高考数学 常见题型 平面向量与三角形的“心”

合集下载

平面向量“四心”知识点总结与经典习题【强烈推荐】

平面向量“四心”知识点总结与经典习题【强烈推荐】

平面向量“四心”知识点总结与经典习题【强烈推荐】平面向量的“四心”是指三角形的外心、内心、重心和垂心,它们各自具有特殊的性质。

在高中数学中,向量问题经常与“四心”问题结合考查。

因此,熟悉向量的代数运算和几何意义是解决这类问题的关键。

四心知识点总结如下:重心:1.重心是三角形三条中线的交点,也是重心到三角形三个顶点距离之和最小的点。

2.重心坐标为$(\frac{1}{3}(x_A+x_B+x_C),\frac{1}{3}(y_A+y_B+y_C))$。

垂心:1.垂心是三角形三条高线的交点,也是垂足到三角形三边距离之积最大的点。

2.若垂心为$O$,则有$OA\cdot OB=OA\cdot OC=OB\cdot OC$。

外心:1.外心是三角形三条中垂线的交点,也是到三角形三个顶点距离相等的点。

2.若外心为$O$,则有$OA=OB=OC$,或$(OA+OB)\cdot AB=(OB+OC)\cdot BC=(OC+OA)\cdot CA$。

内心:1.内心是三角形三条角平分线的交点,也是到三角形三边距离之和最小的点。

2.若内心为$O$,则有$a\cdot OA+b\cdot OB+c\cdotOC=0$,其中$a,b,c$为三角形三边的长度。

下面是一些经典题:1.在$\triangle ABC$中,$D,E,F$分别为$BC,CA,AB$的中点,$M$为重心,则$\vec{AM}$等于()。

A。

$\frac{1}{3}(\vec{AD}+\vec{BE}+\vec{CF})$B。

$\frac{1}{2}(\vec{AD}+\vec{BE}+\vec{CF})$C。

$\frac{1}{3}(\vec{AD}+\vec{BE}+\vec{CF})+\vec{OG}$ D。

$\frac{1}{2}(\vec{AD}+\vec{BE}+\vec{CF})+\vec{OG}$ 答案:C2.在$\triangle ABC$中,$O$为坐标原点,$P$满足$\vec{OP}=\frac{1}{3}(\vec{OA}+\vec{OB}+\vec{OC})$,则$P$一定在()上。

平面向量与三角形“四心”

平面向量与三角形“四心”

解题技巧与方法JIETI JIQIAO YU FANGFA 121平面向量与三角形“四心”◎胡建勋刘健( 永吉实验高中132200)平面向量是高中数学的重要工具之一,它不仅可以把几何问题转化为代数问题求解,也可以把代数问题转化为几何问题求解. 它与高中数学的许多模块( 三角函数,平面解析几何,立体几何,数列,不等式等) 都有紧密联系. 借助平面向量研究三角形“四心”问题更会起到意想不到的效果. 本文仅从几个方面加以说明,以餐读者.一、“三角形四心”的向量表示1. 三角形重心的向量表示→ → →G 是△ABC 重心 GA + GB + GC = 0 若 D ,E ,F 分别为→ → → → → →AB ,BC ,CA 中点则CG = 2 GD ( 或AG = 2 GE ,BG = 2GF ) 2. 三角形外心的向量表示 →→ →O 是 △ABC 外 心,==OB OC ( → →→ → →→ → →→OA + OB )·AB = ( OB + OC )·BC = ( OA + OC ) ·AC = 0.3. 三角形内心的向量表示 (→ → )→ →I 是 △ABC 内 心IA ·= IB ·( → → ( →→= IC·= 0.4. 三角形垂心的向量表示H 是 △ABC→→ → → → →垂心 HA ·BC = HB ·AC = HC ·AB→ → → → → →HA·HB = HB·HC = HC·HA .二、“三角形四心”相关问题 1.“三角形四心”的判定解题策略 利用向量运算化简题干中的向量等式,再据“三角形四心”的向量表示判定. 例,(→→)1 点 O 为 △ABC 所在平面内一点OA + OB ·→ ( → →) → ( → →) →AB = OB + OC ·BC = OA + OC ·OB = 0,则 O 是△ABC() .A . 重心B . 外心C . 内心D . 垂心→解析 设 D 为 AB→ →边中点,( OA + OB ) = 2 OD ,由→ →→ → →( OA + OB )·AB = 0,∴ OD·AB = 0,O 在 AB 垂直平分线上,同理 O 应在 BC ,AC 垂直平分线上.∴ O 是△ABC 外心. 应选 B .例 2 点 O 为△ABC 所在平面内一点,且满足→2 +OA BC → 2 = OB → 2 + AC → 2 = OC → 2 +AB →2 ,则 O 是 △ABC的( ) . A . 重心 B . 外心 C . 内心 D . 垂心解析由→2 +→2 = → 2 +→ 2得,OABC OB AC → → → →→ → →→→ ( AC - BC ) ( AC + BC ) + ( OB - OA ) ( OB + OA ) =0, AB( → →) →( → →)AC + BC + AB OB + OA = 0.→ →2 AB·OC = 0,则 O 是△ABC 中 AB 边的高上,同理 O 应在△ABC 中 AC ,BC 边的高上, ∴O 是△ABC 垂心. 应选 D .2.“三角形四心”与动点轨迹解题策略: 探究动点经过特殊点问题,首先据题干给出的向量等式,利用向量运算化简后,结合向量运算的几何意义,判定动点轨迹特征. 例 3 点 O 是△ABC 所在平面内一定点,P 是△ABC 所→ →( → → ),则 P 点轨在平面内一动点,若OP = OA + λ 迹一定通过△ABC 的() .A . 重心B . 外心C . 内心D . 垂心( → → )解析由若+ →OP = OA + λ→→AP =→→→→分别为→,→同向的单位向λ量,AP 与∠A 平分线所在直线共线, ∴ P 过△ABC 内心,应选 C .例 4 点 O 是△ABC 所在平面内一定点,P 是△ABC 所( → →) ( → →)在平面内一动点,若 OP - OA · AB - AC = 0,则 P 点轨迹一定通过△ABC 的A . 重心B . 外心C . 内心D . 垂心解析→ → → → → →→ →AB - AC = CB ,OP - OA = AP ,又∵ ( OP - OA )·( → →)AB - AC= 0,→ →→ →∴ AP·CB = 0,AP ⊥BC . ∴ P 在过 A 点且垂直于 BC 的垂线上,点 P 轨迹过 △ABC 的垂心应选 D .例 5 点 O 是△ABC 所在平面内一定点,P 是△ABC 所→ →→→,则 P 点轨迹一定通过△ABC 的() . A . 重心 B . 外心C . 内心 D.垂心→ → →→得:解析由OA = OP + λ+→→,→ →= λ= 0.→ →∴ PA ⊥BC .∴ P 在过 A 点且垂直于 BC 的直线上,( 转下页)数学学习与研究 2016. 9解题技巧与方法122 JIETI JIQIAO YU FANGFA数列{ n2 }和 S n 的新求法◎郑晶晶 ( 永嘉县东瓯街道办事处消防办,浙江温州 325100) 【摘要】介绍数列{ n2}和 S n的新求法.【关键词】数列; 初等数学= 4 + 4 + 4 + 4笔者在文中介绍了数列{ n2}和 S n的新求法.其很好的= 3 + 3 + 3 = 2 + 2展现了数学之美且易懂.= 1.即: T n + S n =[1 + 2 + 3 + 4 + … + ( n - 1) + n]一式: n2 = 1 + 3 + 5 + 7 + … + ( 2n - 3) + ( 2n - 1) +[1 + 2 + 3 + 4 + … + ( n - 1) + n]= 2 + 4 + 6 + 8 + … + ( 2n - 2) + 2n - n=[1 + 2 + 3 + 4 + … + ( n - 1) + n]·2 - n.+[1 + 2 + 3 + 4 + … + ( n - 1) + n]得到三式:( n2 + n) /2 = 1 + 2 + 3 + 4 + … + ( n - 1) + n +[1 + 2 + 3 + 4 + … + ( n - 1) + n](在这里我们把等号的右边部分看作数列{ n( n + 1) /2}其+[1 + 2 + 3 + 4 + … + ( n - 1) + n].和 T n.(上共有( n + 1)个[1 + 2 + 3 + 4 + … + ( n - 1) + n]相T n =[1 + 2 + 3 + 4 + … + ( n - 1) + n]+ 加)[1 + 2 + 3 + … + ( n - 1)]所以容易得出T n + S n =[1 + 2 + 3 + 4 + … + ( n - 1) + n]·( n + 1) + ( 1 + 2 + 3 + 4) = n·( n + 1) /2·( n + 1)+ ( 1 + 2 + 3) =[n·( n + 1)2]/2.+ ( 1 + 2) 又因为 T n为数列{ n( n + 1) /2}和,+ 1.因为 n( n + 1) /2 = ( n2 + n) /2,二式: n2 = n + n + n + … + n + n.(此处共有 n 个 n 相所以 Tn=[n( n + 1) /2 + S ]/2.加) 所以 T n + S n =[n( n + 1) /2 + S n]/2 + S n.所以所以[n( n + 1) /2 + S n]/2 + S n =[n·( n + 1)2]/2.S n = n + n + n + … + n + n.(此处共有 n 个 n 相加) 最后得出 S n = n( n + 1) ( 2n + 1) /6.= n + n + n + … + n(此处共有 n - 1 个 n - 1 相加)( 接上页)∴ P 在 BC 边高上,应过△ABC 的垂心,应选 D.→例 6 在△ABC 中,动点 M →2 -→2 →满足AC AB = 2 AM·BC,则点 M 一定通过△ABC 的( ) .A.重心B.外心C.内心→2-→2D.垂心→ →→→解析由 AC AB = 2 AM · BC 得: ( AC - AB )→ →→→( AC + AB) = 2 AM·BC→→→→→→设 D 为 BC 中点,AC + AB = 2 AD,2 BC·AD = 2 AM·→ → →BC,BC·MD = 0.M 点应在 BC 的垂直平分线上.应选B.3.“三角形四心”的应用解题策略: 利用向量法解决有关“三角形四心”相关问题,首先确定一组基底,再根据“三角形四心”的向量表示,用向量线性运算,模的运算,向量数量积运算等简化( 经常利用正弦定理和余弦定理) 题干条件.例 7 G 是△ABC 的重心,AB,AC 的边长为 2 和 1,→→) .∠BAC = 60°,则AG·BG等于(A.8 B.-1099C.5 -槡3 D.-5 + 槡39 9→ 1 → →解析AG = ( AB + AC),3→ 1 →→ 1 →→BG = ( BC + BA) = ( AC - 2 AB).3 3→ → 1 →→ 1 →→AG·BG = ( AB + AC) ×( AC - 2 AB)3 31 →2 →→→2)8= ( AC - AB·AC - 2 AB = -.9 9→例 8 O 是外接圆半径为 1 的△ABC 外心,且满足了 3 →→→→OA + 4 OB + 5 OC = 0,则OA·BC =→→→→→→解法 1 →→→OA·BC = OA ( OC - OB) = ,OA ·OC - OA ·→= →= →,OB又∵OA OB OC→→→3 OA +4 OB +5 OC = 0,∴ 9 → 2 →→→= 25 → 2OA + 12 OA·OB + 16 OB OC→→→→→→ 2 →→OA·OB = 0,3 OA + 5 OC = - 4 OB,9 OA + 30 OA·→ 2 = 16 → 2OC + 25 OC OB→ → 3 → → 3∴ OA·OC = -,∴ OA·BC = -.5 5→→解法 2 →→→→由 3 OA + 4 OB + 5 OC = 0,则以 3 OA,4 OB,5 →→OC为边可构成一个边长为3,4,5 的三角形,OA ·BC =→·→cos ∠AOC -→·→cos ∠AOB = cos OA OC OA OB∠AOC - cos∠AOB.∵ cos∠AOB = ,cos∠AOC = -3 →→ 3,∴ OA·BC = -.5 5数学学习与研究2016. 9。

2022年高考数学之平面向量专题突破专题十 平面向量与三角形的四心(解析版)

2022年高考数学之平面向量专题突破专题十 平面向量与三角形的四心(解析版)

2022年高考数学之平面向量专题突破专题十平面向量与三角形的四心三角形四心的向量式三角形“四心”向量形式的充要条件设O 为△ABC 所在平面上一点,内角A ,B ,C 所对的边分别为a ,b ,c ,则(1)O 为△ABC 的重心⇔OA →+OB →+OC →=0.(2)O 为△ABC 的外心⇔|OA →|=|OB →|=|OC →|=a 2sin A⇔sin 2A ·OA →+sin 2B ·OB →+sin 2C ·OC →=0.(3)O 为△ABC 的内心⇔aOA →+bOB →+cOC →=0⇔sin A ·OA →+sin B ·OB →+sin C ·OC →=0.(4)O 为△ABC 的垂心⇔OA →·OB →=OB →·OC →=OC →·OA →⇔tan A ·OA →+tan B ·OB →+tan C ·OC →=0.关于四心的概念及性质:(1)重心:三角形的重心是三角形三条中线的交点.性质:①重心到顶点的距离与重心到对边中点的距离之比为2∶1.②重心和三角形3个顶点组成的3个三角形面积相等.③在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数.即G 为△ABC 的重心,A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则④重心到三角形3个顶点距离的平方和最小.(2)垂心:三角形的垂心是三角形三边上的高的交点.性质:锐角三角形的垂心在三角形内,直角三角形的垂心在直角顶点上,钝角三角形的垂心在三角形外.(3)内心:三角形的内心是三角形三条内角平分线的交点(或内切圆的圆心).性质:①三角形的内心到三边的距离相等,都等于内切圆半径r .②2=S r a b c ++,特别地,在Rt △ABC 中,∠C =90°,=2a b cr +-.(4)外心:三角形三边的垂直平分线的交点(或三角形外接圆的圆心).性质:外心到三角形各顶点的距离相等.考点一三角形四心的判断【例题选讲】[例1](1)已知A ,B ,C 是平面上不共线的三点,O 为坐标原点,动点P 满足OP →=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)·OC →],λ∈R ,则点P 的轨迹一定经过()A .△ABC 的内心B .△ABC 的垂心C .△ABC 的重心D .AB 边的中点答案C解析取AB 的中点D ,则2OD →=OA →+OB →,∵OP →=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)OC →],∴OP →=13[2(1-λ)OD →+(1+2λ)OC →]=2(1-λ)3OD →+1+2λ3OC →,而2(1-λ)3+1+2λ3=1,∴P ,C ,D 三点共线,∴点P 的轨迹一定经过△ABC 的重心.(2)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的________.答案内心解析由条件,得OP→-OA →=AP →=,而AB →|AB →|和AC →|AC →|分别表示平行于AB →,AC →的单位向量,故AB →|AB →|+AC →|AC →|平分∠BAC ,即AP →平分∠BAC ,所以点P 的轨迹必过△ABC 的内心.(3)在△ABC 中,设AC →2-AB →2=2AM →·BC →,那么动点M 的轨迹必经过△ABC 的()A .垂心B .内心C .外心D .重心答案C解析设BC 边中点为D ,∵AC →2-AB →2=2AM →·BC →,∴(AC →+AB →)·(AC →-AB →)=2AM →·BC →,即AD →·BC →=AM →·BC →,∴MD →·BC →=0,则MD →⊥BC →,即MD ⊥BC ,∴MD 为BC 的垂直平分线,∴动点M 的轨迹必经过△ABC 的外心,故选C .(4)已知O 是平面上的一个定点,A ,B ,C 是平面上不共线的三个点,动点P 满足OP →=OA →+λ(AB →|AB →|cos B+AC →|AC →|cos C),λ∈(0,+∞),则动点P 的轨迹一定通过△ABC 的()A .重心B .垂心C .外心D .内心答案B 解析因为OP →=OA →+λ(AB →|AB →|cos B +AC →|AC →|cos C ),所以AP →=OP →-OA →=λ(AB →|AB →|cos B +AC →|AC →|cos C),所以BC →·AP →=BC →·λ(AB →|AB →|cos B +AC →|AC →|cos C )=λ(-|BC →|+|BC →|)=0,所以BC →⊥AP →,所以点P 在BC 的高线上,即动点P 的轨迹一定通过△ABC 的垂心.(5)已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,O 为ABC ∆内一点,若分别满足下列四个条件:①aOA bOB cOC ++=0 ,②tan tan tan A OA B OB C OC ⋅+⋅+⋅=0,③sin 2sin 2sin 2A OA B OB C OC ⋅+⋅+⋅=0 ,④OA OB OC ++=0则点O 分别为ABC ∆的()A .外心、内心、垂心、重心B .内心、外心、垂心、重心C .垂心、内心、重心、外心D .内心、垂心、外心、重心答案D(6)下列叙述正确的是________.①1()3PG PA PB PC G =++⇔为ABC ∆的重心.②PA PB PB PC PC PA P ⋅=⋅=⋅⇔为ABC ∆的垂心.③||||||0AB PC BC PA CA PB P ++=⇔为ABC ∆的外心.④()()()0OA OB AB OB OC BC OC OA CA O +⋅=+⋅=+⋅=⇔为ABC ∆的内心.答案①②解析①G为ABC∆的重心⇔GA GB GC ++=0 ⇔PA PG PB PG PC PG -+-+-=0 ⇔1()3PG PA PB PC =++,①正确;②由PA PB PB PC ⋅=⋅ ⇔()0PA PC PB -⋅=⇔0CA PB AC ⋅=⇔⊥ PB ,同理AB PC ⊥,BC PA ⊥,②正确;③||||||AB PC BC PA CA PB ++=0 ⇔||||()AB PC BC PC CA ++ ||()CA PC CB ++=0(||||||)||||AB BC CA PC BC CA CA CB ⇔++++=0 . ||||||||BC CA CA CB = ,∴||BC CA ||CA CB + 与角C 的平分线平行,P ∴必然落在角C 的角平分线上,③错误;④()OA OB AB +⋅= (OB222)()0||||||OC BC OC OA CA OA OB OC OA OB OC O +⋅=+⋅=⇔==⇔==⇔ 为ABC ∆的外心,④错误.∴正确的叙述是①②.故答案为:①②.【对点训练】1.已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的()A .内心B .外心C .重心D .垂心2.O 是平面上一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足2OB OC OP AP λ+=+,且1λ≠,则点P 的轨迹一定通过ABC ∆的()A .内心B .外心C .重心D .垂心3.已知O 是△ABC 所在平面上的一定点,若动点P 满足OP →=OA →+λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的()A .内心B .外心C .重心D .垂心4.O 为ABC ∆所在平面内一点,A ,B ,C 为ABC ∆的角,若sin sin sin A OA B OB C OC O ⋅+⋅+⋅=,则点O 为ABC ∆的()A .垂心B .外心C .内心D .重心5.在ABC ∆中,3AB =,2AC =,1324AD AB AC =+,则直线AD 通过ABC ∆的()A .垂心B .外心C .内心D .重心6.已知ABC ∆所在的平面上的动点M 满足||||AP AB AC AC AB =+,则直线AP 一定经过ABC ∆的()A .重心B .外心C .内心D .垂心7.设ABC ∆的角A 、B 、C 的对边长分别为a ,b ,c ,P 是ABC ∆所在平面上的一点,c PA PB PA PCb⋅=⋅ +22b c c a c PA PB PC PB b a a--=⋅+,则点P 是ABC ∆的()A .重心B .外心C .内心D .垂心8.已知O 是ABC △所在平面上一点,若222OA OB OC ==,则O 是ABC △的().A .重点B .外心C .内心D .垂心9.P 是△ABC 所在平面内一点,若PA →·PB →=PB →·PC →=PC →·PA →,则P 是△ABC 的()A .外心B .内心C .重心D .垂心10.若H 为ABC △所在平面内一点,且222222HA BC HB CA HC AB +=+=+ 则点H 是ABC △的()A .外心B .内心C .重心D .垂心11.已知O 是ABC ∆所在平面内一点,且满足22||||BA OA BC AB OB AC ⋅+=⋅+,则点(O )A .在AB 边的高所在的直线上B .在C ∠平分线所在的直线上C .在AB 边的中线所在的直线上D .是ABC ∆的外心12.已知O 为ABC ∆所在平面内一点,且满足222222OA BC OB CA OC AB +=+=+ ,则O 点的轨迹一定通过ABC ∆的()A .外心B .内心C .重心D .垂心13.已知O ,N ,P 在所在ABC ∆的平面内,且||||||, OA OB OC NA NB NC ==++=0,且PA PB ⋅= PB PC⋅ =PA PC ⋅,则O ,N ,P 分别是ABC ∆的()A .重心、外心、垂心B .重心、外心、内心C .外心、重心、垂心D .外心、重心、内心14.点O 是平面上一定点,A 、B 、C 是平面上ABC ∆的三个顶点,以下命题正确的是________.(把你认为正确的序号全部写上).①②③④⑤①动点P 满足OP OA PB PC =++,则ABC ∆的重心一定在满足条件的P 点集合中;②动点P 满足(0)||||AB ACOP OA AB AC λλ=++>,则ABC ∆的内心一定在满足条件的P 点集合中;③动点P 满足(0)||sin ||sin AB ACOP OA AB B AC C λλ=++>,则ABC ∆的重心一定在满足条件的P 点集合中;④动点P 满足(0)||cos ||cos AB ACOP OA AB B AC Cλλ=++>,则ABC ∆的垂心一定在满足条件的P 点集合中;⑤动点P 满足()(0)2||cos ||cos OB OC AB ACOP AB B AC Cλλ+=++> ,则ABC ∆的外心一定在满足条件的P 点集合中.考点二三角形四心的应用【例题选讲】[例2](1)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,重心为G ,若aGA →+bGB →+33cGC →=0,则A =__________.答案π6解析由G 为△ABC 的重心知GA →+GB →+GC →=0,则GC →=-GA →-GB →,因此a GA →+b GB →+33c (-GA →-GB →)-33c -33c →=0,又GA →,GB →不共线,所以a -33c =b -33c =0,即a=b =33c .由余弦定理得cos A =b 2+c 2-a 22bc =c 22×33c 2=32,又0<A <π,所以A =π6.(2)在△ABC 中,AB =BC =2,AC =3,设O 是△ABC 的内心.若AO →=pAB →+qAC →,则pq=________.答案32解析如图,O 为△ABC 的内心,D 为AC 中点,则O 在线段BD 上,cos ∠DAO =12|AC→||AO →|=32|AO →|,根据余弦定理cos ∠BAC =4+9-42×2×3=34;由AO →=pAB →+q AC →得AO →·AB →=pAB →2+qAB →·AC →,所以|AO ,→||AB ,→|cos ∠BAO =pAB →2+q |AB →||AC →|cos ∠BAC ,所以3=4p +92q ①;同理AO →·AC →=pAB →·AC →+qAC →2,所以可以得到92=92p +9q ②.①②联立可求得p =37,q =27,所以p q =32.(3)已知在△ABC 中,AB =1,BC =6,AC =2,点O 为△ABC 的外心,若AO →=xAB →+yAC →,则有序实数对(x ,y )为()ABC -45,D -35,答案A解析取AB 的中点M 和AC 的中点N ,连接OM ,ON ,则OM →⊥AB →,ON →⊥AC →,OM →=AM→-AO →=12AB →-(xAB →+yAC→)-yAC →,ON →=AN →-AO →=12AC →-(xAB →+yAC →)-xAB →.由OM →⊥AB →,得2-yAC →·AB →=0,①,由ON →⊥AC →,得2-xAC →·AB →=0,②,又因为BC →2=(AC →-AB →)2=AC →2-2AC →·AB →+AB →2,所以AC →·AB →=AC →2+AB →2-BC →22=-12,③,把③代入①、②得-2x +y =0,+x -8y =0,解得x=45,y =35.故实数对(x ,y )(4)在△ABC 中,O 是△ABC 的垂心,点P 满足:3OP →=12OA →+12OB →+2OC →,则△ABP 的面积与△ABC 的面积之比是________.答案23解析如图,设AB 的中点为M ,设12OA →+12OB →=ON →,则N 是AB 的中点,点N 与M 重合,故由3OP →=12OA →+12OB →+2OC →,可得2OP →=OM →-OP →+2OC →,即2OP →-2OC →=OM →-OP →,也即PM →=2CP →,由向量的共线定理可得C 、P 、M 共线,且MP =23MC ,所以结合图形可得△ABP 的面积与△ABC 的面积之比是23.(5)著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O ,H 分别是ABC ∆的外心、垂心,且M 为BC 中点,则()A .33AB AC HM MO +=+ B .33AB AC HM MO+=- C .24AB AC HM MO +=+ D .24AB AC HM MO+=- 答案D解析如图所示的Rt ABC ∆,其中角B 为直角,则垂心H 与B 重合,O 为ABC ∆的外心,OA OC ∴=,即O 为斜边AC 的中点,又M 为BC 中点,∴2AH OM = ,M 为BC 中点,∴AB AC +22()2(2)4224AM AH HM OM HM OM HM HM MO ==+=+=+=-.故选D .【对点训练】1.在△ABC 中,O 为△ABC 的重心,AB =2,AC =3,A =60°,则AO →·AC →=________.2.设G 为△ABC 的重心,且sin A ·GA +sin B ·GB +sin C ·GC=0,则B 的大小为________.3.已知△ABC 的三个内角为A ,B ,C ,重心为G ,若2sin A ·GA →+3sin B ·GB →+3sin C ·GC →=0,则cos B =________.4.在△ABC 中,AB =1,∠ABC =60°,AC →·AB →=-1,若O 是△ABC 的重心,则BO →·AC →=________.5.过△ABC 重心O 的直线PQ 交AC 于点P ,交BC 于点Q ,PC →=34AC →,QC →=nBC →,则n 的值为____.6.已知△ABC 和点M 满足MA →+MB →+MC →=0,若存在实数m ,使得AB →+AC →=m AM →成立,则m 等于()A .2B .3C .4D .57.已知O 是△ABC 内一点,OA →+OB →+OC →=0,AB →·AC →=2且∠BAC =60˚,则△OBC 的面积为()A .33B .3C .32D .238.已知在△ABC 中,点O 满足OA →+OB →+OC →=0,点P 是OC 上异于端点的任意一点,且OP →=mOA →+nOB →,则m +n 的取值范围是________.9.已知点O 为△ABC 外接圆的圆心,且OA +OB +OC=0,则△ABC 的内角A 等于()A .30°B .60°C .90°D .120°10.已知O 是△ABC 的外心,|AB →|=4,|AC →|=2,则AO →·(AB →+AC →)=()A .10B .9C .8D .611.若点P 是△ABC 的外心,且PA →+PB →+λPC →=0,∠ACB =120°,则实数λ的值为()A .12B .-12C .-1D .112.△ABC 的外接圆的圆心为O ,半径为1,若OA →+AB →+OC →=0,且|OA →|=|AB →|,则CA →·CB →等于()A .32B .3C .3D .2313.若△ABC 的面积为3,AB →·AC →=2,则△ABC 外接圆面积的最小值为()A .πB .4π3C .2πD .8π314.已知O 为锐角△ABC 的外心,|AB →|=3,|AC →|=23,若AO →=xAB →+yAC →,且9x +12y =8,记I 1=OA →·OB →,I 2=OB →·OC →,I 3=OA →·OC →,则()A .I 2<I 1<I 3B .I 3<I 2<I 1C .I 3<I 1<I 2D .I 2<I 3<I 115.已知O 是△ABC 的外心,∠C =45°,则OC →=mOA →+nOB →(m ,n ∈R ),则m +n 的取值范围是()A .[-2,2]B .[-2,1)C .[-2,-1]D .(1,2]16.已知点G 是△ABC 的外心,GA →,GB →,GC →是三个单位向量,且2GA →+AB →+AC →=0,△ABC 的顶点B ,C 分别在x 轴的非负半轴和y 轴的非负半轴上移动,如图所示,点O 是坐标原点,则|OA →|的最大值为()A .1B .2C .3D .417.在锐角三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,点O 为△ABC 的外接圆的圆心,A =π3,且AO →=λAB →+μAC →,则λμ的最大值为________.18.已知P 是边长为3的等边三角形ABC 外接圆上的动点,则|PA →+PB →+2PC →|的最大值为()A .23B .33C .43D .5319.已知O 是锐角三角形ABC ∆的外接圆的圆心,且A θ∠=,若cos cos 2sin sin B C AB AC mAO C B += ,则m =()A .sin θB .cos θC .tan θD .不能确定20.在ABC ∆中,5BC =,G ,O 分别为ABC ∆的重心和外心,且5OG BC ⋅=,则ABC ∆的形状是()A .锐角三角形B .钝角三角形C .直角三角形D .上述三种情况都有可能21.在ABC ∆中,3AB=,BC =,2AC =,若点O 为ABC ∆的内心,则AO AC ⋅的值为()A .2B .73C .3D .522.设O 是△ABC 的内心,AB =c ,AC =b ,若AO →=λ1AB →+λ2AC →,则()A .λ1λ2=b cB .λ21λ22=b cC .λ1λ2=c 2b2D .λ21λ22=c b23.在△ABC 中,AB =5,AC =6,cos A =15,O 是△ABC 的内心,若OP →=xOB →+yOC →,其中x ,y ∈[0,1],则动点P 的轨迹所覆盖图形的面积为()A .1063B .1463C .43D .6224.在△ABC 中,已知向量AB →与AC →BC →=0,且AB →|AB →|·AC →|AC →|=12,则△ABC 为()A .等边三角形B .直角三角形C .等腰非等边三角形D .三边均不相等的三角形25.ABC ∆外接圆的圆心为O ,两条边上的高的交点为H ,()OH m OA OB OC =++,则实数m 的值()A .12B .2C .1D .34专题十平面向量与三角形的四心三角形四心的向量式三角形“四心”向量形式的充要条件设O 为△ABC 所在平面上一点,内角A ,B ,C 所对的边分别为a ,b ,c ,则(1)O 为△ABC 的重心⇔OA →+OB →+OC →=0.(2)O 为△ABC 的外心⇔|OA →|=|OB →|=|OC →|=a 2sin A⇔sin 2A ·OA →+sin 2B ·OB →+sin 2C ·OC →=0.(3)O 为△ABC 的内心⇔aOA →+bOB →+cOC →=0⇔sin A ·OA →+sin B ·OB →+sin C ·OC →=0.(4)O 为△ABC 的垂心⇔OA →·OB →=OB →·OC →=OC →·OA →⇔tan A ·OA →+tan B ·OB →+tan C ·OC →=0.关于四心的概念及性质:(1)重心:三角形的重心是三角形三条中线的交点.性质:①重心到顶点的距离与重心到对边中点的距离之比为2∶1.②重心和三角形3个顶点组成的3个三角形面积相等.③在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数.即G 为△ABC 的重心,A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则④重心到三角形3个顶点距离的平方和最小.(2)垂心:三角形的垂心是三角形三边上的高的交点.性质:锐角三角形的垂心在三角形内,直角三角形的垂心在直角顶点上,钝角三角形的垂心在三角形外.(3)内心:三角形的内心是三角形三条内角平分线的交点(或内切圆的圆心).性质:①三角形的内心到三边的距离相等,都等于内切圆半径r .②2=S r a b c ++,特别地,在Rt △ABC 中,∠C =90°,=2a b cr +-.(4)外心:三角形三边的垂直平分线的交点(或三角形外接圆的圆心).性质:外心到三角形各顶点的距离相等.考点一三角形四心的判断【例题选讲】[例1](1)已知A ,B ,C 是平面上不共线的三点,O 为坐标原点,动点P 满足OP →=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)·OC →],λ∈R ,则点P 的轨迹一定经过()A .△ABC 的内心B .△ABC 的垂心C .△ABC 的重心D .AB 边的中点答案C解析取AB 的中点D ,则2OD →=OA →+OB →,∵OP →=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)OC →],∴OP →=13[2(1-λ)OD →+(1+2λ)OC →]=2(1-λ)3OD →+1+2λ3OC →,而2(1-λ)3+1+2λ3=1,∴P ,C ,D 三点共线,∴点P 的轨迹一定经过△ABC 的重心.(2)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的________.答案内心解析由条件,得OP →-OA →=AP →=,而AB →|AB →|和AC →|AC →|分别表示平行于AB →,AC →的单位向量,故AB →|AB →|+AC →|AC →|平分∠BAC ,即AP →平分∠BAC ,所以点P 的轨迹必过△ABC 的内心.(3)在△ABC 中,设AC →2-AB →2=2AM →·BC →,那么动点M 的轨迹必经过△ABC 的()A .垂心B .内心C .外心D .重心答案C解析设BC 边中点为D ,∵AC →2-AB →2=2AM →·BC →,∴(AC →+AB →)·(AC →-AB →)=2AM →·BC →,即AD →·BC →=AM →·BC →,∴MD →·BC →=0,则MD →⊥BC →,即MD ⊥BC ,∴MD 为BC 的垂直平分线,∴动点M 的轨迹必经过△ABC 的外心,故选C .(4)已知O 是平面上的一个定点,A ,B ,C 是平面上不共线的三个点,动点P 满足OP →=OA →+λ(AB →|AB →|cos B+AC →|AC →|cos C),λ∈(0,+∞),则动点P 的轨迹一定通过△ABC 的()A .重心B .垂心C .外心D .内心答案B 解析因为OP →=OA →+λ(AB →|AB →|cos B +AC →|AC →|cos C ),所以AP →=OP →-OA →=λ(AB →|AB →|cos B +AC →|AC →|cos C),所以BC →·AP →=BC →·λ(AB →|AB →|cos B +AC →|AC →|cos C )=λ(-|BC →|+|BC →|)=0,所以BC →⊥AP →,所以点P 在BC 的高线上,即动点P 的轨迹一定通过△ABC 的垂心.(5)已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,O 为ABC ∆内一点,若分别满足下列四个条件:①aOA bOB cOC ++=0 ,②tan tan tan A OA B OB C OC ⋅+⋅+⋅=0,③sin 2sin 2sin 2A OA B OB C OC ⋅+⋅+⋅=0 ,④OA OB OC ++=0则点O 分别为ABC ∆的()A .外心、内心、垂心、重心B .内心、外心、垂心、重心C .垂心、内心、重心、外心D .内心、垂心、外心、重心答案D(6)下列叙述正确的是________.①1()3PG PA PB PC G =++⇔为ABC ∆的重心.②PA PB PB PC PC PA P ⋅=⋅=⋅⇔为ABC ∆的垂心.③||||||0AB PC BC PA CA PB P ++=⇔为ABC ∆的外心.④()()()0OA OB AB OB OC BC OC OA CA O +⋅=+⋅=+⋅=⇔为ABC ∆的内心.答案①②解析①G为ABC ∆的重心⇔GA GB GC ++=0 ⇔PA PG PB PG PC PG -+-+-=0 ⇔1()3PG PA PB PC =++,①正确;②由PA PB PB PC ⋅=⋅ ⇔()0PA PC PB -⋅=⇔0CA PB AC ⋅=⇔⊥ PB ,同理AB PC ⊥,BC PA ⊥,②正确;③||||||AB PC BC PA CA PB ++=0 ⇔||||()AB PC BC PC CA ++ ||()CA PC CB ++=0(||||||)||||AB BC CA PC BC CA CA CB ⇔++++=0 . ||||||||BC CA CA CB = ,∴||BC CA ||CA CB + 与角C 的平分线平行,P ∴必然落在角C 的角平分线上,③错误;④()OA OB AB +⋅= (OB222)()0||||||OC BC OC OA CA OA OB OC OA OB OC O +⋅=+⋅=⇔==⇔==⇔ 为ABC ∆的外心,④错误.∴正确的叙述是①②.故答案为:①②.【对点训练】1.已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的()A .内心B .外心C .重心D .垂心1.答案C解析由原等式,得OP →-OA →=λ(AB →+AC →),即AP →=λ(AB →+AC →),根据平行四边形法则,知AB →+AC →是△ABC 的中线AD (D 为BC 的中点)所对应向量AD →的2倍,所以点P 的轨迹必过△ABC 的重心.2.O 是平面上一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足2OB OC OP AP λ+=+,且1λ≠,则点P 的轨迹一定通过ABC ∆的()A .内心B .外心C .重心D .垂心2.答案C 解析设BC 的中点为M .由已知原式可化为2PA OB OP OC OP λ=-+- .即2PA PBλ=2PC PM += ,所以PM PA λ=,所以P ,A ,M 三点共线.所以P 点在边BC 的中线AM 上.故P 点的轨迹一定过ABC ∆的重心.3.已知O 是△ABC 所在平面上的一定点,若动点P 满足OP →=OA →+λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的()A .内心B .外心C .重心D .垂心3.答案C解析∵|AB |sin B =|AC |sin C ,设它们等于t ,∴OP →=OA →+λ·1t(AB →+AC →),设BC 的中点为D ,则AB →+AC →=2AD →,λ·1t (AB →+AC →)表示与AD →共线的向量AP →,而点D 是BC 的中点,即AD 是△ABC 的中线,∴点P 的轨迹一定通过三角形的重心.故选C .4.O 为ABC ∆所在平面内一点,A ,B ,C 为ABC ∆的角,若sin sin sin A OA B OB C OC O ⋅+⋅+⋅=,则点O 为ABC ∆的()A .垂心B .外心C .内心D .重心4.答案C 解析由正弦定理得2sin 2sin 2sin 0R AOA R BOB R COC ++= ,即0aOA bOB cOC ++=,由上式可得()()cOC aOA bOB a OC CA b OC CB =--=-+-+ ,所以()a b c OC aCA bCB ++=--=ab -(||||CA CB CA CB +,所以OC 与C ∠的平分线共线,即O 在C ∠的平分线上,同理可证,O 也在A ∠,B ∠的平分线上,故O 是ABC ∆的内心.5.在ABC ∆中,3AB =,2AC =,1324AD AB AC =+,则直线AD 通过ABC ∆的()A .垂心B .外心C .内心D .重心5.答案C 解析3AB = ,2AC =,13||22AB ∴= ,33||42AC = .即133||||242AB AC ==,设12AE AB = ,34AF AC = ,则||||AE AF =,∴1324AD AB AC AE AF =+=+ .由向量加法的平行四边形法则可知,四边形AEDF 为菱形.AD ∴为菱形的对角线,AD ∴平分EAF ∠.∴直线AD 通过ABC ∆的内心.故选C .6.已知ABC ∆所在的平面上的动点M 满足||||AP AB AC AC AB =+,则直线AP 一定经过ABC ∆的()A .重心B .外心C .内心D .垂心6.答案C解析||||AP AB AC AC AB =+ ∴11||||()||||AP AB AC AC AB AC AB =+,∴根据平行四边形法则知11||||AC AB AC AB +表示的向量在三角形角A 的平分线上,而向量AP 与11||||AC AB AC AB +共线,P ∴点的轨迹过ABC ∆的内心,故选C .7.设ABC ∆的角A 、B 、C 的对边长分别为a ,b ,c ,P 是ABC ∆所在平面上的一点,c PA PB PA PCb⋅=⋅+22b c c a c PA PB PC PB b a a--=⋅+,则点P 是ABC ∆的()A .重心B .外心C .内心D .垂心7.答案C 解析因为22c b c c a c PA PB PA PC PA PB PC PB b b a a--⋅=⋅+=⋅+ ,所以2PA PB PA ⋅-=()c PA PC PA b ⋅-,2()c PA PB PB PB PC PB a ⋅-=⋅- ,所以c PA AB PA AC b ⋅=⋅ ,c BA PB PB BC a⋅=⋅ ,所以||cos ||cos c PA c PAB PA b PAC b ⋅∠=∠ ,||cos ||cos c PB c PBA PB a PBC a⋅∠=∠ ,所以PAB PAC ∠=∠,PBA PBC ∠=∠,所以AP 是BAC ∠的平分线,BP 是ABC ∠的平分线,所以点P 是ABC ∆的内心,故选C .8.已知O 是ABC △所在平面上一点,若222OA OB OC ==,则O 是ABC △的().A .重点B .外心C .内心D .垂心8.答案B解析9.P 是△ABC 所在平面内一点,若PA →·PB →=PB →·PC →=PC →·PA →,则P 是△ABC 的()A .外心B .内心C .重心D .垂心9.答案D解析由PA →·PB →=PB →·PC →,可得PB →·(PA →-PC →)=0,即PB →·CA →=0,∴PB →⊥CA →,同理可证PC →⊥AB →,PA →⊥BC →.∴P 是△ABC 的垂心.10.若H 为ABC △所在平面内一点,且222222HA BC HB CA HC AB +=+=+ 则点H 是ABC △的()A .外心B .内心C .重心D .垂心10.答案D解析11.已知O 是ABC ∆所在平面内一点,且满足22||||BA OA BC AB OB AC ⋅+=⋅+ ,则点(O )A .在AB 边的高所在的直线上B .在C ∠平分线所在的直线上C .在AB 边的中线所在的直线上D .是ABC ∆的外心11.答案A 解析取AB 的中点D ,则 22||||BA OA BC AB OB AC ⋅+=⋅+ ,∴2()||BA OA OB BC ⋅+=-+2||AC ,∴2(2)BA OD AB CD ⋅=⋅-,∴20BA OC = ,∴BA OC ⊥ ,∴点O 在AB 边的高所在的直线上,故选A .12.已知O 为ABC ∆所在平面内一点,且满足222222OA BC OB CA OC AB +=+=+ ,则O 点的轨迹一定通过ABC ∆的()A .外心B .内心C .重心D .垂心12.答案D 解析 BC OC OB =- ,CA OA OC =- 、AB OB OA =- ,∴由22222OA BC OB CA OC+=+= 2AB + ,得222222()()()OA OC OB OB OA OC OC OB OA +-=+-=+- ,∴OB OC OA OC OA OB ⋅=⋅=⋅ ,即()()()OC OB OA OA OC OB OB OC OA ⋅-=⋅-=⋅-,∴OC AB OA BC OB AC ⋅=⋅=⋅ ,则OC AB ⊥,OA BC ⊥,OB AC ⊥.O ∴是ABC ∆的垂心.故选D .13.已知O ,N ,P 在所在ABC ∆的平面内,且||||||, OA OB OC NA NB NC ==++=0,且PA PB ⋅= PB PC⋅ =PA PC ⋅,则O ,N ,P 分别是ABC ∆的()A .重心、外心、垂心B .重心、外心、内心C .外心、重心、垂心D .外心、重心、内心13.答案C14.点O 是平面上一定点,A 、B 、C 是平面上ABC ∆的三个顶点,以下命题正确的是________.(把你认为正确的序号全部写上).①②③④⑤①动点P 满足OP OA PB PC =++,则ABC ∆的重心一定在满足条件的P 点集合中;②动点P 满足(0)||||AB ACOP OA AB AC λλ=++>,则ABC ∆的内心一定在满足条件的P 点集合中;③动点P 满足(0)||sin ||sin AB ACOP OA AB B AC C λλ=++>,则ABC ∆的重心一定在满足条件的P 点集合中;④动点P 满足(0)||cos ||cos AB ACOP OA AB B AC Cλλ=++>,则ABC ∆的垂心一定在满足条件的P 点集合中;⑤动点P 满足()(0)2||cos ||cos OB OC AB ACOP AB B AC Cλλ+=++> ,则ABC ∆的外心一定在满足条件的P 点集合中.14.答案①②③④⑤解析对于①, 动点P 满足OP OA PB PC =++ ,∴AP PB PC =+,则点P 是ABC ∆的心,故①正确;对于②, 动点P 满足()(0)||||AB AC OP OA AB AC λλ=++>,∴(||ABAP AB λ=+||AC AC (0)λ>,又||||AB ACAB AC +在BAC ∠的平分线上,∴AP 与BAC ∠的平分线所在向量共线,ABC ∴∆的内心在满足条件的P 点集合中,②正确;对于③,动点P 满足()||sin ||sin AB ACOP OA AB B AC Cλ=++(0)λ>,∴()||sin ||sin AB ACAP AB B AC C λ=+,(0)λ>,过点A 作AD BC ⊥,垂足为D ,则||sin AB B = ||sin AC C AD =,()AP AB AC ADλ=+,向量AB AC + 与BC 边的中线共线,因此ABC ∆的重心一定在满足条件的P 点集合中,③正确;对于④,动点P 满足()(0)||cos ||cos AB ACOP OA AB B AC Cλλ=++>,(AP λ= ∴)(0)||cos ||cos AB AC AB B AC C λ+> ,∴()(||||cos ||cos AB ACAP BC BC BC AB B AC Cλλ=+=-||)0BC =,∴AP BC ⊥ ,ABC ∴∆的垂心一定在满足条件的P 点集合中,④正确;对于⑤,动点P 满足OP = ()(0)2||cos ||cos OB OC AB AC AB B AC C λλ+++> ,设2OB OC OE += ,则(||cos ABEP AB Bλ=+)||cos AC AC C ,由④知(0||cos ||cos AB ACBC AB B AC C+=,∴0EP BC = ,∴EP BC ⊥ ,P ∴点的轨迹为过E 的BC 的垂线,即BC 的中垂线;ABC ∴∆的外心一定在满足条件的P 点集合,⑤正确.故正确的命题是①②③④⑤.考点二三角形四心的应用【例题选讲】[例2](1)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,重心为G ,若aGA →+bGB →+33cGC →=0,则A =__________.答案π6解析由G 为△ABC 的重心知GA →+GB →+GC →=0,则GC →=-GA →-GB →,因此a GA →+b GB →+33c (-GA →-GB →)-33c-33c →=0,又GA →,GB →不共线,所以a -33c =b -33c =0,即a =b =33c .由余弦定理得cos A =b 2+c 2-a 22bc =c 22×33c 2=32,又0<A <π,所以A =π6.(2)在△ABC 中,AB =BC =2,AC =3,设O 是△ABC 的内心.若AO →=pAB →+qAC →,则pq=________.答案32解析如图,O 为△ABC 的内心,D 为AC 中点,则O 在线段BD 上,cos ∠DAO =12|AC→||AO →|=32|AO →|,根据余弦定理cos ∠BAC =4+9-42×2×3=34;由AO →=pAB →+q AC →得AO →·AB →=pAB →2+qAB →·AC →,所以|AO ,→||AB ,→|cos ∠BAO =pAB →2+q |AB →||AC →|cos ∠BAC ,所以3=4p +92q ①;同理AO →·AC →=pAB →·AC →+qAC →2,所以可以得到92=92p +9q ②.①②联立可求得p =37,q =27,所以p q =32.(3)已知在△ABC 中,AB =1,BC =6,AC =2,点O 为△ABC 的外心,若AO →=xAB →+yAC →,则有序实数对(x ,y )为()A B C -45,D -35,答案A解析取AB 的中点M 和AC 的中点N ,连接OM ,ON ,则OM →⊥AB →,ON →⊥AC →,OM →=AM→-AO →=12AB →-(xAB →+yAC →)-yAC →,ON →=AN →-AO →=12AC →-(xAB →+yAC →)-xAB →.由OM →⊥AB →,得2-yAC →·AB →=0,①,由ON →⊥AC →,得2-xAC →·AB →=0,②,又因为BC →2=(AC →-AB →)2=AC →2-2AC →·AB →+AB →2,所以AC →·AB →=AC →2+AB →2-BC →22=-12,③,把③代入①、②得-2x +y =0,+x -8y =0,解得x=45,y =35.故实数对(x ,y )(4)在△ABC 中,O 是△ABC 的垂心,点P 满足:3OP →=12OA →+12OB →+2OC →,则△ABP 的面积与△ABC 的面积之比是________.答案23解析如图,设AB 的中点为M ,设12OA →+12OB →=ON →,则N 是AB 的中点,点N 与M 重合,故由3OP →=12OA →+12OB →+2OC →,可得2OP →=OM →-OP →+2OC →,即2OP →-2OC →=OM →-OP →,也即PM →=2CP →,由向量的共线定理可得C 、P 、M 共线,且MP =23MC ,所以结合图形可得△ABP 的面积与△ABC 的面积之比是23.(5)著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O ,H 分别是ABC ∆的外心、垂心,且M 为BC 中点,则()A .33AB AC HM MO +=+ B .33AB AC HM MO+=- C .24AB AC HM MO +=+ D .24AB AC HM MO+=- 答案D解析如图所示的Rt ABC ∆,其中角B 为直角,则垂心H 与B 重合,O 为ABC ∆的外心,OA OC ∴=,即O 为斜边AC 的中点,又M 为BC 中点,∴2AH OM = ,M 为BC 中点,∴AB AC +22()2(2)4224AM AH HM OM HM OM HM HM MO ==+=+=+=-.故选D .【对点训练】1.在△ABC 中,O 为△ABC 的重心,AB =2,AC =3,A =60°,则AO →·AC →=________.1.答案4解析设BC 边中点为D ,则AO →=23AD →,AD →=12(AB →+AC →),∴AO →·AC →=13(AB →+AC →)·AC →=13(3×2×cos 60°+32)=4.2.设G 为△ABC 的重心,且sin A ·GA +sin B ·GB +sin C ·GC=0,则B 的大小为________.2.答案60°解析∵G 是△ABC 的重心,∴GA →+GB →+GC →=0,GA →=-(GB →+GC →),将其代入sin A ·GA→+sin B ·GB →+sin C ·GC →=0,得(sin B -sin A )GB →+(sin C -sin A )GC →=0.又GB →,GC →不共线,∴sin B -sin A =0,sin C -sin A =0,则sin B =sin A =sin C .根据正弦定理知b =a =c ,∴三角形ABC 是等边三角形,则角B =60°.秒杀∵G 为△ABC 的重心,∴OA →+OB →+OC →=0,又∵sin A ·GA +sin B ·GB +sin C ·GC =0,∴sin A =sin B =sin C ,∴三角形ABC 是等边三角形,则角B =60°.3.已知△ABC 的三个内角为A ,B ,C ,重心为G ,若2sin A ·GA →+3sin B ·GB →+3sin C ·GC →=0,则cos B =________.3.答案112解析设a ,b ,c 分别为角A ,B ,C 所对的边,由正弦定理得2a ·GA →+3b ·GB →+3c ·GC →=0,则2a ·GA →+3b ·GB →=-3c ·GC →=-3c (-GA →-GB →),即(2a -3c )GA →+(3b -3c )GB →=0.又GA →,GB →不共3c =0,-3c =0,由此得2a =3b =3c ,所以a =32b ,c =33b ,于是由余弦定理得cos B =a 2+c 2-b 22ac =112.秒杀∵G 为△ABC 的重心,∴OA →+OB →+OC →=0,又∵2sin A ·GA →+3sin B ·GB →+3sin C ·GC →=0,∴2sin A=3sin B =3sin C ,∴2a =3b =3c ,所以a =32b ,c =33b ,于是由余弦定理得cos B =a 2+c 2-b 22ac =112.4.在△ABC 中,AB =1,∠ABC =60°,AC →·AB →=-1,若O 是△ABC 的重心,则BO →·AC →=________.4.答案5解析如图所示,以B 为坐标原点,BC 所在直线为x 轴,建立平面直角坐标系.∵AB =1,∠ABC =60°,∴C (a ,0).∵AC →·AB →=-1-12,--12,-+34=-1,解得a =4.∵O 是△ABC 的重心,延长BO 交AC 于点D ,∴BO →=23BD →=23×12(BA →+BC →)(4,0)=BO →·AC →5.5.过△ABC 重心O 的直线PQ 交AC 于点P ,交BC 于点Q ,PC →=34AC →,QC →=nBC →,则n 的值为____.5.答案35解析因为O 是重心,所以OA →+OB →+OC →=0,即OA →=-OB →-OC →,PC →=34AC →⇒OC →-OP →=34(OC →-OA →)⇒OP →=34OA →+14OC →=-34OB →-12OC →,QC →=nBC →⇒OC →-OQ →=n (OC →-OB →)⇒OQ →=nOB →+(1-n )OC →,因为P ,O ,Q 三点共线,所以OP →∥OQ →,所以-34(1-n )=-12n ,解得n =35.6.已知△ABC 和点M 满足MA →+MB →+MC →=0,若存在实数m ,使得AB →+AC →=m AM →成立,则m 等于()A .2B .3C .4D .56.答案B解析∵MA →+MB →+MC →=0,∴M 为△ABC 的重心.连接AM 并延长交BC 于D ,则D 为BC 的中点.∴AM →=23AD →.又AD →=12(AB →+AC →),∴AM →=13(AB →+AC →),即AB→+AC →=3AM →,∴m =3,故选B .7.已知O 是△ABC 内一点,OA →+OB →+OC →=0,AB →·AC →=2且∠BAC =60˚,则△OBC 的面积为()A .33B .3C .32D .237.答案A解析∵OA →+OB →+OC →=0,∴O 是△ABC 的重心,于是S △OBC =13S △ABC .∵AB →·AC →=2,∴|AB →|·|AC →|·cos ∠BAC =2,∵∠BAC =60˚,∴|AB →|·|AC →|=4.又S △ABC =12|AB →|·|AC →|sin ∠BAC =3,∴△OBC的面积为33,故选A .8.已知在△ABC 中,点O 满足OA →+OB →+OC →=0,点P 是OC 上异于端点的任意一点,且OP →=mOA →+nOB →,则m +n 的取值范围是________.8.答案(-2,0)解析依题意,设OP →=λOC →(0<λ<1),由OA →+OB →+OC →=0,知OC →=-(OA →+OB →),所以OP →=-λOA →-λOB →,由平面向量基本定理可知,m +n =-2λ,所以m +n ∈(-2,0).9.已知点O 为△ABC 外接圆的圆心,且OA +OB +OC=0,则△ABC 的内角A 等于()A .30°B .60°C .90°D .120°9.答案B 解析由OA →+OB →+OC →=0,知点O 为△ABC 的重心,又O 为△ABC 外接圆的圆心,∴△ABC 为等边三角形,A =60°.10.已知O 是△ABC 的外心,|AB →|=4,|AC →|=2,则AO →·(AB →+AC →)=()A .10B .9C .8D .610.答案A解析作OS ⊥AB ,OT ⊥AC ∵O 为△ABC 的外接圆圆心.∴S 、T 为AB ,AC 的中点,且AS →·SO→=0,AT →·TO →=0,AO →=AS →+SO →,AO →=AT →+TO →,∴AO →·(AB →+AC →)=AO →·AB →+AO →·AC →=(AS →+SO →)·AB →+(AT →+TO →)·AC →=AS →·AB →+SO →·AB →+AT →·AC →+TO →·AC →=12AB →·AB →+12AC →·AC →=12|AB →|2+12|AC →|2=8+2=10.故选A .优解:不妨设∠A =90°,建立如图所示平面直角坐标系.设B (4,0),C (0,2),则O 为BC 的中点O (2,1),∴AB →+AC →=2AO →,∴AO →·(AB →+AC →)=2|AO →|2=2(4+1)=10.故选A .11.若点P 是△ABC 的外心,且PA →+PB →+λPC →=0,∠ACB =120°,则实数λ的值为()A .12B .-12C .-1D .111.答案C 解析设AB 的中点为D ,则PA →+PB →=2PD →.因为PA →+PB →+λPC →=0,所以2PD →+λPC →=0,所以向量PD →,PC →共线.又P 是△ABC 的外心,所以PA =PB ,所以PD ⊥AB ,所以CD ⊥AB .因为∠ACB =120°,所以∠APB =120°,所以四边形APBC 是菱形,从而PA →+PB →=2PD →=PC →,所以2PD →+λPC →=PC →+λPC →=0,所以λ=-1,故选C .12.△ABC 的外接圆的圆心为O ,半径为1,若OA →+AB →+OC →=0,且|OA →|=|AB →|,则CA →·CB →等于()A .32B .3C .3D .2312.答案C解析∵OA →+AB →+OC →=0,∴OB →=-OC →,故点O 是BC 的中点,且△ABC 为直角三角形,又△ABC 的外接圆的半径为1,|OA →|=|AB →|,∴BC =2,AB =1,CA =3,∠BCA =30°,∴CA →·CB →=|CA →||CB →|·cos 30°=3×2×32=3.13.若△ABC 的面积为3,AB →·AC →=2,则△ABC 外接圆面积的最小值为()A .πB .4π3C .2πD .8π313.答案B 解析设△ABC 内角A ,B ,C 所对的边分别为a ,b ,c .由题意可得12bc sin A =3,bc cos A=2,∴tan A =3.又A ∈(0,π),∴A =π3.∴bc cos π3=2,即bc =4.由余弦定理可得a 2=b 2+c 2-2bc cosA =b 2+c 2-bc ≥bc =4,即a ≥2.又由正弦定理得asin A=2R (R 为△ABC 外接圆的半径),∴2R sin A =a ≥2,即3R ≥2,∴R 2≥43,∴三角形外接圆面积的最小值为4π3.14.已知O 为锐角△ABC 的外心,|AB →|=3,|AC →|=23,若AO →=xAB →+yAC →,且9x +12y =8,记I 1=OA →·OB →,I 2=OB →·OC →,I 3=OA →·OC →,则()A .I 2<I 1<I 3B .I 3<I 2<I 1C .I 3<I 1<I 2D .I 2<I 3<I 114.解析:选D如图,分别取AB ,AC 的中点,为D ,E ,并连接OD ,OE ,根据条件有OD ⊥AB ,OE⊥AC ,∴AO →·AB →=12|AB ―→|2=92,AO →·AC →=12|AC ―→|2=6,∴AO →·AB →=(xAB →+yAC →)·AB →=9x +63y ·cos ∠BAC =92,①,AO →·AC →=(xAB →+yAC →)·AC →=63x cos ∠BAC+12y =6,②,又9x +12y =8,③,∴由①②③解得cos ∠BAC =33-78.由余弦定理得,BC =9+12-2×3×23×33-78=15+3212.∴BC >AC >AB .在△ABC 中,由大边对大角得,∠BAC >∠ABC >∠ACB ,∴∠BOC >∠AOC >∠AOB ,∵|OA →|=|OB →|=|OC →|,且余弦函数在(0,π)上为减函数,∴OB →·OC →<OA →·OC →<OA →·OB →,即I 2<I 3<I 1.15.已知O 是△ABC 的外心,∠C =45°,则OC →=mOA →+nOB →(m ,n ∈R ),则m +n 的取值范围是()A .[-2,2]B .[-2,1)C .[-2,-1]D .(1,2]15.答案B解析由题意∠C =45°,所以∠AOB =90°,以OA ,OB 为x ,y 轴建立平面直角坐标系,如图,不妨设A (1,0),B (0,1),则C 在圆O 的优弧AB 上,设C (cos α,sin α),则α显然OC →=cos αOA →+sin αOB →,即m =cos α,n =sin α,m +n =cos α+sin α=2sinαα+π4∈∈-1m +n ∈[-2,1),故选B .16.已知点G 是△ABC 的外心,GA →,GB →,GC →是三个单位向量,且2GA →+AB →+AC →=0,△ABC 的顶点B ,C 分别在x 轴的非负半轴和y 轴的非负半轴上移动,如图所示,点O 是坐标原点,则|OA →|的最大。

专题:平面向量与三角形四心问题

专题:平面向量与三角形四心问题

专题:平面向量与三角形四心问题三角形四心指的是三角形的垂心、重心、内心和外心,在高考中常常结合平面向量的知识进行考察,是高中数学的一个难点.很多学生对三角形四心总是产生混淆,面对与四心有关的问题也常常束手无策,为了解决广大学子的困扰,本文以四心的常见结论出发,借助几道经典的例题,对三角形四心问题进行系统梳理,希望能够为读者提供帮助.如果读者是在校高中生,则标注了星号的内容可作为拓展知识. 一、三角形的内心(1)定义:三角形内切圆的圆心,即三角形三条角平分线的交点(如图1). (2)向量表示:若O 为△ABC 的内心→→→→=⋅+⋅+⋅⇔0OC c OB b OA a . (注:本文中的边a ,b ,c 分别表示BC ,AC ,AB .角A ,B ,C 分别表示BAC ∠,ABC ∠,ACB ∠.)证明:→→→→→→→→→→=+⋅++⋅+⋅⇔=⋅+⋅+⋅0)()(0AC OA c AB OA b OA a OC c OB b OA a→→→→=⋅+⋅+⋅++⇔0)(AC c AB b OA c b a →→→⋅+⋅=⋅++⇔AC c AB b AO c b a )(||||||||)(→→→→→→→⋅⋅+⋅⋅=⋅++⇔AC AC AC c AB AB AB b AO c b a)||||()(→→→→→+⋅=⋅++⇔AC ACAB ABbc AO c b a)||||(→→→→→+⋅++=⇔AC ACAB AB c b a bc AO (图1)⇔点O 在角A 的角平分线上,同理点O 也在角B 、C 的角平分线上. ⇔O 为△ABC 的内心.(3)常用性质性质1:))(||||(R AC ACAB AB∈+⋅→→→→λλ所在的直线与A ∠的角平分线重合(经过内心).证明:如图所示,||→→AB AB 表示→AB 上的单位向量,不妨记作→AD ,||→→AC AC 表示→AC 上的单位向量,不妨记作→AE .设→→→+=AE AD AP ,由平行四边形法则知,四边形ADPE 为菱形, 故直线AP 为A ∠的角平分线.))(||||(RAC ACAB AB∈+⋅∴→→→→λλ所在的直线与A ∠的角平分线重合(经过内心).性质2:r c b a S ABC ⋅++=∆)(21(r △ABC 内切圆的半径). 证明:由等面积法易证.性质3:O 为△ABC 的内心c b a S S S OAB OAC OBC ::::=⇔∆∆∆. 证明:由面积公式易证. (4)典例剖析例1-1:在△ABC 中,O 为平面内一个定点,动点P 满足)||||(→→→→→→++=AC ACAB ABOA OP λ,),0(+∞∈λ.则动点P 的轨迹经过△ABC 的( )A .内心B .外心C .垂心D .重心 解析:由性质1知,答案为A .例1-2:已知O 是△ABC 所在平面上的一点,若cb a PCc PB b PA a PO ++++=→→→→(其中P 是△ABC 所在平面内任意一点),则O 是△ABC 的( )A .内心B .外心C .垂心D .重心 解析:由题意知→→→→→→++=++PC c PB b PA a PO c PO b aPO ,即+-→→)(PO PA a→→→→→=-+-0)()(PO PC c PO PB b ,化简得→→→→=⋅+⋅+⋅0OC c OB b OA a .根据内心的向量表示知,O 是△ABC 的内心,答案为A .例1-3:已知O 是△ABC 内的一点,且满足0)||||(=-⋅→→→→→AC ACAB ABOA ,则OA 所在的直线一定经过三角形的( )A .内心B .外心C .垂心D .重心解析:||→→AB AB 表示→AB 上的单位向量,不妨记作→1e ,||→→AC AC 表示→AC 上的单位向量,不妨记作→2e .故0)(21=-⋅→→→e e OA ,即→→→→⋅=⋅21e OA e OA ,即>>=<<→→→→21,,e OA e OA .∴直线OA 与A ∠的角平分线重合,故OA 所在的直线一定经过三角形的内心,答案A .二、三角形的外心(1)定义:三角形外接圆的圆心,即三角形三边中垂线的交点(如图2). (2)向量表示:若O 为△ABC 的外心||||||→→→==⇔OC OB OA . (3)常用性质:奔驰定理*:已知O 为△ABC 内的一点(不一定为外心), 则→→∆→∆→∆=⋅+⋅+⋅0OC S OB S OA S OAB OAC OBC .(该定理反之也成立)证明:不妨延长AO 到D (如下图),则 (图2)=++===∆∆∆∆∆∆∆∆ACD ABD OAC OAB ACD OAC ABD OAB S S S S S S S S AD AO ABC OACOAB S S S ∆∆∆+, 即→∆∆∆→+=AD S S S AO ABCOAC OAB .且根据B ,D ,C 三点共线知,→∆∆∆→∆∆∆→+++=AB S S S AC S S S AD OAC OAB OACOAC OAB OAB ,故→∆∆→∆∆→+=AB S S AC S S AO ABC OAC ABC OAB ,即)()(→→∆∆→→∆∆→-+-=-OA OB S S OA OC S S OA ABCOAC ABC OAB . →→∆→∆→∆=⋅+⋅+⋅∴0OC S OB S OA S OAB OAC OBC (反之易证)性质1*:O 为△ABC 的外心C B A S S S OAB OAC OBC 2sin :2sin :2sin ::=⇔∆.证明:如图2所示,O 为△ABC 的外心A R BOC R S OBC 2sin 212sin 2122=∠=⇔∆,B R AOC R S OAC 2sin 212sin 2122=∠=∆,C R AOB R S OAB 2sin 212sin 2122=∠=∆ C B A S S S OAB OAC OBC 2sin :2sin :2sin ::=⇔∆(R 为△ABC 外接圆半径).性质2*:O 为△ABC 的外心→→→→=⋅+⋅+⋅⇔0)2(sin )2(sin )2(sin OC C OB B OA A . 证明:结合性质1与奔驰定理易证.(4)典例剖析例2-1:在△ABC 中,O 为平面内一个定点,动点P 满足++=→→→2OCOB OP )cos ||cos ||(CAC AC BAB AB →→→→+λ,),0(+∞∈λ.则动点P 的轨迹一定经过△ABC 的( )A .内心B .外心C .垂心D .重心 解析:设线段BC 的中点为D ,故)cos ||cos ||(C AC AC BAB AB OD OP →→→→→→++=λ,即)cos ||cos ||(CAC AC BAB AB DP →→→→→+=λ,而)cos ||cos ||(CAC BC AC BAB BC AB BC DP →→→→→→→→⋅+⋅=⋅λ,即)cos ||cos ||||cos ||)cos(||||(CAC CBC AC B AB B BC AB BC DP →→→→→→→→⋅+-⋅=⋅πλ0|)|||(=+-=→→BC BC λ 即→→⊥BC DP ,故点P 在线段BC 的垂直平分线上. ∴动点P 的轨迹一定经过△ABC 的外心,答案B .例2-2:在△ABC 中,动点O 满足→→→→⋅=-BC AO AB AC 222,则点O 一定经过△ABC 的( )A .内心B .外心C .垂心D .重心解析:由题知→→→→→→⋅=+-BC AO AB AC AB AC 2))((,设D 为BC 的中点,则=⋅→→AD BC 2→→⋅BC AO 2,故0=⋅→→OD BC ,即→→⊥OD BC ,O ∴在BC 的垂直平分线上,故点O 一定经过△ABC 的外心,答案B .例2-3:已知O 为△ABC 所在平面内的一点,满足→→→→⋅=⋅BA OB AB OA ,=⋅→→BC OB→→⋅CB OC ,则O 为△ABC 的( )A .内心B .外心C .垂心D .重心解析:由→→→→⋅=⋅BA OB AB OA 知0)(=+⋅→→→OA OB AB ,即0)()(=+⋅-→→→→OA OB OA OB ,即||||→→=OA OB ,同理可得:||||→→=OC OB ,O ∴为△ABC 的外心,答案B .三、三角形的垂心(1)定义:三角形三条高的交点(如图3).(2)向量表示:若O 为△ABC 的垂心→→→→→→⋅=⋅=⋅⇔OC OB OC OA OB OA . 证明:→→→→→→→→→→→⊥⇔=⋅=-⋅⇔⋅=⋅BC OA BC OA OB OC OA OC OA OB OA 0)(.同理→→⊥AC OB ,O AB OC ⇔⊥→→为△ABC 的垂心.(3)常用性质性质1*:O 为锐角△ABC 的垂心⇔=∆∆∆OAB OAC OBC S S S ::C B A tan :tan :tan . (图3)证明:ACDOC b BCDOC a OF b OE a S S OAC OBC ∠⋅⋅∠⋅⋅=⋅⋅=∆∆sin sin ,且在直角△BCD 和直角△ACD 中有 B BCD cos sin =∠,A ACD cos sin =∠.故BAA B B A A b B a S S OAC OBC tan tan cos sin cos sin cos cos =⋅⋅=⋅⋅=∆∆. 同理,CBS S OAB OAC tan tan =∆∆. C B A S S S OAB OAC OBC tan :tan :tan ::=∴∆∆∆,反之易证.性质2*:当O 为锐角△ABC 的垂心→→→→=⋅+⋅+⋅⇔0tan tan tan C OC B OB A OA .证明:利用性质1和“奔驰定理”易证. (4)典例剖析例3-1:在△ABC 中,O 为平面内一个定点,动点P 满足)cos ||cos ||(CAC AC BAB AB OA OP →→→→→→++=λ,),0(+∞∈λ,则动点P 的轨迹一定经过△ABC 的( )A .内心B .外心C .垂心D .重心 解析:由题知)cos ||cos ||(CAC AC BAB AB AP →→→→→+=λ,得=⋅+-⋅=⋅+⋅=⋅→→→→→→→→→→→→→→)cos ||cos ||||cos ||)cos(||||()cos ||cos ||(CAC CBC AC B AB B BC AB CAC BC AC BAB BC AB BC AP πλλ0|)|||(=+-→→BC BC λ,即→→⊥BC AP .P ∴在BC 边上的高上,过垂心,答案C .例3-2:已知O 为△ABC 所在平面内的一点,且满足=+=+→→→→2222||||||||AC OB BC OA22||||→→+AB OC ,则O 是△ABC 的( )A .内心B .外心C .垂心D .重心 解析:由题知2222||||||||→→→→-=-BC AC OB OA ,即=+⋅-→→→→)()(OB OA OB OA)()(→→→→+⋅-BC AC BC AC ,即0)()(=+⋅++⋅→→→→→→OB OA AB BC AC AB ,即02=⋅→→OC AB ,故→→⊥OC AB ,同理→→⊥OB AC ,→→⊥OA BC∴O 是△ABC 的垂心,答案C .例3-3:设O 是△ABC 的外心,点P 满足→→→→=++OP OC OB OA ,则P 是△ABC 的( )A .内心B .任意一点C .垂心D .重心 解析:由题知→→→→→=-=+CP OC OP OB OA ,由于O 是△ABC 的外心,故→→→=+OD OB OA 2(D 为线段AB 的中点)且→→⊥AB OD ,即→→=OD CP 2,→→⊥∴AB CP ,同理→→⊥AC BP ,→→⊥BC AP ,故P 是△ABC 的垂心,答案C .四、三角形的重心(1)定义:三角形三条中线的交点(如图4).(2)向量表示:若O 为△ABC 的重心→→→→=++⇔0OC OB OA . (3)常用性质 ( 图4 )性质1:若O 为△ABC 的重心ABC OBC OAC OAB S S S S ∆∆∆∆===⇔31性质2:若O 为△ABC 的重心→→=⇔AF AO 32,→→=BD BO 32,→→=CF CO 32性质3:已知),(11y x A ,),(22y x B ,),(33y x C .若O 为△ABC 的重心)3,3(321321y y y x x x O ++++⇔.(4)典例剖析例4-1:在△ABC 中,O 为平面内一个定点,动点P 满足)sin ||sin ||(CAC AC BAB AB OA OP →→→→→→++=λ,),0(+∞∈λ,则动点P 的轨迹一定经过△ABC的( )A .内心B .外心C .垂心D .重心 解析:由题知)sin ||sin ||(CAC AC BAB AB AP →→→→→+=λ,其中hC AC B AB ==→→sin ||sin ||(h 表示BC 边上的高),故)(hACh AB AP →→→+=λ→=AF h λ2(F 为线段BC 的中点). P ∴在BC 边上的中线上,故动点P 的轨迹一定经过△ABC 的重心,答案D .例4-2:在△ABC 中,O 为平面内一个定点,动点P 满足])21()1()1[(31→→→→++-+-=OC OB OA OP λλλ,R ∈λ,则动点P 的轨迹一定经过△ABC 的( )A .内心B .外心C .垂心D .重心解析:设AB 的中点为D ,故])21()1(2[31→→→++-=OC OD OP λλ,由于+-3)1(2λ1321=+λ,即点P ,C ,D 三点共线. P ∴在AB 边上的中线上,故动点P 的轨迹一定经过△ABC 的重心,答案D .例4-3:已知O 在△ABC 内,且满足→→→→=++0432OC OB OA ,现在到△ABC 内随机取一点,次点取自△OAB ,△OAC ,△OBC 的概率分别记为1P 、2P 、3P ,则( )A .321P P P ==B .123P P P >>C .321P P P >>D .312P P P >> 解析:法一:如图,延长OA ,OB ,OC 使得OA OD 2=,OB OE 3=,OC OF 4=, 故→→→→=++0OF OE OD ,即O 是△DEF 的重心,即△OED 、△ODF 、 △OEF 的面积相等,不妨令它们的面积都为1. 61=∴∆OAB S ,81=∆OAC S ,121=∆OBC S ,故321P P P >>,答案C . 法二:由“奔驰定理”知,k S OBC 2=∆,k S OAC 3=∆,kS OAB 4=∆(k 为比例系数),故321P P P >>,答案C .法三:根据三角形内心的向量表示,不妨设O 是以2k ,3k ,4k (k 为比例系数)为边长的三角形的内心,所以OBC OAC OAB S S S ∆∆∆>>,即321P P P >>,答案C .五、等腰(边)三角形的四心 (1)等腰三角形等腰三角形只有顶角的角平分线与中线、高三线重合,其余的线不重合.另外,等腰三角形的四心不重合. (2)等边三角形性质1:若△ABC 为等边三角形⇔△ABC 四心合一. 性质2:若△ABC 为等边三角形⇔△ABC 三线合一. 六、欧拉线*瑞士数学家欧拉(1707~1783)于1765年在他的著作《三角形 的几何学》中首次提出:(如图5)任意△ABC (非等边三角形)的垂心D 、重心E 、外心F 三点共线,即欧拉线. (图5)特别地,(如图6)当△ABC 为直角三角形时(A 为直角),垂心D 与A 重合,外心F 在BC 的中点上,欧拉线为直角△ABC 的外接圆半径(或BC 边上的中线).(图6)性质1:在任意三角形中,垂心与重心的距离是重心与外心距离的2倍,即EF DE 2=.。

高考专题:平面向量中的三角形“四心”问题题型总结

高考专题:平面向量中的三角形“四心”问题题型总结

专题:平面对量中三角形“四心”问题题型总结在三角形中,“四心”是一组特别的点,它们的向量表达形式具有很多重要的性质,在近年高考试题中,总会出现一些新奇新颖的问题,不仅考查了向量等学问点,而且培育了考生分析问题、解决问题的实力.现就“四心”作如下介绍:1.“四心”的概念与性质(1)重心:三角形三条中线的交点叫重心.它到三角形顶点距离与该点到对边中点距离之比为2∶1.在向量表达形式中,设点G 是△ABC 所在平面内的一点,则当点G 是△ABC 的重心时,有GA+GB +GC =0或PG =13(PA +PB +PC )(其中P 为平面内随意一点).反之,若GA +GB +GC =0,则点G 是△ABC 的重心.在向量的坐标表示中,若G ,A ,B ,C 分别是三角形的重心和三个顶点,且分别为G (x ,y ),A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则有x =x 1+x 2+x 33,y =y 1+y 2+y 33.(2)垂心:三角形三条高线的交点叫垂心.它与顶点的连线垂直于对边.在向量表达形式中,若H 是△ABC 的垂心,则HA ·HB =HB ·HC =HC ·HA 或HA 2+BC 2=HB 2+CA 2=HC 2+AB 2.反之,若HA ·HB =HB ·HC =HC ·HA ,则H 是△ABC 的垂心. (3)内心:三角形三条内角平分线的交点叫内心.内心就是三角形内切圆的圆心,它到三角形三边的距离相等.在向量表达形式中,若点I 是△ABC 的内心,则有|BC |·IA +|CA |·IB +|AB |·IC =0.反之,若|BC |·IA +|CA |·IB +|AB |·IC =0,则点I 是△ABC 的内心.(4)外心:三角形三条边的中垂线的交点叫外心.外心就是三角形外接圆的圆心,它到三角形的三个顶点的距离相等.在向量表达形式中,若点O 是△ABC 的外心,则(OA +OB )·BA =(OB +OC )·CB =(OC +OA )·AC =0或|OA |=|OB |=|OC |.反之,若|OA |=|OB |=|OC |,则点O 是△ABC 的外心.2.关于“四心”的典型例题[例1] 已知O 是平面上的肯定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满意OP =OA +λ(AB +AC ),λ∈(0,+∞),则点P 的轨迹肯定通过△ABC 的________心.[解析] 由原等式,得OP -OA =λ(AB +AC ),即AP =λ(AB +AC ),依据平行四边形法则,知AB +AC 是△ABC 的中线所对应向量的2倍,所以点P 的轨迹必过△ABC 的重心.[答案] 重[点评] 探求动点轨迹经过某点,只要确定其轨迹与三角形中的哪些特别线段所在直线重合,这可从已知等式动身,利用向量的线性运算法则进行运算得之.[例2] 已知△ABC 内一点O 满意关系OA +2OB +3OC =0,试求S △BOC ∶S △COA ∶S △AOB 之值.[解] 延长OB 至B 1,使BB 1=OB ,延长OC 至C 1,使CC 1=2OC ,连接AB 1,AC 1,B 1C 1,如图所示,则1OB =2OB ,1OC =3OC ,由条件,得OA +1OB +1OC =0,所以点O 是△AB 1C 1的重心.从而S △B 1OC 1=S △C 1OA =S △AOB 1=13S ,其中S 表示△AB 1C 1的面积, 所以S △COA =19S ,S △AOB =16S ,S △BOC =12S △B 1OC =12×13S △B 1OC 1=118S . 于是S △BOC ∶S △COA ∶S △AOB =118∶19∶16=1∶2∶3. [点评] 本题条件OA +2OB +3OC =0与三角形的重心性质GA +GB +GC =0非常类似,因此我们通过添加协助线,构造一个三角形,使点O 成为协助三角形的重心,而三角形的重心与顶点的连线将三角形的面积三等分,从而可求三部分的面积比.[引申推广] 已知△ABC 内一点O 满意关系λ1OA +λ2OB +λ3OC =0,则S △BOC ∶S △COA ∶S △AOB =λ1∶λ2∶λ3.[例3] 求证:△ABC 的垂心H 、重心G 、外心O 三点共线,且|HG |=2|GO |.[证明] 对于△ABC 的重心G ,易知OG =OA +OB +OC 2,对于△ABC 的垂心H ,设OH =m (OA +OB +OC ),则 AH =AO +m (OA +OB +OC )=(m -1) OA +m OB +m OC .由AH ·BC =0,得[(m -1) OA +m OB +m OC ](OC -OB )=0,(m -1) OA ·(OC -OB )+m (OC 2-OB 2)=0, 因为|OC |=|OB |,所以(m -1) OA ·(OC -OB )=0.但OA 与BC 不肯定垂直,所以只有当m =1时,上式恒成立.所以OH =OA +OB +OC ,从而OG =13OH ,得垂心H 、重心G 、外心O 三点共线,且|HG |=2|GO |.[引申推广]重心G 与垂心H 的关系:HG =13(HA +HB +HC ). [点评] 这是闻名的欧拉线,提示了三角形的“四心”之间的关系.我们选择恰当的基底向量来表示它们,当然最佳的向量是含顶点A 、B 、C 的向量.[例4] 设A 1,A 2,A 3,A 4,A 5 是平面内给定的5个不同点,则使1MA +2MA +3MA +4MA +5MA =0成立的点M 的个数为( )A .0B .1C .5D .10[解析] 依据三角形中的“四心”学问,可知在△ABC 中满意MA +MB +MC =0的点只有重心一点,利用类比的数学思想,可知满意本题条件的点也只有1个.[答案] B[点评] 本题以向量为载体,考查了类比与化归,归纳与猜想等数学思想.本题的具体解答过程如下:对于空间两点A,B来说,满意MA+MB=0的点M是线段AB的中点;对于空间三点A,B,C来说,满意MA+MB+MC=0,可认为是先取AB的中点G,再连接CG,在CG上取点M,使MC=2MG,则M满意条件,且唯一;对于空间四点A,B,C,D来说,满意MA+MB+MC +MD=0,可先取△ABC的重心G,再连接GD,在GD上取点M,使DM=3MG,则M满意条件,且唯一,不妨也称为重心G;与此类似,对于空间五点A,B,C,D,E来说,满意MA+MB+MC +MD+ME=0,可先取空间四边形ABCD的重心G,再连接GE,在GE上取点M,使EM=4MG,则M满意条件,且唯一.。

第6章平面向量专题5 三角形四心问题-新教材高中数学必修(第二册)常考题型专题练习

第6章平面向量专题5 三角形四心问题-新教材高中数学必修(第二册)常考题型专题练习

【分析】如图所示,建立直角坐标系. BC 10 .由直角三角形的内切圆的性质可得:四边

AEDF
为正方形,可得内切圆的半径
r
6
8
10
2
.设
BD
m AB
n AC
,利用平面向
2
量基本定理即可得出.
【解答】解:如图所示,建立直角坐标系.
BC 62 82 10 .
由直角三角形的内切圆的性质可得:四边形 AEDF 为正方形, 内切圆的半径 r 6 8 10 2 .
1
时,否则
CO
CB
,由图可知是不可能的.
可化为
m
2 2(
n
1
1
1
)
,代入
(*)
可得
8( )2 ( 1)2
( )2 ( 1)2
9,
化为18( ) 9 32 ,
利用重要不等式可得18( )
9
32(
)2

2
化为 8( )2 18( ) 9 0 ,
同理可得 PA BC , PC AB ,
P 是 ABC 的垂心.
故选: D .
【点评】本小题主要考查向量的数量积的运算法则、三角形垂心等基础知识,考查运算求解
能力,考查数形结合思想、化归与转化思想.属于基础题
12 . O 为 ABC 平 面 内 一 定 点 , 该 平 面 内 一 动 点 P 满 足
9.已知 ABC ,角 ABC 的三边分别为 a 、 b 、 c , P 为三角形所在平面上的一点,且点 P
满足: aPA bPB cPC 0 ,则 P 点为三角形 (
)
A.外心
B.内心
C.重心
D.垂心

平面向量题型三-三角形“四心”与向量结合

平面向量题型三-三角形“四心”与向量结合

题型三 三角形“四心”与向量结合 (一)平面向量与三角形内心1、O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P 满足+=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ∆的( )(A )外心(B )内心(C )重心(D )垂心2、已知△ABC ,P 为三角形所在平面上的一点,且点P 满足:0a PA b PB c PC ⋅+⋅+•=,则P 是三角形的( )A 外心 B 内心 C 重心 D 垂心3、在三角形ABC 中,动点P 满足:CP AB CB CA •-=222,则P 点轨迹一定通过△ABC 的: ( )A 外心 B 内心 C 重心 D 垂心)(二)平面向量与三角形垂心 “垂心定理”H 是△ABC 所在平面内任一点,HA HC HC HB HB HA ⋅=⋅=⋅⇔点H 是△ABC 的垂心.证明:由⊥⇔=⋅⇔=-⋅⇔⋅=⋅00)(, 同理⊥,⊥.故H 是△ABC 的垂心. (反之亦然(证略))4、已知△ABC ,P 为三角形所在平面上的动点,且动点P 满足: 0PA PC PA PB PB PC •+•+•=,则P 点为三角形的 ( )A 外心 B 内心 C 重心 D 垂心 [5、点O 是三角形ABC 所在平面内的一点,满足⋅=⋅=⋅,则点O 是ABC ∆的 ( )(A )三个内角的角平分线的交点 (B )三条边的垂直平分线的交点(C )三条中线的交点(D )三条高的交点6、在同一个平面上有ABC ∆及一点O满足关系式: 2O A +2BC =2OB +2CA =2OC +2AB ,则O为ABC ∆的 ( )A 外心 B 内心 C 重心 D 垂心(三)平面向量与三角形重心 “重心定理”G 是△ABC 所在平面内一点,GC GB GA ++=0⇔点G 是△ABC 的重心. (证明 图中GE GC GB =+ 连结BE 和CE ,则CE=GB ,BE=GC ⇔BGCE 为平行四边形⇒D 是BC 的中点,AD 为BC 边上的中线.将GE GC GB =+代入GC GB GA ++=0,得+=0⇒2-=-=,故G 是△ABC 的重心.(反之亦然(证略))P 是△ABC 所在平面内任一点.G 是△ABC 的重心⇔)(31PC PB PA PG ++=.证明+=+=+=⇒)()(3+++++=∵G 是△ABC 的重心 ∴GC GB GA ++=0⇒CG BG AG ++=0,即PC PB PA PG ++=3由此可得)(31PC PB PA PG ++=.(反之亦然(证略))7、已知O 是平面上一 定点,A 、B 、C 是平面上不共线的三个点,动点P 满足:)(AC AB OA OP ++=λ,则P 的轨迹一定通过△ABC 的 ( )A 外心 B 内心 C 重心 D 垂心*8、已知A 、B 、C 是平面上不共线的三点,O 是三角形ABC 的重心,动点P 满足 =31 (21+21+2),则点P 一定为三角形ABC 的 ( )边中线的中点 边中线的三等分点(非重心) C.重心 边的中点(四)平面向量与三角形外心9、若O 为ABC ∆内一点,OA OB OC==,则O 是ABC ∆ 的( ) A .内心 B .外心 C .垂心 D .重心10、ABC ∆的外接圆的圆心为O ,两条边上的高的交点为H ,)(OC OB OA m OH ++=,则实数m =:(五)平面向量与三角形四心11、已知向量1OP ,2OP ,3OP 满足条件1OP +2OP +3OP =0,|1OP |=|2OP |=|3OP |=1, 求证 △P 1P 2P 3是正三角形.(《数学》第一册(下),复习参考题五B 组第6题)12、在△ABC 中,已知Q 、G 、H 分别是三角形的外心、重心、垂心。

平面向量中的四心问题总结

平面向量中的四心问题总结

平面向量中的四心问题总结平面向量中的四心问题是一个数学问题,涉及到平面上的四种特殊点,分别是三角形的重心、外心、内心和垂心。

这四个点在平面向量中有着特殊的性质和关系,对于研究平面向量和几何问题有着重要的意义。

首先,三角形的重心是由三角形的三个顶点所确定的三条中线的交点,它的坐标可以表示为三个顶点坐标的平均值。

重心在平面向量中有着重要的作用,它可以表示为三个顶点向量的和的1/3。

重心是三角形的一个重要特征点,具有平衡的作用,对于平面向量的运算和性质有着重要的影响。

其次,三角形的外心是三条外接圆的交点,它的坐标可以表示为三个顶点坐标的中点。

外心在平面向量中也有着特殊的性质,它可以表示为三个顶点向量的和的一半。

外心是三角形外接圆的圆心,对于三角形的外接圆方程和性质有着重要的作用。

再次,三角形的内心是三条内切圆的交点,它的坐标可以表示为三个顶点坐标的加权平均。

内心在平面向量中也有着特殊的性质,它可以表示为三个顶点向量的和,但需要根据三角形的边长进行加权。

内心是三角形内切圆的圆心,对于三角形的内切圆方程和性质有着重要的作用。

最后,三角形的垂心是三条高的交点,它的坐标可以表示为三个顶点坐标的加权平均。

垂心在平面向量中也有着特殊的性质,它可以表示为三个顶点向量的和,但需要根据三角形的边长进行加权。

垂心是三角形的一个重要特征点,对于三角形的高、垂心连线等性质有着重要的影响。

综上所述,平面向量中的四心问题涉及到三角形的重心、外心、内心和垂心,它们在平面向量中有着特殊的性质和关系,对于研究平面向量和几何问题有着重要的意义。

这些特殊的点和它们的性质不仅在数学理论中有着重要的应用,也在实际问题中有着重要的意义。

专题02 平面向量解析三角形的“四心”高一数学下学期同步讲义(人教A版2019必修第二册)

专题02 平面向量解析三角形的“四心”高一数学下学期同步讲义(人教A版2019必修第二册)

专题02 平面向量解析三角形的“四心”一.“四心”的概念介绍及平面向量表示1. 重心——中线的交点:重心将中线长度分成2:1.⇔=++O 是ABC ∆的重心.2. 垂心——高线的交点:高线与对应边垂直.⇔⋅=⋅=⋅O 为ABC ∆的垂心.3. 内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等. 设a ,b ,c 是三角形的三条边长,O 是ABC ∆的内心.O c b a ⇔=++为ABC ∆的内心.4. 外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等.==⇔O 为ABC ∆的外心.二.考点讲解 考点一:三角形的重心例1:在ABC ∆中,已知 AB a =,BC b =,G 为ABC ∆的重心,用向量,a b 表示向量AG =______. 【答案】2133a b 【分析】利用平面向量的基本定理,结合重心性质即可得解.【详解】由重心的性质可知()111333BG BA BC b a =+=-, 所以11213333AG AB BG a b a a b =+=+-=+.故答案为:2133a b 【点睛】本题考查了重心的几何性质和平面向量基本定理,属于基础题.例2:若P 是ABC ∆内部一点,且满足2PA PB CB +=,则ABP ∆与ABC ∆的面积比为_______. 【答案】13【分析】利用向量的加法运算得出PA PB CP +=,取AB 的中点为O ,进而得出点P 为ABC ∆的重心,根据重心的性质即可得出答案.【详解】2PA PB CB PA PB CB BP CP +=⇒+=+= 取AB 的中点为O ,则2PA PB PO += 即2PO CP =,则点P 为ABC ∆的重心根据重心的性质可得,点P 到AB 的距离是点C 到AB 的距离的13则13ABP ABC S S ∆∆= 故答案为:13【点睛】本题主要考查了根据向量关系判断三角形的重心,属于常考题.考点二:三角形的垂心例3:已知点P 是ABC ∆所在平面内一点,且满足()()cos cos AB AC AP R AB BAC Cλλ=+∈,则直线AP 必经过ABC ∆的( ) A .外心 B .内心C .重心D .垂心【答案】D【分析】两边同乘以向量BC ,利用向量的数量积运算可求得0AP BC ⋅=从而得到结论. 【详解】()cos cos AB AC AP R AB B AC C λλ⎛⎫⎪=+∈ ⎪⎝⎭两边同乘以向量BC ,得AP BC ∴⊥(1t ∈即点P 在BC 边的高线上,所以P 的轨迹过△ABC 的垂心, 故选D.【点睛】本题考查平面向量数量积的运算、向量的线性运算性质及其几何意义,属中档题. 考点三:三角形的内心例4:O 是平面上一定点,,,A B C 是平面上不共线的三个点,动点P 满足AB AC OP OA AB AC μ→→→→→→⎛⎫ ⎪ ⎪=++ ⎪ ⎪⎝⎭,[)0,μ∈+∞,则P 点的轨迹一定经过ABC ∆的( )A .外心B .内心C .重心D .垂心【答案】B 【分析】先根据||ABAB →→、||AC AC →→分别表示向量AB →、AC→方向上的单位向量,确定||||A A B A A C C B →→→→+的方向与BAC ∠的角平分线一致,再由AB AC OP OA AB AC μ→→→→→→⎛⎫ ⎪ ⎪=++ ⎪ ⎪⎝⎭可得到AB AC OP OA AP AB AC μ→→→→→→→⎛⎫ ⎪ ⎪-==+ ⎪ ⎪⎝⎭,可得答案.【详解】解:||AB AB →→、||AC AC →→分别表示向量AB →、AC →方向上的单位向量,∴||||A AB A AC C B →→→→+的方向与BAC ∠的角平分线一致,又AB AC OP OA AB AC μ→→→→→→⎛⎫ ⎪ ⎪=++ ⎪ ⎪⎝⎭,∴AB AC OP OA AP AB AC μ→→→→→→→⎛⎫ ⎪ ⎪-==+ ⎪ ⎪⎝⎭,∴向量AP →的方向与BAC ∠的角平分线一致∴P 点的轨迹一定经过ABC 的内心.故选:B .【点睛】本题考查平面向量的线性运算和向量的数乘,以及对三角形内心的理解,考查化简运算能力. 考点四:三角形的外心例5:在ABC ∆中,2AC =,6BC =,60ACB ∠=︒,点O 为ABC ∆所在平面上一点,满足OC mOA nOB =+(,m n ∈R 且1m n +≠). (1)证明:11m nCO CA CB m n m n =++-+-;(2)若点O 为ABC ∆的重心,求m 、n 的值; (3)若点O 为ABC ∆的外心,求m 、n 的值.【答案】(1)证明见解析;(2)1m =-,1n =-;(2)3757m n ⎧=⎪⎪⎨⎪=-⎪⎩.【分析】(1)根据条件OC mOA nOB =+,结合向量的加法运算,化简即可证明. (2)根据重心的向量表示为0OA OB OC ++=,即可求得m 、n 的值. (3)根据点O 为ABC ∆的外心,求得21||2CO CB CB ⋅=,21||2CO CA CA ⋅=,CA CB ⋅,再根据已知分别求得CO CB ⋅,CO CA ⋅,结合平面向量基本定理即可求得m 、n 的值. 【详解】(1)CO mAO nBO =+()()m AC CO n BC CO =+++mAC mCO nBC nCO =+++即CO mAC mCO nBC nCO =+++ 所以CO mCO nCO mAC nBC --=+ 则()1m n CO mAC nBC --=+ 所以11m nCO CA CB m n m n =++-+-;(2)若点O 为ABC ∆的重心则0OA OB OC ++= 因为OC mOA nOB =+ 所以0mOA nOB OC --+= 则1m =-,1n =-(3)由O 是ABC 的外心 得21||182CO CB CB ⋅==,21||22CO CA CA ⋅==,6CA CB ⋅=, 所以,1111m n CO CB CA CB CB CB m n m n m n CO CA CA CA CB CAm n m n ⎧⋅=⋅+⋅⎪⎪+-+-⎨⎪⋅=⋅+⋅⎪+-+-⎩即23321m n m n -=⎧⎨+=-⎩,解得3757m n ⎧=⎪⎪⎨⎪=-⎪⎩.【点睛】本题考查了平面向量加法和减法的运算,三角形重心和外心的向量表示,对向量线性运算的化简要熟练掌握,属于中档题.三.课后作业1.在ABC ∆中,CB a =,CA b =,且sin sin a b OP OC m a B b A ⎛⎫⎪=++ ⎪⎝⎭,m R ∈,则点P 的轨迹一定通过ABC ∆的( ) A .重心 B .内心C .外心D .垂心【答案】A【分析】设sin sin a B b A CH ==,则()mCP a b CH=+,再利用平行四边形法则可知,P 在中线CD 上,即可得答案;【详解】如图,sin sin a B b A CH ==,∴()m OP OC a b CH =++,()mCP a b CH=+, 由平行四边形法则可知,P 在中线CD 上,∴P 的轨迹一定通过ABC 的重心.故选:A.【点睛】本题考查三角形重心与向量形式的关系,考查数形结合思想,考查逻辑推理能力、运算求解能力,求解时注意向量加法几何意义的运用.2.已知点O 是ABC ∆所在平面上的一点,ABC 的三边为,,a b c ,若0a OA bOB c OC →→→→++=,则点O 是ABC ∆的( )A .外心B .内心C .重心D .垂心【答案】B【分析】在AB ,AC 上分别取单位向量,AD AE →→,作AF AD AE →→→=+,则AF 平分BAC ∠,用,,OA AB AC →→→表示出,OB OC →→代入条件式,用,AB AC →→表示出AO→,则可证明A ,F ,O 三点共线,即AO 平分BAC ∠.【详解】在AB ,AC 上分别取点D ,E ,使得AB AD c →→=,AC AE b →→=,则||||1AD AE →→==.以AD ,AE 为邻边作平行四边形ADFE ,如图,则四边形ADFE 是菱形,且AB AC AF AD AE c b→→→→→=+=+.AF ∴为BAC ∠的平分线.0aOA bOB cOC →→→→++=()()0a OA b OA AB c OA AC →→→→→→∴⋅+⋅++⋅+=,即()0a b c OA b AB c AC →→→→++++=,∴()b c bc AB AC bc AO AB AC AF a b c a b c a b c c b a b c→→→→→→=+=+=++++++++.A ∴,O ,F 三点共线,即O 在BAC ∠的平分线上.同理可得O 在其他两角的平分线上,O ∴是ABC 的内心.故选:B .【点睛】本题考查了三角形内心的向量表示,向量的线性运算,属于中档题.3.点M ,N ,P 在ABC ∆所在平面内,满足MA MB MC ++=0,|NA NB NC ==∣,且PA PB ⋅=PB PC PC PA ⋅=⋅,则M 、N 、P 依次是ABC ∆的()A .重心,外心,内心B .重心,外心,垂心C .外心,重心,内心D .外心,重心,垂心【答案】B【分析】由三角形五心的性质即可判断出答案. 【详解】解:0MA MB MC ++=,∴MA MB MC +=-,设AB 的中点D ,则2MA MB MD +=,C ∴,M ,D 三点共线,即M 为ABC ∆的中线CD 上的点,且2MC MD =.M ∴为ABC 的重心.||||||NA NB NC ==, ||||||NA NB NC ∴==,N ∴为ABC 的外心;PA PB PB PC =,∴()0PB PA PC -=,即0PB CA =,PB AC ∴⊥, 同理可得:PA BC ⊥,PC AB ⊥,P ∴为ABC 的垂心;故选:B .【点睛】本题考查了三角形五心的性质,平面向量的线性运算的几何意义,属于中档题. 4.(多选)已知M 为ABC ∆的重心,D 为BC 的中点,则下列等式成立的是( ) A .MA MB MC == B .0MA MB MC ++= C .1233CM CA CD =+ D .2133BM BA BD =+ 【答案】BC【分析】由题可知M 是三边中线的交点,且在中线三等分点处,由此依次计算判断即可得出结果. 【详解】M 为△ABC 的重心,∴M 是三边中线的交点,且在中线三等分点处,对于A ,由于△ABC 为任意三角形,故中线不一定相等,则,,MA MB MC 不一定相等,故A 错误; 对于B ,D 为BC 的中点,2MB M MD C +∴=,2MA MD =-,0MA MB MC ++=∴,故B 正确;对于C ,()22123333CM CA AM CA AD CA CD CA CA CD =+=+=+-=+,故C 正确; 对于D ,()22123333BM BA BA BA B AM AD BD BA A BD +=+=+-==+,故D 错误. 故选:BC.5.ABC ∆中,3AB =,6AC =,G 为ABC ∆的重心,O 为ABC ∆的外心,则AO AG ⋅=______. 【答案】152【分析】根据三角形的外心的性质,得出212AO AB AB ⋅=,212AO AC AC ⋅=,由三角形的重心的性质,得出1()3AO AG AO AB AC ⋅=⋅+,通过向量的数量积运算,即可求出AO AG ⋅的值. 【详解】解:因为G 为ABC 的重心,O 为ABC 的外心,所以212AO AB AB ⋅=,212AO AC AC ⋅=,所以111()333AO AG AO AB AC AO AB AO AC ⋅=⋅+=⋅+⋅221166AB AC =+93615662=+=, 即152AO AG ⋅=. 故答案为:152.【点睛】本题考查平面向量的数量积的应用,考查三角形的重心和外心的向量表示,考查计算能力. 6.已知A ,B ,C 是平面内不共线的三点,O 为ABC ∆所在平面内一点,D 是AB 的中点,动点P 满足()()()122123OP OD OC R λλλ⎡⎤=-++∈⎣⎦,则点P 的轨迹一定过ABC ∆的______(填“内心”“外心”“垂心”或“重心”). 【答案】重心【分析】根据已知条件判断,,P C D 三点共线,结合重心的定义,判断出P 的轨迹过三角形ABC 的重心. 【详解】∵点P 满足()()()122123OP OD OC λλλ⎡⎤=-++∈⎣⎦R ,且()()112212133λλ-++=, ∴P ,C ,D 三点共线.又D 是AB 的中点,∴CD 是边AB 上的中线,∴点P 的轨迹一定过ABC ∆的重心. 故答案为:重心【点睛】本小题主要考查三点共线的向量表示,考查三角形的重心的知识,属于基础题. 7.如图,G 是△OAB 的重心,P ,Q 分别是边OA 、OB 上的动点,且P ,G ,Q 三点共线.(1)设PG PQ λ=,将OG 用λ,OP ,OQ 表示; (2)设OP xOA =,OQ yOB =,证明:11x y+是定值. 【答案】(1)见解析;(2)见解析【分析】(1)寻找包含OG 的图形OPG ,利用向量的加法法则知OG OP PG += ,再根据PG PQ λ=和PQ OQ OP -= 即可(2)根据(1)结合OP xOA =,OQ yOB =知:()()11OGOP OQ xOA yOB λλλλ-+-+== ,再根据G 是OAB 的重心知:()2211133233OG OM OA OB OA OB ⨯++=== ,最后根据OA OB 、 不共线得到关于x y λ,, 的方程组即可求解 【详解】(1)解=+=+λ=+λ(-)=(1-λ)+λ.(2)证明 一方面,由(1),得=(1-λ)+λ=(1-λ)x +λy ;① 另一方面,△G 是△OAB 的重心,△==× (+)=+.②而,不共线,△由①②,得解得△+=3(定值).【点睛】本题考查了向量的加减法,三角形的重心的性质,平面向量的定值问题,属于基础题.。

高考核心素养提升之八 数学运算、数学建模——平面向量与三角形的“四心”

高考核心素养提升之八  数学运算、数学建模——平面向量与三角形的“四心”

高考核心素养提升之八数学运算、数学建模——平面向量与三角形的“四心”1.数学运算是指在明晰运算的基础上,依据运算法则解决数学问题的素养.通过学习平面向量与三角形的“四心”,学生能进一步发展数学运算能力,形成规范、细致运算的品质,养成一丝不苟、严谨求实的科学精神.2.数学建模要求在熟悉的情境中,发现问题并转化为数学问题,能够在关联的情境中,经历数学建模的过程,理解数学建模的意义.本专题通过学习平面向量与三角形的“四心”模型,能够培养学生用模型的思想解决相关问题. 三角形的“四心”:设O 为△ABC 所在平面上一点,内角A ,B ,C 所对的边分别为a ,b ,c ,则 (1)O 为△ABC 的外心⇔|OA →|=|OB →|=|OC →|=a 2sin A .(2)O 为△ABC 的重心⇔OA→+OB →+OC →=0. (3)O 为△ABC 的垂心⇔OA→·OB →=OB →·OC →=OC →·OA →.(4)O 为△ABC 的内心⇔aOA→+bOB →+cOC →=0.类型1 平面向量与三角形的“重心”【例1】 已知A ,B ,C 是平面上不共线的三点,O 为坐标原点,动点P 满足OP →=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)·OC →],λ∈R ,则点P 的轨迹一定经过( ) A.△ABC 的内心 B.△ABC 的垂心 C.△ABC 的重心D.AB 边的中点解析 取AB 的中点D ,则2OD→=OA →+OB →, ∵OP→=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)OC →],∴OP→=13[2(1-λ)OD →+(1+2λ)OC →] =2(1-λ)3OD →+1+2λ3OC →, 而2(1-λ)3+1+2λ3=1,∴P ,C ,D 三点共线,∴点P 的轨迹一定经过△ABC 的重心. 答案 C类型2 平面向量与三角形的“内心”问题【例2】 在△ABC 中,AB =5,AC =6,cos A =15,O 是△ABC 的内心,若OP →=xOB→+yOC →,其中x ,y ∈[0,1],则动点P 的轨迹所覆盖图形的面积为( ) A.1063 B.1463 C.4 3 D.62解析 根据向量加法的平行四边形法则可知,动点P 的轨迹是以OB ,OC 为邻边的平行四边形及其内部,其面积为△BOC 的面积的2倍.在△ABC 中,设内角A ,B ,C 所对的边分别为a ,b ,c ,由余弦定理a 2=b 2+c 2-2bc cos A ,得a =7.设△ABC 的内切圆的半径为r ,则 12bc sin A =12(a +b +c )r ,解得r =263,所以S △BOC =12×a ×r =12×7×263=763.故动点P 的轨迹所覆盖图形的面积为2S △BOC =1463. 答案 B类型3 平面向量与三角形的“垂心”问题【例3】 已知O 是平面上的一个定点,A ,B ,C 是平面上不共线的三个点,动点P 满足OP →=OA →+λ(AB →|AB →|cos B +AC→|AC →|cos C),λ∈(0,+∞),则动点P 的轨迹一定通过△ABC 的( ) A.重心B.垂心C.外心D.内心解析 因为OP→=OA →+λ(AB →|AB →|cos B +AC→|AC →|cos C ),所以AP →=OP →-OA →=λ(AB→|AB →|cos B +AC →|AC →|cos C ),所以BC→·AP →=BC →·λ(AB →|AB →|cos B +AC→|AC →|cos C)=λ(-|BC→|+|BC →|)=0,所以BC →⊥AP →,所以点P 在BC 的高线上,即动点P 的轨迹一定通过△ABC 的垂心. 答案 B类型4 平面向量与三角形的“外心”问题【例4】 已知在△ABC 中,AB =1,BC =6,AC =2,点O 为△ABC 的外心,若AO →=xAB →+yAC →,则有序实数对(x ,y )为( ) A.⎝ ⎛⎭⎪⎫45,35 B.⎝ ⎛⎭⎪⎫35,45 C.⎝ ⎛⎭⎪⎫-45,35D.⎝ ⎛⎭⎪⎫-35,45 解析 取AB 的中点M 和AC 的中点N ,连接OM ,ON ,则OM →⊥AB →,ON →⊥AC →,OM →=AM →-AO →=12AB →-(xAB →+yAC →)=⎝ ⎛⎭⎪⎫12-x AB →-yAC→,ON →=AN →-AO →=12AC →-(xAB →+yAC →)=⎝ ⎛⎭⎪⎫12-y AC →-xAB→.由OM →⊥AB →,得⎝ ⎛⎭⎪⎫12-x AB →2-yAC →·AB →=0,① 由ON →⊥AC →,得⎝ ⎛⎭⎪⎫12-y AC →2-xAC →·AB →=0,② 又因为BC→2=(AC →-AB →)2=AC →2-2AC →·AB →+AB →2,所以AC →·AB →=AC →2+AB →2-BC →22=-12,③把③代入①、②得⎩⎨⎧1-2x +y =0,4+x -8y =0,解得x =45,y =35.故实数对(x ,y )为⎝ ⎛⎭⎪⎫45,35.答案 A分层训练题A 级 基础巩固一、选择题1.(2020·河南非凡联盟联考)在等腰三角形ABC 中,点D 是底边AB 的中点,若AB→=(1,2),CD →=(2,t ),则|CD →|=( ) A. 5B.5C.2 5D.202.已知a ,b 为非零向量,则“a ·b >0”是“a 与b 的夹角为锐角”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件3.(2020·乌海模拟)已知向量a ,b 满足|a |=1,|b |=2,a -b =(3,2),则|2a -b |等于( ) A.2 2B.17C.15D.254.(2019·哈尔滨质检)已知平面向量a ,b 满足(a -2b )⊥(3a +b ),且|a |=12|b |,则向量a 与b 的夹角为( ) A.π3B.π2C.2π3D.3π45.如图,在等腰梯形ABCD 中,AB =4,BC =CD =2,若E ,F 分别是边BC ,AB 上的点,且满足BE BC =AF AB =λ,则当AE→·DF →=0时,λ的值所在的区间是( )A.⎝ ⎛⎭⎪⎫18,14B.⎝ ⎛⎭⎪⎫14,38C.⎝ ⎛⎭⎪⎫38,12D.⎝ ⎛⎭⎪⎫12,58 二、填空题6.(2019·全国Ⅲ卷)已知向量a =(2,2),b =(-8,6),则cos 〈a ,b 〉=________.7.如图,在△ABC 中,O 为BC 的中点,若AB =1,AC =3,AB →与AC →的夹角为60°,则|OA→|=________.8.(2019·佛山二模)在Rt △ABC 中,∠B =90°,BC =2,AB =1,D 为BC 的中点,E 在斜边AC 上,若AE→=2EC →,则DE →·AC →=________.三、解答题9.在平面直角坐标系xOy 中,点A (-1,-2),B (2,3),C (-2,-1). (1)求以线段AB ,AC 为邻边的平行四边形两条对角线的长; (2)设实数t 满足(AB→-tOC →)·OC →=0,求t 的值.10.已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π]. (1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值.B 级 能力提升11.(2019·北京卷)设点A ,B ,C 不共线,则“AB →与AC →的夹角为锐角”是“|AB →+AC →|>|BC→|”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件D.既不充分也不必要条件12.(一题多解)(2020·武汉调研)在△ABC 中,AB→·AC →=0,|AB →|=4,|BC →|=5,D 为线段BC 的中点,点E 为线段BC 垂直平分线l 上任一异于D 的点,则AE →·CB →=( )A.72B.74C.-74D.713.(2018·浙江卷)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2-4e ·b +3=0,则|a -b |的最小值是________.14.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2a -c )BA →·BC →=cCB →·CA →.(1)求角B 的大小;(2)若|BA→-BC →|=6,求△ABC 面积的最大值. C 级 创新猜想15.(新定义题)定义一种向量运算“⊗”:a ⊗b =⎩⎨⎧a ·b ,当a ,b 不共线时,|a -b |,当a ,b 共线时(a ,b 是任意的两个向量).对于同一平面内的向量a ,b ,c ,e ,给出下列结论:①a ⊗b =b ⊗a ;②λ(a ⊗b )=(λa )⊗b (λ∈R ); ③(a +b )⊗c =a ⊗c +b ⊗c ;④若e 是单位向量,则|a ⊗e |≤|a |+1. 以上结论一定正确的是________(填序号).答案解析1.解析 由题意知AB→⊥CD →,∴1×2+2t =0,∴t =-1,∴|CD →|=22+(-1)2= 5.答案 A2.解析 根据向量数量积的定义可知,若a ·b >0,则a 与b 的夹角为锐角或零角,若a 与b 的夹角为锐角,则一定有a ·b >0,所以“a ·b >0”是“a 与b 的夹角为锐角”的必要不充分条件,故选B. 答案 B3.解析 根据题意,|a -b |=3+2=5, 则(a -b )2=a 2+b 2-2a ·b =5-2a ·b =5, 可得a ·b =0,结合|a |=1,|b |=2, 可得(2a -b )2=4a 2+b 2-4a ·b =4+4=8, 则|2a -b |=22,故选A. 答案 A4.解析 设a 与b 的夹角为θ. 因为|a |=12|b |,所以|b |=2|a |. 因为(a -2b )⊥(3a +b ),所以(a -2b )·(3a +b )=3a 2-5a ·b -2b 2 =3|a |2-5|a ||b |cos θ-2|b |2 =3|a |2-5|a |×2|a |cos θ-2(2|a |)2=-5|a |2-10|a |2cos θ=0,解得cos θ=-12.又θ∈[0,π],所以θ=2π3.故选C. 答案 C5.解析 在等腰梯形ABCD 中,AB =4,BC =CD =2, 可得〈AD→,BC →〉=60°,所以〈AB →,AD →〉=60°,〈AB →,BC →〉=120°,所以AB→·AD →=4×2×12=4, AB →·BC →=4×2×⎝ ⎛⎭⎪⎫-12=-4,AD→·BC →=2×2×12=2, 又BE BC =AF AB =λ,所以BE→=λBC →,AF →=λAB →, 则AE→=AB →+BE →=AB →+λBC →,DF →=AF →-AD →=λAB →-AD →, 所以AE→·DF →=(AB →+λBC →)·(λAB →-AD →) =λAB→2-AB →·AD →+λ2AB →·BC →-λAD →·BC →=0, 即2λ2-7λ+2=0, 解得λ=7+334(舍去)或λ=7-334∈⎝ ⎛⎭⎪⎫14,38.答案 B6.解析 由题意得a ·b =2×(-8)+2×6=-4, |a |=22+22=22,|b |=(-8)2+62=10. ∴cos 〈a ,b 〉=a ·b|a ||b |=-422×10=-210.答案 -2107.解析 AB→·AC →=|AB →|·|AC →|cos 60°=1×3×12=32,又AO→=12(AB →+AC →), 所以AO →2=14(AB →+AC →)2=14(AB →2+2AB →·AC →+AC →2),即AO →2=14(1+3+9)=134,所以|OA →|=132.答案 1328.解析 如图,以B 为坐标原点,AB 所在直线为x 轴,BC 所在直线为y 轴,建立平面直角坐标系,则B (0,0),A (1,0),C (0,2),所以AC→=(-1,2).因为D 为BC 的中点,所以D (0,1), 因为AE→=2EC →,所以E ⎝ ⎛⎭⎪⎫13,43, 所以DE →=⎝ ⎛⎭⎪⎫13,13, 所以DE→·AC →=⎝ ⎛⎭⎪⎫13,13·(-1,2)=-13+23=13. 答案 139.解 (1)由题设知AB →=(3,5),AC →=(-1,1),则AB →+AC →=(2,6),AB →-AC →=(4,4).所以|AB→+AC →|=210,|AB →-AC →|=4 2. 故所求的两条对角线的长分别为42,210.(2)由题设知:OC →=(-2,-1),AB →-tOC →=(3+2t ,5+t ).由(AB→-tOC →)·OC →=0,得 (3+2t ,5+t )·(-2,-1)=0, 从而5t =-11,所以t =-115.10.解 (1)因为a =(cos x ,sin x ),b =(3,-3),a ∥b , 所以-3cos x =3sin x .则tan x =-33.又x ∈[0,π],所以x =5π6.(2)f (x )=a ·b =(cos x ,sin x )·(3,-3)=3cos x -3sin x =23cos ⎝ ⎛⎭⎪⎫x +π6.因为x ∈[0,π],所以x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,从而-1≤cos ⎝ ⎛⎭⎪⎫x +π6≤32.于是,当x +π6=π6,即x =0时,f (x )取到最大值3;当x +π6=π,即x =5π6时,f (x )取到最小值-2 3.11.解析 因为点A ,B ,C 不共线,所以线段AB ,BC ,AC 构成一个三角形ABC ,由向量加法的三角形法则,可知BC →=AC →-AB →,所以|AB →+AC →|>|BC →|等价于|AB →+AC →|>|AC→-AB →|,因模为非负数,故不等号两边平方得AB →2+AC →2+2|AB →|·|AC →|cos θ>AC →2+AB →2-2|AC →|·|AB →|cos θ (θ为AB →与AC →的夹角),整理得4|AB →|·|AC →|·cos θ>0,故cos θ>0,即θ为锐角.当AB→与AC →的夹角为锐角,可得AB →·AC →>0,则有|AB →|2+|AC →|2+2AB→·AC →>|AB →|2+|AC →|2-2AB →·AC →,即有|AB →+AC →|2>|AC →-AB →|2,则|AB →+AC →|2>|BC →|2,故|AB→+AC →|>|BC →|,所以“AB →与AC →的夹角为锐角”是“|AB →+AC →|>|BC →|”的充分必要条件.故选C. 答案 C12.解析 法一 |AC→|=|BC→|2-|AB →|2=3, AE→·CB →=(AD →+DE →)·CB →=AD →·CB →+DE →·CB → =AD→·CB →=12(AB →+AC →)·(AB →-AC →) =12(|AB →|2-|AC →|2)=72.法二 依题意,建立如图所示的平面直角坐标系,则A (0,0),B (4,0),因为|BC →|=5,所以C (0,3),D ⎝⎛⎭⎪⎫2,32,易知直线BC 的斜率为-34,因为直线DE 是线段BC 的垂直平分线,所以直线DE 的方程为y -32=43(x -2),令x =0,得y =-76,所以直线DE 与y 轴的交点坐标为⎝ ⎛⎭⎪⎫0,-76,不妨令E ⎝ ⎛⎭⎪⎫0,-76,因为CB→=(4,-3),所以AE →·CB →=⎝ ⎛⎭⎪⎫0,-76·(4,-3)=72,故选A.答案 A13.解析 设O 为坐标原点,a =OA→,b =OB →=(x ,y ),e =(1,0),由b 2-4e ·b +3=0得x 2+y 2-4x +3=0,即(x -2)2+y 2=1,所以点B 的轨迹是以C (2,0)为圆心,1为半径的圆.因为a 与e 的夹角为π3,所以不妨令点A 在射线y =3x (x >0)上,如图,数形结合可知|a -b |min =(|CA →|-|CB →|)min=3-1.答案3-114.解 (1)由题意得(2a -c )cos B =b cos C .根据正弦定理得(2sin A -sin C )cos B =sin B cos C , 所以2sin A cos B =sin(C +B ),即2sin A cos B =sin A ,因为A ∈(0,π),所以sin A >0, 所以cos B =22,又B ∈(0,π),所以B =π4. (2)因为|BA→-BC →|=6,所以|CA →|=6,即b =6,根据余弦定理及基本不等式得6=a 2+c 2-2ac ≥2ac -2ac =(2-2)ac (当且仅当a =c 时取等号),即ac ≤3(2+2). 故△ABC 的面积S =12ac sin B ≤3(2+1)2,因此△ABC的面积的最大值为32+32.15.解析当a,b共线时,a⊗b=|a-b|=|b-a|=b⊗a,当a,b不共线时,a⊗b=a·b =b·a=b⊗a,故①正确;当λ=0,b≠0时,λ(a⊗b)=0,(λa)⊗b=|0-b|≠0,故②错误;当a+b与c共线时,则存在a,b与c不共线,(a+b)⊗c=|a+b-c|,a⊗c+b⊗c =a·c+b·c,显然|a+b-c|≠a·c+b·c,故③错误;当e与a不共线时,|a⊗e|=|a·e|<|a|·|e|<|a|+1,当e与a共线时,设a=u e,u∈R,|a⊗e|=|a-e|=|u e-e|=|u-1|≤|u|+1,故④正确.综上,结论一定正确的是①④.答案①④。

平面向量与三角形的“四心”问题

平面向量与三角形的“四心”问题

平面向量与三角形的“四心,,综合问题【例题精讲】例题1已知O ,N ,P 在二MC 所在平面内,且iQri=rsri=iE |, 丽+血+眈=0,且卫矿•血=帀•疋=疋・方,则点 O, N, P 依次是二ABC 的( )A.重心外心垂心B.重心外心内心C.夕卜心重心垂心D.夕卜心重心内心【解析】由了| = |亦| = |龙|知,O 为JABC 的外心;由丽+血+丙厂=0知,N 为匚/EC 的重心; 因为眉•南=血•比,所以(眉一龙)<^=0, 所以_CZ >-W = 0,所以左了口帀\即CA1PB, 同理APZBC, CPLAB,所以P 为二ABC 的垂心,故选C.例题 2 在 JABC 中,28=5, AC=6, cos A=j, O 是 JABC 的 内心,若OP 、= x OB' +y 0(2,其中x, yD[O,l],则动点卩的轨迹所 覆盖图形的面积为()【解析】根据向量加法的平行四边形法则可知,动点P 的轨迹是以05 OC 为邻边的平行四边形及其内部,其面积为~BOC 的面积的2倍.在匚曲C 中,设内角儿B, C 所对的边分别为厲b, c, A. ]0& 3由余弦定理 a 2=b 2+c 2—2bccosA,得 a = 7. 设~ABC 的内切圆的半径为r, 则y/jcsiiiA=^(a+b+c)r ,解得 r=^~,所以S :BOC= 故动点P 的轨迹所覆盖图形的面积为2Sd°c=呼,故选B.【知识小结】三角形“四心"的向量表示(1) 在二拐C 中,若 1^1 = 1^1 = |^|或0了2 =亦2 =龙2, 则点O 是二4BC 的外心.(2) 在匚曲C 中,若~at+~GB"+~G^=O,则点G 是LABC 的重 心.(3) 对于匚MC, O, P 为平面内的任意两点,若亦一乙了 = /」初+*反入口(0, +oo),则直线APyiLABC 的重心.(^Tat ~OB "=~o^ =员・玄T 或者同F+|优平=|勿卩+|岔卩,则点o 为三角形的垂心.(5)|反>勿+|女|•亦+|対|•龙=0,则点O 为三角形的 内心.(6)对于匚45C, O, P 为平面内的任意两点,若~Of = ~oX +【变式练习】G>0),则直线APxldABC 的内心. |xt7Xr = |x7x^^=AB"~AB "1.已知O是平面上的一定点,厦,B, C是平面上不共线的三个动点,若动点卩满足亦=勿+久(莎+女),2j(0, +◎,则点P的轨迹一定通过匚卫3C的()A.内心B.夕卜心C.重心D.垂心【解析】选C由原等式,得亦一岔=2(初+岔),即方=&(初+岔),根据平行四边形法则,知初+立=2訪(D为BC的中点),所以点P的轨迹必过~ABC的重心.故选C.] 3 2・在匚ABC中,|初| = 3, |五'| = 2, 方=于初+才羽,则直线2D 通过-ABC的()A.重心B.外心C.垂心D.内心解析:选D 口|対| = 3, |女|=2,1 Q Q匚护閃=汩©=41 3设龙=齐硏,~AF"=^A^,贝IJI龙| = |匚护|.1 2匚如=丁硏+才女=农 +击,O4Z)平分LEAF, 二Q平分二BAC、匚直线乂0通过3ABC的内心。

高中数学平面向量与三角形的“四心”

高中数学平面向量与三角形的“四心”

培优专题1 平面向量与三角形的“四心”三角形的内心、外心、垂心与重心问题,尤其是与平面向量相结合后,学生考查时感觉比较棘手,错误率较高,甚至无从下手。

因此,本讲将对与“四心”有关的知识进行总结归纳,借助典型例题说明解题要领。

知识点1 三角形的内心1、内心的定义:三个内角的角平分线的交点(或内切圆的圆心).如图,点P注:角平分线上的任意点到角两边的距离相等 2、常见内心的向量表示:(1)||||||0AB PC BC PA CA PB ++=(或0aPA bPB cPC ++=)其中,,a b c 分别是ABC ∆的三边AC AB BC 、、的长 (2)(),(0,)||||AB ACAP AB AC λλ=+∈+∞,则P 点的轨迹一定经过三角形的内心 (注:向量()AB AC ABACλ+(0λ≠)所在直线过ABC ∆内心(是BAC ∠角平分线所在直线))3、破解内心问题,主要是利用了平面向量的共线法,通过构造与角平分线共线的向量,即两个单位向量的和向量。

拓展:是平面上一定点,,,是平面上不共线的三个点,动点满足,证明的轨迹一定通过的内心. 【解析】证明:、分别表示与、方向相同的单位向量, 的方向与的角平分线方向一致; 又,; 的方向与的角平分线方向一致, 点的轨迹一定通过的内心.知识点2 三角形的外心1、外心的定义:三角形三边的垂直平分线的交点(或外接圆的圆心)注:外心到三角形各顶点的距离相等. 2、常用外心的向量表示:(1)222||||||OA OB OC OA OB OC ==⇔==(2)()()()0OA OB AB OB OC BC OA OC AC +⋅=+⋅=+⋅= 变形:P 为平面ABC 内一动点,若()()()()()()0OA OB PB PA OB OC PC PB OA OC PC PA +⋅−=+⋅−=+⋅−=,则O 为三角形的外心3、破解外心问题,关键是运用平面向量的加减法和数量积的运算,结合数量积的运算律从而得到三角形的外心。

高考数学专题平面向量与三角形的四心(含解析)

高考数学专题平面向量与三角形的四心(含解析)

2023届高考专题——平面向量与三角形的“四心”一、三角形的“四心”(1)重心:三角形的三条中线的交点;O 是△ABC 的重心⇔OA →+OB →+OC →=0;(2)垂心:三角形的三条高线的交点;O 是△ABC 的垂心⇔OA →·OB →=OB →·OC →=OC →·OA →;(3)外心:三角形的三条边的垂直平分线的交点(三角形外接圆的圆心).O 是△ABC 的外心⇔|OA →|=|OB →|=|OC →|(或OA →2=OB →2=OC →2);(4)内心:三角形的三个内角角平分线的交点(三角形内切圆的圆心);O 是△ABC 的内心⇔OA →·⎝ ⎛⎭⎪⎪⎫AB →|AB →|-AC →|AC →|=OB →·⎝ ⎛⎭⎪⎪⎫BA →|BA →|-BC →|BC →|=OC →·⎝ ⎛⎭⎪⎪⎫CA →|CA →|-CB →|CB →|=0. 注意:向量λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|(λ≠0)所在直线过△ABC 的内心(是∠BAC 的角平分线所在直线).类型一 平面向量与三角形的“重心”问题例1 已知A ,B ,C 是平面上不共线的三点,O 为坐标原点,动点P 满足OP →=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)·OC →],λ∈R ,则点P 的轨迹一定经过( C )A .△ABC 的内心B .△ABC 的垂心 C .△ABC 的重心D .AB 边的中点 [解析] 取AB 的中点D ,则2OD →=OA →+OB →,∵OP →=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)OC →], ∴OP →=13[2(1-λ)OD →+(1+2λ)OC →] =21-λ3OD →+1+2λ3OC →, 而21-λ3+1+2λ3=1,∴P ,C ,D 三点共线, ∴点P 的轨迹一定经过△ABC 的重心.类型二 平面向量与三角形的“外心”问题例2 设P 是△ABC 所在平面内一点,若AB →·(CB →+CA →)=2AB →·CP →,且AB →2=AC →2-2BC →·AP →,则点P 是△ABC 的( A )A .外心B .内心C .重心D .垂心[解析] 由AB →·(CB →+CA →)=2AB →·CP →,得AB →·(CB →+CA →-2CP →)=0,即AB →·[(CB →-CP →)+(CA →-CP →)]=0,所以AB →·(PB →+PA →)=0.设D 为AB 的中点,则AB →·2PD →=0,故AB →·PD →=0.由AB →2=AC →2-2BC →·AP →,得(AB →+AC →)·(AB →-AC →)=-2BC →·AP →,即(AB →+AC →-2AP →)·BC →=0.设E 为BC 的中点,则(2AE →-2AP →)·BC →=0,则2PE →·BC →=0,故BC →·PE →=0.所以P 为AB 与BC 的垂直平分线的交点,所以P 是△ABC 的外心.故选A .跟踪练习在△ABC 中,O 为其外心,OA ―→·OC ―→=3,且 3 OA ―→+7OB ―→+OC ―→=0,则边AC 的长是________.[解析] 设△ABC 外接圆的半径为R ,∵O 为△ABC 的外心,∴|OA ―→|=|OB ―→|=|OC ―→|=R ,又 3 OA ―→ +7 OB ―→+OC ―→=0,则 3 OA ―→+OC ―→=-7OB ―→,∴3OA ―→2+OC ―→2+2 3OA ―→·OC ―→=7OB ―→2,从而OA ―→·OC ―→=32R 2,又OA ―→·OC ―→=3,所以R 2=2,又OA ―→·OC ―→=|OA ―→||OC ―→|cos ∠AOC =R 2cos ∠AOC =3,∴cos ∠AOC =32,∴∠AOC =π6,在△AOC 中,由余弦定理得AC 2=OA 2+OC 2-2OA ·OC ·cos∠AOC =R 2+R 2-2R 2×32=(2-3)R 2=4-23.所以AC =3-1. 类型三 平面向量与三角形的“垂心”问题例3 (2022·济南质检)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,点P 满足OP ―→=OA ―→+λ⎝⎛⎭⎪⎪⎫AB―→|AB ―→|cos B +|AC ―→||AC ―→|cos C ,则动点P 的轨迹一定通过△ABC 的( )A .重心B .外心C .垂心D .内心 [解析] OP ―→-OA ―→=λ⎝ ⎛⎭⎪⎪⎫AB ―→|AB ―→|cos B +AC ―→|AC ―→|cos C ,AP ―→=λ⎝ ⎛⎭⎪⎪⎫AB ―→|AB ―→|cos B +AC ―→|AC ―→|cos C ,BC ―→·AP ―→=λ⎝ ⎛⎭⎪⎪⎫BC ―→·AB ―→|AB ―→|cos B +BC ―→·AC ―→|AC ―→|cos C =λ⎝⎛⎭⎪⎪⎫|BC ―→||AB ―→|cos π-B |AB ―→|cos B +|BC ―→||AC ―→|cos C |AC ―→|cos C =λ(-|BC ―→|+|BC ―→|)=0,所以BC ―→⊥AP ―→,动点P 在BC 的高线上,动点P 的轨迹一定通过△ABC 的垂心,故选C .类型四 平面向量与三角形的“内心”问题例4 在△ABC 中,|AB →|=3,|AC →|=2,AD →=12AB →+34AC →,则直线AD 通过△ABC 的( D ) A .重心B .外心C .垂心D .内心[解析] ∵|AB →|=3,|AC →|=2,∴12|AB →|=34|AC →|=32.设AE →=12AB →,AF →=34AC →,则|AE →|=|AF →|.∵AD →=12AB →+34AC →=AE →+AF →,∴AD 平分∠EAF , ∴AD 平分∠BAC ,∴直线AD 通过△ABC 的内心.跟踪练习(2022·海南模拟)在△ABC 中,AB =5,AC =6,cos A =15,O 是△ABC 的内心,若OP ―→=x OB ―→+y OC ―→,其中x ,y ∈[0,1],则动点P 的轨迹所覆盖图形的面积为( )A .1063B .1463C .4 3D .6 2 [解析] 根据向量加法的平行四边形法则可知,动点P 的轨迹是以OB ,OC 为邻边的平行四边形及其内部,其面积为△BOC 的面积的2倍.在△ABC 中,设内角A ,B ,C 所对的边分别为a ,b ,c ,由余弦定理a 2=b 2+c 2-2bc cos A ,得a =7.设△ABC 的内切圆的半径为r ,则12bc sin A =12(a +b +c )r ,解得r =263,所以S △BOC =12×a ×r =12×7×263=763.故动点P 的轨迹所覆盖图形的面积为2S △BOC =1463. 二、三角形形状的判断在△ABC 中,①若|AB →|=|AC →|,则△ABC 为等腰三角形;②若AB →·AC →=0,则△ABC 为直角三角形;③若AB →·AC →<0,则△ABC 为钝角三角形;④若AB →·AC →>0,BA →·BC →>0,且CA →·CB →>0,则△ABC 为锐角三角形;⑤若|AB →+AC →|=|AB →-AC →|,则△ABC 为直角三角形;⑥若(AB →+AC →)·BC →=0,则△ABC 为等腰三角形.例5 (2022·驻马店质检)若O 为△ABC 所在平面内任一点,且满足(OB →-OC →)·(OB →+OC →-2OA →)=0,则△ABC 的形状为( C )A .正三角形B .直角三角形C .等腰三角形D .等腰直角三角形 [解析] 由题意知CB →·(AB →+AC →)=0.所以(AB →-AC →)·(AB →+AC →)=0,即|AB →|=|AC →|,所以△ABC 是等腰三角形,故选C .〔变式训练4〕(1)若P 为△ABC 所在平面内一点.①若(OP →-OA →)·(AB →-AC →)=0,则动点P 的轨迹必过△ABC 的垂心.②若OP →=OA →+λ(AB →+AC →)(λ≥0),则动点P 的轨迹必过△ABC 的重心.③若CA →2=CB →2-2AB →·CP →,则动点P 的轨迹必过△ABC 的外心.(2)已知非零向量AB →与AC →满足⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0且AB →|AB →|·AC →|AC →|=12,则△ABC 为( D )A .三边均不相等的三角形B .直角三角形C .等腰非等边三角形D .等边三角形[解析] (1)①由题意知AP →·CB →=0,∴AP ⊥BC ,∴动点P 必过△ABC 的垂心;②由题意知AP →=λ(AB →+AC →)=2λAM →(M 为BC 中点)∴P 、A 、M 共线,∴P 必过△ABC 的重心;③2AB →·CP →=CB →2-CA →2=(CB →-CA →)·(CB →+CA →)=AB →·(CB →+CA →),即2AB →·CP →=AB →·(CB →+CA →),∴AB →·(2CP →-CB →-CA →)=AB →·(BP →+AP →)=0.∴以BP →,AP →为邻边的平行四边形的对角线互相垂直.∴点P 在线段AB 的中垂线上,∴P 必过△ABC 的外心.(2)因为非零向量AB →与AC →满足⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,所以∠BAC 的平分线垂直于BC ,所以AB =AC .又cos ∠BAC =AB →|AB →|·AC →|AC →|=12,所以∠BAC =π3.所以△ABC 为等边三角形.故选D .。

微专题8 平面向量与三角形的“四心”

微专题8 平面向量与三角形的“四心”

+

| |
或=+

若△ABC及内一点O满足关系式:S△OBC·+S△OAC·+S△OAB·=0,即为经
典的“奔驰定理”.若△ABC的三边为a,b,c,有a·+b·+c·=0,则O
为△ABC的 (

A.外心
B.内心
C.重心
D.垂心
解析:B
∵=+,=+,∴a·+b·+c·=a·
=·,则点G可能通过△ABC的
(填:重心、内心、垂心或外

心).
解析:由·=·⇔·-·=0⇔·(-)=0,
【例4】 在△ABC中,设 2 - 2 =2·,那么动点M形成的图形必经过
△ABC的
A.垂心


B.内心
C.外心
D.重心
解析 如图所示,设线段BC的中点为D,则+=2,
∵ 2 - 2 =2·
,∴(+)·
(-)=

,∴·
(+-2)=0,∴·
【例1】 已知点O为△ABC所在平面内一点,若动点P满足=+λ(+
)(λ≥0),则动点P的轨迹一定经过△ABC的 (
A.外心
B.内心
C.垂心
D.重心

解析 因为动点P满足=+λ(+)(λ≥0),所以=λ(+
),取BC中点D(图略),则=2λ,则动点P的轨迹一定过△ABC的重
+b(+)+c(+)=(a+b+c)·+b·+c·=0,


∴=
++
+




,∵ , 分别是,方向上的单位向量,∴向




量 + 平分∠BAC,即AO平分∠BAC,同理BO平分∠ABC,∴O为

专题42平面向量与三角形的四心问题-2021版跳出题海之高中数学必做黄金100题(解析版)

专题42平面向量与三角形的四心问题-2021版跳出题海之高中数学必做黄金100题(解析版)

第42题 平面向量与三角形的四心问题如右图所示,已知点()y f x =是)3,2m ⎡∈⎣的重心,过点6C π=作直线与31S ∆=+两边分别交于两点,且22223sin sin sin sin sin sin A B C A B C =+-,则2ab 的最小值为( )A .2B .2223sin 2a b cC ab+-=C .3sin cos C C =D .3tan 3C =【答案】C【解析】因为三点共线,所以,因为是重心,所以,,所以,化简得,解得题目所给图像可知.由基本不等式得,即.当且仅当,即时,等号成立,故最小值为.212b=+212b=+54cosb a b+=+21022516cosy=+-)()2025,16b a b a b a b+==+=b a b+的最小值是54cos b a bθ+=+(=3 )AB(=3可得在Rt AOE ∆中,cos 2AE AB OAE AO AO∠==,所以182ABAB AO AB AO AO⋅=⋅⋅=,同理可得22AD AC AO AC AO AO⋅=⋅⋅=,所以()18220AO AB AC AO AB AO AC +=⋅+⋅=+=.考查了平面向量的数()393922425220248181AB AC ⎛⎫⎛⎫-+225247204314AB AC AC⎛⎫⎛⎫--224742162014160AB AC ⎛⎫⎛⎫=-根据余弦定理可得:cos 216BAC BA AC ∠==⋅ cos AB AC =8181281160201110.重心 D .垂心得0AH CB ⋅=,0BH AC ⋅=,故H 是三角形的垂心,应选答案D .0BH AC ⋅=,由此可H 推断是三角形的垂心,从而使得问题简捷、如图,D 、F 分别是AB 、PC 的中点,连PD ,DM ,FM ,则有2PA PB PD +=,而2PA PB PC PM ++=,∴()22PC PM PD DM =-=,即有2PCDM PF ==,有DM 与PF 共线, ∵ABC 的外接圆的的圆心是M ,有MD AB ⊥,则PC AB ⊥,同理有PB AC ⊥,PA BC ⊥, ∴P 是ABC 的垂心. 故选:D.2020·江西)已知443.内心D.垂心则四边形ADFE 是菱形,且AB AC AF AD AE c b→→→→→=+=+.AF ∴为BAC ∠的平分线.0aOA bOB cOC →→→→++=()()0a OA b OA AB c OA AC →→→→→→∴⋅+⋅++⋅+=,即()0a b c OA b AB c AC →→→→++++=,∴()b c bc AB AC bcAO AB AC AF a b c a b c a b c c b a b c→→→→→→=+=+=++++++++.A ∴,O ,F 三点共线,即O 在BAC ∠的平分线上.同理可得O 在其他两角的平分线上,O ∴是ABC 的内心.故选:B .B .1 D= NA NB.外心,重心,垂心NA NB NC∴==,||||||PA PC-=,()0CA=,PA6.(2020·江苏海陵)已知点G 为ABC 的重心,120A ∠=︒,2AB AC ⋅=-,则AG 的最小值是( )A .33B .22C .23D .34【答案】C【解析】如图所示,设BC 的中点为M ,由三角形重心性质可得23AG AM =, 又M 为BC 中点, ()12AM AB AC ∴=+,21()33AG AM AB AC ∴==+, 则221||23AG AB AC AB AC =++⋅. 又2AB AC ⋅=-,120A ∠=︒,由向量的数量积定义可得,cos1202AB AC AB AC ︒⋅=⋅⋅=-,4AB AC ∴=.22112424333AG AB AC AB AC ∴=+-≥-=,当且仅当2AB AC ==时等号成立,即AG 的最小值23. 故选:C .7.(2020·云南)已知点O 为三角形ABC 的外心(各边中垂线的交点),4AB =,则AB AO ⋅=( ) A .8B .6C .4D .2【答案】A 【解析】如图,设AB 的中点为D ,则12AD AB =, 所以cos AB AO AB AO OAD ⋅=⋅∠21116=822AB AD AB =⋅==⨯. 故选:A.同理392AO AC m n →→⋅=+, 又2111()()2222AO AB AD AB AB BD AB AB →→→→→→→→⋅=⋅=+⋅==, 同理92AO AC →→⋅=, 所以342239922m n m n ⎧+=⎪⎪⎨⎪+=⎪⎩,解得1349m n ⎧=⎪⎪⎨⎪=⎪⎩, 所以有序实数对14(,),39m n ⎛⎫= ⎪⎝⎭. 故答案为:14,39⎛⎫ ⎪⎝⎭的重心,且【解析】因为cos2所以1cos 2A =或cos 2A =(舍去). 设BC 边上的中线为AD ,如图所示:因为273AP =,所以7AD =, 又因为()12AD AB AC =+, 所以()222124AD AB AC AB AC =++⋅, 所以()22172cos 4c b bc A =++,2211722242⎛⎫=++⨯⨯ ⎪⎝⎭c c , 化简得22240c c +-=,解得4c =或6c =-(舍去).故答案为:4。

平面向量痛点问题之三角形“四心”问题(解析版)--高一数学微专题

平面向量痛点问题之三角形“四心”问题(解析版)--高一数学微专题

平面向量痛点问题之三角形“四心”问题【题型归纳目录】题型一:重心定理题型二:内心定理题型三:外心定理题型四:垂心定理【知识点梳理】一、四心的概念介绍:(1)重心:中线的交点,重心将中线长度分成2:1.(2)内心:角平分线的交点(内切圆的圆心),角平分线上的任意点到角两边的距离相等.(3)外心:中垂线的交点(外接圆的圆心),外心到三角形各顶点的距离相等.(4)垂心:高线的交点,高线与对应边垂直.二、三角形四心与推论:(1)O 是△ABC 的重心:S △BOC :S △COA :S △A 0B =1:1:1⇔OA +OB +OC =0.(2)O 是△ABC 的内心:S △B 0C :S △COA :S △AOB =a :b :c ⇔aOA +bOB +cOC =0.(3)O 是△ABC 的外心:S △B 0C :S △COA :S △AOB =sin2A :sin2B :sin2C ⇔sin2AOA +sin2BOB +sin2COC =0 .(4)O 是△ABC 的垂心:S △B 0C :S △COA :S △AOB =tan A :tan B :tan C ⇔tan AOA +tan BOB +tan COC =0.【方法技巧与总结】(1)内心:三角形的内心在向量AB AB +ACAC所在的直线上.AB ⋅PC +BC ⋅PC +CA⋅PB =0 ⇔P 为△ABC 的内心.(2)外心:PA =PB =PC⇔P 为△ABC 的外心.(3)垂心:PA ⋅PB =PB ⋅PC =PC ⋅PA⇔P 为△ABC 的垂心.(4)重心:PA +PB +PC =0⇔P 为△ABC 的重心.【典型例题】题型一:重心定理1(2024·重庆北碚·高一西南大学附中校考阶段练习)如图所示,已知点G 是△ABC 的重心,过点G 作直线分别与AB ,AC 两边交于M ,N 两点(点N 与点C 不重合),设AM =xAB ,AN =yAC ,则1x +1y的值为()A.3B.4C.5D.6【答案】A【解析】设MG =λMN ,则AG =AM +MG =AM +λMN =AM +λAN -AM=1-λ AM +λAN =x 1-λ AB +yλAC,又因为G 是△ABC 的重心,故AG =13AB +13AC,所以有x 1-λ =13yλ=13⇒1x +1y =31-λ +3λ=3.故选:A2(2024·全国·高一随堂练习)已知△ABC 中,点G 为△ABC 所在平面内一点,则“AB +AC -3AG=0”是“点G 为△ABC 重心”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C【解析】依题意AB +AC -3AG =AG +GB +AG +GC -3AG =GA +GB +GC =0,则G 是△ABC 重心,即充分性成立;若G 是△ABC 重心时,GA +GB +GC =0,可得GA +GB +GC =AG +GB +AG +GC -3AG =AB +AC -3AG =0所以AB +AC -3AG =0 ,必要性成立,故选:C .3(2024·全国·高一专题练习)已知O 是三角形ABC 所在平面内一定点,动点P 满足OP =OA+λAB AB sin B +AC AC sin C λ≥0 ,则P 点轨迹一定通过三角形ABC 的()A.内心 B.外心C.垂心D.重心【答案】D【解析】记E 为BC 的中点,连接AE ,作AD ⊥BC ,如图,则AB sin B =AC sin C =AD ,AB +AC =12AE ,因为OP =OA +λAB AB sin B +ACAC sin C,所以AP =OP -OA =λAB AB sin B +ACACsin C=λ|AD |(AB +AC )=λ2|AD |AE,所以点P 在三角形的中线AE 上,则动点P 的轨迹一定经过△ABC 的重心.故选:D .题型二:内心定理1(2024·全国·高一专题练习)在△ABC 中,cos ∠BAC =13,若O 为内心,且满足AO =xAB +yAC ,则x +y 的最大值为.【答案】3-32【解析】延长AO 交BC 于D ,设BC 与圆O 相切于点E ,AC 与圆O 相切于点F ,则OE =OF ,则OE ≤OD ,设AD =λAO =λxAB +λyAC ,因为B 、C 、D 三点共线,所以λx +λy =1,即x +y =1λ=AO AD =AO AO +OD ≤AO AO +OE =11+OE OA=11+OF OA =11+sin A 2,因为cos A =1-2sin 2A 2=13,0<A <π,0<A 2<π2,所以sin A 2=33,所以x +y ≤11+33=3-32.故答案是:3-322(2024·江苏南通·高一如皋市第一中学期末)已知点P 为△ABC 的内心,∠BAC =23π,AB =1,AC =2,若AP =λAB +μAC,则λ+μ=.【答案】9-372【解析】在△ABC ,由余弦定理得BC =AC 2+AB 2-2AC ⋅AB cos ∠BAC =7,设O ,Q ,N 分别是边AB ,BC ,AC 上的切点,设AN =AO =x ,则NC =QC =2-x ,BO =BQ =1-x ,所以BC =BQ +QC =1-x +2-x =7⇒x =3-72,由AP =λAB +μAC 得,AP ⋅AB =λAB +μAC ⋅AB ,即AO ⋅AB =λAB 2+μAC ⋅AB ⇒AO =λ-μ,①同理由AP ⋅AC =λAB +μAC ⋅AC⇒2AN =-λ+4μ,②联立①②以及AN =AO =x 即可解得:λ+μ=3x =3×3-72=9-372,故答案为:9-3723(2024·广西柳州·高一统考期末)设O 为△ABC 的内心,AB =AC =5,BC =8,AO =mAB +nBCm ,n ∈R ,则m +n =【答案】56【解析】取BC 中点D ,连接AD ,作OE ⊥AB ,垂足分别为E ,∵AB =AC ,∴AD 为∠BAC 的角平分线,∴O ∈AD ;又AB =5,BD =12BC =4,∴sin ∠BAD =45,则tan ∠BAD =43;∵△ABC 周长L =5+5+8=18,面积S =12BC ⋅AD =12×8×52-42=12,∴△ABC 内切圆半径r =OE =2S L =2418=43,∴AE =rtan ∠BAD=1,又OA =12+r 2=53,∴AO =59AD ,∵AD =AB +BD =AB +12BC ,∴AO =59AD =59AB +518BC ,∴m =59,n =518,∴m +n =59+518=56.故答案为:56.题型三:外心定理1(2024·吉林长春·高一东北师大附中校考阶段练习)已知点O 是△ABC 的外心,AB =4,AC =2,∠BAC 为钝角,M 是边BC 的中点,则AM ⋅AO=.【答案】5【解析】如图所示,取AB 的中点E ,连接OE ,因为O 为△ABC 的外心,则OE ⊥AB ,所以AB ⋅AO =|AB ||AO |cos <AB ,AO >=|AB |×12|AB |=12×42=8,同理:AC ⋅AO =12|AC |2=12×22=2,所以AM ⋅AO =12(AB +AC )⋅AO =12AB ⋅AO +12AC ⋅AO =12×8+12×2=5.故答案为:5.2(2024·安徽六安·高一六安市裕安区新安中学校考期末)已知O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足OP =OA +OB 2+λCA CA cos A +CBCB cos B ,λ∈R ,则P 的轨迹一定经过△ABC 的.(从“重心”,“外心”,“内心”,“垂心”中选择一个填写)【答案】外心【解析】如图所示:D 为AB 中点,连接CD ,CA CA cos A +CB CB cos B⋅BA =CA ⋅BA CA cos A +CB ⋅BACB cos B=BA -BA =0,OP -OA +OB 2=OP -OD =DP ,故DP ⋅BA =λCA CA cos A +CB CBcos B ⋅BA =0,即DP ⊥BA ,故P 的轨迹一定经过△ABC 的外心.故答案为:外心3(2024·四川遂宁·高一射洪中学校考阶段练习)已知△ABC 中,∠A =60°,AB =6,AC =4,O 为△ABC 的外心,若AO =λAB +μAC,则λ+μ的值为()A.1 B.2C.1118D.12【答案】C【解析】由题意可知,O 为△ABC 的外心,设外接圆半径为r ,在圆O 中,过O 作OD ⊥AB ,OE ⊥AC ,垂足分别为D ,E ,则D ,E 分别为AB ,AC 的中点,因为AO =λAB +μAC ,两边乘以AB ,即AO ⋅AB =λAB 2+μAC ⋅AB ,AO ,AB 的夹角为∠OAD ,而cos ∠OAD =AD AO=62r =3r ,则r ×6×3r =36λ+μ×4×6×12,得6λ+2μ=3①,同理AO =λAB +μAC 两边乘AC ,即AO ⋅AC =λAB ⋅AC +μAC 2,cos ∠OAC =2r,则r ×4×2r =λ×6×4×12+16μ,得3λ+4μ=2②,①②联立解得λ=49,μ=16,所以λ+μ=49+16=1118.故选:C .题型四:垂心定理1(2024·江苏泰州·高一统考期末)已知△ABC 的垂心为点D ,面积为15,且∠ABC =45°,则BD ⋅BC=;若BD =12BA +13BC ,则BD=.【答案】 3025【解析】如图,AH 是△ABC 的BC 边上的高,则AH ⋅BC =0;设AD =λAH ,因为∠ABC =45°,面积为15,所以12BABC sin45°=15,即BA BC =302;BD ⋅BC =BA +AD ⋅BC =BA +λAH ⋅BC =BA ⋅BC +λAH ⋅BC =BA BCcos45°=30.由第一空可知BD ⋅BC =30,所以BD ⋅BC =12BA+13BC ⋅BC =12BA ⋅BC +13BC 2=30;所以BC 2=45,由BA BC =302可得BA =210,即BA 2=40;因为BD =12BA +13BC ,所以BD 2=14BA 2+19BC 2+13BA ⋅BC =14BA 2+19BC2+10=10+5+10=25;故答案为:30 25.2(2024·湖北黄冈·高一校联考期末)若O 为△ABC 的垂心,2OA +3OB +5OC =0 ,则S△AOB S △AOC=,cos ∠BOC =.【答案】 53-217/-1721【解析】因为2OA +3OB +5OC =0,所以2OA +OC =-3OB +OC ,设M 为AC 的中点,N 为BC 的中点,则OA +OC =2OM ,OB +OC =2ON,所以2OM =-3ON ,所以MN 为△ABC 的中位线,且OM ON=32,所以O 为CD 的中点,所以S △AOC =S △AOD ,又OM AD =12,ON DB =12,所以AD DB =32,所以S △AOD S △BOD =32,所以S △AOB S △AOC=53,同理可得S △BOC S △AOC=23,所以S △AOB S △ABC =12,S △AOC S △ABC =310,又O 为△ABC 的垂心,OD =OC ,设OD =x ,OB =y ,则OC =x ,OE =3y7,所以cos ∠BOD =x y =cos ∠COE =3y7x ,即x 2=37y 2,所以x 2y 2=37,则x y =217所以cos ∠BOD =217,所以cos ∠BOC =cos π-∠BOD =-217,故答案为:53;-2173(2024·山西·高一校联考阶段练习)已知H 为△ABC 的垂心(三角形的三条高线的交点),若AH=13AB+25AC ,则sin ∠BAC =.【答案】63/136【解析】因为AH =13AB +25AC,所以BH =BA +AH =-23AB+25AC ,同理CH =CA +AH =13AB -35AC ,由H 为△ABC 的垂心,得BH ⋅AC =0,即-23AB+ 25AC ⋅AC =0,可知25AC 2=23ACAB cos ∠BAC ,即cos ∠BAC =3AC5AB ,同理有CH ⋅AB =0,即13AB - 35AC ⋅AB =0,可知13AB 2=35ACAB cos ∠BAC ,即cos ∠BAC =5AB 9AC,所以cos 2∠BAC =13,sin 2∠BAC =1-cos 2∠BAC =1-13=23,又∠BAC ∈0,π ,所以sin ∠BAC =63.故答案为:63.【过关测试】一、单选题1(2024·全国·高一专题练习)在直角三角形ABC 中,A =90°,△ABC 的重心、外心、垂心、内心分别为G 1,G 2,G 3,G 4,若AG i =λi AB +μi AC(其中i =1,2,3,4),当λi +μi 取最大值时,i =()A.1 B.2C.3D.4【答案】B【解析】直角三角形ABC 中,A =90°,D 为BC 中点,△ABC 的重心为G 1,如图所示,AG 1 =23AD =23×12AB +AC =13AB+13AC ,则λ1=μ1=13,λ1+μ1=23;直角三角形ABC 中,A =90°,△ABC 的外心为G 2,则G 2为BC 中点,如图所示,AG 2 =12AB +AC ,则λ2=μ2=12,λ2+μ2=1;直角三角形ABC 中,A =90°,△ABC 的垂心为G 3,则G 3与A 点重合,AG 3 =0,则λ3=μ3=0,λ3+μ3=0;直角三角形ABC 中,A =90°,△ABC 的内心为G 4,则点G 4是三角形内角平分线交点,直角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,设内切圆半径为r ,则S △ABC =12bc =12a +b +c r ,得r =bca +b +c,AG 4 =bc a +b +c ⋅AB AB +bc a +b +c ⋅AC AC =bc a +b +c ⋅AB c +bc a +b +c ⋅ACb =b a +b +cAB +ca +b +cAC ,λ=b a +b +c ,μ=c a +b +c ,λ+μ=b a +b +c +c a +b +c =b +ca +b +c <1.λ2+μ2=1最大,所以当λi +μi 取最大值时,i =2.故选:B .2(2024·黑龙江牡丹江·高一牡丹江一中校考阶段练习)若O 是△ABC 所在平面上一定点,H ,N ,Q 在△ABC 所在平面内,动点P 满足OP =OA +λAB AB +ACAC,λ∈0,+∞ ,则直线AP 一定经过△ABC 的心,点H 满足HA = HB = HC ,则H 是△ABC 的心,点N 满足NA +NB +NC=0,则N 是△ABC 的心,点Q 满足QA ·QB =QB ·QC =QC ·QA ,则Q 是△ABC 的心,下列选项正确的是()A.外心,内心,重心,垂心B.内心,外心,重心,垂心C.内心,外心,垂心,重心D.外心,重心,垂心,内心【答案】B【解析】OP =OA +λAB AB +AC AC ,变形得到AP =λAB AB +ACAC,其中AB AB ,ACAC 分别代表AB ,AC 方向上的单位向量,故AB AB +ACAC所在直线一定为∠BAC 的平分线,故直线AP 一定经过△ABC 的内心,HA = HB = HC,即点H 到△ABC 三个顶点相等,故点H 是△ABC 的外心,因为NA +NB +NC =0 ,所以NA +NB =-NC ,如图,取AB 的中点D ,连接ND ,则NA +NB =2ND ,所以NC =-2ND ,故C ,N ,D 三点共线,且CN =2ND ,所以N 是△ABC 的重心,由QA ·QB =QB ·QC 可得QA ·QB -QB ·QC =QA -QC ·QB =CA ·QB=0,故CA ⊥QB ,同理可得CB ⊥QA ,BA ⊥QC ,故Q 为△ABC 三条高的交点,Q 为△ABC 的垂心.故选:B 二、多选题3(2024·河南郑州·高一校联考期末)点O 为△ABC 所在平面内一点,则()A.若OA +OB +OC =0 ,则点O 为△ABC 的重心B.若OA ⋅AC AC -AB AB =OB ⋅BC BC -BABA=0,则点O 为△ABC 的垂心C.若OA +OB ⋅AB =OB +OC ⋅BC=0.则点O 为△ABC 的垂心D.在△ABC 中,设AC 2 -AB 2 =2AO ⋅BC,那么动点O 的轨迹必通过△ABC 的外心【答案】AD【解析】A .由于OA =-OB +OC =-2OD ,其中D 为BC 的中点,可知O 为BC 边上中线的三等分点(靠近线段BC ),故O 为△ABC 的重心;选项A 正确.B .向量AC AC ,ABAB,分别表示在边AC 和AB 上取单位向量AC 和AB ,它们的差是向量B C,当OA ⋅AC AC-AB AB =0,即OA ⊥B C 时,则点O 在∠BAC 的平分线上,同理由OB ⋅BC BC -BABA =0,知点O 在∠ABC 的平分线上,故O 为△ABC 的内心;选项B 错误.C .OA +OB 是以OA ,OB 为边的平行四边形的一条对角线的长,而AB 是该平行四边形的另一条对角线的长,OA +OB ⋅AB =0表示这个平行四边形是菱形,即OA =OB ,同理有OB =OC,故O 为△ABC 的外心.选项C 错误.对于D ,设M 是BC 的中点,AC 2-AB 2=AC +AB ⋅AC -AB =2AO ⋅BC =2AM ⋅BC,即AO -AM ⋅BC =MO ⋅BC =0,所以MO ⊥BC ,所以动点O 在线段BC 的中垂线上,故动点O 的轨迹必通过△ABC 的外心.选项D 正确.故选:AD .4(2024·内蒙古呼和浩特·高一呼市二中校考阶段练习)设点M 是△ABC 所在平面内一点,则下列说法正确的是()A.若AM =12AB +12AC ,则点M 是边BC 的中点B.若AM =2AB -AC ,则点M 是边BC 的三等分点C.若AM =-BM -CM ,则点M 是边△ABC 的重心D.若AM =xAB +yAC ,且x +y =13,则△MBC 的面积是△ABC 面积的23【答案】ACD【解析】对于A 中,根据向量的平行四边形法则,若AM =12AB +12AC =12(AB +AC),则点M 是边BC 的中点,所以A 正确;对于B 中,由AM =2AB -AC ,则AM -AB =AB -AC ,即BM =CB,则B 为CM 的中点,所以B 错误;对于C 中,如图所示,由AM =-BM -CM ,可得AM +BM +CM =0,取BC 的中点D ,可得MA =-2MD,则点M 为△ABC 的重心,所以C 正确;对于D 中,由AM =xAB +yAC ,且x +y =13,所以3AM =3xAB +3yAC且3x +3y =1,设AN =3AM ,可得AN =3xAB +3yAC ,且3x +3y =1,所以N ,B ,C 三点共线,因为AN =3AM ,所以M 为AN 的一个三等分点(靠近A ),如图所示,所以S △MBC =23S △ABC ,即则△MBC 的面积是△ABC 面积的23,所以D 正确.故选:ACD .5(2024·山东枣庄·高一校考阶段练习)数学家欧拉在1765年发表的《三角形的几何学》一书中提出定理:三角形的外心、重心、垂心依次位于同一条直线上,且重心到外心的距离是重心到垂心距离的一半,此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O 、G 、H 分别是△ABC 的外心、重心、垂心,且M 为BC 的中点,则()A.OH =OA +OB +OCB.S △ABG =S △BCG =S △ACGC.AH =3OMD.AB +AC =4OM +2HM【答案】ABD【解析】A . ∵OG =12GH ,∴OG =13OH ,∵G 为重心,所以GA +GB +GC =0,所以OA -OG +OB -OG +OC -OG =0 ,所以OG =13(OA +OB +OC ),∴13OH=13(OA +OB +OC ),所以OH =OA +OB +OC ,所以该选项正确.B .S △BCG =12×BC ×h 1,S △ABC =12×BC ×h 2,由于G 是重心,所以h 1=13h 2,所以S △BCG =13S △ABC ,同理S △ABG =13S △ABC ,S △ACG =13S △ABC ,所以S △ABG =S △BCG =S △ACG ,所以该选项正确.C .AH =AG +GH =2GM +2OG =2(OG +GM )=2OM,所以该选项错误.D .OH =3OG ,∴MG =23MO +13MH ,∴GM =23OM +13HM ,所以AB +AC =2AM =6GM =623OM +13HM =4OM +2HM ,所以该选项正确.故选:ABD6(2024·安徽池州·高一统考期末)已知△ABC 的重心为O ,边AB ,BC ,CA 的中点分别为D ,E ,F ,则下列说法正确的是()A.OA +OB =2ODB.若△ABC 为正三角形,则OA ⋅OB +OB ⋅OC +OC ⋅OA=0C.若AO ⋅AB -AC=0,则OA ⊥BC D.OD +OE +OF =0【答案】ACD【解析】对于A ,因为D 为△OAB 中AB 的中点,所以OA +OB =2OD ,所以A 正确;对于B ,因为△ABC 为正三角形,所以OA ⋅OB =OA 2cos120°=-12OA 2,所以OA ⋅OB +OB ⋅OC +OC ⋅OA =-32OA2,所以B 不正确;对于C ,因为AO ⋅AB -AC =AO ⋅CB=0,所以OA ⊥BC ,所以C 正确;对于D ,因为O 为△ABC 的重心,D ,E ,F 分别为边AB ,BC ,CA 的中点,所以CO =2OD ,即2OD +OC =0 ,所以OD +OE +OF =12OA +OB +12OB +OC +12OA+OC=OA +OB +OC =2OD +OC =0 ,所以D 正确.故选:ACD .7(2024·广东广州·高一校考期末)下列命题正确的是()A.若A ,B ,C ,D 四点在同一条直线上,且AB =CD ,则AB =CDB.在△ABC 中,若O 点满足OA +OB +OC =0,则O 点是△ABC 的重心C.若a =(1,1),把a 右平移2个单位,得到的向量的坐标为(3,1)D.在△ABC 中,若CP =λCA |CA |+CB|CB |,则P 点的轨迹经过△ABC 的内心【答案】BD【解析】对于A ,依题意如图,但AB ≠CD,故选项A 错误;对于B ,设BC 的中点为D ,由于OA +OB +OC =0 ,即OA =-(OB +OC ),所以OA =-2OD ,所以O 点是△ABC 的重心,故选项B 正确;对于C ,向量平移后不改变方向和模,为相等向量,故选项C 错误;对于D ,根据向量加法的几何意义知,以CA |CA |和CB|CB |为邻边的平行四边形为菱形,点P 在该菱形的对角线上,由菱形的对角线平分一组对角,故P 点的轨迹经过△ABC 的内心,故选项D 正确.故选:BD8(2024·新疆·高一兵团第三师第一中学校考阶段练习)点O 在△ABC 所在的平面内,则下列结论正确的是()A.若OA ⋅OB =OB ⋅OC =OC ⋅OA ,则点O 为△ABC 的垂心B.若OA +OB +OC =0 ,则点O 为△ABC 的外心C.若2OA +OB +3OC =0,则S △AOB :S △BOC :S △AOC =3:2:1D.若AO ⋅AB AB =AO ⋅AC AC 且CO ⋅CA CA =CO ⋅CB CB ,则点O 是△ABC 的内心【答案】ACD【解析】对A :如图所示,OA ⋅OB =OB ⋅OC =OC ⋅OA,则(OA -OC )⋅OB =CA ⋅OB =0,(OB -OC )⋅OA =CB ⋅OA =0,(OB -OA )⋅OC =AB ⋅OC =0,∴OB ⊥CA ,OA ⊥CB ,OC ⊥AB ,∴O 为△ABC 的垂心,A 正确;对B :如图,取AB 的中点D ,连接OD ,由OA +OB +OC =0 ,则OA +OB =2OD =-OC ,∴O ,D ,C 三点共线,又CD 是△ABC 的中线,且|OC |=2|OD |,∴O 为△ABC 的重心,B 错误;对C :如图:D ,E 分别是AC ,BC 的中点,由2OA +OB +3OC =0 ,∴2(OA +OC )+(OB +OC )=0 ,∴4OD +2OE =0 ,∴OE =-2OD ,∴OD =13DE =16AB ,OE =23DE =13AB ,则S △AOC =16S △ABC ,S △BOC =13S △ABC ,S △AOB =12S △ABC ,则S △AOB :S △BOC :S △AOC =3:2:1,C 正确;对D :如图,∵AO ⋅AB |AB |=AO ⋅AC|AC |,∴|AO ||AB |cos ∠BAO |AB |=|AO ||AC |cos ∠CAO |AC|,∴cos ∠BAO =cos ∠CAO ,∴∠BAO =∠CAO ,即AO 为∠BAC 的平分线,同理由CO ⋅CA |CA |=CO ⋅CB|CB|得∠ACO =∠BCO ,即CO 为∠ACB 的平分线,∴O 为△ABC 的内心,D 正确.故选:ACD 三、填空题9(2024·甘肃武威·高一校联考期末)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若O 为△ABC 的重心,OB ⊥OC ,3b =4c ,则cos A =.【答案】56【解析】连接AO ,延长AO 交BC 于D ,由题意得D 为BC 的中点,OB ⊥OC ,所以OD =BD =CD =12a ,AD =32a .因为∠ADB +∠ADC =π,所以cos ∠ADB +cos ∠ADC =94a 2+14a 2-c 22×32a ×12a +94a 2+14a 2-b 22×32a ×12a =0,得b 2+c 2=5a 2.故cos A =b 2+c 2-a 22bc=b 2+c 2-15b 2-15c 22bc=25b c +c b=25×34+43 =56.故答案为:56.10(2024·全国·高一专题练习)点O 是平面上一定点,A 、B 、C 是平面上△ABC 的三个顶点,∠B 、∠C 分别是边AC 、AB 的对角,以下命题正确的是(把你认为正确的序号全部写上).①动点P 满足OP =OA +PB +PC,则△ABC 的重心一定在满足条件的P 点集合中;②动点P 满足OP =OA +λAB |AB |+AC|AC |(λ>0),则△ABC 的内心一定在满足条件的P 点集合中;③动点P 满足OP =OA +λAB |AB |sin B +AC|AC|sin C(λ>0),则△ABC 的重心一定在满足条件的P 点集合中;④动点P 满足OP =OA+λAB |AB |cos B +AC|AC|cos C(λ>0),则△ABC 的垂心一定在满足条件的P 点集合中;⑤动点P 满足OP =OB +OC 2+λAB |AB |cos B +AC|AC|cos C(λ>0),则△ABC 的外心一定在满足条件的P 点集合中.【答案】①②③④⑤【解析】对于①,因为动点P 满足OP =OA +PB +PC,∴AP =PB +PC ,则点P 是△ABC 的重心,故①正确;对于②,因为动点P 满足OP =OA+λAB |AB |+AC |AC |(λ>0),∴AP =λAB |AB |+AC |AC |(λ>0),又AB |AB |+AC |AC |在∠BAC 的平分线上,∴AP与∠BAC 的平分线所在向量共线,所以△ABC 的内心在满足条件的P 点集合中,②正确;对于③,动点P 满足OP =OA +λAB |AB |sin B +AC|AC|sin C(λ>0),∴AP =λAB |AB |sin B +AC|AC|sin C,(λ>0),过点A 作AD ⊥BC ,垂足为D ,则|AB |sin B =|AC|sin C =AD ,AP =λAD(AB +AC ),向量AB +AC 与BC 边的中线共线,因此△ABC 的重心一定在满足条件的P 点集合中,③正确;对于④,动点P 满足OP =OA +λAB |AB |cos B +AC|AC|cos C(λ>0),∴AP =λAB |AB |cos B +AC|AC|cos C(λ>0),∴AP ⋅BC =λAB |AB |cos B +AC|AC|cos C⋅BC =λ(|BC |-|BC |)=0,∴AP ⊥BC ,所以△ABC 的垂心一定在满足条件的P 点集合中,④正确;对于⑤,动点P 满足OP =OB +OC 2+λAB |AB |cos B +AC|AC|cos C(λ>0),设OB +OC2=OE,则EP =λAB |AB |cos B +AC|AC|cos C,由④知AB |AB |cos B +AC|AC|cos C⋅BC =0,∴EP ⋅BC=0,∴EP ⊥BC ,∴P 点的轨迹为过E 的BC 的垂线,即BC 的中垂线;所以△ABC 的外心一定在满足条件的P 点集合,⑤正确.故正确的命题是①②③④⑤.故答案为:①②③④⑤.11(2024·辽宁·高一校联考期末)某同学在学习和探索三角形相关知识时,发现了一个有趣的性质:将锐角三角形三条边所对的外接圆的三条圆弧(劣弧)沿着三角形的边进行翻折,则三条圆弧交于该三角形内部一点,且此交点为该三角形的垂心(即三角形三条高线的交点).如图,已知锐角△ABC外接圆的半径为2,且三条圆弧沿△ABC三边翻折后交于点P.若AB=3,则sin∠PAC=;若AC:AB:BC=6:5: 4,则PA+PB+PC的值为.【答案】74234/5.75【解析】设外接圆半径为R,则R=2,由正弦定理,可知ABsin∠ACB=3sin∠ACB=2R=4,即sin∠ACB=34,由于∠ACB是锐角,故cos∠ACB=74,又由题意可知P为三角形ABC的垂心,即AP⊥BC,故∠PAC=π2-∠ACB,所以sin∠PAC=cos∠ACB=7 4;设∠CAB=θ,∠CBA=α,∠ACB=β,则∠PAC=π2-β,∠PBA=π2-θ,∠PAB=π2-α,由于AC:AB:BC=6:5:4,不妨假设AC=6,AB=5,BC=4,由余弦定理知cosθ=62+52-422×6×5=34,cosα=42+52-622×4×5=18,cosβ=42+62-522×4×6=916,设AD,CE,BF为三角形的三条高,由于∠ECB+∠EBC=π2,∠PCD+∠CPD=π2,故∠EBC=∠CPD ,则得∠APC=π-∠CPD=π-∠EBC=π-∠ABC,所以PCsinπ2-β=PAsinπ2-θ=ACsin∠APC=ACsin∠ABC=2R=4,同理可得PBsinπ2-α=ABsin∠APB=ABsin∠ACB=2R=4,所以PA+PB+PC=4cosθ+cosα+cosβ=434+18+916=234,故答案为:74;23412(2024·宁夏银川·高一银川唐徕回民中学校考期末)已知P 为△ABC 所在平面内一点,有下列结论:①若P 为△ABC 的内心,则存在实数λ使AP =λAB |AB |+AC|AC |;②若PA +PB +PC =0 ,则P 为△ABC 的外心;③若PA =PB =PC ,则P 为△ABC 的内心;④若AP =13AB +23AC ,则△ABC 与△ABP 的面积比为2:3.其中正确的结论是.(写出所有正确结论的序号)【答案】①【解析】设AB 中点D ,对于①若P 为△ABC 的内心,所以P 在∠BAC 的角平分线上,因为AB |AB |为AB 方向上的单位向量,AC|AC |为AC 方向上的单位向量,令AE =AB |AB |+AC|AC |,所以AE 在∠BAC 的角平分线上,即AE 与AP共线,所以存在实数λ使AP =λAE ,即AP =λAB |AB |+AC|AC |,故①正确;对于②,若PA +PB +PC =0,则2PD +PC =0 ,所以P 在中线CD 上且CP =2PD ,即P 为三角形重心,故②错误;对于③,PA =PB =PC,所以P 为△ABC 的外心,故③错误;若AP =13AB +23AC ,则13(AB -AP )+23(AC -AP )=0 ,即PB +2PC =0 ,所以P 为BC 上靠近C 的三等分点,所以BP =2PC ,故△ABC 与△ABP 的面积比为3:2,故④错误.故答案为:①13(2024·广西河池·高一校联考阶段练习)在△ABC 中,已知AB =5,AC =3,A =2π3,I 为△ABC 的内心,CI 的延长线交AB 于点D ,则△ABC 的外接圆的面积为,CD =.【答案】 49π3/493π;372/327.【解析】由余弦定理得BC 2=25+9-2×5×3×-12=49,∴BC =7.设三角形的外接圆的半径为R , 所以732=2R ,∴R =733,所以△ABC 的外接圆的面积为π×7332=493π.由余弦定理得cos ∠ACB =49+9-252×7×3=1114=1-2sin 2∠ACD ,所以sin ∠ACD =2114,cos ∠ACD =5714.所以sin ∠ADC =sin (∠A +∠ACD )=32×5714-12×2114=217.由正弦定理得3217=CD 32,∴CD =327.故答案为:49π3;372.14(2024·四川遂宁·高一遂宁中学校考阶段练习)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足OP =OB +OC 2+λAB AB cos B +ACAC cos C ,λ∈0,+∞ ,则动点P 的轨迹一定通过△ABC 的(填序号).①内心 ②垂心 ③ 重心 ④外心【答案】④【解析】设BC 的中点为D ,∵OP =OB +OC 2+λAB AB cos B +AC AC cos C,∴OP =OD +λAB AB cos B +ACAC cos C ,即DP =λAB AB cos B +ACAC cos C,两端同时点乘BC ,∵DP ⋅BC =λAB ⋅BC AB cos B +AC ⋅BCAC cos C =λAB ⋅BC cos π-B AB cos B +AC ⋅BC cos C ACcos C=λ-BC +BC=0,所以DP ⊥BC ,所以点P 在BC 的垂直平分线上,即P 经过△ABC 的外心故答案为:④.15(2024·高一课时练习)已知O 为△ABC 的内心,∠BAC =π3,且满足AO =xAB +yAC ,则x +y 的最大值为.【答案】23【解析】如图,延长AO 交BC 于D ,设BC ,AC 分别与圆切于点E ,F ,则OE =OF ,OE ≤OD ,设AD =λAO ,则AD =λxAB +λyAC ,因为B ,D ,C 三点共线,所以λx +λy =1,x +y =1λ=AO AD =AO AO +OD ≤AO AO +OE =11+OE AO =11+OF AO =11+sin A 2=11+sin π6=23,当且仅当D ,E 重合时等号成立.所以x +y 的最大值为23.故答案为:23.16(2024·高一课时练习)已知A ,B ,C 是平面内不共线的三点,O 为ΔABC 所在平面内一点,D 是AB 的中点,动点P 满足OP =132-2λ OD +1+2λ OCλ∈R ,则点P 的轨迹一定过△ABC 的(填“内心”“外心”“垂心”或“重心”).【答案】重心【解析】根据已知条件判断P ,C ,D 三点共线,结合重心的定义,判断出P 的轨迹过三角形ABC 的重心.∵点P 满足OP =132-2λ OD +1+2λ OC λ∈R ,且132-2λ +131+2λ =1,∴P ,C ,D 三点共线.又D 是AB 的中点,∴CD 是边AB 上的中线,∴点P 的轨迹一定过ΔABC 的重心.故答案为:重心17(2024·高一课时练习)已知点O 是ΔABC 的内心,若AO =37AB +17AC,则cos ∠BAC =.【答案】16【解析】因为-OA =37OB -OA +17OC-OA ,即OC =-3OA +OB ,取AB 中点D ,连接OD ,则OA +OB =2OD ,故OC =-6OD,故点C ,O ,D 共线,又∠ACO =∠BCO ,故AC =BC ,且CD ⊥AB ,所以cos ∠BAC =DA CA=OD OC =16.故答案为:16.18(2024·四川成都·高一成都市锦江区嘉祥外国语高级中学校考阶段练习)已知点O 是△ABC 的外心,AB =6,BC =8,B =2π3,若BO =xBA +yBC ,则3x +4y =.【答案】7【解析】如图,∵AB =6,BC =8,B =2π3,且BO =xBA +yBC ,∴BO ⋅BA =|BO |⋅|BA |⋅cos ∠ABO =12|BA |2=18,BO ⋅BC =|BO ||BC |⋅cos ∠CBO =12|BC |2=32,BA ⋅BC =6×8×-12 =-24,∴BO ⋅BA =xBA 2+yBA ⋅BC BO ⋅BC =xBA ⋅BC +yBC2 ,∴18=36x -24y 32=-24x +64y ,整理得,6x -4y =38y -3x =4 ,∴(6x -4y )+(8y -3x )=3x +4y =7.故答案为:719(2024·湖北武汉·高一期末)△ABC 中,AB =2,BC =26,AC =4,点O 为△ABC 的外心,若AO =mAB +nAC ,则实数m =.【答案】45/0.8【解析】由BC =AC -AB 可得BC 2=AC -AB 2=AC 2+AB 2-2AB ⋅AC =4+16-2AB ⋅AC =24,所以,AB ⋅AC =-2,同理可得BA ⋅BC =6,CA ⋅CB =18,故AB AC cos A <0即cos A <0,而A ∈0,π ,故A 为钝角.如下图所示:取线段AC 的中点E ,连接OE ,由垂径定理可得OE ⊥AC ,则AO ⋅AC =AE +EO ⋅AC =AE ⋅AC +EO ⋅AC =12AC 2,同理可得AO ⋅AB =12AB 2,因为AO =mAB +nAC ,则AO ⋅AC =mAB +nAC ⋅AC =mAB ⋅AC +nAC 2=-2m +16n =12AC 2=8;AO ⋅AB =mAB +AC ⋅AB =mAB 2+nAB ⋅AC =12AB 2,即4m -2n =2,故m =45故答案为:45.20(2024·湖北·高一校联考阶段练习)在△ABC 中,已知AB =2,AC =5,∠BAC =60°,P 是△ABC 的外心,则∠APB 的余弦值为.【答案】1319【解析】BC 2=AB 2+AC 2-2AB ⋅AC cos60°=4+25-10=19,故BC =19,设△ABC 的外接圆半径为R ,则R =BC 2sin60°=573,△APB 中,cos ∠APB =R 2+R 2-42R 2=1-2R 2=1319.故答案为:1319.21(2024·四川达州·高一达州中学校考阶段练习)设O 为△ABC 的外心a ,b ,c 分别为角A ,B ,C 的对边,若b =3,c =5,则OA ⋅BC =.【答案】8【解析】如图所示,因为O 为△ABC 的外心,取AB 中点E ,则OE ⊥AB ,则AO ⋅AB =OA AB cos ∠OAB =AB OA cos ∠OAC =AB ⋅12AB =12c 2=252,同理AO ⋅AC =12b 2=92,所以OA ⋅BC =OA ⋅AC -AB =-AO ⋅AC -AB =-AO ⋅AC +AO ⋅AB =-92+252=8.故答案为:822(2024·广东汕头·高一金山中学校考期末)已知O 为△ABC 的外心,若AO ⋅BC =4BO ⋅AC ,则cos A 最小值.【答案】34【解析】∵O 为△ABC 的外心,若AO ⋅BC =4BO ⋅AC ,∴AO ⋅AC -AB =4BO ⋅BC -BA ,∴AO ⋅AC -AO ⋅AB =4BO ⋅BC -4BO ⋅BA ,∴12AC 2-12AB 2=4×12BC 2-4×12BA 2,即b 2-c 2=4a 2-4c 2,即b 2+3c 2=4a 2,∴cos A =b 2+c 2-a 22bc =b 2+c 2-b 2+3c 242bc=3b 2+c 28bc ≥23bc 8bc=34,当且仅当3b =c 时取等号,∴cos A 的最小值为34.故答案为:34.23(2024·重庆渝中·高一重庆巴蜀中学校考期末)某同学在查阅资料时,发现一个结论:已知O 是△ABC 内的一点,且存在x ,y ,z ∈R ,使得xOA +yOB +zOC =0 ,则S △AOB :S △AOC :S △COB =z :y :x .请以此结论回答:已知在△ABC 中,∠A =π4,∠B =π3,O 是△ABC 的外心,且AO =λAB +μAC λ,μ∈R ,则λ+μ=.【答案】33/133【解析】如图,因为O 是△ABC 的外心,所以∠BOC =2∠BAC =π2,∠AOC =2∠ABC =2π3,∠BOA =2∠BCA =5π6,由结论可得S △BOC ⋅OA +S △AOC ⋅OB +S △BOA ⋅OC =0 ,即12R 2sin ∠BOC ⋅OA +12R 2sin ∠AOC ⋅OB +12R 2sin ∠BOA ⋅OC =0 ,可得sin π2⋅OA +sin 2π3⋅OB +sin 5π6⋅OC =0 ,即OA +32OB +12OC =0 .因为AO =λAB +μAC =λ(OB -OA )+μ(OC -OA ),所以(1-λ-μ)OA +λOB +μOC =0 ,所以λ1-λ-μ=32μ1-λ-μ=12 ,即λ+μ1-λ-μ=3+12,即1-(λ+μ)λ+μ=3-1,解得λ+μ=33.故答案为:33.24(2024·辽宁大连·高一育明高中校考期末)已知点P 在△ABC 所在的平面内,则下列各结论正确的有①若P 为△ABC 的垂心,AB ⋅AC =2,则AP ⋅AB =2②若△ABC 为边长为2的正三角形,则PA ⋅PB +PC 的最小值为-1③若△ABC 为锐角三角形且外心为P ,AP =xAB +yAC 且x +2y =1,则AB =BC④若AP =1AB cos B +12 AB +1AC cos C +12AC ,则动点P 的轨迹经过△ABC 的外心【答案】①③④【解析】对于①,若P 为△ABC 的垂心,则AB ⋅PC =0,又AB ⋅AC =2,所以AP ⋅AB =AB ⋅AC +PC =AB ⋅AC +AB ⋅PC =2+0=2,①正确;对于②,取CB 的中点O ,连接OA ,以O 为坐标原点,BC ,OA 所在直线分别为x 轴,y 轴,建立空间直角坐标系,则B -1,0 ,C 1,0 ,A 0,3 ,设P m ,n ,则PA ⋅PB +PC =-m ,3-n ⋅-2m ,-2n =2m 2+2n 2-23n =2m 2+2n -32 2-32,故当m =0,n =32时,PA ⋅PB +PC =2m 2+2n -32 2-32取得最小值,最小值为-32,②错误;对于③,有题意得AP =xAB +yAC =1-2y AB +yAC ,则AP -AB =y -2AB +AC ,即BP =y BA +BC ,如图,设D 为AC 的中点,则BA +BC =2BD ,故BP =2yBD ,故B ,P ,D 三点共线,因为P 是△ABC 的外心,所以BD 垂直平分AC ,所以AB =BC ,③正确;对于④,AP =AB AB cos B +AC AC cos C +12AB +AC ,AP ⋅BC =AB ⋅BC AB cos B +AC ⋅BC AC cos C +12AB +AC ⋅BC=AB ⋅BC cos π-B AB cos B +AC ⋅BC cos C AC cos C +12AB +AC ⋅BC =-BC +BC +12AB +AC ⋅BC =12AB +AC ⋅BC ,所以2AP ⋅BC =AB +AC ⋅BC ,如图,设E 是BC 的中点,则AB +AC =2AE ,故2AP ⋅BC =2AE ⋅BC ,即AP -AE ⋅BC =EP ⋅BC =0,故则动点P 的轨迹经过△ABC 的外心,④正确.故答案为:①③④25(2024·全国·高一专题练习)(1)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP =OA +λ(AB +AC ),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的(填“内心”“外心”“重心”或“垂心” ).(2)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP =OA +λAB |AB |+AC |AC |,λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的.(填“内心”“外心”“重心”或“垂心” )【答案】 重心内心【解析】空1:由已知,AP =λ(AB +AC ),根据平行四边形法则,设△ABC 中BC 边的中点为D ,知AB +AC =2AD ,∴AP =2λAD ,∴AP ⎳AD ,则A ,P ,D 三点共线,∴点P 的轨迹必过△ABC 的重心;空2:由已知,AP =λAB |AB |+AC |AC |,而AB |AB |表示与AB 同向的单位向量,AC |AC |表示与AC 同向的单位向量,∴AP 在∠BAC 的角平分线上,∴点P 的轨迹一定通过△ABC 的内心.故答案为:重心;内心.四、解答题26(2024·全国·高一专题练习)已知△ABC 中,过重心G 的直线交边AB 于P ,交边AC 于Q ,设△APQ 的面积为S 1,△ABC 的面积为S 2,AP =pPB ,AQ =qQC .(1)求GA +GB +GC ;(2)求证:1p +1q=1.(3)求S 1S 2的取值范围.【解析】(1)延长AG 交BC 于D ,则D 为BC 中点,∴GB +GC =2GD ,∵G 是重心,∴GA =-2GD ,∴GA +GB +GC =-2GD +2GD =0 ;(2)设AB =a ,AC =b ,∵AP =pPB ,∴AP =p 1+p a ,∴a =1+p p AP ∵AQ =qQC ,∴AQ =q 1+q b ,∴b =1+q q AQ ∵AG =23AD =23⋅12(AB +AC )=13a +b =13⋅1+p p AP +13⋅1+q qAQ 且P ,G ,Q 三点共线,∴13⋅1+p p +13⋅1+q q =1,∴1p +1 +1q+1 =3即1p +1q =1;(3)由(2)AP =p 1+p AB ,AQ =q 1+q AC ,∴S 1S2=12AP ⋅AQ ⋅sin ∠BAC 12AB ⋅AC ⋅sin ∠BAC =AP ⋅AQ AB ⋅AC =p 1+p ⋅q 1+q ,∵1 p +1q=1,q=pp-1,可知p>1,∴S1S2=p1+p⋅q1+q=p1+p⋅p2p-1=p22p2+p-1=1-1p2+1p+2=1-1p-122+94,∵p>1,∴0<1p<1,则当1p=12时,S1S2取得最小值49,当1p=1时,S1S2取得最大值12,∵1 p ≠1,则S1S2的取值范围为49,12.。

平面向量与三角形的五心

平面向量与三角形的五心

HFEDABC平面向量与三角形的五心练习 姓名:1-11题每题8分,12题11分,13题11分,共110分,请将答案写在答题纸上. 1. 已知P 是ABC ∆三角形ABC 所在平面内的任意一点,且满足230PA PB PC ++=则:______【解析】取D ,E 分别为AC ,BC 的中点,则2,2. ∵,∴(2(),∴,∴P 是DE 上靠近E 的三等分点, ∴故答案为:1:3.2. 设P 为锐角△ABC 的外心,AP k AB AC =(+),若cos ∠BAC =25,则k 等于 . 解析 取BC 的中点D ,连接PD ,AD ,则PD ⊥BC ,2AB AC AD =+, ∵AP k AB AC =(+),∴2AP k AD =,∴A ,P ,D 三点共线, ∴AB =AC ,∴cos ∠BAC =cos ∠DPC =DP PC =DP P A =25,∴AP =57AD ,∴2k =57,解得k =514.3. 已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP OA AB AC λ=+(+),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的 . 解析:由原等式,得OP OA AB AC λ-=(+),即AP AB AC λ=(+),根据平行四边形法则,知AB AC +是△ABC 的中线AD (D 为BC 的中点)所对应向量的2倍,所以点P 的轨迹必过△ABC 的重心.4. 设O 是ABC ∆所在平面上一点,且tan tan tan 0A OA B OB C OC ⋅+⋅+⋅=,则点O 一定为ABC ∆的解析:如图,无妨假设H 是锐角ABC ∆的垂心,则 由,,C H F 共线和正弦定理知,cos sin cos tan cos sin cos tan BHC AHC S BF BC B A B AS AF AC A B A B∆∆⋅⋅====⋅⋅, 同理tan tan AHC AHB S BS C∆∆=, 所以tan tan tan BHC AHC AHB S S S A B C ∆∆∆=::::, 所以tan tan tan 0A HA B HB C HC ⋅+⋅+⋅= 又因为tan tan tan 0A OA B OB C OC ⋅+⋅+⋅= 所以,相减可知(tan tan tan )0A B C OH ++=, 因为tan tan tan =tan tan tan 0A B C A B C ++≠ 所以0OH =,点O 为垂心.当为钝角三角形时,同理可证点O 为垂心.5. 已知点O 为△ABC 所在平面内一点,且OA →2+BC →2=OB →2+CA →2=OC →2+AB →2,则O 一定为△ABC 的 .[解析] 由OA →2+BC →2=OB →2+CA →2得,OA →2+(OC →-OB →)2=OB →2+(OA →-OC →)2,∴OC →·OB →=OA →·OC →. ∴OC →·AB →=0.∴O 在边AB 的高线上. 同理O 在边AC 的高线上, 即O 为△ABC 的垂心.6. 已知O 是平面上的一定点,A 、B 、C 是平面上不共线的三个动点,点P 满足()2cos cos OB OC AB ACOP AB B AC Cλ+=++,()0,λ∈+∞,则动点P 的轨迹一定通过ABC ∆的 .解:如图所示:设BC的中点为D ,2OB OCOP OP OD DP +-=-= ()cos cos AB ACDP AB B AC Cλ∴=+,又()0,λ∈+∞,等式两边向量同时求与BC 的数量积,得:()cos cos AB BC AC BC DP BC AB BAC Cλ⋅⋅⋅=+BCADPABCM(cos )cos ()0cos cos BC B BC CBCλ-=+=,则DP BC ⊥,所以P 点的轨迹一定在BC 的中垂线上,即P 点一定通过ABC ∆的外心.7. 已知A 、B 、C 是不在同一直线上的三点,O 是平面ABC 内一定点,P 是平面ABC 内一动点,若OA OP -λ=AB (21+)()+∞∈,0λ,则点P 的轨迹必过ABC ∆的 . 解:因为OA OP -λ=AB (21+),则可化为⎪⎭⎫⎝⎛+=21λ,而如图三角形ABC 中+AB 21=AM ,(M 为三角形ABC 的BC 的中点), 因此AM AP λ=,即A 、P 、M 三点共线,因此P 点的轨迹必过ABC ∆的重心. 8.,,A B C 是平面上不共线的三点,O 为ABC 的外心,D 是AB 的中点,动点P 满足1[(22)(12)]()3OP OD OC λλλ=-++∈R ,则点P 的轨迹一定过ABC 的______【解析】,,A B C 是平面上不共线的三点,O 为ABC 的外心,D 是AB 的中点,动点P 满足()()()122123OP OD OC R λλλ⎡⎤=-++∈⎣⎦,且()()112212133λλ-++=,,,P C D ∴三点共线,∴点P 的轨迹一定过ABC 的重心.故填重心.9. 若O 在△ABC 所在的平面内:=,则O 是△ABC 的 .解:∵向量的模等于1,因而向量是单位向量∴向量、和等都是单位向量∴由向量、为邻边构成的四边形是菱形,∵可得AO 在∠BAC 的平分线上同理可得OB 平分∠ABC ,OA 平分∠ACB ,∴O是△ABC的内心.10.过的重心作直线,已知与、的交点分别为、,,若,则实数的值为 .【解析】设,因为G为的重心,所以,即.由于三点共线,所以,即.因为,,所以,即有,解之得或.11.在中,设,则动点M的轨迹必通过的 . 【解析】设为中点,则为的垂直平分线轨迹必过的外心12.设△ABC外心为O,取点H,使.求证:H是△ABC的垂心.证明:∵△ABC外心为O,∴又∵∴则=•==0即AH⊥BC同理BH⊥AC,CH⊥AB即H是△ABC的垂心.13. 在ABC △中,若点P 满足BP BC λ=,用,,,AB AC BC λ表示AP 的长度, 解:.可知(1-)AP AB AC λλ=+,所以222221-+2(1)AP AB AC AB AC λλλλ=+-⋅() 又-BC AC AB =,所以222+2BC AC AB AB AC =-⋅, 所以2222+AB AC AC AB BC ⋅=-,所以22222222221-+(1)+=(1)++(-1)AP AB AC AC AB BC AB AC BC λλλλλλλλ=+---()(),所以2222(1)(1)AP AB AC BC λλλλ=-+⋅+-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.已知非零向量
A→B

A→C
满足(
A→B |A→B|

A→C |A→C|
)·B→C
=0且
|AA→→BB|·|AA→ →CC|=12,则△ABC为(
)
A.三边均不相等的三角形 B.直角三角形
C.等腰非等边三角形
D.等边三角形
答案 D
解析 由|O→A|=|O→B|=|O→C|知,O是三角形的外心,排除 答案A,B.
由N→A+N→B+N→C=0得出N必然为重心. ∵P→A·P→B=P→B·P→C,∴(P→A-P→C)·P→B=0. ∴C→A·P→B=0,∴CA⊥PB,同理,AP⊥BC. ∴P为△ABC的垂心,故选C.
3.在△ABC中,若动点P满足C→A2=C→B2-2A→B·C→P ,则
2.三角形各心的向量表示 (1)O 是△ABC 的重心⇔O→A+O→B+O→C=0; (2)O 是△ABC 的垂心⇔O→A·O→B=O→B·O→C=O→C·O→A; (3)O 是△ABC 的外心⇔|O→A|=|O→B|=|O→C|(或O→A2=O→B2 =O→C2);
(4)O 是△ABC 的内心⇔O→A·(|AA→→BB|-|AA→ →CC|)=O→B·(|BB→→AA|-|BB→ →CC|) =O→C·(|CC→→AA|-|CC→ →BB|)=0.
B.内心
C.重心
D.垂心
答案 D
2.已知O,N,P在△ABC所在平面内,且|O→A|=|O→B|= |O→C|,N→A+N→B+N→C=0,P→A·P→B=P→B·P→C=P→C·P→A,则点O, N,P依次是△ABC的( )
A.重心、外心、垂心 B.重心、外心、内心 C.外心、重心、垂心 D.外心、重心、内心 答案 C
P点轨迹一定通过△ABC的( )
A.外心
B.内心
C.重心
D.垂心
答案 A
解析 2 A→B·C→P = C→B 2-C→A 2=( C→B - C→A )·( C→B +C→A )= A→B·(C→B+C→A),即2A→B·C→P=A→B·(C→B+C→A),∴A→B·(2C→P-C→B -C→A)=A→B·(B→P+A→P)=0.∴以B→P,A→P为邻边的平行四边形 的对角线互相垂直.∴点P在线段AB的中垂线上,故选A.
题型二 将平面向量与三角形垂心结合考查
例 2 点 P 是△ABC 所在平面上一点,若P→A·P→B=P→B·P→C
=P→C·P→A,则点 P 是△ABC 的( )
A.外心
B.内心
C.重心
D.垂心
【解析】 由P→A·P→B=P→B·P→C,得P→A·P→B-P→B·P→C=0, 即P→B·(P→A-P→C)=0,即P→B·C→A=0,则PB⊥CA.
题型四 将平面向量与三角形重心结合考查 例 4 点 P 是△ABC 所在平面内任一点.G 是△ABC 的 重心⇔P→G=13(P→A+P→B+P→C).
【证明】 ∵P→G=P→A+A→G=P→B+B→G=P→C+C→G, ∴3P→G=(A→G+B→G+C→G)+(P→A+P→B+P→C). ∵点G是△ABC的重心,∴G→A+G→B+G→C=0. ∴A→G+B→G+C→G=0,即3P→G=P→A+P→B+P→C. 由此得P→G=13(P→A+P→B+P→C). 反之亦然(证略).
平面向量与三角形的“心”
三角形的“心”的向量表示及应用 1.三角形各心的概念介绍 重心:三角形的三条中线的交点; 垂心:三角形的三条高线的交点; 内心:三角形的三个内角角平分线的交点(三角形内切圆 的圆心); 外心:三角形的三条边的垂直平分线的交点(三角形外接 圆的圆心).
根据概念,可知各心的特征条件.比如:重心将中线长 度分成2∶1;垂线与对应边垂直;角平分线上的任意点到角 两边的距离相等;外心到三角形各顶点的距离相等.
同理O→P2·O→P3=O→P3·O→P1=-12. ∴|P→1P2|=|P→2P3|=|P→3P1|= 3. 从而△P1P2P3是正三角形.
对点训练
1.若O为空间中一定点,动点P在A,B,C三点确定的
平面内且满足(O→P-O→A)·(A→B-A→C)=0,则点P的轨迹一定过
△ABC的( )
A.外心
A.外心 C.重心
B.内心 D.垂心
【解析】 因为|AA→→BB|是向量A→B的单位向量,设A→B与A→C 方向上的单位向量分别为e1和e2,又O→P -O→A =A→P,则原式 可化为 A→P =λ(e1+e2),由菱形的基本性质可知AP平分∠ BAC,那么在△ABC中,AP平分∠BAC,故选B.
注意 向量 λ(|AA→→BB|+|AA→ →CC|)(λ≠0)所在直线过△ABC 的内 心(是∠BAC 的角平分线所在直线)
题型一 将平面向量与三角形外心结合考查
例 1 若 O 为△ABC 内一点,|O→A|=|O→B|=|O→C|,则 O
是△ABC 的( )
A.内心
B.外心
C.垂心
D.重心
【解析】 由向量模的定义知O到△ABC的三顶点距离相 等,故O是△ABC的外心,故选B.
同理PA⊥BC,PC⊥AB,所以P为△ABC的垂心.故选 D.
【点评】 本题考查平面向量有关运算,及“数量积为 零,则两向量所在直线垂直”、三角形的垂心的定义等相关 知识.将三角形的垂心的定义与平面向量有关运算及“数量 积为零,则两向量所在直线垂直”等相关知识巧妙结合.
题型三 将平面向量与三角形内心结合考查 例 3 O 是平面上一定点,A,B, 是平面上不共线的 三个点,动点 P 满足O→P=O→A+λ(|AA→→BB|+|AA→ →CC|),λ∈(0,+∞), 则点 P 的轨迹一定通过△ABC 的( )
题型五 将平面向量与三角形四心结合考查 例 5 已知向量O→P1,O→P2,O→P3满足条件O→P1+O→P2+O→P3 =0,|O→P1|=|O→P2|=|O→P3|=1,求证:△P1P2P3 是正三角形.
【证明】 由已知条件可得O→P1+O→P2=-O→P3,两边平 方,得O→P1·O→P2=-12.
相关文档
最新文档