有限差分法实验报告
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工程电磁场
实验报告
——有限差分法
用超松弛迭代法求解 接地金属槽内电位的分布
一、实验要求
按对称场差分格式求解电位的分布
已知:
给定边值:如图1-7示 图1-7接地金属槽内半场域的网格 给定初值)()(.1j 40
100
1j p
1
2j i -=
--=
ϕϕϕ 误范围差: 510-=ε
计算:迭代次数N ,j i ,ϕ,将计算结果保存到文件中
二、实验思想
有限差分法
有限差分法(Finite Differential Method )是基于差分原理的一种数值计算法。其基本思想:将场域离散为许多小网格,应用差分原理,将求解连续函数ϕ的泊松方程的问题转换为求解网格节点上ϕ
=ϕ= V
100 ϕ 0
=ϕ0
=ϕ
的差分方程组的问题。
泊松方程的五点差分格式
)(4
1
4243210204321Fh Fh -+++=⇒=-+++ϕϕϕϕϕϕϕϕϕϕ
当场域中,0=ρ得到拉普拉斯方程的五点差分格式
)(4
1
044321004321ϕϕϕϕϕϕϕϕϕϕ+++=⇒=-+++
差分方程组的求解方法(1) 高斯——赛德尔迭代法
][)(,)(,)(,)(,)(,2
k 1j i k j 1i 1k 1j i 1k j 1i 1k j i Fh 4
1
-+++=+++-+-+ϕϕϕϕϕ (1-14)
式中:⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅=,2,1,0,2,1,k j i ,
• 迭代顺序可按先行后列,或先列后行进行。 • 迭代过程遇到边界节点时,代入边界值或边界差分 格式,直到所有节点电位满足εϕϕ<-+)(,)(,k j i l k j i 为止。 (2)超松弛迭代法
][)
(,)(,)(,)(,)(,)(,)(,k j i 2k 1j i k j 1i 1k 1j i 1k j 1i k j i 1k j i 4Fh 4
ϕϕϕϕϕαϕϕ--++++=+++-+-+ (1-15)
式中:α——加速收敛因子)21(<<α 可见:迭代收敛的速度与α有明显关系
三、程序源代码
#include
double BJ[5][5];//数组B 用于比较电势 int s[100];//用于储存迭代次数
图1-4 高斯——赛德尔迭代法
double d[100];//用于记录所有的加速因子
d[0]=1.0;
int i,j,N=0,M=0,x;
for(i=0;i<100;i++)
d[i]=0.01*i+d[0];//加速因子从1.0到2.0之间的20个数!
double w[100][10];
int P,Q;
for(P=0;P<4;P++)
for(Q=0;Q<5;Q++)
A[P][Q]=0;
for(P=0;P<5;P++)
A[4][P]=100;