中考数学真题分类汇编一元二次方程根与系数的关系解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015中考数学真题分类汇编:一元二次方程根与系数的关系
一.选择题(共10小题)
1.(2015•金华)一元二次方程x2+4x﹣3=0的两根为x1、x2,则x1•x2的值是()A. 4 B.﹣4 C. 3 D.﹣3
2.(2015•枣庄)已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣2,x2=4,则m+n的值是()
A.﹣10 B. 10 C.﹣6 D. 2
3.(2015•黔东南州)设x1,x2是一元二次方程x2﹣2x﹣3=0的两根,则x12+x22=()A. 6 B. 8 C. 10 D. 12
4.(2015•衡阳)若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为()A.﹣2 B. 2 C. 4 D.﹣3
5.(2015•南充)关于x的一元二次方程x2+2mx+2n=0有两个整数根且乘积为正,关于y的一元二次方程y2+2ny+2m=0同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都负根;②(m﹣1)2+(n﹣1)2≥2;③﹣1≤2m﹣2n≤1,其中正确结论的个数是()
A. 0个B. 1个C. 2个D. 3个
6.(2015•广西)已知实数x1,x2满足x1+x2=7,x1x2=12,则以x1,x2为根的一元二次方程是()
A.x2﹣7x+12=0 B.x2+7x+12=0 C.x2+7x﹣12=0 D.x2﹣7x﹣12=0 7.(2014•防城港)x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,是
否存在实数m使+=0成立?则正确的结论是()
A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在
8.(2014•呼和浩特)已知函数y=的图象在第一象限的一支曲线上有一点A(a,c),
点B(b,c+1)在该函数图象的另外一支上,则关于一元二次方程ax2+bx+c=0的两根x1,x2判断正确的是()
A.x1+x2>1,x1•x2>0
B.x1+x2<0,x1•x2>0
C. 0<x1+x2<1,x1•x2>0
D.x1+x2与x1•x2的符号都不确定
9.(2014•烟台)关于x的方程x2﹣ax+2a=0的两根的平方和是5,则a的值是()A.﹣1或5 B. 1 C. 5 D.﹣1
10.(2014•攀枝花)若方程x2+x﹣1=0的两实根为α、β,那么下列说法不正确的是()
A.α+β=﹣1 B.αβ=﹣1 C.α2+β2=3 D.+=﹣1
二.填空题(共10小题)
11.(2015•荆州)若m,n是方程x2+x﹣1=0的两个实数根,则m2+2m+n的值
为.
12.(2015•日照)如果m,n是两个不相等的实数,且满足m2﹣m=3,n2﹣n=3,那么代数式2n2﹣mn+2m+2015=.
13.(2015•内江)已知关于x的方程x2﹣6x+k=0的两根分别是x1,x2,且满足+=3,
则k的值是.
14.(2015•凉山州)已知实数m,n满足3m2+6m﹣5=0,3n2+6n﹣5=0,且m≠n,则
=.
15.(2015•六盘水)已知x1=3是关于x的一元二次方程x2﹣4x+c=0的一个根,则方程的另一个根x2是.
16.(2015•成都)如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的是(写出所有正确说法的序号)
①方程x2﹣x﹣2=0是倍根方程.
②若(x﹣2)(mx+n)=0是倍根方程,则4m2+5mn+n2=0;
③若点(p,q)在反比例函数y=的图象上,则关于x的方程px2+3x+q=0的倍根方程;
④若方程ax2+bx+c=0是倍根方程,且相异两点M(1+t,s),N(4﹣t,s)都在抛物线
y=ax2+bx+c上,则方程ax2+bx+c=0的一个根为.
17.(2015•西宁)若矩形的长和宽是方程2x2﹣16x+m=0(0<m≤32)的两根,则矩形的周长为.
18.(2015•赤峰)若关于x的一元二次方程x2﹣(a+5)x+8a=0的两个实数根分别为2和b,则ab=.
19.(2014•雅安)关于x的方程x2﹣(2m﹣1)x+m2﹣1=0的两实数根为x1,x2,且x12+x22=3,则m=.
20.(2014•桂林)已知关于x的一元二次方程x2+(2k+1)x+k2﹣2=0的两根为x1和x2,且(x1﹣2)(x1﹣x2)=0,则k的值是.
三.解答题(共10小题)
21.(2014•南充)已知关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根.(1)求实数m的最大整数值;
(2)在(1)的条下,方程的实数根是x1,x2,求代数式x12+x22﹣x1x2的值.22.(2014•泸州)已知x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两实数根.
(1)若(x1﹣1)(x2﹣1)=28,求m的值;
(2)已知等腰△ABC的一边长为7,若x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长.
23.(2014•怀化)设m是不小于﹣1的实数,使得关于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有两个不相等的实数根x1,x2.
(1)若+=1,求的值;
(2)求+﹣m2的最大值.
24.(2013•孝感)已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根x1,x2.
(1)求实数k的取值范围;
(2)是否存在实数k使得x1•x2﹣x12﹣x22≥0成立?若存在,请求出k的值;若不存在,请说明理由.
25.(2013•厦门)若x1,x2是关于x的方程x2+bx+c=0的两个实数根,且|x1|+|x2|=2|k|(k是整数),则称方程x2+bx+c=0为“偶系二次方程”.如方程x2﹣6x﹣27=0,x2﹣2x
﹣8=0,x2+3x﹣=0,x2+6x﹣27=0,x2+4x+4=0,都是“偶系二次方程”.
(1)判断方程x2+x﹣12=0是否是“偶系二次方程”,并说明理由;
(2)对于任意一个整数b,是否存在实数c,使得关于x的方程x2+bx+c=0是“偶系二次方程”,并说明理由.
26.(2013•菏泽)已知:关于x的一元二次方程kx2﹣(4k+1)x+3k+3=0 (k是整数).(1)求证:方程有两个不相等的实数根;
(2)若方程的两个实数根分别为x1,x2(其中x1<x2),设y=x2﹣x1﹣2,判断y是否为变量k的函数?如果是,请写出函数解析式;若不是,请说明理由.27.(2012•鄂州)关于x的一元二次方程x2﹣(m﹣3)x﹣m2=0.
(1)证明:方程总有两个不相等的实数根;
(2)设这个方程的两个实数根为x1,x2,且|x1|=|x2|﹣2,求m的值及方程的根.28.(2012•怀化)已知x1,x2是一元二次方程(a﹣6)x2+2ax+a=0的两个实数根.(1)是否存在实数a,使﹣x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由;
(2)求使(x1+1)(x2+1)为负整数的实数a的整数值.
29.(2012•内江)如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=﹣p,x1•x2=q,请根据以上结论,解决下列问题:
(1)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数;
(2)已知a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求的值;
(3)已知a、b、c满足a+b+c=0,abc=16,求正数c的最小值.
30.(2011•南充)关于x的一元二次方程x2+2x+k+1=0的实数解是x1和x2.
(1)求k的取值范围;
(2)如果x1+x2﹣x1x2<﹣1且k为整数,求k的值.
2015中考数学分化真题分类汇编:一元二次方程根与系数的关系
参考答案与试题解析
一.选择题(共10小题)
1.(2015•金华)一元二次方程x2+4x﹣3=0的两根为x1、x2,则x1•x2的值是()A. 4 B.﹣4 C. 3 D.﹣3
考点:根与系数的关系.
专题:计算题.
分析:根据根与系数的关系求解.
解答:解:x1•x2=﹣3.
故选D.