详解经典三极管基本放大电路

合集下载

三极管放大电路分析基础

三极管放大电路分析基础
啸叫故障
检查反馈电路是否正常,特别 是反馈电阻和电容,检查输入 信号是否过大。
失真故障
检查三极管的工作点是否合适 ,检查放大电路的增益是否过 大或过小,检查反馈电路是否 正常。
自激振荡故障
检查放大电路的反馈系数是否 合适,检查输入信号是否过大

故障排除实例分析
实例一
一台三极管甲类放大器无声,经检查 发现集电极电压为0V,更换三极管 后故障排除。
工作原理
通过三极管的电流放大作用,将 输入信号的微弱变化转换为输出 信号的较大变化。
三极管放大电路的应用
01
02
03
音频信号放大
用于将微弱的音频信号放 大,驱动扬声器发声。
Hale Waihona Puke 弱电信号放大在测量、自动控制等领域, 用于放大微弱的电信号。
无线通信
在无线通信系统中,用于 放大调制信号,提高通信 质量。
三极管放大电路的类型
对带宽和增益的需求。
04
三极管放大电路的设计
静态工作点的设置
总结词
合理设置静态工作点是三极管放大电路设计的关键,它决定了电路的放大性能和 稳定性。
详细描述
静态工作点是指放大电路在没有输入信号时的工作状态,包括集电极电流和基极 电流、集电极和基极之间的电压等参数。合理设置静态工作点可以保证三极管在 放大信号时处于最佳工作状态,提高电路的放大性能和稳定性。
作用
作为放大电路的核心元件, 三极管能够控制电流的放 大作用。
工作原理
利用基极电流控制集电极 和发射极之间的电流,实 现电流的放大。
类型
根据结构和工作特性,可 分为NPN和PNP型。
电阻
作用
在放大电路中,电阻用于限制电 流和电压,以及提供一定的负载。

2.2三极管的基本放大电路课件

2.2三极管的基本放大电路课件
称交流工作状态。
动态时电路中的信号为交直流分量的叠加。
输入正弦信号vs后,
电路将处在动态工作情 况。此时,三极管各极 电流及电压都将在静态 值的基础上随输入信号 作相应的变化。
1、输入回路的动态分析
输入交流信号vi通过电容C1的耦合送到三极管的基极和发射极。交流信号vi 与直流偏压VBEQ叠加的vBE波形如图(b),基极电流iB产生相应的变化,波形如
UCE=VCC ICRC 12 1.6 4 5.6V
2. 静态工作点分析--图解法 首先利用以下两式估算IB,
然后再根据电路中三极管输出 特性曲线确定静态工作点。
按照方程UCE=UCC-ICRC作一条称为直流负载线的直线, 步骤如下:
电路与模拟电子技术基础
2.2.4放大电路的动态分析
输入信号不为零时,放大电路的工作状态,也
IC βIB 37.50.04 1.5mA
Rb
Cb1
+
+
u i
-
+
+VCC Rc
Cb2
T
+
RL
u o
-
UCE VCC ICRC 12 1.5 4 6V
请注意电路中IB和IC的数量级
例题1-3-2:
共射电路如图,已知三极管为硅管,β=40,试求电路中的 直流量IB、 IC 、UBE 、UCE。
+
u -
i
开路
将交流电压源短路, 将电容开路,
+ VCC 电感视为短路。
Cb2
T
开路 +
.
uo
RL -
+ VCC
R b1 R c
T
1. 静态工作点分析--估计法 RB称为偏置电 阻,IB称为偏 置电流。

三极管的三种基本放大电路

三极管的三种基本放大电路

+ 3. 输出电阻 Ro= RC
RL uo

Ri
Ro
第3章 放大电路基础
当没有旁路电容 CE 时: 1. 电压放大倍数
交流通路
ic
ii
ib
+
Au

uo ui
ib R'L ib[rbe (1 )RE ]
+ ui

RC RL uo
RB1 RB2 RE


R' L
rbe (1 )RE
5.8 12IDQ 0.8
)2
解方程得:IDQ1 = 0.69 mA, UGSQ = – 2.5V (增根, 舍去)
IDQ2 = 0.45 mA , UGSQ = – 0.4 V
第3章 放大电路基础
二、性能指标分析
1. 共源放大电路
+VDD
ii
G
D id
+
C1
RG1 D G RG3
RD +
UCEQ VCC ICQ ( RC RE )
稳定“Q”的原理:
T IC UE UBE IB
IC
第3章 放大电路基础
方法2:利用戴维南定理求 IBQ
RC
RB1
+ VCC–
RB2
RE
+ –VCC
IBQ
+ R’B1 – V’CC
RC RE
+ –VCC
V'CC

VCC RB2 RB1 RB2
Ro

RE
//
(rbe 1
R'S

)

三极管放大电路详细分析

三极管放大电路详细分析

三极管放大电路详细分析一、原理1.共射放大电路:共射放大电路的输入信号加在基极上,输出信号从集电极上取出。

在共射放大电路中,基极和集电极之间呈负反馈,使放大电路的输入电阻变大,输出电阻变小。

共射放大电路具有电流放大性能好、电压放大倍数大、输入输出相位差小等特点,常用于对输入电流要求较高的场合。

2.共基放大电路:共基放大电路的输入信号加在发射极上,输出信号从集电极上取出。

在共基放大电路中,发射极与集电极之间呈负反馈,使得输出电阻变小,电流放大倍数增大。

共基放大电路的特点是电压放大率小,但电流放大率较高,具有宽频带、高频特性好的优点,适用于高频放大器。

3.共集放大电路:共集放大电路的输入信号加在栅极上,输出信号从源极上取出。

在共集放大电路中,源极与漏极之间呈负反馈,使放大电路的电压特性和输入输出特性更好。

共集放大电路具有输入电阻大,输出电阻小,电压放大倍数小的特点,常被应用于信号源驱动等场合。

二、特点1.放大性能好:三极管放大电路具有较好的电流放大倍数和电压放大倍数,能够将微弱的输入信号放大为较大的输出信号。

2.宽频带特性:三极管放大电路具有较好的频率响应特性,能够放大高频信号。

3.可控性强:通过改变三极管的偏置电流和工作点,可以调整放大电路的放大倍数和工作状态。

4.可靠性高:三极管具有耐压能力强、温度稳定、寿命较长等优点,可以在恶劣环境下稳定工作。

三、设计步骤1.确定放大电路的类型:根据需要的放大倍数和频率范围选择合适的三极管放大电路类型。

2.计算电阻值:根据三极管的参数和工作要求,计算出各个电阻的取值,以使得放大电路能够工作在合适的工作点。

3.搭建电路:根据设计的电阻值和三极管的引脚接法,搭建放大电路,注意保持电路的稳定性和可靠性。

4.测试和调整:通过信号发生器输入信号,使用示波器和万用表等测试工具,检测并调整放大电路的工作状态,使其达到设计要求。

四、应用三极管放大电路广泛应用于各种电子设备中,包括音频放大器、射频放大器、功率放大器、电子对抗设备等。

(完整版)三极管及放大电路原理

(完整版)三极管及放大电路原理

测判三极管的口诀三极管的管型及管脚的判别是电子技术初学者的一项基本功,为了帮助读者迅速掌握测判方法,笔者总结出四句口诀:“三颠倒,找基极;PN结,定管型;顺箭头,偏转大;测不准,动嘴巴。

”下面让我们逐句进行解释吧。

一、三颠倒,找基极大家知道,三极管是含有两个PN结的半导体器件。

根据两个PN结连接方式不同,可以分为NPN型和PNP型两种不同导电类型的三极管,图1是它们的电路符号和等效电路。

测试三极管要使用万用电表的欧姆挡,并选择R×100或R×1k挡位。

图2绘出了万用电表欧姆挡的等效电路。

由图可见,红表笔所连接的是表内电池的负极,黑表笔则连接着表内电池的正极。

假定我们并不知道被测三极管是NPN型还是PNP型,也分不清各管脚是什么电极。

测试的第一步是判断哪个管脚是基极。

这时,我们任取两个电极(如这两个电极为1、2),用万用电表两支表笔颠倒测量它的正、反向电阻,观察表针的偏转角度;接着,再取1、3两个电极和2、3两个电极,分别颠倒测量它们的正、反向电阻,观察表针的偏转角度。

在这三次颠倒测量中,必然有两次测量结果相近:即颠倒测量中表针一次偏转大,一次偏转小;剩下一次必然是颠倒测量前后指针偏转角度都很小,这一次未测的那只管脚就是我们要寻找的基极(参看图1、图2不难理解它的道理)。

二、PN结,定管型找出三极管的基极后,我们就可以根据基极与另外两个电极之间PN结的方向来确定管子的导电类型(图1)。

将万用表的黑表笔接触基极,红表笔接触另外两个电极中的任一电极,若表头指针偏转角度很大,则说明被测三极管为NPN型管;若表头指针偏转角度很小,则被测管即为PNP型。

三、顺箭头,偏转大找出了基极b,另外两个电极哪个是集电极c,哪个是发射极e呢?这时我们可以用测穿透电流ICEO的方法确定集电极c和发射极e。

(1) 对于NPN型三极管,穿透电流的测量电路如图3所示。

根据这个原理,用万用电表的黑、红表笔颠倒测量两极间的正、反向电阻Rce和Rec,虽然两次测量中万用表指针偏转角度都很小,但仔细观察,总会有一次偏转角度稍大,此时电流的流向一定是:黑表笔→c 极→b极→e极→红表笔,电流流向正好与三极管符号中的箭头方向一致(“顺箭头”),所以此时黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e。

三极管共基极放大电路

三极管共基极放大电路

三极管共基极放大电路三极管是一种常用的电子元件,可以用于放大电路的设计。

其中,共基极放大电路是一种常见的三极管放大电路,具有一些独特的特点和应用。

本文将介绍共基极放大电路的原理、特点和应用。

1. 原理共基极放大电路是以三极管的基极为输入端,集电极为输出端的放大电路。

其原理是利用三极管的放大特性,将输入信号放大后输出。

在共基极放大电路中,输入信号通过输入电容传递到三极管的基极,控制三极管的放大程度,最终在集电极输出放大后的信号。

2. 特点共基极放大电路具有以下特点:(1)电压增益高:由于输入信号直接作用于基极,可以实现较大的电流放大倍数,从而获得较高的电压增益。

(2)频率响应宽:由于输入端的输入电容和输出端的输出电容较小,共基极放大电路的频率响应范围较宽,可以放大高频信号。

(3)输入电阻低:由于输入电阻主要由输入电容和输入电阻组成,而输入电容较小,因此共基极放大电路具有较低的输入电阻。

(4)输出电阻高:由于输出端的输出电容较小,输出电阻较大,因此共基极放大电路的输出电阻较高。

3. 应用共基极放大电路具有以下应用:(1)射频放大器:由于共基极放大电路的频率响应宽,可以用于射频信号的放大,例如在通信系统中的射频放大器。

(2)信号调理:由于共基极放大电路具有高电压增益和宽频率响应,可以用于对信号进行放大和调理,例如在音频放大器中的前级放大。

(3)振荡器:由于共基极放大电路具有较高的电压增益和较高的输出电阻,可以用于构建振荡器电路,例如在无线电通信系统中的振荡器。

总结:共基极放大电路是一种常见的三极管放大电路,具有高电压增益、宽频率响应、低输入电阻和高输出电阻的特点。

其应用广泛,包括射频放大器、信号调理和振荡器等。

在实际应用中,需要根据具体需求选择合适的三极管型号和其他元件进行设计和调试,以实现理想的放大效果。

通过深入理解共基极放大电路的原理和特点,可以更好地应用于电子设备的设计和制造中。

三极管的三种基本放大电路

三极管的三种基本放大电路

二、性能指标分析
IBQ = (VCC – UBEQ) / [RB + (1 + β ) RE] ICQ = β I BQ UCEQ = VCC – ICQRE



rbe β ib RB + RE RL uo

R'L = RE // RL
第3章 放大电路基础
一、电路组成与静态工作点
IBQ C1 + RB +VCC C2 RL
Ri
R’i
例3.2.1 β =100, RS= 1kΩ, RB1= 62kΩ, RB2= 20kΩ, RC= 3kΩ Ω Ω Ω Ω RE = 1.5kΩ, RL= 5.6kΩ, VCC = 15V。求:“Q ”, Au, Ri, Ro Ω Ω 。 [解] 1)求“Q” 解 ) +VCC 20 × 15 RB1 RC C2 U BQ = ≈ 3.7 ( V ) C1 + 20 + 62 + + RL 3 .7 − 0 .7 uo I RS = 2 (mA ) + CQ = I EQ = + RB2 RE us 1 .5 CE − − I BQ ≈ 2 / 100 = 0.02 (mA) = 20 µA U = 15 − 2( 3 + 1.5) = 6 ( V ) 2)求 Au、Ri、Ro 、 Aus CEQ )

RE = RL = Rs = 1 kΩ, VCC = 12V。求:“Q ”、Au、Ri、 Ω 。 、 Ro [解] 1)求“Q” +VCC 解 ) IBQ RB C1 IBQ = (VCC – UBE) / [RB + (1+ β ) RE]
β =120, RB = 300 kΩ, r’bb= 200 Ω, UBEQ = 0.7V Ω

三极管及放大电路解析

三极管及放大电路解析
基极开路时的击穿电压U(BR) CEO。
6. 集电极最大允许耗散功耗PCM PCM取决于三极管允许的温升,消耗功率过大,温升过高会烧坏三极管。 PC PCM =IC UCE
硅管允许结温约为150C,锗管约为7090C。
由三个极限参数可画出三极管的安全工作区 IC
ICM
ICUCE=PCM
安全工作区 O
ICE 与 IBE 之比称为共发射极电流放大倍数
C IC
ICBO
N
ICE IB
P
EC
B
ICEICICBO IC
RB
IBE
N
IBE IBICBO IB
EB
E IE
IC IB ( 1)IC BO IB ICEO
若IB =0, 则 IC ICE0
集-射极穿透电流, 温度ICEO
忽 IC略 E , O IC 有 IB (常用公式)
(3)通频带 衡量放大电路对不同频率信号的适应能力。
由于电容、电感及放大管PN结的电容效应,使放大电路在信号频率较低和较高时电压放大倍数数值下降, 并产生相移。
下限频率
fbwfHfL
(4)最大不失真输出电压Uom:交流有效值。 (5)最大输出功率Pom和效率η:功率放大电路的主要指标参数
上限频率
二、基本共射极放大电路 1、基本放大电路组成及各元件作用
问题:
将两个电源合二为
1. 两种电源

2. 信号源与放大电路不“共地”
共地,且要使信号驮载在静 态之上
-+ UBEQ
有交流损失
有直流分量
静态时(ui=0),
UBEQURb1
动态时,VCC和uI同时作用于晶体管的输入回 路。
(2)阻容耦合放大电路

三极管基本放大电路

三极管基本放大电路

三极管基本放大电路
三极管是一种非常常见的电子元件,它是用来放大电信号的。


极管基本放大电路是一种基础电路,广泛应用于各种电子设备中。

三极管基本放大电路的原理是利用三极管的非线性特性,将输入
电信号经过放大后输出到负载上。

三极管基本放大电路由三部分组成,分别是输入电路、放大电路和输出电路。

输入电路主要是为了将外部电信号引入三极管,使其与放大电路
相结合。

通常输入电路由电容和电阻组成,电容用来隔离直流信号,
电阻用来限制输入电流。

放大电路是三极管基本放大电路的核心部分,它的作用是将输入
电信号放大。

放大电路由三极管的基极、发射极和集电极组成。

其中
基极作为控制极,接收输入电信号;发射极作为输入极,输入电信号
通过基极运动,使电流增强;集电极作为输出极,输出放大后的信号。

放大电路的放大倍数可以通过改变电路中电阻和电容的数值来改变。

最后是输出电路,它的作用是将经过放大的电信号输出到负载上。

输出电路通常由电容和电阻构成。

电容用来将直流分离出来,电阻用
来限流和负载电阻匹配。

三极管基本放大电路有很多种形式,如共基极放大电路、共发射
极放大电路、共集电极放大电路等。

每种放大电路都有其优点和缺点,可以根据不同的应用场合选择合适的放大电路。

总之,三极管基本放大电路是电子工程中不可或缺的基础电路。

了解其原理和常见形式,对于电子爱好者和从事电子工作的人来说,都有着重要的指导和应用意义。

三极管的三种放大电路

三极管的三种放大电路

三极管的三种放大电路三极管是一种常用的电子元件,广泛应用于各种电路中。

它具有放大电压和电流的功能,因此被广泛应用于放大电路中。

本文将介绍三极管的三种常见放大电路:共射、共集和共基电路。

一、共射放大电路共射放大电路是最常见的三极管放大电路之一。

它的特点是输入信号与输出信号均通过三极管的集电极。

其工作原理是:当输入信号施加在基极上时,三极管的基极电流发生变化,进而控制集电极电流的变化。

这种变化通过负载电阻产生的电压变化,即为输出信号。

共射放大电路具有电压增益大、输入电阻高、输出电阻低等特点。

因此,它常被用于需要电压放大的场合,如音频放大器等。

二、共集放大电路共集放大电路是另一种常见的三极管放大电路。

它的特点是输入信号与输出信号均通过三极管的发射极。

其工作原理是:当输入信号施加在基极上时,三极管的基极电流发生变化,进而控制发射极电流的变化。

输出信号即为负载电阻处的电压变化。

共集放大电路具有电流放大特性,且输入输出之间具有相位相反的特点,因此常被用于需要电流放大的场合,如电压稳压器等。

三、共基放大电路共基放大电路是三极管放大电路中最不常见的一种。

它的特点是输入信号通过三极管的发射极,输出信号通过三极管的集电极。

其工作原理是:当输入信号施加在基极上时,三极管的基极电流发生变化,进而控制发射极电流的变化。

输出信号即为负载电阻处的电压变化。

共基放大电路具有电压放大特性,且输入输出之间具有相位相同的特点,因此常被用于需要频率放大的场合,如射频放大器等。

三极管的三种放大电路分别为共射、共集和共基电路。

它们分别具有不同的特点和应用场合。

共射放大电路适用于需要电压放大的场合,共集放大电路适用于需要电流放大的场合,共基放大电路适用于需要频率放大的场合。

了解和掌握这些放大电路的特点和工作原理,对于电子工程师和电子爱好者来说是非常重要的。

希望本文能够对读者有所启发和帮助。

三极管及基本放大电路解读

三极管及基本放大电路解读

第5章 三极管及基本放大电路半导体三极管是一种最重要的半导体器件。

它的放大作用和开关作用促使电子技术飞跃发展。

场效应管是一种较新型的半导体器件,现在已被广泛应用于放大电路和数字电路中。

本章介绍半导体三极管、绝缘栅型场效应管以及由它们组成的基本放大电路。

5.1 半导体三极管半导体三极管简称为晶体管。

它由两个PN 结组成。

由于内部结构的特点,使三极管表现出电流放大作用和开关作用,这就促使电子技术有了质的飞跃。

本节围绕三极管的电流放大作用这个核心问题来讨论它的基本结构、工作原理、特性曲线及主要参数。

5.1.1 三极管的基本结构和类型三极管的种类很多,按功率大小可分为大功率管和小功率管;按电路中的工作频率可分为高频管和低频管;按半导体材料不同可分为硅管和锗管;按结构不同可分为NPN 管和PNP 管。

无论是NPN 型还是PNP 型都分为三个区,分别称为发射区、基区和集电区,由三个区各引出一个电极,分别称为发射极(E )、基极(B )和集电极(C ),发射区和基区之间的PN 结称为发射结,集电区和基区之间的PN 结称为集电结。

其结构和符号见图5-1,其中发射极箭头所示方向表示发射极电流的流向。

在电路中,晶体管用字符T 表示。

具有电流放大作用的三极管,在内部结构上具有其特殊性,这就是:其一是发射区掺杂浓度大于集电区掺杂浓度,集电区掺杂浓度远大于基区掺杂浓度;其二是基区很薄,一般只有几微米。

这些结构上的特点是三极管具有电流放大作用的内在依据。

(a ) (b)图5-1 两类三极管的结构示意图及符号5.1.2 三极管的电流分配关系和放大作用现以NPN 管为例来说明晶体管各极间电流分配关系及其电流放大作用,上面介绍了三极管具有电流放大用的内部条件。

为实现晶体三极管的电流放大作用还必须具有一定的外部条件,这就是要给三极管的发射结加上正向电压,集电结加上反向电压。

如图5-2,V BB 为基极电源,与基极电阻R B 及三极管的基极B 、发射极E 组成基极——发射极回路(称作输入回路),V BB 使发射结正偏,V CC 为集电极电源,与集电极电阻R C 及三极管的集电极C 、发射极E 组成集电极——发射极回路(称作输出回路),V CC 使集电结反偏。

三极管的三种基本放大电路

三极管的三种基本放大电路

基极放大电‎路共基极的放‎大电路,如图1所示‎,图1 共基极放大‎电路主要应用在‎高频放大或‎振荡电路,其低输入阻‎抗及高输出‎阻抗的特性‎也可作阻抗‎匹配用。

电路特性归‎纳如下:输入端(EB之间)为正向偏压‎,因此输入阻‎抗低(约20~200 )输出端(CB之间)为反向偏压‎,因此输出阻‎抗高(约100k‎~1M )。

电流增益:虽然AI小‎于1,但是RL / Ri很大,因此电压增‎益相当高。

功率增益:由于AI小‎于1,所以功率增‎益不大。

共发射极放‎大电路共发射极的‎放大电路,如图2所示‎。

图2 共发射极放‎大电路因具有电流‎与电压放大‎增益,所以广泛应‎用在放大器‎电路。

其电路特性‎归纳如下:输入与输出‎阻抗中等(Ri约1k‎~5k ;RO约50‎k)。

电流增益:电压增益:负号表示输‎出信号与输‎入信号反相‎(相位差18‎0°)。

功率增益:功率增益在‎三种接法中‎最大。

共集电极放‎大电路共集电极放‎大电路,如图3所示‎,图3 共集电极放‎大电路高输入阻抗‎及低输出阻‎抗的特性可‎作阻抗匹配‎用,以改善电压‎信号的负载‎效应。

其电路特性‎归纳如下:输入阻抗高‎(Ri约20‎k );输出阻抗低‎(RO约20‎)。

电流增益:电压增益:电压增益等‎于1,表示射极的‎输出信号追‎随着基极的‎输入信号,所以共集极‎放大器又称‎为射极随耦‎器(emitt‎e r follo‎w er)。

功率增益A‎p= AI × Av≈β,功率增益低‎。

三极管三种放大电‎路特性比较‎。

三极管放大电路基本原理案例详解

三极管放大电路基本原理案例详解

三极管放大电路基本原理案例详解一、引言在现代电子技术中,三极管放大电路是一种非常常见且重要的电路。

它可以用于放大电压和电流,用于信号处理、放大和控制等各种应用。

本文将从基本原理出发,详细解释三极管放大电路的工作原理,并通过案例进行详细的分析和讨论。

二、三极管基本原理1. 三极管的结构和工作原理三极管是一种半导体器件,由三个区域组成,分别是发射极、基极和集电极。

通过在基极-发射极之间的输入电流来控制在集电极-发射极之间的输出电流。

这是基本的工作原理,也是三极管放大电路能够实现放大功能的基础。

2. 放大原理在三极管放大电路中,当在基极-发射极之间的输入电流变化时,可以引起集电极-发射极之间的输出电流的相应变化。

通过适当设计电路,可以使输出电流的变化成倍放大,从而实现信号的放大功能。

三、三极管放大电路的基本结构和工作原理在三极管放大电路中,常见的有共射放大电路、共集放大电路和共基放大电路等不同的结构。

它们在电路连接方式和放大特性上各有不同,但基本的工作原理都是一样的。

1. 共射放大电路共射放大电路是一种常见的三极管放大电路,其特点是输入信号加在基极上,输出信号在集电极上获取。

这种电路具有较高的输入电阻和较低的输出电阻,适合用于中等频率的放大器。

2. 共集放大电路共集放大电路的输入信号加在基极上,输出信号也在基极上获取。

这种电路具有较高的电压放大系数和较宽的频率响应范围,是一种常用于高频放大的电路。

3. 共基放大电路共基放大电路的输入信号加在发射极上,输出信号在集电极上获取。

这种电路具有较大的电压放大系数和较小的输入电阻,适合用于低频放大。

通过以上对三种不同结构的三极管放大电路的简要介绍,我们可以看出三极管放大电路在设计和应用时的一些特点和应用范围。

四、示例分析接下来,我们将以一个具体的案例来进行分析和讨论。

假设我们需要设计一个用于音频放大的三极管放大电路,我们可以选择共射放大电路作为基本结构。

在这个案例中,我们可以根据实际需求和参数,选择合适的三极管型号和外围元器件,设计出满足要求的放大电路。

三极管放大原理(图文+形象)

三极管放大原理(图文+形象)

一、三极管的电流放大原理晶体三极管(以下简称三极管)按材料分有两种:锗管和硅管。

而每一种又有NPN和PNP 两种结构形式,但使用最多的是硅NPN和PNP两种三极管,两者除了电源极性不同外,其工作原理都是相同的,下面仅介绍NPN硅管的电流放大原理。

图一:晶体三极管(NPN)的结构图一是NPN管的结构图,它是由2块N型半导体中间夹着一块P型半导体所组成,从图可见发射区与基区之间形成的PN结称为发射结,而集电区与基区形成的PN结称为集电结,三条引线分别称为发射极e、基极b和集电极。

当b点电位高于e点电位零点几伏时,发射结处于正偏状态,而C点电位高于b点电位几伏时,集电结处于反偏状态,集电极电源Ec要高于基极电源Ebo。

在制造三极管时,有意识地使发射区的多数载流子浓度大于基区的,同时基区做得很薄,而且,要严格控制杂质含量,这样,一旦接通电源后,由于发射结正确,发射区的多数载流子(电子)及基区的多数载流子(控穴)很容易地截越过发射结构互相向反方各扩散,但因前者的浓度基大于后者,所以通过发射结的电流基本上是电子流,这股电子流称为发射极电流Ie。

由于基区很薄,加上集电结的反偏,注入基区的电子大部分越过集电结进入集电区而形成集电集电流Ic,只剩下很少(1-10%)的电子在基区的空穴进行复合,被复合掉的基区空穴由基极电源Eb重新补纪念给,从而形成了基极电流Ibo根据电流连续性原理得:Ie=Ib+Ic 这就是说,在基极补充一个很小的Ib,就可以在集电极上得到一个较大的Ic,这就是所谓电流放大作用,Ic与Ib是维持一定的比例关系,即:β1=Ic/Ib 式中:β--称为直流放大倍数,集电极电流的变化量△Ic与基极电流的变化量△Ib之比为:β= △Ic/△Ib 式中β--称为交流电流放大倍数,由于低频时β1和β的数值相差不大,所以有时为了方便起见,对两者不作严格区分,β值约为几十至一百多。

三极管是一种电流放大器件,但在实际使用中常常利用三极管的电流放大作用,通过电阻转变为电压放大作用。

三极管的三种放大电路

三极管的三种放大电路

三极管的三种放大电路三极管是一种常用的电子元件,它具有放大信号的特性,因此被广泛应用于各种放大电路中。

三极管的三种放大电路分别是共射放大电路、共基放大电路和共集放大电路。

1. 共射放大电路共射放大电路是最常见的三极管放大电路之一,它的特点是输入信号与输出信号都是相对于电源地的。

在共射放大电路中,三极管的发射极作为输入端,集电极作为输出端,基极则起到控制信号的作用。

共射放大电路的工作原理是:当输入信号加在基极上时,三极管的发射极电流会发生相应的变化,进而改变集电极电流,实现对输入信号的放大。

由于共射放大电路具有较大的电压增益和较小的输入阻抗,因此常用于需要较大信号放大的场合,如音频放大电路。

2. 共基放大电路共基放大电路是另一种常见的三极管放大电路,它的特点是输入信号与输出信号都是相对于基极的。

在共基放大电路中,三极管的基极作为输入端,发射极作为输出端,集电极则起到控制信号的作用。

共基放大电路的工作原理是:当输入信号加在基极上时,三极管的发射极电流会发生相应的变化,进而改变集电极电流,实现对输入信号的放大。

由于共基放大电路具有较大的电流增益和较小的输出阻抗,因此常用于需要较大电流放大的场合,如射频放大电路。

3. 共集放大电路共集放大电路是三极管放大电路中的第三种形式,它的特点是输入信号与输出信号都是相对于集电极的。

在共集放大电路中,三极管的集电极作为输入端,发射极作为输出端,基极则起到控制信号的作用。

共集放大电路的工作原理是:当输入信号加在集电极上时,三极管的发射极电流会发生相应的变化,进而改变集电极电流,实现对输入信号的放大。

由于共集放大电路具有较小的电压增益和较大的输入阻抗,因此常用于需要较小信号放大的场合,如电压跟随器。

三极管的三种放大电路各有其特点和应用场合,合理选择和设计放大电路对于实现信号的有效放大至关重要。

在实际应用中,需要根据具体的要求和条件来选择合适的放大电路,并进行相应的电路设计和优化。

2三极管放大电路解析

2三极管放大电路解析
电压放大电路可以用有输入口和输出口的四 端网络表示,如图:
ui
Au
uo
放大电路应满足两个条件:1、输出信号的功率大于输入信 号的功率。2、力求输出到负载上的信号波形与输入信号的 波形相同。
一个放大器必须含有一个或多个有源器件,如:三极管、
场效应管等。同时还包括电阻、电容、电感、变压器元件。
(2-4)
1.已知:Rb=400KΩ, Rc=4KΩ, VCC=20V ,β=50
估算静态工作点IBQ、ICQ、UCEQ
2.已知:Rb=200KΩ, Rc=2KΩ,
VCC=12V ,β=50
Rb
估算静态工作点IBQ、ICQ、UCEQ
Cb 1
+
+
u i
-
+
+VCC Rc
Cb 2
+
T
+
u o
-
+
1.解:I BQ
2.画出基本放大电路的直流通路?
Rb
×Cb1
+
+
ui -
+
+VCC Rc
×Cb2 +
T
+
uo
-
+
Rb
Rc
+ VCC
T
.静态工作点的含义?
所谓静态工作点就是输入信号为零时,电路处于直流 工作状态,这些直流电流、电压的数值在三极管特性曲线上
表示为一个确定的点Q,即 IBQ、 ICQ、 UBEQ、UCEQ。
基本放大电路的工作原理
由于电源的
存在IB0
RB
RC
C1
IBQ ui=0时
+EC IC0

三极管放大电路详细分析

三极管放大电路详细分析

所以,交流负载是过 Q 点且与横轴夹角为 α′的直线。由于 RL′<RL,则 α′>α,所以交 流负载线比直流负载线陡一些。
接负载 RL′后,信号的工作点就沿着交流负载线变化。由于三极管输出曲线的恒流特 点。接 RL 与不接 RL 的 iC 相差不大,而 uCE 的动态范围减小了。因此,输出电压减小,电压 放大倍数下降。
分析放大电路时,一般要求解决两个方面的问题,即确定放大电路的静态和动态时的工
作情况。静态分析就是要确定放大电路没有输入交流信号时,三极管各极的电流和电压。动
态分析则是研究在正弦波信号作用下,放大电路的电压放大倍数、输入电阻和输出电阻等。
1.5.1 三极管放大电路的静态工作点的估算
三极管放大电路的静态值,即直流 IBQ、ICQ、UCEQ 的值在输出 特性上反映为一个点,称为静态工作点 Q。静态工作点负载线与静态工作点
【例 2】电路及参数与【例 2-2】相同,试用图解法求电路的静态工作点。 解:(1)画出直流负载线 MN。在方程 UCE=UCC-ICRC 中,令 IC=0,则 UCE=UCC= 12V,得 M 点;令 UCE=0,则 IC=UCC/Rc=12V/3KΩ=4mA,得 N 点,连接 MN 两点所得 到的直线即为直流负载线。 (2)确定静态工作点 静态基极电流
iB=IBQ+ib=40μA+20SinωtμA 由于三极管的电流放大作用,ib 变化将引起 ic 很大的变化,如图 2-18(a) 所示。 当 iB=60μA 时,负载线与 iB=60μA 的输出曲线的交点为 Q1;当 iB=20mA 时,负载线 与 iB=20mA 的输出特性曲线的交点为 Q2。因此,当信号变化时,工作点就在 Q1 与 Q2 之间 变化。如果工作点的变化是在放大区内。那么 ib 作正弦变化时。ic、uce 也按正弦规律变化, 所以

三极管共集电极放大电路和共基极放大电路详解

三极管共集电极放大电路和共基极放大电路详解

35
四、应用举例
3、电压放大倍数 Au 、 AuS 的计算 (1 ) Re // RL Au rbe (1 ) Re // RL Ui 51 4 // 6 0.99 1.25 51 4 // 6 Ri 76 AuS Au 0.99 0.87 Ri RS 76 10
I EQ VBB U BEQ Re , I BQ I EQ 1
U CEQ U CQ U EQ VCC I CQ RC U BEQ
50
3、动态分析
• 根据电路图画出交流通路:
51
3、动态分析
• 由交流通路画出交流等效电路:
52
3、动态分析
• 计算交流参数:
RC Au U i I e Re I b rbe rbe (1 ) Re

UO

36
四、应用举例
• 4、电路输出幅度UOmax的计算 • 共集电路的输出幅度也称跟随范围。通过画出 输出回路直流负载线(DCLL)和交流负载线(ACLL) 的方法求出。其中DCLL是通过坐标点(12,0),(0,3) 直接画出的;而ACLL则是通过Q点和(V´CC,0)坐标 画出的。
I EQ (1 ) I BQ U CEQ VCC I EQ Re
6
3、动态分析

先根据交流通路画出等效电路:
7
3、动态分析
• ①计算放大倍数

Au
UO Ui



I e Re


( Rb rbe ) I b I e Re (1 ) I b Re


4.5共集电极电路和共基极电路
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

详解经典三极管基本放大电路
三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。

分成NPN和PNP 两种。

我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。

图1:三极管基本放大电路
下面的分析仅对于NPN型硅三极管。

如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流Ic。

这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。

三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的&beta;倍,即电流变化被放大了&beta;倍,所以我们把&beta;叫做三极管的放大倍数(&beta;一般远大于1,例如几十,几百)。

如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。

如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式U=R*I 可以算得,这电阻上电压就会发生很大的变化。

我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。

三极管在实际的放大电路中使用时,还需要加合适的偏置电路。

这有几个原因。

首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。

当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。

但实际中要放大的信号往往远比0.7V要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。

如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。

另一个原因就是输出信号范围的要求,如果没有加偏置,那么只有对那些增加的信号放大,而对减小的信号无效(因为没有偏置时集电极电流为0,不能再减小了)。

而加上偏置,事先让集电极有一定的电流,当输入的基极电流变小时,集电极电流就可以减小;当输入的基极电流增大时,集电极电流就增大。

这样减小的信号和增大的信号都可以被放大了。

下面说说三极管的饱和情况。

像上面那样的图,因为受到电阻Rc的限制(Rc是固定值,那么最大电流为U/Rc,其中U为电源电压),集电极电流是不能无限增加下去的。

当基极电流的增大,不能使集电极电流继续增大时,三极管就进入了饱和状态。

一般判断三极管是否饱和的准则是:Ib*&beta;〉Ic。

进入饱和状态之后,三极管的集电极跟发射极之间的电压将很小,可以理解为一个开关闭合了。

这样我们就可以拿三极管来当作开关使用:当基极电流为0时,三极管集电极电流为0(这叫做三极管截止),相当于开关断开;当基极电流很大,以至于三极管饱和时,相当于开关闭合。

如果三极管主要工作在截止和饱和状态,那么这样的三极管我们一般把它叫做开关管。

如果我们在上面这个图中,将电阻Rc换成一个灯泡,那么当基极电流为0时,集电极电流为0,灯泡灭。

如果基极电流比较大时(大于流过灯泡的电流除以三极管的放大倍数&beta;),三极管就饱和,相当于开关闭合,灯泡就亮了。

由于控制电流只需要比灯泡电流的&beta;分之一大一点就行了,所以就可以用一个小电流来控制一个大电流的通断。

如果基极电流从0慢慢增加,那么灯泡的亮度也会随着增加(在三极管未饱和之前)。

但是在实际使用中要注意,在开关电路中,饱和状态若在深度饱和时会影响其开关速度,饱和电路在基极电流乘放大倍数等于或稍大于集电极电流时是浅度饱和,远大于集电极电流时是深度饱和。

因此我们只需要控制其工作在浅度饱和工作状态就可以提高其转换速度。

对于PNP型三极管,分析方法类似,不同的地方就是电流方向跟NPN的刚好相反,因此发射极上面那个箭头方向也反了过来&mdash;&mdash;变成朝里的了。

相关文档
最新文档