)m,宽为(√13−1)m(1)长方形ABCD的周长是多少?(结果化为最简二次根式)(2)除去修建花坛的地方.其他地方全修建成通道,通道上要铺上造价为50元每平方米的地砖,若铺完整个通道,则购买地砖需要花费多少元?18.阅读下列例题.在学习二次根式性质时我们知道(√a)2=a(a≥0)例题:求√3−√5√3+√5的值.解:设x=√3−√5√3+√5,两边平方得:x2=(√3−√5+√3+√5)2=(√3−√5)2+(√3+√5)2+2(√3−√5+√3+√5)即x2=3−√5+3+√5+4,x2=10∴x=±√10∵√3−√5+√3+√5>0∴√3−√5+√3+√5=√10请利用上述方法,求√4−√7√4+√7的值.参考答案1.D2.C3.B4.A5.B6.A7.D8.C9.310.211.x≥−212.413.2√2+2−√1014.(1)解:2√40−5√110−√10;=4√10−√102=5√10;2×√30−(2√2+√3)2(2)解:√48÷√3+2√15=√16+2√6−(8+4√6+3);=4+2√6−8−4√6−3;=−7−2√6;15.解:∵x=√5,y=√2∴(x−y)2=(√5−√2)2;=5−2√10+2;=7−2√10;16.解:原式=5√2x−√2x+2√2x=6√2x当x=4时,原式=6×√2×4=12√2.17.(1)解:长方形ABCD的周长=2(√162+√128)=2(9√2+8√2)=34√2(m)答:长方形ABCD的周长是34√2m;(2)解:购买地砖需要花费=50[9√2×8√2−(√13+1)(√13−1)]=50(144−13+1);=50×132;=6600(元)答:购买地砖需要花费6600元.18.解:设x=√4−√7−√4+√7则x2=(√4−√7−√4+√7)2=4−√7−2(√4−√7)(√4+√7)+4+√7=8+6=14∴x=±√14∵√4−√7−√4+√7<0∴√4−√7−√4+√7=−√14.。
2022-2023学年人教新版八年级下册数学《第16章 二次根式》单元测试卷(有答案)
2022-2023学年人教新版八年级下册数学《第16章二次根式》单元测试卷一.选择题(共12小题,满分36分)1.化简(﹣)2的结果是()A.﹣5B.5C.±5D.252.下列各式中,一定是二次根式的是()A.B.C.D.3.若二次根式有意义,则x的取值范围是()A.x≥0B.x≥5C.x≥﹣5D.x≤54.二次根式的值等于()A.﹣2B.±2C.2D.45.下列计算正确的是()A.=±3B.C.D.6.若是最简二次根式,则a的值可能是()A.﹣2B.2C.D.87.的有理化因式是()A.B.C.D.8.下列二次根式中能与合并的是()A.B.C.D.9.若是整数,则正整数n的最小值是()A.4B.5C.6D.710.如图,在数轴上所表示的x的取值范围中,有意义的二次根式是()A.B.C.D.11.已知二次根式,则下列各数中能满足条件的a的值是()A.4B.3C.2D.112.如果+有意义,那么代数式|x﹣1|+的值为()A.±8B.8C.与x的值无关D.无法确定二.填空题(共10小题,满分30分)13.化简的值是,把4化成最简二次根式是.14.计算:÷=.15.若是整数,则最小正整数n的值为.16.使得二次根式在实数范围内有意义的x的取值范围是.17.化简=.18.如果最简二次根式与是同类二次根式,那么x的值为.19.若是整数,则正整数n的最小值是.20.已知n是正整数,是整数,则n的最小值是.21.已知+=0,则+=.22.小明做数学题时,发现=;=;=;=;…;按此规律,若=(a,b为正整数),则a+b=.三.解答题(共5小题,满分54分)23.已知二次根式.(1)求x的取值范围;(2)求当x=﹣2时,二次根式的值;(3)若二次根式的值为零,求x的值.24.(1)通过计算下列各式的值探究问题:①=;=;=;=.探究:对于任意非负有理数a,=.②=;=;=;=.探究:对于任意负有理数a,=.综上,对于任意有理数a,=.(2)应用(1)所得的结论解决问题:有理数a,b在数轴上对应的点的位置如图所示,化简:﹣﹣+|a+b|.25.当a取什么值时,代数式取值最小?并求出这个最小值.26.阅读下面解题过程,并回答问题.化简:解:由隐含条件1﹣3x≥0,得x∴1﹣x>0∴原式=(1﹣3x)﹣(1﹣x)=1﹣3x﹣1+x=﹣2x按照上面的解法,试化简:.27.已知+2=b+8.(1)求a的值;(2)求a2﹣b2的平方根.参考答案与试题解析一.选择题(共12小题,满分36分)1.解:(﹣)2=5.故选:B.2.解:A、x<0时,不是二次根式,故此选项错误;B、x<﹣2时,不是二次根式,故此选项错误;C、是二次根式,故此选项正确;D、当x>0时,不是二次根式,故此选项错误;故选:C.3.解:∵x﹣5≥0,∴x≥5.故选:B.4.解:原式=|﹣2|=2.故选:C.5.解:A、=3,故本选项错误;B、=,故本选项错误;C、=5,故本选项错误;D、==,故本选项正确.故选:D.6.解:∵是最简二次根式,∴a≥0,且a为整数,中不含开的尽方的因数因式,故选项中﹣2,,8都不合题意,∴a的值可能是2.故选:B.7.解:的有理数因式是,故选:A.8.解:A、,不能与合并,错误;B、,能与合并,正确;C、,不能与合并,错误;D、,不能与合并,错误;故选:B.9.解:∵=3,∴正整数n的最小值是5;故选:B.10.解:从数轴可知:x≥﹣3,A.当﹣3≤x<3时,无意义,故本选项不符合题意;B.当x≥﹣3时,有意义,故本选项符合题意;C.当﹣3≤x≤3时,无意义,故本选项不符合题意;D.当x=﹣3时,无意义,故本选项不符合题意;故选:B.11.解:由题意可知:1﹣a≥0,解得:a≤1.故选:D.12.解:∵+有意义,∴x﹣1≥0,9﹣x≥0,解得:1≤x≤9,∴|x﹣1|+=x﹣1+9﹣x=8,故选:B.二.填空题(共10小题,满分30分)13.解:=;4=4×=.故答案是;.14.解:原式===4.故答案为:4.15.解:∵是整数,∴最小正整数n的值是:5.故答案为:5.16.解:∵二次根式在实数范围内有意义,∴x﹣2≥0,解得x≥2.故答案为:x≥2.17.解:原式===2,故答案为:2.18.解:∵最简二次根式与是同类二次根式,∴2x﹣1=5,∴x=3.故答案为:3.19.解:原式=5,则正整数n的最小值是3时,原式是整数.故答案为:3.20.解:==3,∵是整数,∴n的最小值是3,故答案为:3.21.解:由题意得,a﹣3=0,2﹣b=0,解得a=3,b=2,所以,+=+=+=.故答案为:.22.解:根据题中的规律得:a=8,b=82+1=65,则a+b=8+65=73.故答案为:73.三.解答题(共5小题,满分54分)23.解:(1)根据题意,得:3﹣x≥0,解得x≤6;(2)当x=﹣2时,===2;(3)∵二次根式的值为零,∴3﹣x=0,解得x=6.24.解:(1)①=4;=16;=0;=.探究:对于任意非负有理数a,=a.故答案为:4,16,0,,a;②=3;=5;=1;=2.探究:对于任意负有理数a,=﹣a.综上,对于任意有理数a,=|a|.故答案为:3,5,1,2,﹣a,|a|;(2)观察数轴可知:﹣2<a<﹣1,0<b<1,a﹣b<0,a+b<0.原式=|a|﹣|b|﹣|a﹣b|+|a+b|=﹣a﹣b+a﹣b﹣a﹣b=﹣a﹣3b.25.解:∵≥0,∴当a=﹣时,有最小值,是0.则+1的最小值是1.26.解:由隐含条件2﹣x≥0,得x≤2,则x﹣3<0,所以原式=|x﹣3|﹣(2﹣x)=﹣(x﹣3)﹣2+x=﹣x+3﹣2+x=1.27.解:(1)由题意知a﹣17≥0,17﹣a≥0,则a﹣17=0,解得:a=17;(2)由(1)可知a=17,则b+8=0,解得:b=﹣8,故a2﹣b2=172﹣(﹣8)2=225,则a2﹣b2的平方根为:±=±15.。
人教版八年级数学下册第16章《二次根式》单元测试卷(包含答案)
人教版八年级数学下册第16章二次根式单元测试卷(时间90分钟,满分120分)一、选择题(共10小题,3*10=30) 1.以下式子中,为最简二次根式的是()A .1B .22C .4D .122.已知a2+2 a + 18a =10,则a 等于()a 2A .4B .±2C.2 D .±43.以下二次根式中,最简二次根式是()A. 25aB.a 2+b 2a C.24.以下运算中,错误的选项是 () A.2+3=5 B.2×3=6C. 8÷2=2 D .|1-2|=2-1 5.以下计算正确的选项是 () A .53-23=2 B .22×32=62C. 3+23=3D .33÷3=3 6.若(3-b )2=3-b ,则()A .b>3B .b<3C .b≥3D.b≤37.以下二次根式中属于最简二次根式的是()A .14B .48C . aD .4a +4b8.已知a ,b ,c 为△ABC 的三边长,且a 2-2ab +b 2+|b -c|=0,则△ABC 的形状是() A .等腰三角形 B .等边三角形 C .直角三角形D .等腰直角三角形 9.若a +b <0,ab >0,则化简 a 2b 2的结果是AA.ab B.-ab C.-ab D.a b10.已知m=1+2,n=1-2,则代数式m2+n2-3mn的值为()A.9B.±3C.3D.5二.填空题(共8小题,3*8=24)11.计算:(1)(27)2=________;(2)18-21=________.212.若a2=3,b=2,且ab<0,则a-b=.13.2-5的倒数为________,绝对值为________.14.计算:50-14=________.215 .计算(3+1)(3-1)的结果等于________.16.已知x,y为实数,且y=x2-9-9-x2+4,则x-y的值为________.17.已知a≠0,b≠0且a<b,化简-a3b的结果是__________.18.已知16-x2-4-x2=22,则16-x2+4-x2=________.三.解答题(共6小题,46分)19.(8分)计算:(1)-1+(-2)2+3-8;2(2)3×(-6)+(1)-1-20200.2(1)20.(8分)化简:(-144)×(-169);18m2n(m>0).x x2+2x+121.(8分)先化简,再求值:(x-1-1)÷x2-1,此中x=2-1.22.(10分)已知a,b,c是△ABC的三边长,化简:(a+b+c)2-(b+c-a)2+(c-b-a)2.23.(10分)据报导某天有一个熊孩子把34楼的啤酒瓶拿到28楼而后扔下去,所幸并无人员伤亡,熊孩子也被家长打得屁股开花;据研究从高空抛物到落地所需时间t(单位:s)和高度h(单位:m)近似地知足公式t =2h10(不考虑风速的影响).(1 )从50m高空抛物到落地所需时间t1的值是多少?(2 )从100m高空抛物到落地所需时间t2的值是多少?(3)t2是t1的多少倍?24.(10分)察看以下各式:①2-2=8=22;②3-3=27=33;③4-4=64=44555101010171717.5(1)依据你发现的规律填空:5-26=________=________;n猜想n-n2+1(n≥2,n为自然数)等于什么?并经过计算证明你的猜想.25.(12分)(1)已知|2019-x|+x-2020=x,求x-20202的值;(2)已知a>0,b>0且a(a+b)=3b(a+5b),求2a+3b+ab的值.a-b+ab参照答案1-5BCBAD6-10DABAC11.(1)28(2)22-7-2-5,5-25-72 16.-1 或-7 17.-a -ab 18.321119.解: (1)原式= 2+2+(-2)=2;原式=-32+2-1=-32+1.20. 解:(1)原式= 22=12×13=156;12×13(2)原式= 2 22n.3 ×m×2n=3mx x - 1 x 2+2x +1 21. 解:原式=(x -1-x - 1 )÷x 2-11 (x +1)(x -1) =x -1×(x +1)2=1,x +1当x =2-1时,1 2原式==22-1+1 22.解:∵a,b ,c 是△ABC 的三边长,a +b +c >0,b +c -a >0,c -b -a <0,∴原式=a +b +c -(b +c -a)+(a +b -c)=3a +b -c.23.解:(1)当h =50时,t1= 2h = 100=10. 10 10(2 )当h=10022h=200=20=25.时,t=1010( 3 )t2=25=2,∵t11∴t2是t1的2倍.24.解:(1)125;552626 (2 )猜想:n=nn.n-212n+n+1考证以下:当n≥2,n为自然数时,n-2n=n3+n-2n=n3=nn.+12+122+1n n+1n n+1n25.解:(1)∵x-2020≥0,∴x≥2020,x-2019+x-2020=x,∴x-2020=2019,x-2020=20192,x=20192+2020.x-20202=20192-20202+2020(2019-2020)×(2019+2020)+2020=-(2019+2020)+2020=-2019.(2)∵a( a+b)=3 b( a+5 b),∴a+ab=3ab+15b,a-2ab-15b=0,∴(a-5b)(a+3b)=0.∵a+3 b>0,∴a-5b=0,∴a=25b,∴原式=2×25b+3b+25b2=58b=2. 25b-b+25b229b。
人教版八年级下数学《第16章二次根式》单元测试(含答案)
第16章二次根式一、选择题1.下列式子中,属于最简二次根式的是()A. B. C. D.2.下列各式中3 ,,,,,二次根式有()个.A. 1B. 2C. 3D. 43.下列计算结果正确的是()A. + =B. 3 ﹣=3C. × =D. =54.=()A. ﹣1B. 1C. ﹣D. ﹣5.说法错误的个数是()①只有正数才有平方根;②-8是64的一个平方根③;④与数轴上的点一一对应的数是实数。
A. 1个B. 2个C. 3个D. 4个6.若x≤0,则化简|1﹣x|﹣的结果是()A. 1﹣2xB. 2x﹣1C. ﹣1D. 17.若与化成最简二次根式是可以合并的,则m、n的值为()A. m=0,n=2B. m=1,n=1C. m=0,n=2或m=1,n=1D. m=2,n=08.二次根式中x的取值范围是()A. x>2B. x≥2C. x<2D. x≤29.把m根号外的因式适当变形后移到根号内,得()A. B. - C. - D.10.在实数范围内,有意义,则x的取值范围是()A. x≥0B. x≤0C. x>0D. x<011.如果成立,那么实数a的取值范围是()A. B. C. D.12.一个长方形的长和宽分别是、,则它的面积是()A. B. 2(3 +2 ) C. D.二、填空题13.计算:(2 )2=________.14.计算:-=________15.代数式有意义的条件是________.16.化简 ________.17.当x取________时,的值最小,最小值是________;当x取________时,2-的值最大,最大值是________.18.已知x=+,y=-,则x3y+xy3=________ .19.若x、y都是实数,且y= 则x+y=________20.使式子有意义的x的取值范围是________ .21.填空:﹣1的倒数为________.22.比较大小________.(填“>”,“=”,“<”号)三、解答题23.(1)计算:(﹣)2+(2+)(2﹣)(2)因式分解:9a2(x﹣y)+4b2(y﹣x)(3)先化简,再求值:÷(a﹣1﹣),其中a2﹣a﹣6=0.24.若x、y都是实数,且y=++8,求x+y的值.25.已知y= +9,求代数式的值.参考答案一、选择题B BCD B D C D C A B C二、填空题13.2814.215.x≥﹣316.17.-5;0;5;218.1019.1120.x是实数21.22.>三、解答题23.解:(1)原式=()2﹣2××+()2+(2)2﹣()2 =2﹣2+3+12﹣6=11﹣2;(2)原式=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b);(3)÷(a﹣1﹣)=÷=÷=•==,∵a2﹣a﹣6=0,∴a2﹣a=6,∴原式=.24.解:由题意得,x﹣3≥0且3﹣x≥0,解得x≥3且x≤3,所以,x=3,y=8,x+y=3+8=11.25.解:由题意可得,x﹣4≥0,4﹣x≥0,解得,x=4,则y=9,则==2﹣3=﹣1。
人教版数学八年级下册第十六章二次根式 单元测试卷(含答案解析)
人教版数学八年级下册第十六章二次根式单元测试卷(含答案解析)一、单选题(共12小题,每小题4分,共计48分)1A.4b B.CD2.下列各数中,与的积不含二次根式的是A.B.CD3m为()A.-10B.-40C.-90D.-1604.若a,b-5,则a,b的关系为A.互为相反数B.互为倒数C.积为-1D.绝对值相等5.下列计算正确的是3==6=3=;a b=-.A.1个B.2个C.3个D.4个6合并的是()A B C D7.若6的整数部分为x,小数部分为y,则(2x)y的值是() A.5-B.3C.-5D.-38.如图,a,b,c的结果是()a c+A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b9.估计的值应在( )A .5和6之间B .6和7之间C .7和8之间 D.8和9之间10有意义,那么直角坐标系中点A(a,b)在() A .第一象限 B .第二象限 C .第三象限D .第四象限11.下列计算正确的是AB . CD12.如果,,那么各式:,,,其中正确的是()A .①②③B .①③C .②③D .①②二、填空题(共5小题,每小题4分,共计20分)13.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a﹣的结果是_____.14.已知a 、b满足(a ﹣1)2=0,则a+b=_____.15有意义,则实数x 的取值范围是_____.16.若a ,b 都是实数,b﹣2,则a b 的值为_____. 17.已知实数,互为倒数,其中__________. ()=3=2==0ab > 0a b +<=1=b =-a b a 2=+三、解答题(共4小题,每小题8分,共计32分)18=b+8.(1)求a 的值;(2)求a 2-b 2的平方根.19.已知实数a 满足|300﹣a =a ,求a ﹣3002的值.20.已知点A(5,a)与点B(5,-3)关于x 轴对称,b 为求(1)的值。
人教版八年级下册《第16章二次根式》单元测试(有答案)-(数学)
第十六章 《二次根式》单元测试题一、 选择题(本大题共10小题,每小题2分,共20分) 1. 下列式子一定是二次根式的是( ) A.2--xB.xC.22+xD.22-x2. 二次根式13)3(2++m m 的值是( )A. 23B. 32C.22D. 03. 若13-m 有意义,则m 能取的最小整数值是( )A. m =0B. m =1C. m =2D. m =34. 若x < 0,则xx x 2-的结果是( )A. 0B. -2C. 0或-2D. 2 5. 下列二次根式中属于最简二次根式的是( ) A.14B.48C.ba D.44+a6. 如果)6(6-=-•x x x x ,那么( )A. 0≥xB. 6≥xC. 60≤≤xD. x 为一切实数7. 小明的作业本上有以下四题:①24416a a =;②a a a 25105=⨯;③a aa a a =•=112;④a a a =-23。
做错的题是( )A. ①B. ②C. ③D. ④8. 化简6151+的结果是( ) A.3011B. 33030C.30330D. 11309. 若最简二次根式a +1与a 24-的被开方数相同,则a 的值为( )A. 43-=aB. 34=a C. 1=a D. 1-=a 10. 若n 75是整数,则正整数n 的最小值是( )A. 2B. 3C. 4D. 5二、 填空题(本大题共10小题,每小题3分,共30分)11. 若b b -=-332)(,则b 的取值范围是___________。
12.2)52(-=__________。
13. 若m < 0,则332m m m ++=_______________。
14.231-与23+的关系是____________。
15. 若35-=x ,则562++x x 的值为___________________。
16. 若一个长方体的长为62c m ,宽为3c m ,高为2c m ,则它的体积为_______c m 3。
人教版数学八年级下《第十六章二次根式》单元测试题含答案
人教版数学八年级下《第十六章二次根式》单元测试题含答案时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.已知a 2a +2a 2+18a =10,则a 等于( C ) A .4 B .±2C .2D .±4 2.估计32×12+20的运算结果应在( C ) A .6到7之间 B .7到8之间C .8到9之间D .9到10之间3.已知x +y =3+2,xy =6,则x 2+y 2的值为( A )A .5B .3C .2D .14.下列式子为最简二次根式的是( A )A. 5B.12C.a 2D.1a5.下列计算正确的是( D )A .53-23=2B .22×32=6 2C.3+23=3 D .33÷3=36.化简28-2(2+4)得( A )A .-2 B.2-4C .-4D .82-47.若k ,m ,n 都是整数,且135=k 15,450=15m ,180=6n ,则下列关于k ,m ,n 的大小关系,正确的是( D )A .k <m =nB .m =n <kC .m <n <kD .m <k <n8.设M =⎝⎛⎭⎫1ab -a b ·ab ,其中a =3,b =2,则M 的值为( B ) A .2 B .-2C .1D .-19.要使二次根式x -3有意义,则x 的取值范围是( D )A .x =3B .x >3C .x ≤3D .x ≥310.下列二次根式中,不能与3合并的是( C ) A .2 3 B.12C.18D.27二、填空题(每小题3分,共24分)11.计算:(1)(27)2=________; (2)18-212=________. 12.如果两个最简二次根式3a -1与2a +3能合并,那么a =________.13.如果x ,y 为实数,且满足|x -3|+y +3=0,那么⎝⎛⎭⎫x y 2018的值是________.14.已知x =5-12,则x 2+x +1=________. 15.若一个三角形的一边长为a ,这条边上的高为63,其面积与一个边长为32的正方形的面积相等,则a =________.16.实数a 在数轴上的位置如图所示,化简|a -1|+(a -2)2=________.17.如果实数m 满足(m -2)2=m +1,且0<m <3,那么m 的值为________.18.已知16-x 2-4-x 2=22,则16-x 2+4-x 2=________.三、解答题(共66分)19.(16分)计算下列各题:(1)(48+20)-(12-5);(2)20+5(2+5);(3)48÷3-215×30+(22+3)2;(4)(2-3)2017(2+3)2018-|-3|-(-2)0.20.(6分)已知y =2x -3+3-2x -4,计算x -y 2的值.21.(10分)(1)已知x =2+1,求x +1-x 2x -1的值;(2)已知x =2-1,y =2+1,求y x +x y的值.22.(6分)已知⎩⎨⎧x =2,y =3是关于x ,y 的二元一次方程3x =y +a 的解,求(a +1)(a -1)+7的值.23.(8分)先化简,再求值:⎝⎛⎭⎫6x y x +3y xy 3-⎝⎛⎭⎫4y x y +36xy ,其中x =2+1,y =2-1.24.(8分)观察下列各式:①2-25=85=225;②3-310=2710=3310; ③4-417=6417=4417. (1)根据你发现的规律填空:5-526=________=________; (2)猜想n -n n 2+1(n ≥2,n 为自然数)等于什么,并通过计算证实你的猜想.25.(12分)(1)已知|2016-x |+x -2017=x ,求x -20172的值;(2)已知a >0,b >0且a (a +b )=3b (a +5b ),求2a +3b +ab a -b +ab的值.答案11.(1)28 (2)22 12.4 13.114.2 15.23 16.1 17.1218.32 解析:设16-x 2=a ,4-x 2=b ,则a -b =16-x 2-4-x 2=22,a 2-b 2=(16-x 2)-(4-x 2)=12.∵a 2-b 2=(a +b )(a -b ),∴a +b =1222=32,即16-x 2+4-x 2=3 2.19.解:(1)原式=43+25-23+5=23+3 5.(4分)(2)原式=25+25+(5)2=45+5.(8分)(3)原式=43÷3-215×30+(22)2+2×22×3+(3)2=4-26+8+46+3=15+2 6.(12分) (4)原式=(2-3)2017(2+3)2017(2+3)-3-1=[(2-3)(2+3)]2017×(2+3)-3-1=2+3-3-1=1.(16分)20.解:∵2x -3≥0,解得x ≥32.又∵3-2x ≥0,解得x ≤32,∴x =32.(3分)当x =32时,y =-4.(4分)∴x -y 2=32-(-4)2=-292.(6分) 21.解:(1)原式=x 2-1-x 2x -1=-1x -1.(2分)当x =2+1时,原式=-12+1-1=-22.(5分)(2)∵x =2-1,y =2+1,∴x +y =22,xy =1.(7分)∴y x +x y =(x +y )2-2xy xy=(22)2-2×1=6.(10分)22.解:由题意得3×2=3+a ,解得a = 3.(3分)∴(a +1)(a -1)+7=a 2+6=(3)2+6=9.(6分)23.解:∵x =2+1>0,y =2-1>0,∴原式=(6xy +3xy )-(4xy +6xy )=-xy =-(2+1)(2-1)=-1.(8分)24.解:(1)12526 5526(2分) (2)猜想:n -n n 2+1=n n n 2+1.(4分)验证如下:当n ≥2,n 为自然数时,n -n n 2+1=n 3+n n 2+1-n n 2+1=n 3n 2+1=n n n 2+1.(8分) 25.解:(1)∵x -2017≥0,∴x ≥2017,∴x -2016+x -2017=x ,∴x -2017=2016,∴x -2017=20162,∴x =20162+2017.(3分)∴x -20172=20162-20172+2017=(2016-2017)×(2016+2017)+2017=-(2016+2017)+2017=-2016.(5分)(2)∵a (a +b )=3b (a +5b ),∴a +ab =3ab +15b ,∴a -2ab -15b =0,∴(a -5b )(a +3b )=0.(8分)∵a +3b >0,∴a -5b =0,∴a =25b ,(10分)∴原式=2×25b +3b +25b 225b -b +25b 2=58b 29b =2.(12分)。
人教版八年级下册数学第十六章《二次根式》测试题含答案
八年级下册数学《二次根式》单元测试卷评卷人得分一、单选题1x 的取值范围是()A .2x >B .x ≥2C .2x <D .x ≤22有意义,则满足条件的a 的个数为()A .1B .2C .3D .43.下列计算正确的是()A =-3B .2=2C =D .+=4.下列计算正确的是()A =B =C .3-=D .8182+=5.估计8×3的运算结果应在()A .1到2之间B .2到3之间C .3到4之间D .4到5之间6.下列式子中,最简二次根式的是()A B C D .7中,最简二次根式是()A .①②B .③④C .①③D .①④8.若式子2−1−1−2+1有意义,则x 的取值范围是()A .x≥0.5B .x≤0.5C .x=0.5D .以上答案都不对9.算式⨯之值为何?()A .B .C .D .10.把()A .B C .D .-111.下列计算正确的是().A =B .÷==C .()(222557-=-=-D .(((226+=-=-12.设++ S 的最大整数[S]等于()A .98B .99C .100D .101评卷人得分二、填空题13x 的取值范围是__.14.计算:+=_________.15.如果最简二次根式3−3和7−2是同类二次根式,那么a 的值是_____________16-(填“>”、“<”或“=”)17.已知x ,y ﹣2)2=0,则x ﹣y=__________.18.若x=2,则x 2﹣4x+8=_____.评卷人得分三、解答题1920÷.21.计算:1324+-+22.计算:212+23.已知:1x =-,1y =2222x y xy x y +--+的值.24.先简化,再求值:x 25x 32x 6x 3--⎛⎫÷-- ⎪--⎝⎭,其中x 2=.25.若a 、b 都是实数,且12++的值.26.已知:,的值.27.阅读理解材料:把分母中的根号去掉叫做分母有理化,例如:255;1==+等运算都是分母有理化.根据上述材料,(1(2++(3++ 参考答案1.B【解析】【分析】根据二次根式中的被开方数必须是非负数,即可求解.【详解】根据题意得:x-2≥0,解得:x≥2.故选B .【点睛】本题考查的知识点为:二次根式的被开方数是非负数.2.A【解析】试题分析:根据二次根式有意义的条件和偶次方的非负性,可以得,﹣(1﹣a)2≥0,则(1﹣a)2≤0,又(1﹣a)2≥0,可得(1﹣a)2=0,解得,a=1,故选A.考点:二次根式有意义的条件3.B【解析】【分析】将选项中的各式子计算出正确的结果,然后对照即可解答本题.【详解】解:A.∵3=,故A错误;B.22=,故B正确;C.+=,故C错误;不能合并故错误.D.,,D故选B【点睛】本题考查二次根式的性质、混合运算,解题关键是明确二次根式的混合运算的计算方法.4.B【解析】【分析】根据二次根式加减法则即可判定.【详解】A、不是同类项不能合并,故选项错误;B、+=,故选项正确;C、不是同类项不能合并,故选项错误;D、8182+=22+3252=22,故选项错误.故选B.【点睛】此题主要考查二次根式的加减运算,注意只有同类二次根式才能合并.同类二次根式:①根指数是2,②被开方数相同.二次根式的加减运算,只有同类二次根式才能合并.5.C【解析】【分析】先计算出原式=2+3,再进行估算即可.【详解】8×3=22+3=2+3,3的数值在1-2之间,所以2+3的数值在3-4之间.故选C.6.B【解析】试题解析:3=,故该选项错误;是最简二次根式,故该选项正确;=,故该选项错误;3=,故该选项错误.故选B.考点:最简二次根式.7.C【解析】【分析】直接根据最简二次根式的定义求解即可.【详解】不能化简,是最简二次根式;=55,不是最简二次根式;不能化简,是最简二次根式;,不是最简二次根式,故选C.【点睛】本题考查了最简二次根式:满足①被开方数不含分母;②被开方数中不含开得尽方的因数或因式的二次根式叫最简二次根式.8.C【解析】试题解析:要使二次根式有意义,则2−1≥01−2≥0,解得x=12,故选C.考点:二次根式有意义的条件.9.D【解析】【分析】先算括号内乘法,再合并同类二次根式,最后算括号外乘法即可.【详解】原式=),故选D.【点睛】本题考查了二次根式的混合运算的应用,主要考查学生的计算能力,题目比较好,难度适中.10.A【解析】【分析】直接利用二次根式的性质得出a的符号进而化简求出答案.【详解】由题意可知a<0,∴故选A.【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.11.D【解析】【分析】根据二次根式的运算法则计算各个选项,再判断.【详解】A、被开方数不同,不能相加,错误;B、原式==,错误;C、应利用完全平方公式计算,错误;D、符合平方差公式,正确.故选D.【点睛】本题考查了二次根式的混合运算.12.B【解析】【分析】1111n n=+-+,代入数值,求出=99+1-1100,由此能求出不大于S的最大整数为99.【详解】=()211n nn n++=+=111+1n n-+,∴S==1111111+11122399100-++-+++-=199+1100-=100-1100,∴不大于S的最大整数为99.故选B.【点睛】本题主要考查了二次根式的化简求值,知道1111nn=+-+是解答本题的基础.13.【解析】试题分析:根据二次根式的性质,被开方数大于或等于0,同时结合分式的分母不能为0,即可求x的取值范围.由题意得,解得,故x的取值范围是.考点:本题主要考查了二次根式的意义和性质点评:解答本题的关键是掌握二次根式中的被开方数必须是非负数,分式的分母不能为0,否则二次根式、分式无意义14.2【解析】【分析】利用平方差公式求解,即可求得答案.【详解】=2-)2=5-3=2.故答案为2.【点睛】此题考查了二次根式的乘除运算.此题难度不大,注意掌握平方差公式的应用.15.2【解析】【分析】根据最简二次根式及同类二次根式的定义列方求解.【详解】解:∵最简二次根式3−3与7−2是同类二次根式,∴3−3=7−2,解得:=2.故答案是:2.【点睛】此题主要考查了同类二次根式的定义,即:化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.16.<【解析】【分析】根据二次根式的加减,可化简二次根式,根据被开方数越大,算术平方根越大,可得答案.【详解】=,故答案为<.【点睛】本题考查了实数比较大小,先化简,再比较大小.17.-3【解析】【分析】根据非负数的性质得到3020x y y -+⎧⎨-⎩==,再利用代入消元法解方程组得到x 和y 的值,然后计算x-y 的值.【详解】根据题意得3020x y y -+⎧⎨-⎩==,解得12x y -⎧⎨⎩==,所以x-y=-1-2=-3.故答案为-3.【点睛】本题考查了解二元一次方程组:利用加减消元法或代入消元法解二元一次方程组.也考查了非负数的性质.18.14.【解析】根据配方法,原式变形为2x 4x 8-+=(x-2)2+4,代入可得(-2)2+4=10+4=14.故答案为14.19.7【解析】【分析】先把各二次根式化为最简二次根式,然后合并后进行二次根式的除法运算.【详解】7==.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,然后合并同类二次根式,再进行二次根式的乘除运算.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.7【解析】【分析】根据二次根式的除法法则进行计算即可.【详解】,,=7.【点睛】在进行二次根式相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.21.27344--【解析】【分析】先把括号内的各二次根式化为最简二次根式,再去括号,合并同类二次根式即可得解.【详解】1324+-,=1324+-+=233293+2244--,=-44-.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,再进行去括号,然后进行二次根式的加减运算.22.2【解析】原式=43+23-3=63-43=2323.【解析】试题分析:根据x 、y 的值可以求得x-y 的值和xy 的值,从而可以解答本题.试题解析:∵x =1,y =1+,∴x -y =(1)-(1)=-,xy =(1-)(1)=-1,∴x 2+y 2-xy -2x +2y=(x -y)2-2(x -y)+xy=(-)2-2×(-)+(-1)=7+.24.24-【解析】【分析】根据分式混合运算的法则把原式进行化简,再把x 的值代入进行二次根式化简即可.【详解】解:原式=()()()()()()()x 2x 2x 2x 2x 312x 3x 32x 3x 2x 22x 2-+----÷=⋅=-----+-+.当x 2=时,原式=4==-.25【解析】【分析】先由二次根式的非负性可知,1﹣4a=0,求解出a 值后再代入求解b 值,最后将a 和b 的值代入原式进行求解.【详解】解:∵1﹣4a≥0且4a ﹣1≥0,∴1﹣4a=0,解得a=14,则b=12,所以原式22=-=【点睛】本题考查了利用二次根式的非负性求解参数并进行二次根式运算.26.【解析】【分析】先化简a ,b ,最后代值计算.【详解】∵=(2)2=7﹣)2,∴a+b=14,ab=1,∴a 2+4ab+b 2=(a+b)2+2ab=142+2×1=198,.【点睛】=a(a≥0)27.(1;(2﹣1;(3﹣1.【解析】【分析】(1+,即可得出答案;(2)根据分母有理化,可得实数的减法,根据实数的减法运算,可得答案.【详解】(1)==+;(2+1...++1=(3+⋯1...+-+﹣1【点睛】运用了二次根式的分母有理化,二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相等.找出分母的有理化因式是解本题的关键.。
新人教版八年级下《第16章二次根式》单元测试卷(有答案)-(数学)AKMlln
新人教版八年级数学下册《第16章二次根式》单元测试卷一、填空题:(每空3分,共33分)1.下列各式:、、、(x>0)、、﹣、、(x≥0,y≥0)中是二次根式.2.当x时,在实数范围内有意义.3.化简=.(x≥0)4.计算:=;×=;)=;=.5.若n<0,则代数式=.6.实数a在数轴上的位置如图所示,则|a﹣1|+=.7.若+y2﹣4y+4=0,则xy的值为.8. +的有理化因式是.二、选择题(每小题3分,共18分)9.下列各式中,正确的是()A.2<<3 B.3<<4 C.4<<5 D.14<<1610.下列二次根式中,是最简二次根式的是()A.B. C.D.11.把二次根式(y>0)化为最简二次根式结果是()A.(y>0)B.(y>0)C.(y>0)D.以上都不对12.以下二次根式:①;②;③;④中,与是同类二次根式的是()A.①和②B.②和③C.①和④D.③和④13.化简:a的结果是()A. B.C.﹣D.﹣14.当a≥0时,,,﹣中,比较它们的结果,下面四个选项中正确的是()A.=≥﹣B.>>﹣C.<<﹣D.=<﹣三、解答题15.计算:(1)﹣;(2)×;(3)﹣;(4)(+3);(5)(3+2)(2﹣3);(6)(3﹣)2;(7);(8)×+.16.先化简,再求值,其中x=,y=27.17.解方程:(x﹣1)=(x+1)18.先阅读下列的解答过程,然后作答:形如的化简,只要我们找到两个数a、b使a+b=m,ab=n,这样()2+()2=m,•=,那么便有==±(a>b)例如:化简解:首先把化为,这里m=7,n=12;由于4+3=7,4×3=12,即()2+()2=7,•=,∴===2+由上述例题的方法化简:(1);(2);(3).新人教版八年级数学下册《第16章二次根式》单元测试卷参考答案与试题解析一、填空题:(每空3分,共33分)1.下列各式:、、、(x>0)、、﹣、、(x≥0,y≥0)中、、﹣、是二次根式.【考点】二次根式的定义.【分析】根据二次根式的定义进行解答即可.【解答】解:二次根式是、(x>0)、﹣、(x≥0,y≥0),故答案为、、﹣、.2.当x≥时,在实数范围内有意义.【考点】二次根式有意义的条件.【分析】二次根式的被开方数是非负数.【解答】解:当3x﹣1≥0,即x≥时,在实数范围内有意义.故答案为:x≥.3.化简=x.(x≥0)【考点】二次根式的性质与化简.【分析】原式利用二次根式的性质化简即可得到结果.【解答】解:原式==x.故答案为:x4.计算:=﹣;×=2;)=3﹣2;=.【考点】二次根式的混合运算.【分析】利用二次根式的除法法则运算;利用二次根式的乘除法则运算×=;利用分母有理化计算);利用二次根式的除法法则运算.【解答】解:==﹣;×==2;)==3+2;=.故答案为﹣,2,3﹣2,.5.若n<0,则代数式=.【考点】二次根式的性质与化简.【分析】首先写成••的形式,然后分别进行化简即可.【解答】解:原式=••=3•m•(﹣n)=﹣3mn.故答案是:﹣3mn.6.实数a在数轴上的位置如图所示,则|a﹣1|+=1.【考点】二次根式的性质与化简;实数与数轴.【分析】根据数轴上表示的两个数,右边的数总比左边的大,分别得出a﹣1与0,a﹣2与0的关系,然后根据绝对值的意义和二次根式的意义化简.【解答】解:根据数轴上显示的数据可知:1<a<2,∴a﹣1>0,a﹣2<0,∴|a﹣1|+=a﹣1+2﹣a=1.故答案为:1.7.若+y2﹣4y+4=0,则xy的值为4.【考点】因式分解﹣运用公式法;非负数的性质:偶次方;非负数的性质:算术平方根.【分析】首先配方,进而利用二次根式的性质以及偶次方的性质,进而得出关于x,y的方程组求出即可.【解答】解:∵+y2﹣4y+4=0,∴+(y﹣2)2=0,∴,解得:,∴xy的值为:4.故答案为:4.8. +的有理化因式是﹣.【考点】分母有理化.【分析】根据平方差公式即可得出(+)×(﹣)=﹣1,再结合有理化因式的定义即可得出结论.【解答】解:∵(+)×(﹣)=﹣=2﹣3=﹣1,∴﹣是+的一个有理化因式.故答案为:﹣.二、选择题(每小题3分,共18分)9.下列各式中,正确的是()A.2<<3 B.3<<4 C.4<<5 D.14<<16【考点】实数大小比较;估算无理数的大小.【分析】首先估算的整数部分和小数部分,再比较大小即可求解.【解答】解:∵≈3.87,3<3.87<4,∴3<<4;故选B.10.下列二次根式中,是最简二次根式的是()A.B. C.D.【考点】最简二次根式.【分析】A选项中含有小数;D选项的被开方数中含有能开得尽方的因数;C选项的被开方数中含有分母;因此这三个选项都不符合最简二次根式的要求.所以本题的答案应该是B.【解答】解:A、==,不是最简二次根式;B、,不含有未开尽方的因数或因式,是最简二次根式;C、=,被开方数中含有分母,故不是最简二次根式;D、=2,不是最简二次根式.只有选项B中的是最简二次根式,故选B.11.把二次根式(y>0)化为最简二次根式结果是()A.(y>0)B.(y>0)C.(y>0)D.以上都不对【考点】最简二次根式.【分析】根据最简二次根式的被开方数不含开的尽的因数或因式,被开方数不含分母,可得答案.【解答】解:==,故选:C.12.以下二次根式:①;②;③;④中,与是同类二次根式的是()A.①和②B.②和③C.①和④D.③和④【考点】同类二次根式.【分析】先把每个二次根式化为最简二次根式,然后根据同类二次根式的定义解答.【解答】解:∵,,,,∴与是同类二次根式的是①和④,故选:C.13.化简:a的结果是()A. B.C.﹣D.﹣【考点】二次根式的性质与化简.【分析】直接利用二次根式的性质得出a的符号,进而化简求出即可.【解答】解:由题意可得:a<0,则a=﹣=﹣.故选:C.14.当a≥0时,,,﹣中,比较它们的结果,下面四个选项中正确的是()A.=≥﹣B.>>﹣C.<<﹣D.=<﹣【考点】实数大小比较.【分析】首先根据二次根式的性质可知=≥0,而﹣≤0,进一步得出=≥﹣,由此选择答案即可.【解答】解:由分析可知当a≥0时,=≥﹣.故选:A.三、解答题15.计算:(1)﹣;(2)×;(3)﹣;(4)(+3);(5)(3+2)(2﹣3);(6)(3﹣)2;(7);(8)×+.【考点】二次根式的混合运算.【分析】(1)先把各二次根式化简为最简二次根式,然后合并即可;(2)利用二次根式的乘除法则运算;(3)先把各二次根式化简为最简二次根式,然后合并即可;(4)利用二次根式的乘法法则运算;(5)利用多项式乘法展开,然后合并即可;(6)利用完全平方公式计算;(7)利用二次根式的乘除法则运算和平方差公式计算;(8)利用二次根式的乘除法则运算和平方差公式计算.【解答】解:(1)原式=﹣2+3+=4﹣;(2)原式=1××=10;(3)原式=3﹣+2=;(4)原式=﹣+3+=﹣4+6+2;(5)原式=18﹣9+4﹣12=6﹣5;(6)原式=54﹣18+15=69﹣18;(7)原式=+3﹣1=3+2=5;(8)原式=+=4+2.16.先化简,再求值,其中x=,y=27.【考点】二次根式的化简求值.【分析】首先对二次根式进行化简,然后去括号、合并二次根式即可化简,然后把x,y的值代入求解.【解答】解:原式=(6+3)﹣(+6)=9﹣﹣6=3﹣,当x=,y=27时,原式=3﹣=﹣=.17.解方程:(x﹣1)=(x+1)【考点】二次根式的应用;解一元一次方程.【分析】根据一元一次方程的解法求解.【解答】解:移项得:(﹣)x=+,解得:x=5+2.18.先阅读下列的解答过程,然后作答:形如的化简,只要我们找到两个数a、b使a+b=m,ab=n,这样()2+()2=m,•=,那么便有==±(a>b)例如:化简解:首先把化为,这里m=7,n=12;由于4+3=7,4×3=12,即()2+()2=7,•=,∴===2+由上述例题的方法化简:(1);(2);(3).【考点】分母有理化.【分析】先把各题中的无理式变成的形式,再根据范例分别求出各题中的a、b,即可求解.【解答】解:(1)==﹣;(2)===﹣;(3)==.2017年4月23日。
人教版八年级下册第16章《二次根式》单元检测卷 附答案
解得 h=11.25, ∴下落的高度是 11.25 米.
21.解:原式=
=
=﹣
10 / 10
=2 × × =243;
= ﹣1+3
= +2;
(4)
= ﹣ + ﹣ ﹣(8﹣4 +1) = ﹣3 ﹣9+4 =2 ﹣9. 18.解:(1)当 a= +1,b= ﹣1 时, 原式=2(a+b) =2×( +1+ ﹣1) =2×2 =4 ; (2)当 a= +1,b= ﹣1 时, 原式=( +1)2+( ﹣1)2 =3+2 +3﹣2
=
,
第 3 个等式:a3=
=2﹣ ,
第 4 个等式:a4=
= ﹣2,
… 按上述规律,计算 a1+a2+a3+…+an= 三.解答题(共 5 小题,满分 45 分) 17.(12 分)计算: (1)
. (2)
(3)
(4) 2 / 10
不要因为长期埋头科学,而失去对生活、对美、对待诗意的感受能力。——达尔 文
=64﹣60
=4
∵ ﹣ = ﹣ >0
∴a>b
6 / 10
不要因为长期埋头科学,而失去对生活、对美、对待诗意的感受能力。——达尔 文
∴a﹣b>0
∴a﹣b=2
故答案为:2.
13.解: =( )2﹣22
=3﹣4
=﹣1.
故答案为:﹣1.
14.解:∵|a﹣2007|+
=a,∴a≥2008.
∴a﹣2007+
=a,
=,
而 中被开方数不含能开得尽方的因数,
∴属于最简二次根式的是 ,
人教版八年级数学下册第十六章《二次根式》单元测试卷附答案
第十六章《二次根式》单元测试卷(共23题,满分120分,考试用时90分钟)一、选择题(共10小题,每小题3分,共30分)1.下列式子是二次根式的是()A.2B.√2C.√23D.√−22.二次根式√x−2有意义的条件是()A.x>2B.x<2C.x≥2D.x≤23.下列式子中,属于最简二次根式的是()A.√12B.√23C.√0.3D.√74.化简√(−2)2得()A.2B.-2C.±2D.45.下列二次根式中,不能与√2合并的是()A.√12B.√8C.√12D.√186.下列计算正确的是()A.√2+√3=√5B.2+√2=2√2C.3√2−√2=3D.3√2−√2=2√27.下列计算错误的是()A.√5×√6=√30B.√18÷√2=9C.3√3÷3√3=1D.3√2×2=6√28.计算(2+√5)(2-√5)的结果是()A.-1B.-3C.9-4 √5D.9+4 √59.若二次根式√1+a与√4−a的被开方数相同,则a的值为()A.1B.2C.23D.3210.(创新题)如图,数轴上表示1,√2的对应点分别为A,B,则以点A为圆心,以AB为半径的圆交数轴于点C,则点C表示的数是()A.√2-1B.1-√2C.2-√2D.√2-2二、填空题(共5小题,每小题3分,共15分)11.计算√8−√2的结果等于.12.计算:3√5×2√5=.13.若√12n是正整数,则最小的整数n是.14.已知实数x,y满足|x-4|+√y−8=0,则分别以x,y的值为两边长的等腰三角形的周长是.15.(跨学科融合)某小区要在面积为128平方米的正方形空地上建造一个休闲园地,并进行规划(如图1),在休闲园地内建一个面积为72平方米的正方形儿童游乐场,游乐场两边铺设健身道,剩下的区域作为休息区.现计划在休息区摆放占地面积为3×1.5平方米的“背靠背”休闲椅(如图2),并要求休闲椅摆放在东西方向或南北方向上,请通过计算说明休息区内最多能摆放张这样的休闲椅.三、解答题(一)(共3小题,每小题8分,共24分)16.计算:3√5+2√12−√20.17.计算:√24÷√3−√6×2√3.18.求代数式2xx2−2x+1÷(1+1x−1)的值,其中x=√2+1.四、解答题(二)(共3小题,每小题9分,共27分)19.已知x=2+√3,求代数式x2-2√3x+3的值.20.若x,y都是实数,且y=√x−3+√3−x+8,求x+y的值.21.如图,已知实数a,b,c在数轴上的位置,化简:√a2-|a-b|+√(b+c)2.五、解答题(三)(共2小题,每小题12分,共24分)22.(跨学科融合)高空抛物严重威胁着人们的“头顶安全”,即便是常见小物件,一旦高空落下,也威力惊人,而且用时很短,常常避让不及.据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=√2ℎg(不考虑风速的影响,g≈10 m/s2).(1)求从40 m高空抛物到落地的时间(结果保留根号);(2)小明说从80 m高空抛物到落地的时间是(1)中所求时间的2倍,他的说法正确吗?请说明理由;(3)已知高空坠物动能(单位:J)=10×物体质量(单位:kg)×高度(单位:m).某质量为0.05 kg的鸡蛋经过6 s后落在地上,这个鸡蛋产生的动能是多少(单位:J)?这个鸡蛋会伤害到楼下的行人吗?(注:杀伤无防护的人体只需要65 J的动能)23.阅读下列材料,然后解答问题:√5=√5√5×√5=3√55.(一)√2 3=√2×3√3×3=√63.(二)√3+1=√3−1)(√3+1)(√3−1)=√3−1)(√3)2−1=√3-1.(三)以上这种化简的步骤叫做分母有理化.。
人教版八年级下册 第16章《二次根式》单元培优测试卷(解析版)
第16章《二次根式》单元培优测试卷、选择题工.下列各式成立的是正=a D J(-3)〜=3A.7H F=-2【1题答案】【答案】D【解析】【分析】根据二次根式的性质化简即可.【详解】A.J(_2)2 =2,故本选项错误;B.(") =4,故本选项错误;C.J后=同,故本选项错误;D.J(-3『=3,故本选项正确.故选D.【点睛】本题考查了二次根式的基本性质:①〃K); V^>()(双重非负性).②(&)2%(生0)(任何一个非负数都可以写成一个数的平方的形式).③日=a(。
加)(算术平方根的意义).2.下列二次根式中,是最简二次根式的是()2B.耳【2题答案】【答案】A【解析】【分析】直接利用最简二次根式的定义分析得出答案.【详解】A.且是最简二次根式,故此选项正确;2D ・ 阮二xH ,故此选项错误•故选A.【点睛】本题考查了最简二次根式,正确把握最简二次根式的定义是解题的关键.3 .若二次根式:7有意义,则x 的取值范围是()A. x> —B. —C. —D. xW5 5 5 5【3题答案】【答案】B【解析】【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【详解】解:由题意得,5x- 1>0,解得,[,故选人【点睛】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键. 4.如图,从一个大正方形中裁去面积为30cm2和48 cm2的两个小正方形,则余下部分的面积为()A. 78 cm 2B. + \/30) cm 2C. 12M cm 2 【4题答案】【答案】P【解析】 【分析】根据两小正方形的面积求出大正方形的边长及面积,然后减去两个小正方形的面积,即可求出阴影 c.D. 24M cm 2故此选项错误;部分的面积进而得出答案.【详解】解:从一个大正方形中裁去面积为300层和48cm2的两个小正方形,大正方形的边长是同+ A =同+ ,留下部分(即阴影部分)的面积是:2(46 +而)-30-48 = 24V10(c/722)故选:D.【点睛】此题主要考查了二次根式的应用,正确求出大正方形的面积是关键.5.已知百砺是正整数,则满足条件的最大负整数m为()A. -10B. -40C. -90D. -160 【5题答案】【答案】A【解析】【详解】依题意可得,T0m>0且是完全平方数,因此可求得mVO,所以满足条件的m的值为TO.故选A.6.已知X=g + 1, —则/+个+)2的值为( )A 4 B. 6 C. 8 D. 1() 【6题答案】【答案】P【解析】【分析】根据f +盯+),2=(工2+2个,+,2)_孙=。
八年级下册数学《第16章 二次根式》单元测试卷及答案详解(PDF可打印)
人教新版八年级下册《第16章二次根式》单元测试卷(2)一.选择题。
1.下列式子中二次根式有()①;②;③﹣;④;⑤;⑥;⑦;⑧(x>1).A.2个B.3个C.4个D.5个2.已知a为实数,则下列式子一定有意义的是()A.B.C.D.3.小明做了四道题:①(﹣)2=2②=﹣2③=±2④=4,做对的有()A.①②③④B.①②④C.②④D.①④4.若等腰三角形的两边长分别为和,则这个三角形的周长为()A.9B.8或10C.13或14D.145.若x﹣y=,xy=,则代数式(x﹣1)(y+1)的值等于()A.2B.C.D.26.化简:×+的结果是()A.5B.6C.D.57.把化成最简二次根式,结果是()A.B.8C.D.8.下列各数中与2+的积是有理数的是()A.2+B.2C.D.2﹣9.下列计算正确的是()A.+=B.2+=2C.3﹣=2D.=6 10.规定a※b=,则※的值是()A.5﹣2B.3﹣2C.﹣D.二.填空题。
11.若有意义,则m能取的最小整数值是.12.下列二次根式:,,,,.其中最简二次根式有个.13.若x,y都为实数,且y=2020+2021+1,则x2+y=.14.已知a、b满足=a﹣b+1,则ab的值为.15.设a=,且b是a的小数部分,则a﹣的值为.16.如图,将1,,,,…,按下列方式排列.若规定(m,n)表示第m排从左向右第n个数,则(5,4)与(15,2)表示的两数之积是.三.解答题。
17.计算:(1)(﹣2)×﹣6;(2)(﹣4).18.已知y=,求x2﹣xy+y2的值.19.已知:x=+1,y=﹣1,求下列各式的值.(1)x2﹣y2.(2).20.先化简再求值:,其中a=.21.在一条长为56米的传输带上,有一件物品随传输带在3秒时间内匀速前进了12米,求传输带的速度和该物品在传输带上停留的时间.22.观察、思考、解答:(﹣1)2=()2﹣2×1×+12=2﹣2+1=3﹣2反之3﹣2=2﹣2+1=(﹣1)2∴3﹣2=(﹣1)2∴=﹣1(1)仿上例,化简:;(2)若=+,则m、n与a、b的关系是什么?并说明理由;(3)已知x=,求(+)•的值(结果保留根号)人教新版八年级下册《第16章二次根式》单元测试卷(2)参考答案与试题解析一.选择题。
人教版八年级数学下册第16章_二次根式单元测试卷+答案
第1页,总12页第16章 二次根式单元测试卷班级:__________ 姓名:__________ 分数:__________一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 1. 下列各式不是最简二次根式的是( ) A.√0.5B.√10C.√a 2+b 2D.√222. 已知函数y =√x +3+1x−2,自变量x 的取值范围是( ) A.x ≠2 B.x ≥−3 C.x >−3且x ≠2 D.x ≥−3且x ≠23. 若√4−x x−2=√4−x√x−2,则x 的值可以是( ) A.2B.−2C.3D.−34. 已知√(2a −1)2=1−2a ,那么a 的取值范围是( ) A.a <12B.a >12C.a ≤12D.a ≥125. 已知√a −3+√2−b =0,则√a+√6√b的值为( ) A.1B.√2C.√3D.4√336. 对于任意的正数m ,n ,定义运算※为:m ※n ={√m −√n(m ≥n),√m +√n(m <n),则计算(3※2)×(8※12)的结果为( ) A.2−4√6B.2C.2√D.207. 二次根式√5x 5,√√x2,2√11a ,√12a ,√a 4(x ≥0, a ≥0)中,最简二次根式的个数是( ) A.5B.4C.3D.28. 已知a>b>0,a+b=6√ab,则√a−√b√a+√b的值为()A.√22B.2 C.√2 D.129. 下列运算中,正确的是()A.√3(√3+√13)=3 B.(√12−√27)÷√3=−1C.√32÷12√2=2 D.(√2+√3)×√3=√6+2√310. 设S1=1,S2=1+112+122,S3=1+122+132,S4=1+132+142,…,按照此规律,则√n n≥2,n为正整数)的值等于()A.nn−1 B.n+1nC.(n−1)n+1(n−1)n D.n(n+1)+1n(n+1)二、填空题(本题共计 6 小题,每题 3 分,共计18分)11. 已知y=√x−2+√2−x+34,则xy=_______.12. 式子√x+3有意义时x的取值范围为________.13. 若最简二次根式√4a2+1与√6a2−1是同类二次根式,则a的值为________.14. 计算|√2−√3|+2√2的结果是________.15. 下列运算中错误的有________.(只写序号即可)①√3+√2=√5;②√27=±3√3;③√3−√12=−√3;④√52−32=√52−√32=5−3=2.16. 把(a−1)√−1a−1中根号外的(a−1)移入根号内得________.三、解答题(本题共计 6 小题,共计52分)试卷第2页,总12页17.(6分)计算:√48−√27+√13.18. (8分)(1)计算:√3−√3116+√(−18)23;(2)先化简,再求值:x2(3−x)+x(x2−2x)+1,其中x=√3.第3页,总12页19. 阅读例题:计算:√2+1=√2−1)(√2+1)(√2−1)=√2−12−1=√2−11√3+√2=1×(√3−√2)(√3+√2)(√3−√2)=√3−√23−2=√3−√2同理可得:2+√3=________.√11−√7=________.4−√11=________.从计算结果中找出规律,并利用这一规律计算:(√2+1+√3+√2+√4+√3√2020+√2019)×(√2020+1)试卷第4页,总12页20. 观察下列等式,解答后面的问题:①√1+13=√3+13=√4×13=2√13,②√2+14=3√14,③√3+15=4√15,…(1)请直接写出第④个等式是________(不用化简);(2)根据上述规律猜想:若n为正整数,请用含n的式子表示第n个等式,并给予证明;(3)利用(2)的结论化简:√2019+12021×√2021 .第5页,总12页试卷第6页,总12页21. 小明在解方程√24−x −√8−x =2时采用了下面的方法:由 (√24−x −√8−x)(√24−x +√8−x)=(√24−x)2−(√8−x)2=(24−x)−(8−x)=16,又有√24−x −√8−x =2,可得√24−x +√8−x =8,将这两式相加可得{√24−x =5,√8−x =3,将√24−x =5两边平方可解得x =−1,经检验x =−1是原方程的解.请你学习小明的方法,解下面的方程: 解方程:√x 2+42+√x 2+10=16.22. 阅读下面的文字,解答问题:大家知道√2是无理数,而无理数是无限不循环小数,因此√2的小数部分我们不可能全部地写出来,于是小明用√−1来表示√同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为√2的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵√4<√7<√9,即2<√7<3,∴√7的整数部分为2,小数部分为(√7−2).请解答:(1)√17的整数部分是________,小数部分是________;(2)如果√5的小数部分为a,√13的整数部分为b,求a+b−√5的值;(3)已知:10+√3=x+y,其中x是整数,且0<y<1,求x−y的相反数.第7页,总12页参考答案与试题解析第16章二次根式单元测试卷一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】A2.【答案】D3.【答案】C4.【答案】C5.【答案】D6.【答案】B7.【答案】D8.【答案】A9.【答案】B10.试卷第8页,总12页【答案】C二、填空题(本题共计 6 小题,每题 3 分,共计18分)11.【答案】3212.【答案】x>−313.【答案】±114.【答案】√3+√215.【答案】①②④16.【答案】−√1−a三、解答题(本题共计 6 小题,共计52分)17.【答案】解:√48−√27+√13=4√3−3√3+√3 3=4√33. 18.【答案】解:(1)原式=0.5−74+14=−1.第9页,总12页(2)=x2(3−x)+x(x2−2x)+1,=3x2−x3+x3−2x2+1,=x2+1,当x=√3时,原式=(√3)2+1=3+1=4.19.【答案】解:依题意,得2+√3=√3(2+√3)(2−√3)=2−√3,√11−√7=√11+√7)(√11−√7)(√11+√7)=√11+√7,4−√11=√11)(4−√11)(4+√11)=4+√11,(1√2+1+1√3+√2+1√4+√3+...+1√2020+√2019)(√2020+1)=(√2−1+√3−√2+√4−√3+...+√2020−√2019)(√2020+1) =(√2020−1)(√2020+1)=2020−1,=2019.20.【答案】√4+16=5√16试卷第10页,总12页第11页,总12页(2)根据题意得:√n +1n+2=(n +1)√1n+2. 证明:√n +1n+2=√n (n+2)+1n+2=√(n+1)2n+2=(n +1)√1n+2.(3)√2019+12021×√2021 =2020√12021×√2021=2020.21.【答案】 解:(√x 2+42+√x 2+10)(√x 2+42−√x 2+10) =(√x 2+42)2−(√x 2+10)2=(x 2+42)−(x 2+10) =32,∵ √x 2+42+√x 2+10=16, ∴ √x 2+42−√x 2+10=32÷16=2,∴ {√x 2+42=9,√x 2+10=7,∵ (√x 2+42)2=x 2+42=92=81, ∴ x =±√39,经检验x =±√39都是原方程的解, ∴ 方程√x 2+42+√x 2+10=16的解是:x =±√39. 22.【答案】4,√17−4(2)∵ 2<√5<3,∴ a =√5−2.∵ 3<√13<4,∴b=3,∴a+b−√5=√5−2+3−√5=1.(3)∵1<3<4,∴1<√3<2,∴11<10+√3<12.∵10+√3=x+y,其中x是整数,且0<y<1,∴x=11,y=10+√3−11=√3−1,∴x−y=11−(√3−1)=12−√3,∴x−y的相反数是−12+√3.试卷第12页,总12页。
人教版八年级下册《第16章二次根式》单元测试(含答案)
第十六章 《二次根式》单元测试题一、 选择题(本大题共10小题,每小题2分,共20分) 1. 下列式子一定是二次根式的是( ) A.2--xB.xC.22+xD.22-x2. 二次根式13)3(2++m m 的值是( )A. 23B. 32C.22D. 03. 若13-m 有意义,则m 能取的最小整数值是( ) A. m =0B. m =1C. m =2D. m =34. 若x < 0,则xx x 2-的结果是( )A. 0B. -2C. 0或-2D. 2 5. 下列二次根式中属于最简二次根式的是( ) A.14B.48C.ba D.44+a6. 如果)6(6-=-∙x x x x ,那么( )A. 0≥xB. 6≥xC. 60≤≤xD. x 为一切实数7. 小明的作业本上有以下四题:①24416a a =;②a a a 25105=⨯;③a aa a a =∙=112;④a a a =-23。
做错的题是( ) A. ① B. ② C. ③D. ④8. 化简6151+的结果是( ) A.3011B. 33030C.30330D. 11309. 若最简二次根式a +1与a 24-的被开方数相同,则a 的值为( )A. 43-=a B. 34=aC. 1=aD. 1-=a10. 若n 75是整数,则正整数n 的最小值是( ) A. 2B. 3C. 4D. 5二、 填空题(本大题共10小题,每小题3分,共30分)11. 若b b -=-332)(,则b 的取值范围是___________。
12.2)52(-=__________。
13. 若m < 0,则332m m m ++=_______________。
14.231-与23+的关系是____________。
15. 若35-=x ,则562++x x 的值为___________________。
16. 若一个长方体的长为62c m ,宽为3c m ,高为2c m ,则它的体积为_______c m 3。
最新人教版八下第十六章 二次根式单元测试题AB卷(含答案)
最新人教版八年级二次根式单元测试题A卷考试时间120分钟满分100分一、选择题(每小题3分,共30分)1.下列各式中,不是二次根式的是()A.B.C.D.2.化简的结果是()A.3 B.﹣3 C.±3 D.93.下列说法中正确的是()A.是一个无理数B.函数的自变量x的取值范围是x>1 C.8的立方根是±2D.若点P(﹣2,a)和点Q(b,﹣3)关于x轴对称,则a+b的值为5 4.下列各运算中,错误的个数是()①30+3﹣1=﹣3;②﹣=;③(2a2)3=8a5;④﹣a8÷a4=﹣a4A.1 B.2 C.3 D.45.已知:是整数,则满足条件的最小正整数n为()A.2 B.3 C.4 D.56.下列二次根式中,最简二次根式是()A.B.C.D.7.实数a,b,c在数轴上的对应点如图,化简a+|a+b|﹣的值是().A.﹣b﹣c B.c﹣b C.2(a﹣b+c)D.2a+b+c 8.下列各式中,计算正确的是()A.B.C..D.9.在△ABC中,a、b、c为三角形的三边,化简﹣2|c﹣a﹣b|的结果为()A.3a+b﹣c B.﹣a﹣3b+3c C.a+3b﹣c D.2a10.在这1000个二次根式中,与是同类二次根式的个数共有()A.3 B.4 C.5 D.6二、填空题(每小题3分,共18分)11.当a时,在实数范围内一有意义.12.化简:=.13.已知,则=.14.计算:(+1)2000(﹣1)2000=.15.如果最简二次根式与是同类二次根式,那么b=16.设x=﹣2,则x6+3x5+11x3+2x+1=三、解答题(6小题,共52分)17.计算:(π﹣1)0++﹣2.(6分)18.化简求值:,其中.(6分)19.已知数a满足,求a﹣20042的值.(8分)20.设a为的小数部分,b为的小数部分,求的值.(10分)21.观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式:(10分)==﹣1,==﹣,同理可得:=﹣,…从计算结果中找出规律,并利用这一规律计算(+++…)(+1)的值.22.观察下面的式子:(12分)S1=1++,S2=1++,S3=1++…S n=1++(1)计算:=,=;猜想=(用n的代数式表示);(2)计算:S=+++…+(用n的代数式表示).最新人教版八年级二次根式单元测试题A卷答案一、选择题(每小题3分,共30分)1、解:A、是二次根式;B、3﹣π<0,所以不是二次根式;C、是二次根式;D、是二次根式.故选B.4、解:①错误,30+3﹣1=1+=;②错误,不是同类二次根式,不能合并;③错误,(2a2)3=8a6;④正确;所以错误的有3个,故选C.5、解:∵==2,且是整数;∴2是整数,即5n是完全平方数;∴n的最小正整数值为5.故本题选D.6、解:因为:A、=2;C、=|x|;D、=;所以这三个选项都不是最简二次根式.因此符合条件的只有B选项.故选B.7、解:a+|a+b|﹣=a﹣a﹣b+c=c﹣b.故选B.8、解:A、错误,∵=×=2×4=8;B、错误,∵=2a,(a>0);C、错误,∵==5;D、正确,依据平方差公式和积的算术平方根的性质.故选D.故选C.二、填空题(每小题3分,共18分)11、解:根据题意,得a+2≥0,解得,a≥﹣2;故答案是:≥﹣2.12、解:原式=|﹣2|=2﹣.13、解:依题意有x﹣2≥0且2﹣x≥0,解得x=2,此时y=,则=.14、解:(+1)2000(﹣1)2000=[()()]2000=1.=14﹣24.故选填14﹣24.三、解答题(6小题,共52分)17、解:原式=1+2+(﹣5)﹣2=3+3﹣5﹣2=﹣2.18、解:原式====,当时,原式==.19、解:根据二次根式的性质可得,a﹣2005≥0,即a≥2005,由原式可得,a﹣2004+=a∴=2004∴a﹣2005=20042∴a﹣20042=2005.20、解:∵2<<3,a为的小数部分,=2009.22、(1)解:∵S1=1++=,∴==;∵S2=1++=,∴=;∵S3=1++=,∴=;∵S n=1++=,∴==,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版八年级下册第16章 二次根式
单元测试试卷(A 卷)
一、认真填一填:(每小题4分,共40分)
1、 函数12y x =-的自变量x 的取值范围为
2、计算:1233- =
3、已知2a = ,则代数式21a -的值为
4、已知189n 是整数,则正整数n 的最小值为
5、在实数范围内分解因式:2
26x - = 6、已知x , y 为实数,且213(2)0x y -+-= ,则
x y 的值为 7、已知25a =- ,则代数式242a a --的值为
8、若2121m m m --+= ,则m 的取值范围是
9、如果矩形长为23 cm ,宽为6cm ,则这个矩形的对角线长为________
10、观察下列各式:
11111112,23,34, (334455)
+=+=+=请你将发现的 规律用含自然数n(n ≥1)的等式表示出来 .
二、精心选一选:(每小题4分,共24分)
11、下列计算错误..
的是 ( ) A 、14772⨯= B 、60523÷=
C 、9258a a a +=
D 、3223-=
12、下列二次根式中属于最简二次根式的是( )
A 、14
B 、48
C 、a b
D 、44a + 13、小明的作业本上有以下四题:
①42164a a =; ②51052a a a ⨯=; ③211a
a a a a =•=④32a a a -=. 做错的题是( ) A 、① B 、② C 、③ D 、④
14、下列根式中,与3 是同类二次根式的是( )
A 、8
B 、0.3
C 、23
D 、12 15、若2a b a b =- 成立,则 a , b 满足的条件是( )
A 、a <0 , 且b >0
B 、a ≤0 且b ≥0
C 、a <0 且 b ≥0
D 、a 、b 异号
16、化简1(1)1a a
-- 的结果是( ) A 、1a - B 、1a -
C 、1a --
D 、1a --
三、细心算一算:(共56分)
17、(8分)计算:1121375327
-+
18、(8分)计算:x
x x x 1246932-+
19、(10分)计算:(548627415)3-+÷
20、(10分)计算:)483
1375(12-+
21、(10分)2(21)(21)(32)+-+-
22、(10分)如图,ABC ∆中,∠=
∠Rt ACB , 2,8==
BC AB ,求斜边AB 上的高CD .
四、用心想一想:(共30分)
23、(10分)如图,已知ΔABC 是边长为1的等腰直角三角形,以
Rt ΔABC 的斜边AC 为直角边,画第二个等腰Rt ΔACD ,再以
Rt ΔACD 的斜边AD 为直角边,画第三个等腰Rt ΔADE ,……
如此类推.
求AC 、AD 、AE 的长;
求第n 个等腰直角三角形的斜边长.
24、(10分)若 a, b 为实数,21473a b b =
-+-+ , 求
2()a b -
C D E F G
B A
25、(10分)阅读下列材料,然后回答问题. 在进行二次根式去处时,我们有时会碰上如35,32,132+一样的式子,其实我们还可以将其进一步化简:
35=55
35553=⨯⨯;(一) 3
2=363332=⨯⨯(二) 132+=))(()-(1313132-+⨯=131
313222---=)()((三) 以上这种化简的步骤叫做分母有理化.
1
32+还可以用以下方法化简: 132+=131
313131313131322-+-++-+-=))((=)(=(四)请用不同的方法化简
3
52+. (1)参照(三)式得3
52+=______________________________________________; (2)参照(四)式得
352+=_________________________________________。
(2)化简:1
2121...571351131-+++++++++n n
参考答案:
【单元A 】1、x>2 2、3- 3、1 4、21 5、2(3)(3)x x +- 6、
22 7、-1 8、m ≥1
9、32 cm 10、11(1)22
n n n n +=+++ 11、D12、A 13、D 14、D 15、B 16、D 17、63
18、3x 19、245+ 20、12 21、843- 22、102
23、(1)2,2,22(2)2n 24、4 25、(1)、(2)略(3)2112
n +-。