通信原理抽样定理及其应用实验报告

合集下载

通信原理实验-抽样定理实验

通信原理实验-抽样定理实验

电子与信息工程系《通信原理实验》任务及报告书实验名称抽样定理实验指导教师班级姓名学号总成绩一、实验目的1.掌握抽样定理的概念;2.掌握模拟信号抽样与还原的原理与实现方法;3.了解模拟信号抽样过程的频谱。

二、实验内容1.采用不同频率的方波对同一模拟信号抽样并还原,观测并比较抽样信号与还原信号的波形和频谱;2.采用同一频率但不同占空比的方波对同一模拟信号抽样并还原,观测并比较抽样信号与还原信号的波形和频谱。

三、所需设备1.信号源模块;2.模拟信号数字化模块;3.20MHz双踪示波器;4.频谱分析仪(可用数字存储示波器代替)。

四、实验原理1.简述抽样定理的概念及实现方法……2.抽样信号的还原……五、实验步骤1.将所用模块固定在机箱中,确保电源接触良好;2.连线:信号源模块模拟信号数字化模块2K正弦基波—————————————抽样信号DDS-OUT —————————————抽样脉冲模拟信号数字化模块模拟信号数字化模块PAM输出—————————————解调输入3.接通电源(220V AC输入开关、模块电源开关要全部打开);4.调节信号源模块“2K调幅”旋钮,使“2K正弦基波”输出3V左右;5.不同频率方波抽样:a.信号源模块“DDS-OUT”测试点输出选择“方波A”,调节“DDS调幅”旋钮,使其峰峰值为3V左右;b.示波器双踪观测“抽样信号”与“PAM输出”测试点波形,对比方波A的频率为4KHz、8KHz、116KHz、32KHz等典型频率值时“PAM输出”测试点的波形和频谱;c.示波器双踪观测“抽样信号”与“解调输出”测试点波形,对比各典型频率值时抽样信号还原的效果。

6.同频率但不同占空比方波抽样:a.信号源模块“DDS-OUT”测试点输出选择“方波B”,调节“DDS调幅”旋钮,使其峰峰值为3V左右、输出频率为4KHz;b.示波器双踪观测“抽样信号”与“PAM输出”测试点波形,对比方波B的占空比为5%、20%、35%、50%、80%等值时“PAM输出”测试点的波形和频谱;c.示波器双踪观测“抽样信号”与“解调输出”测试点波形,对比各占空比值时抽样信号还原的效果。

通信原理实验报告PAM实验

通信原理实验报告PAM实验

PAM实验一、实验目的1、验证抽样定理、观察PAM信号形成的过程、学习中频抽样的基本方法;2、了解混迭效应产生的原因;3、熟悉matlab仿真;二、实验仪器1、J H5001(Ⅲ)通信原理基础实验箱一台2、双踪示波器一台3、函数信号发生器一台三、实验原理利用抽样脉冲把一个连续信号变为离散时间样值的过程称为抽样,抽样后的信号称为脉冲调幅(PAM)信号。

采样频率一般大于2f h。

当采样频率小于2f h 的时候,就会出现频谱的混叠。

抽样定理实验电路实验电路中A部分为低通滤波器用于限制最高频率,C部分为实现采样/保持的模拟开关,B、D为缓冲输出,E部分低通滤波器用于恢复原始信号。

图6 抽样定理实验电路组成框图四、实验步骤及实验现象与分析1.自然抽样脉冲序列测量预置电路:将KB04设置在右端(自然抽样状态);将K501设置在右端以输入测试信号。

将K702设置在NF位置(无滤波),将正弦波输出1000Hz、2Vp-p 的测试信号送入测试端口。

PAM脉冲抽样序列观察:注意观测时以TP701做同步,本实验同步信号不同对结果影响不太大,但有的实验会影响严重。

记录与分析:CH2蓝色波形是由(TP701)观测到的正弦波输入信号,测得该信号频率为1kHz,Vpp为1.96V。

CH1黄色波形是由(TP703)观测到的PAM脉冲抽样序列信号。

由红框当中可以明显看出一个周期内PAM脉冲抽样序列信号抽样了8次(一个周期内有8个脉冲),符合以8kHz 脉冲来抽样1kHz 信号的结果。

且抽样信号占空比不是50%,而是大约1/3。

由图中可以看出黄色PAM 脉冲抽样信号的包络与蓝色正弦波输入信号波形是基本吻合的。

两者的峰谷位置以及正负半周变换都基本一致,相位上基本符合应有的对应关系,PAM 脉冲抽样信号包络的相位略微滞后于正弦波输入信号,应该是由于模拟开关等部分电路造成略微延时所带来的。

PAM 脉冲抽样信号的包络幅值要大于正弦波输入信号,约为2倍,应该是因为经过缓冲输出时电路的运放有放大作用。

通信原理抽样定理实验报告

通信原理抽样定理实验报告

通信原理实验(五)实验一抽样定理实验项目一、抽样信号观测及抽样定理实验1、观测并记录抽样前后的信号波形,分别观测music和抽样输出。

由分析知,自然抽样后的结果如图,很明显抽样间隔相同,且抽样后的波形在其包络严格被原音乐信号所限制加权,与被抽样信号完全一致。

2、观测并记录平顶抽样前后信号的波形。

此结果为平顶抽样结果,仔细观察可发现与上一实验中的自然抽样有很大差距,即相同之处,其包络也由原信号所限制加权,但是在抽样信号的每个频率分量呈矩形,顶端是平的。

3、观测并对比抽样恢复后信号与被抽样信号的波形,并以100HZ为步进,减小A-OUT的频率,比较观测并思考在抽样脉冲频率为多少的情况下恢复信号有失真。

(1)9.0KHZ(2)7.7KHZ(3)7.0KHZ实验二 PCM 编译码实验实验项目一 测试W681512的幅频特性1、将信号源频率从50HZ 到4000HZ ,用示波器接模块21的音频输出,观测信号的幅频特性。

在频率为9HZ 时的波形如上图,低通滤波器恢复出的信号与原信号基本一致,只是相位有了延时,约1/4个Ts ; 逐渐减小抽样频率可知在7.7KHZ 左右,恢复信号出现了幅度的失真,且随着fs 的减小,失真越大。

上述现象验证了抽样定理,即,在信号的频率一定时,采样频率不能低于被采样信号的2倍,否则将会出现频谱的混(1)、4000HZ (2)、3500HZ(3)120HZ (4)50HZ在实验中仔细观察结果,可知,当信号源的频率由4000HZ不断下降到3000HZ 的过程中,信号的频谱幅度在不断地增加;在3000HZ~1500HZ的过程中,信号的幅度在一定范围内变化,但是没有特别大的差距;在1500HZ~50HZ的过程中,信号的幅度有极为明显的下降。

实验项目二 PCM编码规则实验1、以FS为触发,观测编码输入波形。

示波器的DIV档调节为100微秒。

图中分别为输入被抽样信号和抽样脉冲,观察可发现正弦波与编码对应。

通信原理实验报告

通信原理实验报告

通信原理实验报告实验一抽样定理实验二 CVSD编译码系统实验实验一抽样定理一、实验目的所谓抽样。

就是对时间连续的信号隔一定的时间间隔T 抽取一个瞬时幅度值(样值),即x(t)*s(t)=x(t)s(t)。

在一个频带限制在(0,f h)内的时间连续信号f(t),如果以小于等于1/(2 f h)的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。

抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽样速率达到一定数值时,那么根据这些抽样值就能准确地还原信号。

这就是说,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。

二、功能模块介绍1.DDS 信号源:位于实验箱的左侧(1)它可以提供正弦波、三角波等信号,通过连接P03 测试点至PAM 脉冲调幅模块的32P010 作为脉冲幅度调制器的调制信号x(t)。

抽样脉冲信号则是通过P09 测试点连至PAM 脉冲调幅模块。

(2)按下复合式按键旋钮SS01,可切换不同的信号输出状态,例如D04D03D02D01=0010对应的是输出正弦波,每种LED 状态对应一种信号输出,具体实验板上可见。

(3)旋转复合式按键旋钮SS01,可步进式调节输出信号的频率,顺时针旋转频率每步增加100Hz,逆时针减小100Hz。

(4)调节调幅旋钮W01,可改变P03 输出的各种信号幅度。

2.抽样脉冲形成电路模块它提供有限高度,不同宽度和频率的抽样脉冲序列,可通过P09 测试点连线送到PAM 脉冲调幅模块32P02,作为脉冲幅度调制器的抽样脉冲s(t)。

P09 测试点可用于抽样脉冲的连接和测量。

该模块提供的抽样脉冲频率可通过旋转SS01 进行调节,占空比为50%。

3.PAM 脉冲调幅模块它采用模拟开关CD4066 实现脉冲幅度调制。

抽样脉冲序列为高电平时,模拟开关导通,有调制信号输出;抽样脉冲序列为低电平,模拟开关断开,无信号输出。

实验2 抽样定理及其应用实验

实验2  抽样定理及其应用实验

实验2 抽样定理及其应用实验一、实验目的1.通过对模拟信号抽样的实验,加深对抽样定理的理解;2.通过PAM 调制实验,使学生能加深理解脉冲幅度调制的特点;3.学习PAM 调制硬件实现电路,掌握调整测试方法。

二、实验仪器1.PAM 脉冲调幅模块,位号:H (实物图片如下)2.时钟与基带数据发生模块,位号:G3.20M 双踪示波器1台4.频率计1台5.小平口螺丝刀1只6.信号连接线3根三、实验原理抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽样速率达到一定数值时,那么根据这些抽样值就能准确地还原原信号。

这就是说,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。

通常,按照基带信号改变脉冲参量(幅度、宽度和位置)的不同,把脉冲调制分为脉幅调制(PAM )、脉宽调制(PDM )和脉位调制(PPM )。

虽然这三种信号在时间上都是离散的,但受调参量是连续的,因此也都属于模拟调制。

抽样定理实验电路框图,如图1-1所示。

图1-1 抽样的实验过程结构示意图本实验中需要用到以下5个功能模块。

1.DDS 信号源:它提供正弦波等信号,并经过连线送到“PAM 脉冲调幅模块”,作为脉冲幅度调制器的调制信号。

2.抽样脉冲形成电路模块:它提供有限高度,不同宽度和频率的的抽样脉冲序列,并经过连线送到“PAM 脉冲调幅模块”, 作为脉冲幅度调制器的抽样脉冲。

3.PAM 脉冲调幅模块:它采用模拟开关CD4066实现脉冲幅度调制。

抽样脉冲序列为高电平时,模拟开关导通,有调制信号输出;抽样脉冲序列为低电平,模拟开关断开,无信号输DDS信号源抽样脉冲形成电路 信道模拟 信号恢复 滤波器开关抽样器 32P01 32TP01 32P02 32P03 P154SW02控制 P09P14 P03 32W01出。

因此,本模块实现的是自然抽样。

4.接收滤波器与功放模块:接收滤波器低通带宽有2.6KHZ和5KHZ两种,分别由开关K601上位和中位控制,接收滤波器的作用是恢复原调制信号。

抽样定理和PCM调制解调实验报告

抽样定理和PCM调制解调实验报告

《通信原理》实验报告实验一:抽样定理和PAM调制解调实验系别:信息科学与工程学院专业班级:通信工程1003班学生姓名:陈威同组学生:杨鑫成绩:指导教师:惠龙飞(实验时间:2012 年 12 月 7 日——2012 年 12 月28日)华中科技大学武昌分校1、实验目的1对电路的组成、波形和所测数据的分析,加深理解这种调制方法的优缺点。

2.通过脉冲幅度调制实验,使学生能加深理解脉冲幅度调制的原理。

2、实验器材1、信号源模块一块2、①号模块一块3、60M双踪示波器一台4、连接线若干3、实验原理3.1基本原理1、抽样定理图3-1 抽样与恢复2、脉冲振幅调制(PAM)所谓脉冲振幅调制,即是脉冲载波的幅度随输入信号变化的一种调制方式。

如果脉冲载波是由冲激脉冲组成的,则前面所说的抽样定理,就是脉冲增幅调制的原理。

自然抽样平顶抽样)(tm)(tT图3-3 自然抽样及平顶抽样波形PAM方式有两种:自然抽样和平顶抽样。

自然抽样又称为“曲顶”抽样,(t)的脉冲“顶部”是随m(t)变化的,即在顶部保持了m(t)变已抽样信号ms化的规律(如图3-3所示)。

平顶抽样所得的已抽样信号如图3-3所示,这里每一抽样脉冲的幅度正比于瞬时抽样值,但其形状都相同。

在实际中,平顶抽样的PAM信号常常采用保持电路来实现,得到的脉冲为矩形脉冲。

四、实验步骤1、将信号源模块、模块一固定到主机箱上面。

双踪示波器,设置CH1通道为同步源。

2、观测PAM自然抽样波形。

(1)将信号源上S4设为“1010”,使“CLK1”输出32K时钟。

(2)将模块一上K1选到“自然”。

(3)关闭电源,连接表3-1 抽样实验接线表(5)用示波器观测信号源“2K同步正弦波”输出,调节W1改变输出信号幅度,使输出信号峰-峰值在1V左右。

在PAMCLK处观察被抽样信号。

CH1接PAMCLK(同步源),CH2接“自然抽样输出”(自然抽样PAM信号)。

图3-1 2KHz模拟信号图3-2 自然抽样PAM输出分析:抽样定理表明个频带限制在(0,H f )内的时间连续信号()m t ,如果以T ≤Hf 21秒的间隔对它进行等间隔抽样,则()m t 将被所得到的抽样值完全确定。

通信原理实验04 抽样定理与PAM调制解调实验

通信原理实验04 抽样定理与PAM调制解调实验

实验四抽样定理与PAM调制解调实验实验四抽样定理与PAM调制解调实验实验内容1.抽样定理实验2.脉冲幅度调制(PAM)及系统实验一.实验目的1.通过脉冲幅度调制实验,使学生能加深理解脉冲幅度调制的特点。

2.通过对电路组成、波形和所测数据的分析,加深理解这种调制方式的优缺点。

二.实验电路工作原理抽样定理在通信系统、信息传输理论方面占有十分重要的地位。

抽样过程是模拟信号数字化的第一步,抽样性能的优劣关系到通信设备整个系统的性能指标。

利用抽样脉冲把一个连续信号变为离散时间样值的过程称为抽样,抽样后的信号称为脉冲幅度(PAM)信号。

抽样定理指出:一个频带受限信号m(t),如果它的最高频率为f h,则可以实验四抽样定理与PAM调制解调实验(二)实验电路工作原理1.输入电路该电路由发送放大电路组成。

该电路还用于PCM、增量调制编码电路中。

电路电原理图如4-2所示。

2.PAM调制电路调制电路见图4-2。

它是利用CD4066开关特性完成抽样实验的,抽样输出的信号中不含有直流分量。

输出负载端,接有取样保持电路,由R605、C602以及R607等组成,由开关K601来控制,在做调制实验时,K601的2端与3端相连,能观察其取样定理的波形。

在做系统实验时,将K601的1端与2端相连,即与解调滤波电路连通。

3.脉冲发生电路该部分电路详见图4-2所示,主要有两种抽样脉冲,一种由555及其它元件组成,这是一个单谐振荡器电路,能产生极性、脉宽、频率可调的方波信号,可通过调节电位器W601实现输出脉冲频率的变化,以便用来验证取样定理,另一种由CPLD产生的8KHz 抽样脉冲,这两种抽样脉冲通过开关K602来选择。

可在TP603处很方便地观测到脉冲频率变化情况和输出的脉冲波形。

注意实验时,用8KHz抽样脉冲效果较好,而且便于稳定观察。

4.PAM解调与滤波电路解调滤波电路由集成运放电路TL084组成。

组成了一个二阶有源低通滤波器,其截止频率设计在3.4KHz左右,因为该滤波器有着解调的作用,因此它的质量好坏直接影响着系统的工作状态。

通信原理实验报告(终)

通信原理实验报告(终)

通信原理实验报告班级: 12050641姓名:谢昌辉学号: 1205064135实验一 抽样定理实验一、实验目的1、 了解抽样定理在通信系统中的重要性。

2、 掌握自然抽样及平顶抽样的实现方法。

3、 理解低通采样定理的原理。

4、 理解实际的抽样系统。

5、 理解低通滤波器的幅频特性对抽样信号恢复的影响。

6、 理解低通滤波器的相频特性对抽样信号恢复的影响。

7、 理解带通采样定理的原理。

二、实验器材1、 主控&信号源、3号模块 各一块2、 双踪示波器 一台3、 连接线 若干三、实验原理1、实验原理框图保持电路S1信号源A-outmusic抽样电路被抽样信号抽样脉冲平顶抽样自然抽样抽样输出抗混叠滤波器LPFLPF-INLPF-OUTFPGA 数字滤波FIR/IIR译码输出编码输入3# 信源编译码模块图1-1 抽样定理实验框图2、实验框图说明抽样信号由抽样电路产生。

将输入的被抽样信号与抽样脉冲相乘就可以得到自然抽样信号,自然抽样的信号经过保持电路得到平顶抽样信号。

平顶抽样和自然抽样信号是通过开关S1切换输出的。

抽样信号的恢复是将抽样信号经过低通滤波器,即可得到恢复的信号。

这里滤波器可以选用抗混叠滤波器(8阶3.4kHz 的巴特沃斯低通滤波器)或FPGA 数字滤波器(有FIR 、IIR 两种)。

反sinc 滤波器不是用来恢复抽样信号的,而是用来应对孔径失真现象。

要注意,这里的数字滤波器是借用的信源编译码部分的端口。

在做本实验时与信源编译码的内容没有联系。

四、实验步骤实验项目一抽样信号观测及抽样定理验证概述:通过不同频率的抽样时钟,从时域和频域两方面观测自然抽样和平顶抽样的输出波形,以及信号恢复的混叠情况,从而了解不同抽样方式的输出差异和联系,验证抽样定理。

1、关电,按表格所示进行连线。

源端口目标端口连线说明信号源:MUSIC 模块3:TH1(被抽样信号) 将被抽样信号送入抽样单元信号源:A-OUT 模块3:TH2(抽样脉冲) 提供抽样时钟模块3:TH3(抽样输出) 模块3:TH5(LPF-IN) 送入模拟低通滤波器2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【抽样定理】。

通信原理实验报告(优秀范文5篇)

通信原理实验报告(优秀范文5篇)

通信原理实验报告(优秀范文5篇)第一篇:通信原理实验报告通信原理实验报告1、实验名称:2、实验目的:3、实验步骤:(详细记录你的实验过程)例如:(1)安装MATLAB6.5软件;(2)学习简单编程,画图plot(x,y)函数等(3)进行抽样定理验证:首先确定余弦波形,设置其幅度?、频率?和相位?等参数,然后画出该波形;进一步,设置采样频率?。

画出抽样后序列;再改变余弦波形的参数和抽样频率的值,改为。

,当抽样频率?>=余弦波形频率2倍时,怎么样?否则的话,怎么样。

具体程序及图形见附录1(或者直接放在这里,写如下。

)(4)通过DSP软件验证抽样定理该软件主要有什么功能,首先点“抽样”,选取各种参数:a, 矩形波,具体参数,出现图形B,余弦波,具体参数,出现图形然后点击“示例”中的。

具体参数,图形。

4、思考题5、实验心得6、附录1有附录1的话有这项,否则无。

第二篇:通信原理实验报告1,必做题目1.1 无线信道特性分析 1.1.1 实验目的1)了解无线信道各种衰落特性;2)掌握各种描述无线信道特性参数的物理意义;3)利用MATLAB中的仿真工具模拟无线信道的衰落特性。

1.1.2 实验内容1)基于simulink搭建一个QPSK发送链路,QPSK调制信号经过了瑞利衰落信道,观察信号经过衰落前后的星座图,观察信道特性。

仿真参数:信源比特速率为500kbps,多径相对时延为[0 4e-06 8e-06 1.2e-05]秒,相对平均功率为[0-3-6-9]dB,最大多普勒频移为200Hz。

例如信道设置如下图所示:移动通信系统1.1.3 实验作业1)根据信道参数,计算信道相干带宽和相干时间。

fm=200;t=[0 4e-06 8e-06 1.2e-05];p=[10^0 10^-0.3 10^-0.6 10^-0.9];t2=t.^2;E1=sum(p.*t2)/sum(p);E2=sum(p.*t)/sum(p);rms=sq rt(E1-E2.^2);B=1/(2*pi*rms)T=1/fm2)设置较长的仿真时间(例如10秒),运行链路,在运行过程中,观察并分析瑞利信道输出的信道特征图(观察Impulse Response(IR)、Frequency Response(FR)、IR Waterfall、Doppler Spectrum、Scattering Function)。

通信原理实验报告(终)

通信原理实验报告(终)

通信原理实验报告班级: 12050641姓名:谢昌辉学号: 1205064135实验一抽样定理实验一、实验目的1、了解抽样定理在通信系统中的重要性。

2、掌握自然抽样及平顶抽样的实现方法。

3、理解低通采样定理的原理。

4、理解实际的抽样系统。

5、理解低通滤波器的幅频特性对抽样信号恢复的影响。

6、理解低通滤波器的相频特性对抽样信号恢复的影响。

7、理解带通采样定理的原理。

二、实验器材1、主控&信号源、3号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、实验原理框图图1-1 抽样定理实验框图2、实验框图说明抽样信号由抽样电路产生。

将输入的被抽样信号与抽样脉冲相乘就可以得到自然抽样信号,自然抽样的信号经过保持电路得到平顶抽样信号。

平顶抽样和自然抽样信号是通过开关S1切换输出的。

抽样信号的恢复是将抽样信号经过低通滤波器,即可得到恢复的信号。

这里滤波器可以选用抗混叠滤波器(8阶3.4kHz的巴特沃斯低通滤波器)或FPGA数字滤波器(有FIR、IIR两种)。

反sinc滤波器不是用来恢复抽样信号的,而是用来应对孔径失真现象。

要注意,这里的数字滤波器是借用的信源编译码部分的端口。

在做本实验时与信源编译码的内容没有联系。

四、实验步骤实验项目一抽样信号观测及抽样定理验证概述:通过不同频率的抽样时钟,从时域和频域两方面观测自然抽样和平顶抽样的输出波形,以及信号恢复的混叠情况,从而了解不同抽样方式的输出差异和联系,验证抽样定理。

1、关电,按表格所示进行连线。

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【抽样定理】。

调节主控模块的W1使A-out输出峰峰值为3V。

3、此时实验系统初始状态为:被抽样信号MUSIC为幅度4V、频率3K+1K正弦合成波。

抽样脉冲A-OUT为幅度3V、频率9KHz、占空比20%的方波。

4、实验操作及波形观测。

(1)观测并记录自然抽样前后的信号波形:设置开关S13#为“自然抽样”档位,用示波器分别观测MUSIC主控&信号源和抽样输出3#。

通信原理网上实验一

通信原理网上实验一

实验报告(一)实验日期:2020 年4 月26 日;时间:19:00实验项目:信源编码技术实验使用仪器及装置:仪器:示波器,连接线,装置:主控&信号源模块、3号、21号模块(各一块)实验内容:一、抽样定理实验1、实验目的(1)了解抽样定理在通信系统中的重要性。

(2)掌握自然抽样及平顶抽样的实现方法。

(3)理解低通采样定理的原理。

(4)理解实际的抽样系统。

(5)理解低通滤波器的幅频特性对抽样信号恢复的影响。

(6)理解低通滤波器的相频特性对抽样信号恢复的影响。

(7)理解带通采样定理的原理。

2、实验原理(1)实验原理框图抽样定理实验框图(2)实验框图说明抽样信号由抽样电路产生。

将输入的被抽样信号与抽样脉冲相乘就可以得到自然抽样信号,自然抽样的信号经过保持电路得到平顶抽样信号。

平顶抽样和自然抽样信号是通过开关S1切换输出的。

抽样信号的恢复是将抽样信号经过低通滤波器,即可得到恢复的信号。

这里滤波器可以选用抗混叠滤波器(8阶3.4kHz的巴特沃斯低通滤波器)或FPGA数字滤波器(有FIR、IIR两种)。

反sinc滤波器不是用来恢复抽样信号的,而是用来应对孔径失真现象。

3、实验步骤实验项目一抽样信号观测及抽样定理验证概述:通过不同频率的抽样时钟,从时域和频域两方面观测自然抽样和平顶抽样的输出波形,以及信号恢复的混叠情况,从而了解不同抽样方式的输出差异和联系,验证抽样定理。

1、登录e-Labsim仿真系统,创建实验文件,选择实验所需模块和示波器。

2、运行仿真,开启所有模块的电源开关。

3、开电,设置主控菜单,选择【主菜单】→【通信原理】→【抽样定理】。

调节主控模块的W1使A-out输出峰峰值为3V。

4、此时实验系统初始状态为:被抽样信号MUSIC为幅度4V、频率3K+1K正弦合成波。

抽样脉冲A-OUT为幅度3V、频率9KHz、占空比20%的方波。

5、实验操作及波形观测。

(1)调用示波器观测自然抽样前后的信号波形:设置开关S13#为“自然抽样”档位,用示波器CH1和CH2分别接MUSIC主控&信号源和抽样输出3#。

抽样定理和PCM调制解调实验报告

抽样定理和PCM调制解调实验报告

《通信原理》实验报告实验一:抽样定理和PAM调制解调实验系别:信息科学与工程学院专业班级:通信工程1003班学生姓名:陈威同组学生:杨鑫成绩:指导教师:惠龙飞(实验时间:2012 年 12 月 7 日——2012 年 12 月28日)华中科技大学武昌分校1、实验目的1对电路的组成、波形和所测数据的分析,加深理解这种调制方法的优缺点。

2.通过脉冲幅度调制实验,使学生能加深理解脉冲幅度调制的原理。

2、实验器材1、信号源模块一块2、①号模块一块3、60M双踪示波器一台4、连接线若干3、实验原理3.1基本原理1、抽样定理图3-1 抽样与恢复2、脉冲振幅调制(PAM)所谓脉冲振幅调制,即是脉冲载波的幅度随输入信号变化的一种调制方式。

如果脉冲载波是由冲激脉冲组成的,则前面所说的抽样定理,就是脉冲增幅调制的原理。

自然抽样平顶抽样)(tm)(tT图3-3 自然抽样及平顶抽样波形PAM方式有两种:自然抽样和平顶抽样。

自然抽样又称为“曲顶”抽样,(t)的脉冲“顶部”是随m(t)变化的,即在顶部保持了m(t)变已抽样信号ms化的规律(如图3-3所示)。

平顶抽样所得的已抽样信号如图3-3所示,这里每一抽样脉冲的幅度正比于瞬时抽样值,但其形状都相同。

在实际中,平顶抽样的PAM信号常常采用保持电路来实现,得到的脉冲为矩形脉冲。

四、实验步骤1、将信号源模块、模块一固定到主机箱上面。

双踪示波器,设置CH1通道为同步源。

2、观测PAM自然抽样波形。

(1)将信号源上S4设为“1010”,使“CLK1”输出32K时钟。

(2)将模块一上K1选到“自然”。

(3)关闭电源,连接表3-1 抽样实验接线表(5)用示波器观测信号源“2K同步正弦波”输出,调节W1改变输出信号幅度,使输出信号峰-峰值在1V左右。

在PAMCLK处观察被抽样信号。

CH1接PAMCLK(同步源),CH2接“自然抽样输出”(自然抽样PAM信号)。

图3-1 2KHz模拟信号图3-2 自然抽样PAM输出分析:抽样定理表明个频带限制在(0,H f )内的时间连续信号()m t ,如果以T ≤Hf 21秒的间隔对它进行等间隔抽样,则()m t 将被所得到的抽样值完全确定。

通信原理抽样定理及其应用实验报告

通信原理抽样定理及其应用实验报告
实验1 抽样定理及其应用实验
一、实验目的
1.通过对模拟信号抽样的实验,加深对抽样定理的理解;
2.通过PAM调制实验,使学生能加深理解脉冲幅度调制的特点;
3.学习PAM调制硬件实现电路,掌握调整测试方法。
二、实验仪器
1.PAM脉冲调幅模块,位号:H(实物图片如下)
2.时钟与基带数据发生模块,位号:G(实物图片见第3页)
PAM实验原理:它采用模拟开关CD4066实现脉冲幅度调制。抽样脉冲序列为高电平时,模拟开关导通,有调制信号输出;抽样脉冲序列为低电平,模拟开关断开,无信号输出
图1-2 PAM信道仿真电路示意图
四、可调元件及测量点的作用
32P01:模拟信号输入连接铆孔。
32P02:抽样脉冲信号输入连接铆孔。
32TP01:输出的抽样后信号测试点。
7.取样恢复信号观察:
PAM解调用的低通滤波器电路(接收端滤波放大模块,信号从P14输入)设有两组参数,其截止频率分别为2.6KHZ、5KHZ。调节不同的输入信号频率和不同的抽样时钟频率,用示波器观测各点波形,验证抽样定理,并做详细记录、绘图。(注意,调节32W01应使32TP01、32P03两点波形相似,即以不失真为准。)
8.关机拆线:
实验结束,关闭电源,拆除信号连线,并按要求放置好实验模块
六.实验现象
输入模拟信号观察:将DDS信号源产生的正弦波(频率为2KHZ,峰一峰值2V)
取样脉冲观察:当DDS信号源处于《PDM波1》状态,旋转SS01可改变取样脉冲的频率示波器接在32P02上,可观察取样脉冲波形。
取样信号观察:示波器接在32TP01上,可观察PAM取样信号,示波器接在32P03上,调节“PAM脉冲幅度调制”上的32W01可改变PAM信号传输信道的特性,PAM取样信号波形会发生改变。

信号实验报告抽样定理

信号实验报告抽样定理

一、实验目的1. 理解并掌握抽样定理的基本原理。

2. 通过实验验证抽样定理的正确性。

3. 学习如何通过抽样恢复原始信号。

4. 掌握信号频谱的观察与分析方法。

二、实验原理抽样定理是信号处理中的一个基本定理,它描述了如何通过抽样来恢复原始信号。

该定理指出,如果一个带限信号的最高频率分量为f_max,那么只要抽样频率f_s 满足f_s > 2f_max,那么通过这些抽样值就可以无失真地恢复出原始信号。

三、实验设备与工具1. 信号发生器2. 示波器3. 函数信号发生器4. 采样器5. 计算机及信号处理软件(如MATLAB)四、实验步骤1. 信号生成:使用信号发生器生成一个带限信号,确保其最高频率分量f_max小于1MHz。

2. 抽样:使用采样器对生成的信号进行抽样,设置不同的抽样频率f_s,分别为fs=1MHz、fs=2MHz和fs=4MHz。

3. 信号分析:使用示波器和函数信号发生器观察原始信号和抽样信号的波形,分析抽样频率对信号波形的影响。

4. 频谱分析:使用信号处理软件对原始信号和抽样信号进行频谱分析,观察其频谱特性。

5. 信号恢复:使用信号处理软件对抽样信号进行恢复,观察恢复信号与原始信号是否一致。

五、实验结果与分析1. 波形观察:当抽样频率fs=1MHz时,抽样信号与原始信号存在较大差异,信号波形发生明显畸变;当抽样频率fs=2MHz时,抽样信号与原始信号波形相似,但存在一定程度的失真;当抽样频率fs=4MHz时,抽样信号与原始信号基本一致,信号波形失真很小。

2. 频谱分析:当抽样频率fs=1MHz时,抽样信号的频谱存在混叠现象,无法恢复原始信号的频谱;当抽样频率fs=2MHz时,抽样信号的频谱与原始信号的频谱基本一致;当抽样频率fs=4MHz时,抽样信号的频谱与原始信号的频谱完全一致。

3. 信号恢复:当抽样频率fs=4MHz时,恢复信号与原始信号基本一致,证明了抽样定理的正确性。

六、实验结论1. 抽样定理是信号处理中的一个基本定理,它描述了如何通过抽样来恢复原始信号。

通信原理实验报告(终)

通信原理实验报告(终)

通信原理实验报告班级: 12050641姓名:谢昌辉学号: 1205064135实验一 抽样定理实验一、实验目的1、 了解抽样定理在通信系统中的重要性。

2、 掌握自然抽样及平顶抽样的实现方法。

3、 理解低通采样定理的原理。

4、 理解实际的抽样系统。

5、 理解低通滤波器的幅频特性对抽样信号恢复的影响。

6、 理解低通滤波器的相频特性对抽样信号恢复的影响。

7、 理解带通采样定理的原理。

二、实验器材1、 主控&信号源、3号模块 各一块2、 双踪示波器 一台3、 连接线 若干三、实验原理1、实验原理框图保持电路S1信号源A-outmusic抽样电路被抽样信号抽样脉冲平顶抽样自然抽样抽样输出抗混叠滤波器LPFLPF-INLPF-OUTFPGA 数字滤波FIR/IIR译码输出编码输入3# 信源编译码模块图1-1 抽样定理实验框图2、实验框图说明抽样信号由抽样电路产生。

将输入的被抽样信号与抽样脉冲相乘就可以得到自然抽样信号,自然抽样的信号经过保持电路得到平顶抽样信号。

平顶抽样和自然抽样信号是通过开关S1切换输出的。

抽样信号的恢复是将抽样信号经过低通滤波器,即可得到恢复的信号。

这里滤波器可以选用抗混叠滤波器(8阶3.4kHz 的巴特沃斯低通滤波器)或FPGA 数字滤波器(有FIR 、IIR 两种)。

反sinc 滤波器不是用来恢复抽样信号的,而是用来应对孔径失真现象。

要注意,这里的数字滤波器是借用的信源编译码部分的端口。

在做本实验时与信源编译码的内容没有联系。

四、实验步骤实验项目一抽样信号观测及抽样定理验证概述:通过不同频率的抽样时钟,从时域和频域两方面观测自然抽样和平顶抽样的输出波形,以及信号恢复的混叠情况,从而了解不同抽样方式的输出差异和联系,验证抽样定理。

1、关电,按表格所示进行连线。

源端口目标端口连线说明信号源:MUSIC 模块3:TH1(被抽样信号) 将被抽样信号送入抽样单元信号源:A-OUT 模块3:TH2(抽样脉冲) 提供抽样时钟模块3:TH3(抽样输出) 模块3:TH5(LPF-IN) 送入模拟低通滤波器2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【抽样定理】。

通信原理实验-抽样定理

通信原理实验-抽样定理

学生实验报告)实际上,考虑到低通滤波器特性不可能理想,对最高频率为3400Hz的语言信号,通常采用8KHz 抽样频率,这样可以留出1200Hz的防卫带。

见图4。

如果fs<fH,就会出现频谱混迭的现象,如图5所示。

在验证抽样定理的实验中,我们用单一频率fH的正弦波来代替实际的语音信号。

采用标准抽样频率fs=8KHZ。

改变音频信号的频率fH,分别观察不同频率时,抽样序列和低通滤波器的输出信号,体会抽样定理的正确性。

验证抽样定理的实验方框图如图6所示。

在图8中,连接(8)和(14),就构成了抽样定理实验电路。

由图6可知。

用一低通滤波器即可实现对模拟信号的恢复。

为了便于观察,解调电路由射随、低通滤波器和放大器组成,低通滤波器的截止频率为3400HZ2、多路脉冲调幅系统中的路际串话~多路脉冲调幅的实验方框图如图7所示。

在图8中,连接(8)和(11)、(13)和(14)就构成了多路脉冲调幅实验电路。

分路抽样电路的作用是:将在时间上连续的语音信号经脉冲抽样形成时间上离散的脉冲调幅信号。

N路抽样脉冲在时间上是互不交叉、顺序排列的。

各路的抽样信号在多路汇接的公共负载上相加便形成合路的脉冲调幅信号。

本实验设置了两路分路抽样电路。

多路脉冲调幅信号进入接收端后,由分路选通脉冲分离成n路,亦即还原出单路PAM信号。

图7 多路脉冲调幅实验框图冲通过话路低通滤波器后,低通滤波器输出信号的幅度很小。

这样大的衰减带来的后果是严重的。

但是,在分路选通后加入保持电容,可使分路后的PAM信号展宽到100%的占空比,从而解决信号幅度衰减大的问题。

但我们知道平顶抽样将引起固有的频率失真。

PAM信号在时间上是离散的,但是幅度上趋势连续的。

而在PAM系统里,PAM信只有在被量化和编码后才有传输的可能。

本实验仅提供一个PAM系统的简单模式。

3、多路脉冲调幅系统中的路标串话路际串话是衡量多路系统的重要指标之一。

路际串话是指在同一时分多路系统中,某一路或某几路的通话信号串扰到其它话路上去,这样就产生了同一端机中各路通话之间的串话。

抽样定理

抽样定理

通信原理实验实验报告实验一:抽样定理一.实验名称抽样定理的仿真验证二.实验目的通过使用Systemview搭建流程图,对奈奎斯特采样定理进行验证,加深理解。

三.实验原理1.奈奎斯特采样定理(抽样定理):设时间连续信号,其最高截止频率为,如果用时间间隔为的开关信号对进行抽样时,则就可被样值信号唯一地表示。

在一个频带限制在内的时间连续信号,如果以小于等于的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。

或者说,如果一个连续信号的频谱中最高频率不超过,这种信号必定是个周期性的信号,当抽样频率时,抽样后的信号就包含原连续信号的全部信息,而不会有信息丢失,当需要时,可以根据这些抽样信号的样本来还原原来的连续信号。

根据这一特性,可以完成信号的模-数转换和数-模转换过程。

2.抽样定理系统框图四.实验过程1.步骤设置3个相同幅度不同频率的信号相加作为连续信号,设置新的脉冲信号通过乘法器对连续信号采样,通过滤波器处理采样信号后回复信号。

分别在加法器输出端、乘法器输出端、滤波器输出端设置信宿库作为示波器观察对应的信号。

通过观察信号采样恢复前后图像是否一致来验证抽样定理。

2.参数设置组成信源的3个信号分别设置:1V,10HZ;1V,12HZ;1V,14HZ。

脉冲信号分别设置3个采样频率:13HZ,28HZ,50HZ。

时钟设置:截止时间1.023s,时间间隔1e-3s,采样点数1024,其他随系统默认。

滤波器设置截止频率为16HZ。

3.模块连接图4.实验结果(1)采样频率13HZ(2)采样频率28HZ(3) 采样频率50HZ五.实验分析与总结1. 结论:当采样频率2s m f f <(抽样频率为13HZ )时,抽样信号恢复以后与原信号差距较大;当采样频率2s m f f =(抽样频率为28HZ )时,抽样信号恢复以后与原信号差距较小;当采样频率2s m f f >(抽样频率为50HZ )时,抽样信号恢复以后与原信号吻合较好。

通信原理实验报告(终)

通信原理实验报告(终)

通信原理实验报告班级: 12050641姓名:谢昌辉学号: 1205064135实验一抽样定理实验一、实验目的1、了解抽样定理在通信系统中的重要性。

2、掌握自然抽样及平顶抽样的实现方法。

3、理解低通采样定理的原理。

4、理解实际的抽样系统。

5、理解低通滤波器的幅频特性对抽样信号恢复的影响。

6、理解低通滤波器的相频特性对抽样信号恢复的影响。

7、理解带通采样定理的原理。

二、实验器材1、主控&信号源、3号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、实验原理框图图1-1 抽样定理实验框图2、实验框图说明抽样信号由抽样电路产生。

将输入的被抽样信号与抽样脉冲相乘就可以得到自然抽样信号,自然抽样的信号经过保持电路得到平顶抽样信号。

平顶抽样和自然抽样信号是通过开关S1切换输出的。

抽样信号的恢复是将抽样信号经过低通滤波器,即可得到恢复的信号。

这里滤波器可以选用抗混叠滤波器(8阶3.4kHz的巴特沃斯低通滤波器)或FPGA数字滤波器(有FIR、IIR两种)。

反sinc滤波器不是用来恢复抽样信号的,而是用来应对孔径失真现象。

要注意,这里的数字滤波器是借用的信源编译码部分的端口。

在做本实验时与信源编译码的内容没有联系。

四、实验步骤实验项目一抽样信号观测及抽样定理验证概述:通过不同频率的抽样时钟,从时域和频域两方面观测自然抽样和平顶抽样的输出波形,以及信号恢复的混叠情况,从而了解不同抽样方式的输出差异和联系,验证抽样定理。

1、关电,按表格所示进行连线。

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【抽样定理】。

调节主控模块的W1使A-out输出峰峰值为3V。

3、此时实验系统初始状态为:被抽样信号MUSIC为幅度4V、频率3K+1K正弦合成波。

抽样脉冲A-OUT为幅度3V、频率9KHz、占空比20%的方波。

4、实验操作及波形观测。

(1)观测并记录自然抽样前后的信号波形:设置开关S13#为“自然抽样”档位,用示波器分别观测MUSIC主控&信号源和抽样输出3#。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验1 抽样定理及其应用实验
一、实验目的
1.通过对模拟信号抽样的实验,加深对抽样定理的理解;
2.通过PAM 调制实验,使学生能加深理解脉冲幅度调制的特点;
3.学习PAM 调制硬件实现电路,掌握调整测试方法。

二、实验仪器
1.PAM 脉冲调幅模块,位号:H (实物图片如下)
2.时钟与基带数据发生模块,位号:G (实物图片见第3页)
3.20M 双踪示波器1台
4.频率计1台
5.小平口螺丝刀1只
6.信号连接线3根
三、实验原理
抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽
样速率达到一定数值时,那么根据这些抽样值就能准确地还原原信号。

这就是说,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。

PAM 实验原理:它采用模拟开关CD4066实现脉冲幅度调制。

抽样脉冲序列为高电平时,
模拟开关导通,有调制信号输出;抽样脉冲序列为低电平,模拟开关断开,
无信号输出
图1-2 PAM 信道仿真电路示意图 32W01
C1 C2 32P03
R2
32TP0
四、可调元件及测量点的作用
32P01:模拟信号输入连接铆孔。

32P02:抽样脉冲信号输入连接铆孔。

32TP01:输出的抽样后信号测试点。

32P03:经仿真信道传输后信号的输出连接铆孔。

32W01:仿真信道的特性调节电位器。

五、实验内容及步骤
1.插入有关实验模块:
在关闭系统电源的条件下,将“时钟与基带数据发生模块”、“PAM脉冲幅度调制模块”,插到底板“G、H”号的位置插座上(具体位置可见底板右下角的“实验模块位置分布表”)。

注意模块插头与底板插座的防呆口一致,模块位号与底板位号的一致。

2.信号线连接:
用专用铆孔导线将P03、32P01;P09、32P02;32P03、P14连接(注意连接铆孔的箭头指向,将输出铆孔连接输入铆孔)。

3.加电:
打开系统电源开关,底板的电源指示灯正常显示。

若电源指示灯显示不正常,请立即关闭电源,查找异常原因。

4.输入模拟信号观察:
将DDS信号源产生的正弦波(通常频率为2KHZ)送入抽样模块的32P01点,用示波器在32P01处观察,调节电位器W01,使该点正弦信号幅度约2V(峰一峰值)。

5.取样脉冲观察:
当DDS信号源处于《PDM波1》状态,旋转SS01可改变取样脉冲的频率。

示波器接在32P02上,可观察取样脉冲波形。

6.取样信号观察:
示波器接在32TP01上,可观察PAM取样信号,示波器接在32P03上,调节“PAM 脉冲幅度调制”上的32W01可改变PAM信号传输信道的特性,PAM取样信号波形会发生改变。

7.取样恢复信号观察:
PAM解调用的低通滤波器电路(接收端滤波放大模块,信号从P14输入)设有两组参数,其截止频率分别为2.6KHZ、5KHZ。

调节不同的输入信号频率和不同的抽样时钟频率,用示波器观测各点波形,验证抽样定理,并做详细记录、绘图。

(注意,调节32W01应使32TP01、32P03两点波形相似,即以不失真为准。

)8.关机拆线:
实验结束,关闭电源,拆除信号连线,并按要求放置好实验模块
六.实验现象
输入模拟信号观察:将DDS信号源产生的正弦波(频率为2KHZ,峰一峰值2V)
取样脉冲观察:当DDS信号源处于《PDM波1》状态,旋转SS01可改变取样脉冲的频率示波器接在32P02上,可观察取样脉冲波形。

取样信号观察:示波器接在32TP01上,可观察PAM取样信号,示波器接在32P03上,调节“PAM脉冲幅度调制”上的32W01可改变PAM信号传输信道的
特性,PAM取样信号波形会发生改变。

取样恢复信号观察:PAM解调用的低通滤波器电路(接收端滤波放大模块,信号从P14输入)设有两组参数,其截止频率分别为2.6KHZ、5KHZ。

调节不
同的输入信号频率和不同的抽样时钟频率,用示波器观测各点波形,
验证抽样定理,并做详细记录、绘图。

(注意,调节32W01应使
32TP01、32P03两点波形相似,即以不失真为准)
输入频率:1.5khz 输入频率:1.0khz
七:心得体会
在实际中,平顶抽样的PAM信号常常采用保持电路来实现,得到的脉冲
为矩形脉冲。

同时我也进一步了解到:由于在离散点取值,直流分量被滤
除,所以已抽样信号中不含直流分量;系统失真可能是采样频率选取不当
引起也可能是系统噪声引起;因为抽样信号的频率远高于输入信号的频率,采用低通滤波器可以滤除抽样时钟信号使信号无失真还原。

由此我们在理
论课上所学的知识在实验中得到了很好地验证,提高了我们理论结合实践
的能力。

THANKS !!!
致力为企业和个人提供合同协议,策划案计划书,学习课件等等
打造全网一站式需求
欢迎您的下载,资料仅供参考。

相关文档
最新文档