阳极氧化

合集下载

阳极氧化工艺简介(勿删谢谢)

阳极氧化工艺简介(勿删谢谢)
定义: 产品与化抛溶液反应出光的过程称作化学抛光。常见化学抛光类型有:
磷酸型、磷酸+硫酸型、磷酸+磷酸+硝酸型、磷酸+硝酸型。
常见不良: 光泽不良、冲痕(气痕)
改善方案: ①光泽不良主要为偏亮或偏哑,需要控制化抛时间及温度。 ②冲痕主要是产品与化抛槽液反应剧烈,同时放出大量的气体,当产品
上有小孔时,气体就会从这些小孔冲出而形成冲痕。 形成冲痕的原因:a、化抛槽液温度偏高 b、槽液比例失调 c、化抛作业手法 不对。
改善方案: ①延长封孔时间 ②提高封孔温度
12
13
8
七、氧化
工艺要求: 浓度:硫酸180~220g/L 温度:18~20 ℃ 时间:28分钟
定义: 将铝作为阳极放在硫酸溶液中电解的过程称为阳极氧化。
常见不良: 导电不良(七彩)、电击伤(烧焦)、膜脱落
改善方案: ①上挂时产品与挂具接触点太松,导致通电电流很弱,形成导电不良。上挂时要检
查挂具弹力,弹力太松的挂齿要予以校正后再上挂。 ②产品在入氧化时瞬间电流太高,导致产品被电击烧焦。产品入氧化前要先关掉电
阳极氧化工艺流程简介及常 见问题分析
目录
1、阳极氧化的定义 2、阳极氧化工艺流程 3、脱脂 4、片碱 5、中和 6、化抛 7、氧化 8、染色 9、封孔
2
一、何为阳极氧化
所谓铝的阳极氧化是一种电解氧化过程,在该过程中铝或铝 合金的表面通常转化为一层氧化膜,这层氧化膜具有保护性、装 饰性以及一些其它的功能特性。
降低染料的活性,使其延缓染色的时间,才能达到颜色的一致性(通常会在染色槽里加入 硫酸钠或者封孔剂)。
②白点的影响因素主要有水质、车间空气质量、染料的洁净度、染色前的等待时间等 几方面的因素。改善也需要从这几方面入手,水质要管控PH值在6-7之间、空气质量差的 车间要增加抽风设备、染料应定期过滤、氧化后的产品应立即清洗染色。

表面处理-阳极氧化处理

表面处理-阳极氧化处理

提高材料耐磨性
总结词
阳极氧化处理后,材料表面硬度得到提高,同时氧化膜具有一定的韧性,从而提高材料的耐磨性能。
详细描述
耐磨性是许多材料的重要性能指标,尤其在磨损严重的环境中。经过阳极氧化处理的材料,其表面硬 度得到显著提高,同时形成的氧化膜具有一定的韧性,能够有效抵抗磨损,提高材料的使用寿命。
提高材料绝缘性优点提高腐蚀性增强美观性阳极氧化处理能够显著提高铝材表面的耐 腐蚀性,使其在各种环境条件下都能保持 较长的使用寿命。
经过阳极氧化处理的铝材表面会形成一层 致密的氧化膜,呈现出独特的色彩和质感 ,增强了铝材的美观性。
提高附着力和耐磨性
环保无污染
阳极氧化处理能够增强铝材表面的附着力 和耐磨性,有利于涂装和印刷等后续加工 。
表面处理技术种类繁多,包括电 镀、化学镀、阳极氧化、热处理 等。
表面处理的重要性
提高材料表面的耐腐蚀性、耐磨性、 装饰性和功能性,延长使用寿命。
增强材料表面的导电性、磁性、光学 性能和生物相容性等,满足各种应用 需求。
表面处理的应用领域
航空航天、汽车、电子、建筑、医疗等领域。 涉及金属材料和非金属材料的表面处理,如钢铁、铝、铜、塑料、玻璃等。
后处理
对形成的氧化膜进行清洗、 干燥等处理,以提高其耐 腐蚀性和外观质量。
阳极氧化处理的特点
01
02
03
04
提高耐磨性和硬度
阳极氧化膜具有较高的硬度和 耐磨性,能够提高金属表面的
抗划痕和抗摩擦能力。
提高耐腐蚀性
阳极氧化膜能够有效地保护金 属表面不受腐蚀,提高其耐腐
蚀性。
增强绝缘性
阳极氧化膜具有较好的绝缘性 能,可用于制造绝缘材料和电
智能化检测和评估

不锈钢表面处理工艺阳极氧化

不锈钢表面处理工艺阳极氧化

不锈钢表面处理工艺阳极氧化不锈钢是一种具有良好耐腐蚀性能的材料,但其表面仍然需要进行处理,以增强其耐腐蚀性和美观度。

阳极氧化是一种常用的不锈钢表面处理工艺,本文将详细介绍阳极氧化的原理、方法和应用。

一、阳极氧化的原理阳极氧化是指通过电解的方法,在不锈钢表面形成一层氧化膜。

这层氧化膜具有较高的硬度和陶瓷般的质感,能够有效提高不锈钢的耐腐蚀性和耐磨性。

同时,阳极氧化还可以改变不锈钢表面的颜色,使其具有更好的装饰效果。

二、阳极氧化的方法阳极氧化的方法主要有两种,分别是直流阳极氧化和交流阳极氧化。

1. 直流阳极氧化直流阳极氧化是指在直流电源的作用下,将不锈钢制品作为阳极,放入含有电解液的槽中进行氧化处理。

在电解液中加入合适的阳极助剂,使得氧化膜的形成更加均匀和稳定。

直流阳极氧化的优点是工艺简单、效果稳定,但需要配备较大功率的直流电源。

2. 交流阳极氧化交流阳极氧化是指通过交流电源的作用下,使阳极和阴极交替地进行氧化和还原反应。

交流阳极氧化的优点是能够获得更加均匀的氧化膜,并且不需要配备大功率的电源。

但由于交流电的特性,氧化膜的厚度相对较薄,需要多次处理才能达到较好的效果。

三、阳极氧化的应用阳极氧化的应用非常广泛,主要体现在以下几个方面。

1. 装饰性应用阳极氧化可以使不锈钢表面形成各种颜色的氧化膜,从而赋予不锈钢制品更多的装饰效果。

不同颜色的氧化膜可以通过控制电解液的成分和处理时间来实现,例如金黄色、红色、蓝色等。

这些有色氧化膜使得不锈钢制品在家居装饰、建筑装饰等领域得到广泛应用。

2. 防腐蚀应用阳极氧化可以在不锈钢表面形成一层致密的氧化膜,有效隔绝了外界环境与不锈钢的接触,从而提高了不锈钢的耐腐蚀性能。

这种氧化膜具有良好的耐蚀性,能够有效抵御酸碱、盐等介质的侵蚀,延长不锈钢制品的使用寿命。

3. 功能性应用阳极氧化还可以通过改变电解液的成分,使得氧化膜具有特殊的功能。

例如,可以在氧化膜中添加颗粒状材料,形成一种有摩擦阻滞功能的氧化膜,使得不锈钢表面具有较好的自润滑性能。

阳极氧化

阳极氧化
• (1)阻挡层:薄而致密,具有较高的硬度 和组织电流通过的作用。
• (2)多孔层:较厚,疏松多孔,电阻低。
• 2.阳极氧化膜的厚度分级
级别 AA5 AA10 最小平均膜厚/um 5 10 最小局部膜厚/um 4 8
AA15
AA20 AA25
15
20 25
12
16 20
六、合金元素对阳极氧化的影响
• 阳极氧化的色彩在工业生产中主要使用的 着色有以下几种: • • • • 1、无机物着色法 2、整体着色法 3、电解着色法 4、有机染料吸附着色法
九、铝及其合金的硬质阳极氧化
• 铝的硬质阳极氧化技术是以阳极氧化膜的硬度 与耐磨性的阳极氧化技术,膜厚常大于25um。 硬质氧化膜的用途主要包括以下几个方面: • 抵抗磨粒磨损或腐蚀磨损 • 电绝缘 • 隔热 • 修复工件 • 抗腐蚀
一、电镀的发展:
1840年首次有文献报道电镀实验,其后70 年中,基本上限于工艺探索,对其机理、 最佳操作条件以及镀层的金属学性质缺乏 系统的科学研究,因此工艺改革不快。20 世纪20年代以后,随着汽车、机械、电子、 日用五金和家用电器等工业的迅速发展以 及新技术发展的需要,大大加速了电镀新 技术的研究、开发和推广;另一方面,溶 液物理化学的进展和电极过程理论、电化 学测试技术的新发展,也为电镀理论的研 究提供条件。
合金种类 膜厚 /um 65~67 50~52 61~76 59~73 膜层硬度/HV (负荷35g) 346 384 365 375 合金种类 膜厚 /um 77~87 74~81 67~73 74~82 膜层硬度/HV (负荷35g) 355 390 390 390
Al-Mg-Si Al-Mn Al-Mg-Mn Al-3%Mg

阳极氧化资料整理

阳极氧化资料整理

阳极氧化工艺流程为:表面整平——除油——浸蚀或抛光——阳极氧化——着色处理——封闭处理——干燥(三个主要过程:阳极氧化、着色、封孔),本色氧化就是少了着色处理这一过程,阳极氧化后直接封孔。

1.阳极氧化(1)硫酸阳极化(5-20um)物色氧化膜,易于染色,硬度高,是铝和铝合金主要的防护和装饰方法,工艺简单,操作方便,应用最广。

(2)铬酸阳极化(2-5um)氧化膜不透明,未浅灰色或乳白色,孔隙率低,所以零件仍能保持原来的精度和表面粗糙度,丐工艺适用于精密零件,膜比较薄。

(3)草酸阳极化(8-20um,最厚达60um)草酸阳极化易于制取较厚膜层,氧化膜硬度高,孔隙率低,耐蚀性高,有良好的电绝缘性。

但成本较高,是硫酸阳极化的3-5倍,一般用于特殊要求的表面,如制作电器绝缘保护层、日用品的表面装饰。

(4)硬质阳极化(又称厚膜氧化,250-300um)硬度很高,一般为400-600HV,电流密度为普通阳极氧化的2-3倍。

(5)瓷质阳极化(6-20um)氧化膜具有不透明的灰色外观,类似瓷釉、搪瓷,也被称之为仿釉氧化膜。

一般不会改变零件的表面粗糙度,也不影响其尺寸精度,适用于仪器、仪表等精密零件和日用品的表面防护和装饰。

2.阳极氧化膜染色(1)整体着色法采用特定成分的铝合金或在特殊的电解液中阳极氧化时,获得氧化膜的同时,而着上不同颜色,也成自然着色法。

(阳极氧化和染色同时进行)能耗较大,成本高,着色膜色泽不鲜艳,逐渐被电解着色所取代。

(2)吸附着色法将阳极氧化后的铝制品浸渍到带有染料的溶液中,则多孔层外表能吸附各种染料而呈现出染料的色彩。

(3)电解着色铝制品经阳极氧化后,再在含金属盐的电解溶液中进行交流电解,则在多孔层孔隙底部沉积金属或金属化合物而显色。

3.封孔(1)热水封闭法(2)重铬酸盐封闭法防护性封孔,封孔后氧化膜呈黄色,耐蚀性较好,不适用于以装饰为目的着色氧化膜的封闭。

(3)水解封闭法(4)填充封闭法采用有机质如透明清漆、熔融石蜡、各种树脂和干性油等进行封闭。

阳极氧化常见的工艺

阳极氧化常见的工艺

阳极氧化常见的工艺
阳极氧化是一种常见的表面处理工艺,广泛应用于铝、镁、钛等金属的表面处理。

下面是一些常见的阳极氧化工艺:
1. 硫酸阳极氧化:这是最常见的阳极氧化工艺之一,使用硫酸作为电解液。

在这个过程中,铝或铝合金的表面会形成一层致密的氧化膜,具有良好的耐腐蚀性和装饰性。

2. 草酸阳极氧化:草酸阳极氧化是一种特殊的阳极氧化工艺,使用草酸作为电解液。

这种工艺可以在铝或铝合金表面形成一层更厚、更致密的氧化膜,具有更好的耐腐蚀性和耐磨性。

3. 磷酸阳极氧化:磷酸阳极氧化是一种用于在铝或铝合金表面形成一层薄而均匀的氧化膜的工艺。

这种工艺通常用于需要高表面质量和耐腐蚀性的应用,例如航空航天和汽车制造。

4. 铬酸阳极氧化:铬酸阳极氧化是一种用于在铝或铝合金表面形成一层薄而均匀的氧化膜的工艺。

这种工艺通常用于需要高表面质量和装饰性的应用,例如建筑和家具制造。

5. 混合酸阳极氧化:混合酸阳极氧化是一种使用混合酸电解液的阳极氧化工艺。

这种工艺可以在铝或铝合金表面形成一层更厚、更致密的氧化膜,具有更好的耐腐蚀性和耐磨性。

这些是常见的阳极氧化工艺,每种工艺都有其独特的优点和适用范围。

选择适当的阳极氧化工艺取决于所需的表面质量、耐腐蚀性、耐磨性和装饰性等因素。

表面绝缘阳极氧化的原因

表面绝缘阳极氧化的原因

表面绝缘阳极氧化的原因
表面绝缘阳极氧化是一种常见的表面处理方法,其作用是在金属表面形成一层致密的氧化膜,从而提高金属的耐腐蚀性和绝缘性能。

这种氧化膜主要由氧化铝组成,具有良好的绝缘性能和耐热性能。

表面绝缘阳极氧化的原因主要有以下几点:
1.阳极氧化工艺:表面绝缘阳极氧化是通过阳极氧化工艺实现的。

在这个过程中,金属制品作为阳极,经过预处理后浸入含有电解质的电解槽中,通过施加电流使金属表面发生氧化反应,形成氧化膜。

该工艺可以精确控制氧化膜的厚度和性能,从而实现表面绝缘的效果。

2.氧化反应:表面绝缘阳极氧化的实质是金属与氧发生氧化反应,生成氧化物。

当金属表面与氧分子接触时,氧分子会与金属表面上的活性金属原子发生反应,生成金属氧化物。

而氧化铝是一种常见的金属氧化物,具有良好的绝缘性能和耐热性能。

3.氧化膜的致密性:表面绝缘阳极氧化形成的氧化膜通常具有致密的结构。

这是因为在阳极氧化过程中,金属表面发生的氧化反应会释放出大量的氧气,氧气在金属表面上形成氧化膜。

这种氧化膜可以覆盖金属表面的微小孔洞和缺陷,从而提高金属的绝缘性能。

4.氧化膜的厚度:表面绝缘阳极氧化的效果与氧化膜的厚度密切相关。

通常情况下,氧化膜的厚度越大,绝缘性能越好。

通过调节阳
极氧化工艺参数,可以控制氧化膜的厚度,从而实现不同需求的绝缘效果。

表面绝缘阳极氧化的原因主要是通过阳极氧化工艺使金属表面发生氧化反应,生成致密的氧化膜,从而提高金属的绝缘性能和耐热性能。

这种技术在电子、航空航天、汽车等领域得到广泛应用,为金属制品的改性和提升性能提供了有效的手段。

阳极表面氧化处理的方法

阳极表面氧化处理的方法

阳极表面氧化处理的方法
阳极氧化是一种常用的表面处理方法,可以在金属表面形成坚硬、致密、耐磨的氧化层,以提高其机械性能、耐蚀性、装饰性和电绝缘性等。

常见的阳极表面氧化处理方法如下:
1.电化学阳极氧化法:将金属制品作为阳极,在电解液中进行电化学反应,在金属表面形成氧化层。

该方法操作简便、成本较低,适用于大批量生产。

2.高温氧化法:将金属制品放入高温炉中,在氧气或空气中进行氧化处理。

该方法可以形成更均匀、致密的氧化层,适用于耐高温的材料。

3.电子束辐射氧化法:利用电子束辐射在金属表面形成氧化层。

该方法操作简便,不需要液体电解液,但需要较高的能量和设备成本。

4.湿法氧化法:利用酸、碱或氧化剂等液体溶液,在金属表面形成氧化层。

该方法适用于小批量或不规则形状的制品。

5.混合氧化法:结合以上几种方法的优点,综合利用不同的处理方法进行氧化处理。

这些方法根据不同的材料和要求,选择不同的处理方法可以得到不同的氧化层,从而得到更好的效果。

阳极氧化知识点总结

阳极氧化知识点总结

阳极氧化知识点总结一、阳极氧化的原理阳极氧化是通过在酸性或碱性电解液中对金属制品施加电流,使其成为阳极,而在阴极上放置铝箔或铝制品,使金属表面氧化生成氧化膜的一种表面处理方法。

一般来讲,阳极氧化的主要原理包括以下几点:1. 电解液中金属阳极溶解,生成阳离子,而在阴极放置的铝箔上生成氢氧化铝。

2. 电解液中的氢氧化铝或氧化铝颗粒密封在阳极表面孔洞内,形成氧化膜。

3. 通过处理获得均质的氧化膜,提高金属表面的硬度和耐腐蚀性。

二、阳极氧化的工艺阳极氧化的工艺包括预处理、电解池设备和后处理三个部分。

1. 预处理预处理是阳极氧化的前置工序,包括去油、脱涂、除锈等。

对于不同类型的金属材料,预处理过程会有所不同。

2. 电解池设备电解池设备是阳极氧化的主要设备,包括电解槽、电源、电极、电解液循环系统、搅拌装置等。

金属制品通过电极置于电解液中,通过设备施加电流,金属表面就能形成氧化膜。

3. 后处理后处理包括清洗、封孔等工序,以保证氧化膜的质量和表面平整度。

三、阳极氧化的应用由于阳极氧化获得的氧化膜有着优良的性能,因此在工业、建筑、航空航天等领域有着广泛的应用。

1. 工业领域在工业领域,阳极氧化可以应用在各种金属制品表面的处理,如航空零部件、汽车零配件、仪器仪表等。

2. 建筑领域在建筑领域,阳极氧化常用于铝合金、钛合金等金属材料的表面处理,增加其耐蚀性和耐磨性。

3. 航空航天领域在航空航天领域,阳极氧化可以提高航空器、飞机舷窗等部件的表面性能,延长其使用寿命。

四、阳极氧化的发展趋势随着科学技术的不断发展和进步,阳极氧化技术也在不断地创新和完善。

1. 清洗技术的改进为了提高氧化膜的质量和表面平整度,清洗技术也在不断地改进和完善。

2. 电解液的优化电解液的成分和配比对于氧化膜的性能有着重要的影响,因此电解液的优化也是阳极氧化技术的一个发展方向。

3. 环保技术的应用随着环保意识的增强,环保技术的应用也是阳极氧化技术发展的一个趋势,以减少对环境的影响。

阳极氧化原理

阳极氧化原理

阳极氧化原理阳极氧化(ElectrochemicalOxidation)是一种利用电解质根据电荷平衡原理,在电极表面发生的氧化还原反应的化学方法,是利用电解的方法,将受氧物质氧化、击碎成极其微细的碎片,最后形成一个均匀的稀薄膜过程。

它是有机物、金属和非金属的溶液被氧化成氧化物的一种反应。

阳极氧化技术是解决工业废水污染的重要手段,是研究、开发新型阳极氧化技术和装备、评估运行情况和性能以及应用阳极氧化技术处理各种污染物的重要方法。

阳极氧化术是一种清洁能源技术,仅需少量的能量,可以有效清除污染物,提高水质。

阳极氧化原理主要有以下几点:1、利用电子传输原理,将电子从阳极流到阴极,把原来的物质(有机物)氧化为有机氧化物,最终污染物被氧化成稀薄的悬浮物或溶解物;2、电子转移过程中,氧化还原反应同时发生,氧化物被阴极还原为原来的物质,同时阳极出现氧化物,最终形成表面均匀的膜;3、去除污染物过程中,被氧化的物质会被还原成氢氧化物或碳氧化物,并被阴极迅速吸收;4、电极表面发生的氧化还原反应,可以有效减少有害物质的浓度,最终污染物被电解质分解,获得的清洁水比原有的水更加清澈。

阳极氧化技术有许多优点,例如具有很强的破坏力,可以有效减少有害物质的浓度,并且可以在较低的温度下减少污染物,提高污染物的去除效率;而且可以使用各种电解质来进行操作,可以根据不同的污染物选择最合适的电解质,最终获得更好的净化效果;另外,可以控制处理的温度,减少污染物的污染程度;最后,它也有节能效果,可以在不损害环境的前提下,低耗能量处理受污染的水体。

阳极氧化的应用范围很广,例如用于处理污水、污泥处理、有机废弃物处理、去除环境中的有毒物质、生物脱氮除磷等,可以有效净化污染水体,提高水质,改善环境质量,最终实现能源综合利用。

从以上叙述可以看出,阳极氧化技术具有良好的性能,在净化污染水体的过程中具有很大的作用,可以有效降低污染物的浓度。

由于阳极氧化技术的应用范围广泛,因此,目前许多企业和研究机构都在努力研究和开发新型阳极氧化技术,以满足工业和农业领域中的净化污染水体的需求。

阳极氧化和阴极氧化

阳极氧化和阴极氧化

阳极氧化和阴极氧化阳极氧化和阴极氧化是两种表面处理技术,主要应用于金属和合金的表面处理,以提高其抗氧化性、耐腐蚀性和强度等物理性能,同时也增加了表面的美观度。

1. 阳极氧化阳极氧化是一种将金属表面转变为其氧化物层的表面处理技术。

它涉及电化学加工过程,通过在金属表面施加外加电场来形成氧化物层。

此过程通过在一个电介质中的电极表面施加电流来达到。

这个电介质可以是电解浴,也被称为电解质。

钝性金属如铝、钛、锆、锂等以及少量的镁、锌、钢等能够进行阳极氧化处理。

在电化学加工过程中,金属的阳极连接到正极,而阴极连接到负极。

当电解浴被施加到这些极上时,电子从阳极流出,流入阴极。

这种电流导致金属表面上的氧化物层形成。

在这个过程中,氧化物在阳极处形成,同时金属在阴极处退化。

其优点是能够形成一层平滑和持久的氧化物层,这层层即使在极度环境下也可以保持其效果。

这种表面处理技术可以增加金属的耐腐蚀能力、硬度、摩擦系数和导热性能。

在制造航空器以及高精密设备、外壳等方面应用广泛。

阴极氧化是一种金属表面处理技术,它使金属在阴极处进行氧化。

这种技术是通过将金属表面置于电化学反应环境中实现的。

这个环境具有帮助金属表面进行反应的化学物质和电场。

阴极氧化的时候,金属会成为电解质中的阴极。

在阴极处,电子和化学物质发生反应,产生的化合物形成了金属表面上的一层氧化物膜。

这层氧化物膜通过剧烈的反应形成,由于电场强的缘故,催化剂所产生的氧化作用能够已增加到很高的水平上。

阴极氧化处理的优点是它能够增加金属表面的电阻,从而减少表面反应和腐蚀作用。

此外,这个表面处理技术还能够增强金属的导电性和抗腐蚀性。

在制造电子产品、医疗设备和汽车零部件等方面也有广泛应用。

总结:以上就是阳极氧化和阴极氧化的具体解释,这个两种表面处理技术在工业化生产和科技创新等领域中有着广泛的应用。

同时,由于这些技术的不断创新,它们的应用范围也在不断扩大,极大地促进了金属产品的性能提升和质量的提高。

阳极氧化技术

阳极氧化技术
1)硬度高:常规膜100-300 HV,硬质膜在铝合金上达400600HV,在纯铝上1500HV.
2)吸附性强:易于吸附涂料、粘结剂和染料等. 3)绝缘性能好:高的绝缘电阻和击穿电压.
4)绝热耐热性能好:低的热导率0.419-1.26W/(mK), 耐热 温度可达1500℃。
5)结合强度高:基体金属直接参与成膜反应,故结合牢固。 6)耐蚀性较好:不耐碱腐蚀,恶劣环境下,要用清漆、蜡
工艺配方为:草酸4~5%、甲酸0.55%,三相交流44士2伏, 电流密度2~2.5A/d㎡,温度30±2℃。
2)混合酸氧化
该法于1976年正式纳入日本国家标准,并为日 本北星日轻家庭用品株式会社所采用。其特点是成膜 快,膜的硬度、耐磨、耐腐蚀性能都比普通的硫酸氧 化法高,膜层呈银白色,适用于印花、着色产品。我 国铝制品行业赴日考察后,于1979年开始推荐使用。 推荐工艺配方为: H2SO4 10~20%, COOHCOOH·2H2O 1~2%, 电压10~20V,电流密度1~3A/d㎡, 温度15~30℃,时间30分钟。
氧化电流密度
朱祖芳. 铝合金阳极氧化与表面处理技术,北京:化学工业出版社,2010.
电流密度要根据对氧化膜质量要求和以下几点确定:
氧化时间
时间增加,硫酸溶液对膜层溶解作用加剧,使膜孔壁变薄,从而耐磨性变差
第五节 膜厚及其均匀性的控制
阳极氧化膜厚控制
阳极氧化膜均匀性控制
阳极氧化技术
主要内容
阳极氧化机理 阳极氧化膜的结构和性质 阳极氧化工艺 工艺参数对阳极氧化的影响 膜厚及其均匀性的控制 阳极氧化膜着色简介 阳极氧化新工艺简介
第一节 阳极氧化机理
阳极氧化:是将零件作为阳极放入特定的电解质溶液 中,在外加电流的作用下,使表面形成具 有保护性氧化膜的表面处理方法。

阳极氧化工艺技术详解

阳极氧化工艺技术详解

阳极化阳极氧化工艺流程为:表面整平——除油——浸蚀或抛光——阳极氧化——着色处理——封闭处理——干燥(三个主要过程:阳极氧化、着色、封孔),本色氧化就是少了着色处理这一过程,阳极氧化后直接封孔。

1.阳极氧化(1)硫酸阳极化(5-20um)物色氧化膜,易于染色,硬度高,是铝和铝合金主要的防护和装饰方法,工艺简单,操作方便,应用最广。

(2)铬酸阳极化(2-5um)氧化膜不透明,未浅灰色或乳白色,孔隙率低,所以零件仍能保持原来的精度和表面粗糙度,丐工艺适用于精密零件,膜比较薄。

(3)草酸阳极化(8-20um,最厚达60um)草酸阳极化易于制取较厚膜层,氧化膜硬度高,孔隙率低,耐蚀性高,有良好的电绝缘性。

但成本较高,是硫酸阳极化的3-5倍,一般用于特殊要求的表面,如制作电器绝缘保护层、日用品的表面装饰。

(4)硬质阳极化(又称厚膜氧化,250-300um)硬度很高,一般为400-600HV,电流密度为普通阳极氧化的2-3倍。

(5)瓷质阳极化(6-20um)氧化膜具有不透明的灰色外观,类似瓷釉、搪瓷,也被称之为仿釉氧化膜。

一般不会改变零件的表面粗糙度,也不影响其尺寸精度,适用于仪器、仪表等精密零件和日用品的表面防护和装饰。

2.阳极氧化膜染色(1)整体着色法采用特定成分的铝合金或在特殊的电解液中阳极氧化时,获得氧化膜的同时,而着上不同颜色,也成自然着色法。

(阳极氧化和染色同时进行)能耗较大,成本高,着色膜色泽不鲜艳,逐渐被电解着色所取代。

(2)吸附着色法将阳极氧化后的铝制品浸渍到带有染料的溶液中,则多孔层外表能吸附各种染料而呈现出染料的色彩。

(3)电解着色铝制品经阳极氧化后,再在含金属盐的电解溶液中进行交流电解,则在多孔层孔隙底部沉积金属或金属化合物而显色。

3.封孔(1)热水封闭法(2)重铬酸盐封闭法防护性封孔,封孔后氧化膜呈黄色,耐蚀性较好,不适用于以装饰为目的着色氧化膜的封闭。

(3)水解封闭法(4)填充封闭法采用有机质如透明清漆、熔融石蜡、各种树脂和干性油等进行封闭。

阳极氧化规律

阳极氧化规律

阳极氧化是一种电解化学过程,通常用于金属表面处理,以形成一层氧化膜。

这个过程遵循一些基本的规律和原则:
1. 电子转移:在阳极氧化过程中,电子从阳极(通常是金属工件)流向阴极,这一过程称为电子转移。

2. 氧化反应:在阳极,金属原子失去电子,形成阳离子。

这些阳离子在溶液中与水分子或氧化剂反应,形成氧化物或羟基氧化物。

3. 氧化膜的形成:随着氧化反应的进行,金属表面逐渐形成一层氧化膜。

这个膜可以增加金属表面的硬度、耐腐蚀性和耐磨性。

4. 电流密度:阳极氧化的速率受到电流密度的影响。

电流密度越高,氧化速率越快,但过高的电流密度可能会导致氧化膜的质量下降。

5. 电解质的影响:电解质溶液的种类和浓度会影响阳极氧化的过程。

不同的电解质会导致不同的氧化膜成分和性质。

6. 温度和pH值:温度和pH值也会影响阳极氧化过程。

通常,较高的温度和适当的pH值有利于氧化膜的形成。

7. 电流效率:阳极氧化过程中,并不是所有的电流都会用于氧化反应,有一部分电流可能会用于其他副反应,如氢气的生成。

电流效率越高,氧化反应越有效。

8. 阳极材料的选择:不同的金属材料具有不同的阳极氧化特性。

选择合适的阳极材料对于获得理想的氧化膜至关重要。

9. 氧化膜的性质:氧化膜的性质,如厚度、成分、结构和表面粗糙度,取决于阳极氧化条件和工件材料。

这些规律和原则是阳极氧化工艺设计和优化的重要依据。

通过精确控制这些参数,可以获得具有特定性能的氧化膜,以满足不同应用的需求。

阳极氧化处理

阳极氧化处理

阳极氧化处理(Anodizing)1. 简介阳极氧化处理(Anodizing)是一种常用的表面处理方法,通过在金属表面形成一层氧化膜来增加其耐蚀性、耐磨性和装饰性。

它被广泛应用于航空航天、汽车、电子等领域。

该文档将介绍阳极氧化处理的原理、工艺流程和应用领域,并提供一些常见问题的解答。

2. 原理阳极氧化处理是通过在金属导体表面进行氧化反应形成氧化膜,这一反应是在电解液中进行的。

典型的电解液包括硫酸、硫酸铬、硫酸铝等。

在处理过程中,金属导体作为阳极,电解液中的阴离子会在阳极上发生氧化反应,同时放出电子。

这些电子经过外部电路,回到电源的负极。

氧化反应的产物是一层致密的氧化膜,它与金属基体牢固结合。

氧化膜的厚度可以通过控制电流密度、电解液的成分、温度等参数来调整。

较厚的氧化膜通常具有较好的耐腐蚀性和装饰性。

3. 工艺流程阳极氧化处理的工艺流程通常包括以下几个步骤:3.1 清洗在进行阳极氧化处理之前,需要对待处理的金属表面进行彻底的清洗。

清洗的目的是去除表面的油脂、灰尘和其他杂质,以确保氧化膜的质量。

常用的清洗方法包括化学清洗、机械清洗和超声波清洗等。

选择合适的清洗方法取决于金属的类型和表面状态。

3.2 预处理在清洗之后,对金属表面进行预处理是非常重要的。

预处理可以去除表面的氧化物和粗糙度,增加表面活性,有利于氧化膜的形成。

预处理的方法包括酸洗、钝化、抛光等。

具体的方法选择取决于金属的种类和要求。

3.3 阳极氧化在清洗和预处理之后,金属件被放置在电解槽中作为阳极。

电解液中的金属离子通过氧化反应在阳极上沉积生成氧化膜。

阳极氧化的参数包括电流密度、电解液的成分和温度等。

通过调整这些参数,可以控制氧化膜的颜色、厚度和质量。

3.4 封孔在经过阳极氧化处理后,氧化膜表面会形成许多孔洞。

为了封闭这些孔洞,通常需要进行一个封孔处理。

封孔处理的方法有热封孔和化学封孔两种。

热封孔是通过加热金属件来提高氧化膜表面的密封性。

化学封孔通过在氧化膜表面形成一层密封剂来达到封孔的目的。

原色阳极氧化和本色阳极氧化

原色阳极氧化和本色阳极氧化

原色阳极氧化和本色阳极氧化
原色阳极氧化和本色阳极氧化是两种不同的阳极氧化处理方法,用于对铝制品进行表面处理和增强其耐腐蚀性和美观性。

1. 原色阳极氧化:原色阳极氧化是一种表面处理方法,通过在铝制品表面形成一层氧化膜来增加其耐腐蚀性。

这种氧化膜一般具有无色或浅灰色的外观,保留了铝材料的天然外观和质感。

原色阳极氧化通常用于保护铝制品的表面,并保持其原始外观。

2. 本色阳极氧化:本色阳极氧化是一种改变铝制品表面颜色的处理方法。

与原色阳极氧化不同,本色阳极氧化通过在铝表面形成一层氧化膜来产生不同的颜色效果。

这种氧化膜可以在铝材料上形成各种颜色,如黑色、金色、蓝色、红色等,具体颜色取决于处理工艺和氧化膜的厚度。

无论是原色阳极氧化还是本色阳极氧化,它们都能提供一定程度的耐腐蚀性和保护性,同时使铝制品具有更多的装饰性选择。

具体选择哪种处理方法取决于应用需求和个人偏好。

阳极氧化

阳极氧化

阳极氧化膜生成一般原理
以铝或铝合金制品为阳极置于电解质溶液 利用电解作用, 中,利用电解作用,使其表面形成氧化铝 薄膜的过程, 薄膜的过程,称为铝及铝合金的阳极氧化 处理 铝阳极氧化的原理实质上就是水电解的原 当电流通过时,在阴极上,放出氢气; 理。当电流通过时,在阴极上,放出氢气; 在阳极上, 在阳极上,作为阳极的铝被其上析出的氧 所氧化,形成无水的氧化铝膜, 所氧化,形成无水的氧化铝膜,生成的氧 并不是全部与铝作用, 并不是全部与铝作用,一部分以气态的形 式析出。理
–阳极氧化前,需对镀件表面作精整和清理,去除毛刺、 阳极氧化前,需对镀件表面作精整和清理,去除毛刺、 阳极氧化前 夹砂、残渣、油脂、氧化皮、钝化膜, 夹砂、残渣、油脂、氧化皮、钝化膜,使基体金属露出 洁净、活性的晶体表面。这样才能得到健全、致密、结 洁净、活性的晶体表面。这样才能得到健全、致密、 合良好的镀层。前处理不当,将会导致镀层起皮、剥落、 合良好的镀层。前处理不当,将会导致镀层起皮、剥落、 鼓泡、毛刺、发花等缺陷。 鼓泡、毛刺、发花等缺陷。
阳极氧化处理
着色处理
–铝阳极氧化膜的化学着色是基于多孔膜层有如纺织纤维 铝阳极氧化膜的化学着色是基于多孔膜层有如纺织纤维 一样的吸附染料能力而得以进行的。 一样的吸附染料能力而得以进行的。一般阳极氧化膜的 孔隙直径为0.01 0.03μm 而染料在水中分离成单分子, 0.01μm, 孔隙直径为0.01-0.03μm,而染料在水中分离成单分子, 直径为0.0015 0.0030μm 0.0015μm, 直径为0.0015-0.0030μm,着色时染料被吸附在孔隙表 面上并向孔内扩散、堆积,而且与氧化铝进行离子键、 面上并向孔内扩散、堆积,而且与氧化铝进行离子键、 氢键结合而使膜层着色

阳极氧化的一般概念

阳极氧化的一般概念

阳极氧化的一般概念1、阳极氧化生成的一般原理以铝或铝合金制品为阳极置于电解质溶液中,利用电解作用,使其表面形成氧化铝薄膜的过程,称为铝及铝合金的阳极氧化处理。

其装置中阴极为在电解溶液中化学稳定性高的材料,如铅、不锈钢、铝等。

铝阳极氧化的原理实质上就是水电解的原理。

当电流通过时,在阴极上,放出氢气;在阳极上,析出的氧不仅是分子态的氧,还包括原子氧(O)和离子氧,通常在反应中以分子氧表示。

作为阳极的铝被其上析出的氧所氧化,形成无水的氧化铝膜,生成的氧并不是全部与铝作用,一部分以气态的形式析出。

2、阳极氧化电解溶液的选择阳极氧化生长的一个先决条件是,电解液对氧化膜应有溶解作用。

但这并非说在所有存在溶解作用的电解液中阳极氧化都能生成氧化膜或生成的氧化膜性质相同。

3、阳极氧化的种类阳极氧化按电流形式分为:直流电阳极氧化,交流电阳极氧化,脉冲电流阳极氧化。

按电解液分有:硫酸、草酸、铬酸、混合酸和以磺基有机酸为主溶液的自然着色阳极氧化。

按膜层性子分有:普通膜、硬质膜(厚膜)、瓷质膜、光亮修饰层、半导体作用的阻挡层等阳极氧化。

4、阳极氧化结构、性质阳极氧化由两层组成,多孔的厚的外层是在具有介电性质的致密的内层上上成长起来的,后者称为阻挡层(也称活性层)。

用电子显微镜观察研究,膜层的纵横面几乎全都呈现与金属表面垂直的管状孔,它们贯穿膜外层直至氧化膜与金属界面的阻挡层。

以各孔隙为主轴周围是致密的氧化铝构成一个蜂窝六棱体,称为晶胞,整个膜层是又无数个这样的晶胞组成。

阻挡层是又无水的氧化铝所组成,薄而致密,具有高的硬度和阻止电流通过的作用。

阻挡层厚约0.03-0.05μm,为总膜后的0.5%-2.0%.氧化膜多孔的外层主要是又非晶型的氧化铝及小量的水合氧化铝所组成,此外还含有电解液的阳离子。

当电解液为硫酸时,膜层中硫酸盐含量在正常情况下为13%-17%.氧化膜的大部分优良特性都是由多孔外层的厚度及孔隙率所觉决定的,它们都与阳极氧化条件密切相关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7.3 铝及其合金的氧化处理铝及铝合金的氧化处理的方法主要有两类:①化学氧化,氧化膜较薄,厚度约为0.5~4微米,且多孔,质软,具有良好的吸附性,可作为有机涂层的底层,但其耐磨性和抗蚀性能均不如阳极氧化膜;②电化学氧化,氧化膜厚度约为5~20微米(硬质阳极氧化膜厚度可达60~200微米),有较高硬度,良好的耐热和绝缘性,抗蚀能力高于化学氧化膜,多孔,有很好的吸附能力。

7.3.1铝及铝合金的化学氧化处理铝及铝合金的化学氧化处理设备简单,操作方便,生产效率高,不消耗电能,适用范围广,不受零件大小和形状的限制。

铝及铝合金化学氧化的工艺按其溶液性质可分为碱性氧化法和酸性氧化法两大类。

按膜层性质可分为:氧化物膜、磷酸盐膜、铬酸盐膜、铬酸-磷酸盐膜。

<1>铝及铝合金碱性铬酸盐化学氧化溶液的配方及工艺条件如表7-4。

注:①配方1,2适用于纯铝,铝镁合金,铝锰合金和铝硅合金的化学氧化。

膜层颜色为金黄色,但后二种合金上得到的氧化膜颜色较暗。

碱性氧化液中得到的膜层较软,耐蚀性较差,孔隙率较高,吸附性好,适于作为涂装底层。

②配方3中加入硅酸钠,获得的氧化膜为无色,硬度及耐蚀性略高,孔隙率及吸附性略低,在硅酸钠的质量分数为2%的溶液中封闭处理后可单独作为防护层用,适合于含重金属铝合金氧化用。

③工件经氧化处理后为提高耐蚀性,可在20g/L的CrO溶液中,室温3下钝化处理5~15s,然后在低于50℃温度下烘干。

<2>铝及铝合金酸性铬酸盐化学氧化溶液配方及工艺条件如表7-5。

注:①配方1得到的氧化膜较薄,韧性好,耐蚀性好,适用于氧化后需变形的铝及铝合金,也可用于铸铝件的表面防护,氧化后不需要钝化或填充处理。

②配方2溶液pH值为1.5~2.2,得到的氧化膜较厚,约1~3微米,致密性及耐蚀性都较好,氧化后零件尺寸无变化,氧化膜颜色为无色至浅蓝色,适用于各种铝及铝合金氧化处理。

在配方2溶液中氧化处理后零件应立即用冷水清洗干净,然后用重铬酸钾40~50g/L溶液填充处理(PH=4.5~6.5时用碳酸钠调整),温度90~95℃,时间5~10分钟,清洗后在70℃烘干。

③配方3溶液中得到的氧化膜为无色透明,厚度约0.3~0.5微米,膜层导电性好,主要用于变形的铝制电器零件。

④配方4适用于纯铝及防锈铝及铸铝等合金。

氧化膜很薄,导电性及耐蚀性好,硬度低,不耐磨,可以点焊或氩弧焊,但不能锡焊;主要用于要求有一定导电性能的铝合金零件。

⑤配方5得到的氧化膜较薄,约0.5微米,导电性及耐蚀性好,孔隙少,可单独作防护层用。

7.3.2铝和铝合金的阳极氧化(电化学氧化处理)铝是比较活泼的金属,标准电位-1.66v,在空气中能自然形成一层厚度约为0.01~0.1微米的氧化膜,这层氧化膜是非晶态的,薄而多孔,耐蚀性差。

但是,若将铝及其合金置于适当的电解液中,以铝制品为阳极,在外加电流作用下,使其表面生成氧化膜,这种方法称为阳极氧化。

通过选用不同类型、不同浓度的电解液,以及控制氧化时的工艺条件,可以获得具有不同性质、厚度约为几十至几百微米的阳极氧化膜,其耐蚀性,耐磨性和装饰性等都有明显改善和提高。

1.氧化膜的形成与生长Al及铝合金的阳极氧化所用的电解液一般为中等溶解能力的酸性溶液,铅作为阴极,仅起导电作用。

铝及其合金进行阳极氧化时,在阳极发生下列反应:H2O-2e ---> O + 2H+2Al+3O ---> Al2O 3在阴极发生下列反应:2H++2e ---> H2同时酸对铝和生成的氧化膜进行化学溶解,其反应为:2Al + 6H+ ---> 2Al3++3H2Al2O3+ 6H+ ---> 2Al3++ 3H2O氧化膜的生长过程就是氧化膜不断生成和不断溶解的过程。

第一段a(曲线ab段):无孔层形成。

通电刚开始的几秒到几十秒时间内,铝表面立即生成一层致密的、具有高绝缘性能的氧化膜,厚度约0.01~0.1微米,为一层连续的、无孔的薄膜层,称为无孔层或阻挡层,此膜的出现阻碍了电流的通过和膜层的继续增厚。

无孔层的厚度与形成电压成正比,与氧化膜在电解液中的溶解速度成反比。

因此,曲线ab段的电压就表现出由零急剧增至最大值。

第一段b(曲线bc段):多孔层形成。

随着氧化膜的生成,电解液对膜的溶解作用也就开始了。

由于生成的氧化膜并不均匀,在膜最薄的地方将首先被溶解出空穴来,电解液就可以通过这些空穴到达铝的新鲜表面,电化学反应得以继续进行,电阻减小,电压随之下降(下降幅度为最高值的10~15%),膜上出现多孔层。

第一段c(曲线cd段):多孔层增厚。

阳极氧化约20s后,电压进入比较平稳而缓慢的上升阶段。

表明无孔层在不断地被溶解形成多孔层的同时,新的无孔层又在生长,也就是说氧化膜中无孔层的生成速度与溶解速度基本上达到了平衡,故无孔层的厚度不再增加,电压变化也很小。

但是,此时在孔的底部氧化膜的生成与溶解并没有停止,他们仍在不断进行着,结果使孔的底部逐渐向金属基体内部移动。

随着氧化时间的延续,孔穴加深形成孔隙,具有孔隙的膜层逐渐加厚。

当膜生成速度和溶解速度达到动态平衡时,即使再延长氧化时间,氧化膜的厚度也不会再增加,此时应停止阳极氧化过程。

阳极氧化特性曲线与氧化膜生长过程如图7-1所示。

图7-1 阳极氧化特性曲线与氧化膜生长过程示意图2.铝及铝合金的阳极氧化工艺铝及其铝合金阳极氧化的方法很多,常用的有硫酸阳极氧化、铬酸阳极氧化、草酸阳极氧化、硬质阳极氧化和瓷质阳极氧化。

<1>硫酸阳极氧化:在稀硫酸电解液中通以直流和交流电对铝及其合金进行阳极氧化处理,可获得5~20微米厚,吸附性较好的无色透明氧化膜。

硫酸阳极氧化工艺简单,溶液稳定,操作方便,允许杂质含量范围较宽,电能消耗少,成本低,且几乎可以适用于铝及各种铝合金的加工,所以在国内已得到了广泛的应用。

表7-6为几种典型的阳极氧化工艺:表7-6 硫酸阳极氧化的配方及工艺条件影响氧化膜质量的因素主要有:①硫酸浓度:通常采用15%~20%。

浓度升高,膜的溶解速度加大,膜的生长速度降低,膜的孔隙率高,吸附力强,富有弹性,染色性好(易于染深色),但硬度,耐磨性略差;而降低硫酸浓度,则氧化膜生长速度加快,膜的孔隙少,硬度高,耐磨性好。

所以,用于防护,装饰及纯装饰加工时,多使用允许浓度的上限,即20%浓度的硫酸做电解液。

②电解液温度:电解液温度对氧化膜质量影响很大。

温度升高,膜的溶解速度加大,膜厚降低。

当温度为22~30℃时,所得到的膜是柔软的,吸附能力好,但耐磨性相当差;当温度大于30℃时,膜就变得疏松且不均匀,有时甚至不连续,且硬度低,因而失去使用价值;当温度在10~20℃之间时,所生成的氧化膜多孔,吸附能力强,并富有弹性,适宜染色,但膜的硬度低,耐磨性差;当温度低于10℃,氧化膜的厚度增大,硬度高,耐磨性好,但孔隙率较低。

因此,生产时必须严格控制电解液的温度。

要制取厚而硬的氧化膜时,必须降低操作温度,在氧化过程中采用压缩空气搅拌和比较低的温度,通常在零度左右进行硬质氧化。

③电流密度:在一定限度内,电流密度升高,膜生长速度升高,氧化时间缩短,生成膜的孔隙多,易于着色,且硬度和耐磨性升高;电流密度过高,则会因焦耳热的影响,使零件表面过热和局部溶液温度升高,膜的溶解速度升高,且有烧毁零件的可能;电流密度过低,则膜生长速度缓慢,但生成的膜较致密,硬度和耐磨性降低。

④氧化时间:氧化时间的选择,取决于电解液浓度,温度,阳极电流密度和所需要的膜厚。

相同条件下,当电流密度恒定时,膜的生长速度与氧化时间成正比;但当膜生长到一定厚度时,由于膜电阻升高,影响导电能力,而且由于温升,膜的溶解速度增大,所以膜的生长速度会逐渐降低,到最后不再增加。

⑤搅拌和移动:可促使电解液对流,强化冷却效果,保证溶液温度的均匀性,不会造成因金属局部升温而导致氧化膜的质量下降。

⑥电解液中的杂质:在铝阳极氧化所用电解液中可能存在的杂质有Clˉ,Fˉ,NO3ˉ,Cu2+,Al3+,Fe2+等。

其中 Clˉ,Fˉ,NO3ˉ使膜的孔隙率增加,表面粗糙和疏松。

若其含量超过极限值,甚至会使制件发生腐蚀穿孔(Clˉ应小于0.05g/L,Fˉ应小于0.01g/L);当电解液中Al3+含量超过一定值时,往往使工件表面出现白点或斑状白块,并使膜的吸附性能下降,染色困难(Al3+应小于20g/L);当Cu2+含量达0.02g/L时,氧化膜上会出现暗色条纹或黑色斑点;Si2+常以悬浮状态存在于电解液中,使电解液微量混浊,以褐色粉状物吸附于膜上。

⑦铝合金成分:一般来说,铝金属中的其它元素使膜的质量下降,且得到的氧化膜没有纯铝上得到的厚,硬度也低,不同成分的铝合金,在进行阳极氧化处理时要注意不能同槽进行。

<2>铬酸阳极氧化:铬酸阳极氧化是指用5~10%的铬酸电解液对铝及其合金进行阳极氧化的技术。

用此法得到的氧化膜具有如下特点:①较薄(与硫酸和草酸氧化膜比),约2~5微米,可保持工件原有精度和粗糙度;②质软弹性高,几乎没有气孔,耐蚀性强于硫酸阳极氧化膜;③不透明,颜色由灰白至深灰色,甚至彩虹色,故不易染色;④由于孔隙少,膜层不用封闭处理就可使用;⑤与有机物的结合力好,因此常用作油漆的底层;⑥与硫酸阳极氧化比,成本较高,使用受到一定限制。

表7-7是几种铬酸阳极氧化工艺:<3>草酸阳极氧化:草酸阳极氧化是用2%~10%的草酸电解液通以直流或交流电进行的氧化工艺。

当使用直流电进行阳极氧化时,所得膜层硬度及抗蚀力不亚于H2SO4阳极氧化膜,而且由于草酸溶液对铝及氧化膜的溶解度小,所以可得到比硫酸溶液中更厚的氧化膜层;若用交流电进行氧化,可得较软、弹性好的膜层。

草酸阳极氧化的膜层一般为8~20微米,最厚可达60微米。

氧化过程中只要改变工艺条件(如草酸浓度,温度,电流密度,波形等),便可得到银白色、金黄色至棕色等装饰性膜层,不需要再进行染色处理。

草酸阳极氧化电解液对氯离子非常敏感,其质量浓度超过0.04g/L膜层就会出现腐蚀斑点。

三价铝离子的质量浓度也不允许超过3g/L。

但草酸阳极氧化成本较高,耗能多(因为草酸电解液的电阻比硫酸,铬酸大),溶液有毒性,且电解液稳定性差。

草酸阳极氧化几种工艺如表7-8所示。

<4>瓷质阳极氧化:在电解液中加入某些物质,使其在形成氧化膜的同时被吸附在膜层中,从而获得光滑,有光泽,均匀不透明的类似瓷釉和搪瓷色泽的氧化膜,称“瓷质阳极氧化膜”或“瓷质氧化膜”。

这种氧化膜弹性好,抗蚀性好,染色以后可得到具有塑料感的外观。

所得膜厚约6~25微米。

下面是瓷质氧化的两种方法:①在硫酸或草酸溶液中加入某些稀有金属元素(如钛,钍等)的盐类:氧化过程中,由于这些盐类的水解作用产生发色物质沉积于氧化膜孔隙中,形成类似瓷釉的膜层,硬度高,可以保持零件的高精度和高光洁程度,但成本昂贵,溶液使用周期短,工艺条件要求严。

相关文档
最新文档