【学习课件】第5章光纤通信系统
合集下载
光纤通信第5章.ppt
影响光纤的连接损耗有多种,主要包括 以下2个方面:
(1)光纤结构参数失配引起的连接损耗,主 要包括光纤芯径尺寸失配、数值孔径失配 以及折射率分布失配等3个方面。
① 光纤芯径尺寸失配(主要在单模光纤中 考虑)
②数值孔径失配(多模光纤中起作用)
③折射率分布失配(多模光纤中起作用)
(2)两光纤相对位置偏离引起的连接损耗
对掺铒光纤进行激励的泵浦功率低,仅需几十毫 瓦,而喇曼放大器需要1W以上;
增益高、噪声低、输出功率大。增益可达40dB, 噪声系数可低至3-4dB,输出功率可达14-20dBm;
连接损耗低,与光纤连接损耗可低至0.1dB;
对各种类型、速率与格式的信号传输透明。
一、EDFA的基本结构
两根光纤相对位置偏离引起的连接损耗主要 包括横向错位引起的损耗、倾斜损耗以及间隙损 耗。
①横向错位引起的损耗
②纵向间隙引起的损耗 ③角度偏移引起的损耗
• 2)回波损耗大。
回波损耗是指在光纤连接处,后向反射光功率Pr相对输 入光功率Pi比的分贝值。回波(绝对值)越大越好,以减小 反射光对光源和系统的影响,其典型值应不小于45dB。
2
1
2
1
3
3 3端口环行器
4 4端口环行器
从图中可见,从任何端口进入的光都能被定向到任 何其它的端口,但必须按顺序通过。
环行器的主要参数: 隔离度: 插入损耗: 偏振相关损耗: 工作波长:
3、衰减器 衰减器是在控制状态下减少传输光功率的装置。
衰减器在光网络中最重要的应用包括:
防止接收器达到饱和(保证输入功率在接收器的 动态范围内)。
3、特性参数
在耦合器/分离器基础上,又增加了新的特性参数。
《光纤通信》PPT课件 (2)
临界角
入射角=反射角
n1
n1
θθ
n1 1
2
n2
n2
900 n2
n1 > n2
临界角
全反射
产生全反射的条件:n1>n2 90º>θ>临界角
25
1.
设纤芯和包层折射率分别为n1和n2,空气的折 射率n0=1, 纤芯中心轴线与z轴一致, 如下图。
光线在光纤端面以小角度θ从空气入射到纤芯
(n0<n1),折射角为θ1,折射后的光线在纤芯直线传 播 , 并 在 纤 芯 与 包 层 交 界 面 以 角 度 ψ1 入 射 到 包 层 (n1>n2)。
32
(2)衰减系数(dB/km)
• 衰减系数定义为单位长度光纤引 起 的光功率衰减,其评定量纲为dB/Km 。
33
光缆
• 按芯数分为单芯、双 芯、多芯
加元光强件纤
加强
• 按敷设场合分为架空
元件
、直埋、管道、移动
、室内、水下、海底
等
• 按用途分为通信用光 缆和非通信用光缆
34
5.2.2光纤通信系统的组成
第5章光纤通信
本章学习要点 • 1、光纤通信系统的概念及组成 • 2、光纤、光缆、光发送机与光接收机 • 3、同步数字系列SDH的概念及原理 • 4、光波分复用(WDM)的概念及原理 • 5、MSTP的概念、原理及应用 • 6、ASON的概念、原理及应用
1
• 5.1 光纤通信概述 • 5.2 光纤通信系统 • 5.3 同步数字系列(SDH) • 5.4光波分复用(WDM) • 5.5多业务传送平台(MSTP) • 5.6 自动交换光网络(ASON) • 5.7 光纤孤子通信技术 • 5.8 光网络的发展趋势
第5章-光纤光学ppt课件光纤的特征参数与测试技术
对于 1 Gbps速率的光脉冲,脉宽约为 1 ns. 如果脉冲展宽 达到脉宽的20%,则系统将不能工作。上述情形显然不适 合于1 Gbps速率,因为脉冲展宽已经达到100%;但是对 于 155 Mbps速率系统没有问题,因为 其脉冲宽度为 6.5 ns,20%的展宽为1300ps。
如果采用线宽为 300 MHz的DFB激光器,在1 Gbps 调制 速率下光谱被展宽 2 GHz,即光源谱宽为2,300 MHz 或 .02 nm (1500 nm波长). 则传输10 公里距离,色散脉冲展 宽值为 : D = 17ps/nm/km × .02 nm × 10 km = 3.4 ps
显然这种情形下, 1 Gbps速率光通信系统没有任何问题。
课堂测验(7)
1. 哪些因素限制光通信传输距离? 2. 一光纤长220公里,已知光纤损耗为0.3dB/km,当输出光功率
为2.5 mW时,输入光功率为多少? 3. 为什么光纤在1.55μm的波长损耗比1.3μm波长小? 4. 光纤的损耗能否降为零?为什么? 5. 三角形折射率分布光纤与平方率折射率分布光纤哪种波导色散
光纤的损耗
§5.1.1 光纤材料的吸收损耗
光纤的损耗谱
不断拓展的光纤窗口波长
2004年
7
§5.1.2 散射损耗
特点:不可能消除的损耗
散射损耗
特点:非线性散射
产生新的频率分量
散射
机理: 光
新光波长+声子
§ 5.1.3 光纤的弯曲损耗
物理机制
光纤发生弯曲
全反射条件破坏
约束能力下降
导摸转化为辐射摸
大?为什么? 6. 简述光纤中三种色散的机理。在什么条件下光纤的色散为零?
习题:5.4~5.11
如果采用线宽为 300 MHz的DFB激光器,在1 Gbps 调制 速率下光谱被展宽 2 GHz,即光源谱宽为2,300 MHz 或 .02 nm (1500 nm波长). 则传输10 公里距离,色散脉冲展 宽值为 : D = 17ps/nm/km × .02 nm × 10 km = 3.4 ps
显然这种情形下, 1 Gbps速率光通信系统没有任何问题。
课堂测验(7)
1. 哪些因素限制光通信传输距离? 2. 一光纤长220公里,已知光纤损耗为0.3dB/km,当输出光功率
为2.5 mW时,输入光功率为多少? 3. 为什么光纤在1.55μm的波长损耗比1.3μm波长小? 4. 光纤的损耗能否降为零?为什么? 5. 三角形折射率分布光纤与平方率折射率分布光纤哪种波导色散
光纤的损耗
§5.1.1 光纤材料的吸收损耗
光纤的损耗谱
不断拓展的光纤窗口波长
2004年
7
§5.1.2 散射损耗
特点:不可能消除的损耗
散射损耗
特点:非线性散射
产生新的频率分量
散射
机理: 光
新光波长+声子
§ 5.1.3 光纤的弯曲损耗
物理机制
光纤发生弯曲
全反射条件破坏
约束能力下降
导摸转化为辐射摸
大?为什么? 6. 简述光纤中三种色散的机理。在什么条件下光纤的色散为零?
习题:5.4~5.11
光纤通信第五章3用课件
27
(2)增益平坦控制技术
目前EDFA的增益平坦技术主要可分为两 大类:一是研究设计自身增益平坦EDFA, 如经过优化设计EDFA(粒子数强烈反转法、 增益互补法),特种光纤等等;二是EDFA 外部采用各种增益均衡技术,如衰减法、 单独放大法、滤波法(插入各种无源光滤波 器,如M—z滤波器、声光可调滤波器、镀 介质膜的滤波器光纤环镜和光纤光栅)等
NF( f ) SNRin SNRout
NF (实际 E) N(等 F 效分立放 •ex大 1p(L 器 ) )
39
4.多波长泵浦时的组合增益谱
(OFC2001)
设计宽带RAMAN放大器不仅要考虑信号和泵浦之间的受激 喇曼散射,还要考虑 ➢ 信号和信号之间的受激喇曼散射 ➢ 泵浦和泵浦之间的受激喇曼散射 ➢ 双径后向瑞利散射
(2)输出功率特性
15
(3)EDFA的增益变化曲线
信 号 增 (益d B )
40
EDFA的增益与泵浦功率、
35
输入功率和EDF的长度有关,
30
25
EDF存在最佳长度。
20
泵浦功率: 90mW
15
泵浦功率: 50mW 泵浦功率: 30mW
10
5
35
12
0
30
10
0 25 50 75 100 125 150 175 200 掺 铒 光 纤 长 度 (m)
8
5.5.3 掺铒光纤放大器
(Erbium-doped Fiber Amplifier, EDFA)
1.EDFA的工作原理
9
1、掺铒光纤放大器原理
a) 三能级跃迁
1μs
铒是镧系稀土元素,原子序数是68, 原子量为167.3, 利用其4f能级
(2)增益平坦控制技术
目前EDFA的增益平坦技术主要可分为两 大类:一是研究设计自身增益平坦EDFA, 如经过优化设计EDFA(粒子数强烈反转法、 增益互补法),特种光纤等等;二是EDFA 外部采用各种增益均衡技术,如衰减法、 单独放大法、滤波法(插入各种无源光滤波 器,如M—z滤波器、声光可调滤波器、镀 介质膜的滤波器光纤环镜和光纤光栅)等
NF( f ) SNRin SNRout
NF (实际 E) N(等 F 效分立放 •ex大 1p(L 器 ) )
39
4.多波长泵浦时的组合增益谱
(OFC2001)
设计宽带RAMAN放大器不仅要考虑信号和泵浦之间的受激 喇曼散射,还要考虑 ➢ 信号和信号之间的受激喇曼散射 ➢ 泵浦和泵浦之间的受激喇曼散射 ➢ 双径后向瑞利散射
(2)输出功率特性
15
(3)EDFA的增益变化曲线
信 号 增 (益d B )
40
EDFA的增益与泵浦功率、
35
输入功率和EDF的长度有关,
30
25
EDF存在最佳长度。
20
泵浦功率: 90mW
15
泵浦功率: 50mW 泵浦功率: 30mW
10
5
35
12
0
30
10
0 25 50 75 100 125 150 175 200 掺 铒 光 纤 长 度 (m)
8
5.5.3 掺铒光纤放大器
(Erbium-doped Fiber Amplifier, EDFA)
1.EDFA的工作原理
9
1、掺铒光纤放大器原理
a) 三能级跃迁
1μs
铒是镧系稀土元素,原子序数是68, 原子量为167.3, 利用其4f能级
光纤通信概论课件
感谢您的观看
THANKS
光纤放大技术
总结词
简化网络结构
详细描述
光纤放大技术简化了网络结构,减少了中继 站的数量,降低了网络的复杂性和成本。这 有助于提高网络的可靠性和可维护性,降低 运营和维护成本。
光纤放大技术
总结词
推动光网络发展
详细描述
光纤放大技术是推动光网络发展的重要支撑 技术之一。它促进了光网络的规模应用和发 展,使得光网络成为现代通信网络的主流技
光的衍射
光波在传播过程中遇到障碍物或孔隙时,会绕过障碍物或孔隙继续传播的现象。 衍射是光波的波动性的另一重要表现,它也是光学仪器和光通信中常用的技术手 段。
光的全反射
• 光的全反射:当光从光密介质射向光疏介质时,如果入射角大 于某一临界角,光波将在界面上完全反射回光密介质,而不能 进入光疏介质的现象。全反射是光纤通信中的重要原理之一, 它使得光波能够在光纤中实现低损耗、长距离的传输。
光纤通信面临的挑战
技术成熟度
虽然光纤通信技术已经取得了长 足的进步,但在一些特殊环境和 应用场景中,技术成熟度仍需进
一步提高。
成本与投资
光纤通信系统的建设和维护成本较 高,需要大量的资金投入,同时也 需要探索更加有效的商业模式。
网络安全与隐私
随着光纤通信网络的普及,网络安 全和隐私保护问题也日益突出,需 要加强技术和管理措施,保障网络 的安全和用户的隐私。
军事领域
光纤通信在军事领域中具有保 密性好、抗电磁干扰等优点, 广泛应用于军事通信。
企业和校园网络
光纤通信也广泛应用于企业和 校园网络的建设,提供高速、 稳定的数据传输服务。
02
光纤通信系统组成
光源和光发送机
光源
光纤通信基础知识ppt课件
应用场景
光检测器广泛应用于光纤通信、光传 感、激光雷达等领域,特别是在高速、 长距离的光纤通信系统中,光检测器 的作用尤为关键。
光放大器
光放大器是光纤通信系统中的关键器件之一,主要分 为掺铒光纤放大器(EDFA)和拉曼光纤放大器(RA)
两类。
输入 标题
作用
光放大器的作用是对光信号进行放大,补偿光纤传输 过程中的光信号损耗,提高光纤通信系统的传输距离 和稳定性。
光检测器
分类
光检测器是光纤通信系统中的另一重 要器件,主要分为光电二极管(PIN) 和雪崩光电二极管(APD)两类。
性能参数
光检测器的性能参数包括响应度、带 宽、噪声等,这些参数直接影响着光 纤通信系统的接收灵敏度和动态范围。
作用
光检测器的作用是将光信号转换为电 信号,从而实现光信号的接收和检测。
模拟光纤通信系统的应用
03
在音频广播、视频传输等领域得到广泛应用。
光纤通信系统设计
01
光纤通信系统设计的基本原则
确保系统的传输性能、稳定性、可靠性和经济性。
02
光纤通信系统设计的主要内容
包括光源、光检测器、光纤、中继器和放大器等器件的选择和配置。
03
光纤通信系统设计的优化
通过采用先进的调制技术、编码技术等手段,提高系统的传输性能和容
性能参数
光源的性能参数包括波长、光谱宽度、输出功率、阈值电 流等,这些参数对光纤通信系统的性能和稳定性有着重要 影响。
作用
光源的作用是将电能转换为光能,为光纤通信系统提供光 信号。
应用场景
光源广泛应用于光纤通信、光传感、光谱分析等领域,特 别是在长距离、大容量的光纤通信系统中,光源的作用尤 为重要。
光纤通信发展历程
光检测器广泛应用于光纤通信、光传 感、激光雷达等领域,特别是在高速、 长距离的光纤通信系统中,光检测器 的作用尤为关键。
光放大器
光放大器是光纤通信系统中的关键器件之一,主要分 为掺铒光纤放大器(EDFA)和拉曼光纤放大器(RA)
两类。
输入 标题
作用
光放大器的作用是对光信号进行放大,补偿光纤传输 过程中的光信号损耗,提高光纤通信系统的传输距离 和稳定性。
光检测器
分类
光检测器是光纤通信系统中的另一重 要器件,主要分为光电二极管(PIN) 和雪崩光电二极管(APD)两类。
性能参数
光检测器的性能参数包括响应度、带 宽、噪声等,这些参数直接影响着光 纤通信系统的接收灵敏度和动态范围。
作用
光检测器的作用是将光信号转换为电 信号,从而实现光信号的接收和检测。
模拟光纤通信系统的应用
03
在音频广播、视频传输等领域得到广泛应用。
光纤通信系统设计
01
光纤通信系统设计的基本原则
确保系统的传输性能、稳定性、可靠性和经济性。
02
光纤通信系统设计的主要内容
包括光源、光检测器、光纤、中继器和放大器等器件的选择和配置。
03
光纤通信系统设计的优化
通过采用先进的调制技术、编码技术等手段,提高系统的传输性能和容
性能参数
光源的性能参数包括波长、光谱宽度、输出功率、阈值电 流等,这些参数对光纤通信系统的性能和稳定性有着重要 影响。
作用
光源的作用是将电能转换为光能,为光纤通信系统提供光 信号。
应用场景
光源广泛应用于光纤通信、光传感、光谱分析等领域,特 别是在长距离、大容量的光纤通信系统中,光源的作用尤 为重要。
光纤通信发展历程
第五章光纤通信系统PPT课件
第23页/共54页
光接收机的噪声
光接收机的噪声包括光电检测器的噪声和光接收机的电路噪 声。 光电检测器的噪声包括量子噪声、暗电流噪声、漏电流噪声和
APD的倍增噪声。 电路噪声主要是前置放大器的噪声。前置放大器的噪声包括电
阻 热 噪 声 及 晶 体 管 组 件 内第部24噪页声/共5。4页
光接收机的噪声
调制 (驱动)
光 源
至光纤
时钟
自动功率控制 APC
光 监测
告警输出
主要包括两部分:输入电路(输入盘)和电光转换电路 (发送盘)。输入电路包括均衡放大、码型变换、扰码、 编码、时钟提取;电光转换电路包括光源、光源的调制 (驱动)电路、光源的控制电路及光源的监测和保护电 路等。
第3页/共54页
光发送机的基本组成
对光电检测器的基本要求是高的转换效率、低的附加噪声和快速的响应。由于光 电检测器产生的光电流非常微弱(nA ~ μA),必须先经前置放大器进行低噪声放 大,光电检测器和前置放大器合称为光接收机前端。前端的性能是决定光接收机灵 敏度的主要因素。
第14页/共54页
前置 放大器
信号光 光探 测器
前放
电压 供给
tD
tD
判决 时刻 10
(d)
由 于 噪 声 叠 加, 使 “ 1 ” 码
在 判 决 时 刻 变 成“ 0 ” 码 ,
经判决电路后产生了一个误码。
第28页/共54页
比特误码率
误码率包括这两种可能引起的误码,因此误码率 为
BER P1P0 1 P0P1 0
(5.5.1)
式中 P(1)和 P(0)分 别 是接 收“ 1” 和 “ 0” 码 的概 率 ,
动态范围也比高阻抗前 置放大器的大。因此光
光接收机的噪声
光接收机的噪声包括光电检测器的噪声和光接收机的电路噪 声。 光电检测器的噪声包括量子噪声、暗电流噪声、漏电流噪声和
APD的倍增噪声。 电路噪声主要是前置放大器的噪声。前置放大器的噪声包括电
阻 热 噪 声 及 晶 体 管 组 件 内第部24噪页声/共5。4页
光接收机的噪声
调制 (驱动)
光 源
至光纤
时钟
自动功率控制 APC
光 监测
告警输出
主要包括两部分:输入电路(输入盘)和电光转换电路 (发送盘)。输入电路包括均衡放大、码型变换、扰码、 编码、时钟提取;电光转换电路包括光源、光源的调制 (驱动)电路、光源的控制电路及光源的监测和保护电 路等。
第3页/共54页
光发送机的基本组成
对光电检测器的基本要求是高的转换效率、低的附加噪声和快速的响应。由于光 电检测器产生的光电流非常微弱(nA ~ μA),必须先经前置放大器进行低噪声放 大,光电检测器和前置放大器合称为光接收机前端。前端的性能是决定光接收机灵 敏度的主要因素。
第14页/共54页
前置 放大器
信号光 光探 测器
前放
电压 供给
tD
tD
判决 时刻 10
(d)
由 于 噪 声 叠 加, 使 “ 1 ” 码
在 判 决 时 刻 变 成“ 0 ” 码 ,
经判决电路后产生了一个误码。
第28页/共54页
比特误码率
误码率包括这两种可能引起的误码,因此误码率 为
BER P1P0 1 P0P1 0
(5.5.1)
式中 P(1)和 P(0)分 别 是接 收“ 1” 和 “ 0” 码 的概 率 ,
动态范围也比高阻抗前 置放大器的大。因此光
《光纤通信》课件
总结词
海底光缆通信系统是光纤通信的重要应用之 一,它实现了跨洋、跨国之间的高速、大系统利用光纤作为传输介质, 通过海底光缆将各个国家和地区连接起来, 实现了高速、大容量的信息传输。这种系统 广泛应用于国际通信、广播电视、金融交易 等领域,对于全球信息交流和经济发展具有 重要意义。
光纤通信系统组成
光发信机
将电信号转换为光信号,通过光纤传输。
光纤
传输光信号的介质,具有低损耗、高带宽等 特点。
光收信机
将光信号转换为电信号,实现信息的接收和 解调。
中继器
用于延长传输距离和提高信号质量,包括光 放大器、光检测器等组件。
02
光纤基础知识
光的本质与传播
光的波粒二象性
光既具有波动特性,又具有粒子 特性。在光纤通信中,利用光的 波动特性进行信息传输。
《光纤通信》课件
目录 Contents
• 光纤通信概述 • 光纤基础知识 • 光纤通信技术 • 光纤通信应用 • 光纤通信发展趋势与挑战 • 案例分析
01
光纤通信概述
光纤通信定义
01
光纤通信是一种利用光波在光纤 中传输信息的通信方式。它通过 光信号的调制和传输,实现信息 的传递和交换。
02
光纤通信具有传输容量大、传输 距离远、传输损耗低、抗电磁干 扰等优点,是现代通信网络的重 要组成部分。
光纤通信发展历程
1960年代
激光的发明为光纤通信奠定了 基础。
1970年代
低损耗石英光纤的研制成功, 为光纤通信的实用化创造了条 件。
1980年代
光纤通信进入实用化阶段,广 泛应用于电话、有线电视等领 域。
1990年代至今
光纤通信技术不断发展,传输 速率和传输距离不断提高,成 为现代通信网络的主流技术。
光纤通信原理课件-第5章 相干光波通信系统
I (t) RP(t) 2RKEs0EL0 cos(IFt s L )
可以发现,检测器的输出电流不仅与被测信号强度或功率有关, 亦即不仅可用光信号的强度传递信息,还与光载波的相位或频 率有关,因而有可能通过调制光载波的相位或频率来传递信息, 而在直接检测技术中不允许进行相位或频率调制,所有有关信 号相位和频率的信息都丢失了。
(2) 声光调制器。这是一种声表面波波导,结构简单, 但产生的频移量在 1GHz
(3) 半导体激光器内调制。这是一种直接调制方法。
3 解调方案
零差检测
外差检测
异步解调 同步解调
零差检测可将光信号直接解调至基带,但实现 困难,要求本振频率与光信号频率精确相等, 本振相位与达到信号锁定,这种解调方案称为 同步解调。
(3)零差检测
L s
这时光电流
IF 0
称为零差检测
I (t) RP(t) 2RKEs0EL0 cos(IFt s L )
2KREs0EL0 cos(s L )
也可以写为
I (t) R PsPL cos(s L )
如果 L s I (t) R Ps PL
■ 零差检测的优点是检测灵敏度高 ■ 缺点是对相位的敏感性高
双相零差分集接收机
两相接收机中的两个支路接收信号相位差为90°,I 支路为同相信道,Q支路 为正交信道,很像柯斯塔斯环,但没有OPLL,每个支路中的信号处理可用于 恢复ASK、FSK或DPSK调制信号。在某一相位条件下,当一个支路中的信号 接近零时,另一个支路则有信号,而总输出就是调制信号。由于信号光与本振 光都要分成两部分,在散粒噪声限制下,对两相接收,灵敏度将比 OPLL 接收 机低 3dB。对三相接收,则要低 4.8dB。
马赫—曾德LiNbO3光波导调制器
《光纤通信系统绪论》课件
Part
03
光纤通信系统的关键技术
光纤技术
01
光纤材料
光纤通常由石英或塑料制成,具有低损耗和高透明度的特性,是光信号
传输的媒介。
02 03
光纤类型
根据传输模式的不同,光纤可分为单模光纤和多模光纤。单模光纤只传 输单一模式的光信号,适用于长距离传输;多模光纤传输多个模式的光 信号,适用于短距离传输。
详细描述
光纤通信系统的网络化将实现不同网络之间的互联互通,形成一个全球化的信息传输网 络。这将促进信息社会的深度融合和智能化,推动各行业之间的跨界合作和创新发展。 同时,光纤通信系统的网络化也将带来新的安全挑战,需要采取有效的安全措施和技术
手段来保障网络的安全稳定运行。
THANKS
感谢您的观看
光的调制
2
在发送端,利用调制器将
需要传输的信息加载到光
信号上。
光的解调
3 在接收端,利用解调器将
加载了信息的光信号还原 为原始信号。
光纤通信系统的应用领域
长途通信
光纤通信具有传输距离远、传输 容量大等优点,广泛应用于长途 通信网络。
军事应用
光纤通信技术在军事领域也具有 广泛的应用,如军事通信网络、 导弹制导系统等。
1970年代
光纤通信进入实用化阶段,开始 出现光纤通信实验系统。
1980年代
光纤通信进入大规模商用阶段, 光纤开始应用于长途通信网络。
光纤通信系统的基本原理
光的传输
光线在光纤中传输,通过 1
全反射原理保持光信号的 稳定传输。
光的放大
4பைடு நூலகம்
在传输过程中,利用光放 大器对光信号进行放大, 以补偿光信号的损耗。
传输距离
光纤通信系统 精品课件
❖ 信源的作用是产生(形成)消息。信源分为模拟信源和数 字信源。
❖ 发信机的作用是将消息变换成适于在信道中传输的信号。 ❖ 信道是将信号从发信机传输到收信机的媒质或途径。 ❖ 收信机的作用与发信机相反,完成解调、解码等任务,将
信号转换为信息。 ❖ 信宿的作用是将复原的原始信号转换成相应的信息,是传
输信息的归宿点。
(2) 第二代光纤通信系统
❖ 20世纪80年代初,第二代早期多模光纤通信系(1.3μm多 模光纤通信系统)问世。光源为 InGaAsP 半导体激光器, 工作波长λ= 1.3μm 。
(3) 第三代光纤通信系统 ❖ 1990年,第三代光纤通信系统已能提供商业应用。光源为
铟镓砷磷(InGaAsP)半导体激光器,光电探测器与第二代 光纤通信系统同为锗光电探测器,信道为单模光纤(工作 波长为1.55μm)。该系统是工作在λ= 1.55μm长波波段的 单模光纤通信系统,为长波光纤通信系统。
(4) 按信息传递的方向与时间关系进行分类 可分为单工通信、半双工通信和双工通信。 (5) 按调制方式进行分类 可分为基带传输通信和调制传输通信。 (6) 按传输信号的复用方式进行分类 可分为频分复用、时分复用、码分复用三种复用方式的通 信。
1.2 光纤通信技术的发展
1.2.3 光通信概述
1.基本概念 ❖ 从广义上讲,凡是用光作为信息载波信号的通信称为光通
ν为光在介质中的速度 (n 。c/v)
1.2 光纤通信技术的发展
❖ 在光通信系统中,除了一些特殊场合使用可见光之外,现 代光纤通信系统一般使用近红外光,典型波长为 1300 nm 和 1500 相nm应的频率分别为 230 THz 和193 THz 。
2.光通信系统的分类与特点
❖ 光通信系统可分为两类:大气激光系统(无线光通信)和 光纤通信系统(有线光通信)。
❖ 发信机的作用是将消息变换成适于在信道中传输的信号。 ❖ 信道是将信号从发信机传输到收信机的媒质或途径。 ❖ 收信机的作用与发信机相反,完成解调、解码等任务,将
信号转换为信息。 ❖ 信宿的作用是将复原的原始信号转换成相应的信息,是传
输信息的归宿点。
(2) 第二代光纤通信系统
❖ 20世纪80年代初,第二代早期多模光纤通信系(1.3μm多 模光纤通信系统)问世。光源为 InGaAsP 半导体激光器, 工作波长λ= 1.3μm 。
(3) 第三代光纤通信系统 ❖ 1990年,第三代光纤通信系统已能提供商业应用。光源为
铟镓砷磷(InGaAsP)半导体激光器,光电探测器与第二代 光纤通信系统同为锗光电探测器,信道为单模光纤(工作 波长为1.55μm)。该系统是工作在λ= 1.55μm长波波段的 单模光纤通信系统,为长波光纤通信系统。
(4) 按信息传递的方向与时间关系进行分类 可分为单工通信、半双工通信和双工通信。 (5) 按调制方式进行分类 可分为基带传输通信和调制传输通信。 (6) 按传输信号的复用方式进行分类 可分为频分复用、时分复用、码分复用三种复用方式的通 信。
1.2 光纤通信技术的发展
1.2.3 光通信概述
1.基本概念 ❖ 从广义上讲,凡是用光作为信息载波信号的通信称为光通
ν为光在介质中的速度 (n 。c/v)
1.2 光纤通信技术的发展
❖ 在光通信系统中,除了一些特殊场合使用可见光之外,现 代光纤通信系统一般使用近红外光,典型波长为 1300 nm 和 1500 相nm应的频率分别为 230 THz 和193 THz 。
2.光通信系统的分类与特点
❖ 光通信系统可分为两类:大气激光系统(无线光通信)和 光纤通信系统(有线光通信)。
第5章-光纤通信技术
5.1 光纤基本知识
5.1.4 光纤的制造
制造光纤的方法很多,目前主要有:改进化 学汽相沉积法(MCVD)、等离子体化学汽相沉 积法(PCVD)、管外汽相沉积法(OVD)和轴向汽 相沉积法(VAD)。但不论用哪一种方法,都要 先在高温下做成预制棒,然后在高温炉中加温 软化,拉成长丝,再进行涂覆、套塑,成为光 纤芯线。
引言
光纤通信系统是目 前世界通信系统的主要 模式,比以前的电缆通 信系统无论从性能还是 成本上都有极大优势。 正是光纤用于现代通信 系统,才使得我们能够 成功构建今天高速、多 元化的信息社会
本章内容
5.1 光纤基本知识
5.2 光在光纤波导中的传播
5.3 光纤的损耗与色散
5.4 光通信器件
5.1 光纤基本知识
阶跃折射率光纤(SIF)
n1 , 0 r a n n2 , r a
渐变折射率光纤(GIF)
n1 1 2r / a n(r ) n2 ,r a
(n1 n2 ) / n1
5.1 光纤基本知识
5.2 光在光纤波导中的传播
5.2.1光纤原理的几何光学描述
如果有太多不同角度的光线在光纤中传播,由于 不同光线走的路径不一样,而纤芯折射率又处处相同 ,这会导致不同角度入射的光线传播到终点的时间不 一致,这就造成了输入光脉冲的展宽,这就是多模光 纤的模间色散。如果光脉冲被展宽,相邻光脉冲之间 就会产生交叠,在交叠区会发生干涉。一旦交叠区较 大,干涉效应会使得相邻的两个脉冲不可分辨,这样 信号就会发生失真。
5.1 光纤基本知识
5.1.4 光纤的制造
改进化学汽相沉积法(MCVD)
5.1 光纤基本知识
5.1.4 光纤的制造