函数在生活中的应用

合集下载

浅谈函数在现实生活中的应用

浅谈函数在现实生活中的应用

浅谈函数在现实生活中的应用
函数在每个人的日常生活中都发挥着重要的作用。

尽管大多数人没有意识到,但他们经常使用函数来表达、解决问题。

这种低级语言可以帮助人们更快更好地完成任务,是现代科技发展的重要组成部分。

第一,在进行一些计算机或数学问题的尝试时,函数可以帮助我们很好地解决问题,我们可以使用它们来解决和求解复杂的问题。

比如,解决方程、数学积分、求极值等数学问题,就需要使用合适的函数及其运算规则。

第二,函数也被广泛用于计算机科学中,它可以用于设计程序、分析程序、构建操作系统等。

运行计算机程序的单位就是函数,一个程序由多个函数组成,因此它是计算机科学中最基本的结构。

第三,函数也被用于控制和调节机器、设备等装置,以获得预期的性能。

比如,在自动驾驶系统中,工程师们使用函数来控制车辆的行驶方向、行驶速度、刹车等参数,以使汽车在特定的道路上运行并安全到达目的地。

此外,在现实生活中,函数也被广泛应用于其他方面,包括科学计算、金融建模、游戏开发、机器学习等。

函数可以更好地帮助我们表达思想,它是许多新技术背后的基石,比如谷歌搜索引擎、深度学习、区块链、虚拟现实等。

因此,函数在现实生活中扮演着越来越重要的角色,它既有助于我们解决复杂的问题,又能够帮助我们更好地进行计算,进而让我们的生活更加轻松美好。

归根结底,函数是各大技术突破的基本前提,
也是让现实生活更加自动化、智能化的关键要素。

函数在生活中的应用

函数在生活中的应用

函数在生活中的应用
在我们日常生活中,函数无处不在。

无论是在数学、科学、经济还是工程领域,函数都扮演着非常重要的角色。

但是,除了这些专业领域,函数在我们的日常生活中也有着非常广泛的应用。

首先,我们可以从日常生活中的购物开始说起。

当我们去商店购物时,我们会
发现很多商品的价格都是以函数的形式来确定的。

比如,折扣商品的价格可能是原价的80%或者打折后的价格是原价减去一定的金额。

这些都可以用函数来表示。

另外,一些超市也会根据购买的数量来给予不同的折扣,这也是一个函数的应用。

其次,我们可以看到函数在健康领域的应用。

比如,我们常常听到心率、血压
等生理指标的变化。

这些生理指标的变化可以用函数来描述,比如心率随着运动强度的增加而增加,血压随着年龄的增长而增加等等。

通过对这些函数的分析,我们可以更好地了解自己的健康状况,并及时采取相应的措施。

再者,函数在交通运输领域也有着广泛的应用。

比如,我们常常会听到交通流量、车速等概念。

这些都可以用函数来描述,通过对这些函数的分析,我们可以更好地规划出行路线,避开拥堵路段,提高出行效率。

总的来说,函数在我们的日常生活中有着非常广泛的应用。

通过对函数的理解
和应用,我们可以更好地规划生活、提高效率、保持健康。

因此,学习函数不仅可以帮助我们在学业上取得更好的成绩,也可以帮助我们更好地生活。

希望大家能够重视函数的学习和应用,让函数成为我们生活中的得力助手。

一次函数与生活实例

一次函数与生活实例

一次函数与生活实例一次函数在数学中是一个非常常见的函数形式,通常可以表示为y= ax + b的形式,其中a和b为常数,x为自变量,y为因变量。

一次函数在生活中也有着广泛的应用,下面将通过几个生活实例来展示一次函数的应用。

1. 购买水果假设某水果摊上正在出售苹果,价格为每个2元。

如果你购买了x个苹果,那么你需要支付的费用可以表示为y = 2x的关系。

这个关系就是一个一次函数,其中a = 2,b = 0。

当你购买不同数量的苹果时,费用会随之线性增加。

2. 打车费用在某城市打车的费用可以表示为每公里x元,同时还有起步价b元。

如果你打车了y公里,那么你需要支付的费用可以表示为y = ax + b的关系。

这同样是一个一次函数,其中a为每公里的价格,b为起步价。

3. 人力资源一家公司的员工数量通常会随着时间的推移而发生变化。

假设某公司每个月会有a名员工离职,同时会有b名员工入职。

那么公司员工数量随时间变化的关系可以表示为y = ax + b的一次函数关系,其中a为离职率,b为入职率。

4. 燃料消耗一辆汽车在行驶过程中,燃料消耗通常和行驶的里程成正比。

假设一辆汽车每行驶x公里需要消耗y升汽油,那么燃料消耗和行驶里程的关系可以表示为y = ax的一次函数关系,其中a为单位里程消耗的汽油量。

通过以上几个生活实例的展示,我们可以看到一次函数在生活中的广泛应用。

无论是购买物品、计算费用、人力资源管理还是燃料消耗,一次函数都能够清晰地描述各种实际情况,帮助我们更好地理解和应用数学知识。

希望通过这些例子,能够帮助大家更好地理解和应用一次函数的概念。

函数在生产生活中的实际应用

函数在生产生活中的实际应用

函数在生产生活中的实际应用1、某仓库有30名治理人员及面积相等的75间库房,预备存放服装、家电和建筑材料。

假如存放服装每间库房可上交利润100元,并需治理人员21个;假如存放家电,每间库房可上交利润60元,并需要治理人员41个;假如存放建筑材料,每间库房可上交利润45元,并需要治理人员81个。

问应该如何样安排,才能使每间库房都堆满物资,治理人员能合理使用,且上交的利润最多?2、某童装厂现有甲种布料38米,乙种布料26米,现打算用这两种布料生产L 、M 两种型号的童装共50套。

已知做一套L 型号的童装需用甲种布料0.5米,乙种布料1米,可获利45元;做一套M 型号的童装需用甲种布料0.9米,乙种布料0.2米,可获利30元。

设生产L 型号的童装套数为x 。

用这批布料生产这两种型号的童装所获利润为y (元)(1)写出y (元)关于x (套)的函数关系式,并求出自变量x 的取值范畴;(2)该厂在生产这批童装过程中,当L 型号的童装为多少套时,能使该厂收成的利润最大?最大利润是多少?3、某农场300名职工耕种51顷土地,分别种植水稻、蔬菜和棉花,种植这些农作设水稻、蔬菜和棉花的种植面积分别为x、y、z公顷,(1的代数式分别表示y和z为:y=;Z=。

(2)若这些农作物的估量产值如表2所示,且总产值P满足关系式:360≤P≤370(x、y、z均为整数)求那个农场应如何样安排水稻、蔬菜和棉花的种植面积?4、在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(厘米)与燃烧时刻x(小时)之间的关系如图所示。

请依照图像所提供的信息解答下列问题:(1从点燃到燃尽所用的时刻分别是;(2)分别求甲、乙两根蜡烛燃烧时y间的函数关系式;(3度相等(不考虑都燃尽时的情形)内,甲蜡烛比乙蜡烛低?5、某企业有甲、乙两个长方体的蓄水池,将甲池中的水以每小时6立方米的速度注入乙池,甲、乙两个蓄水池中水的深度y(米)与注水时刻x(时)之间的函数图像如图所示,结合图像回答下列问题:(1)分别求出甲、乙两个蓄水池中水的深度y与注水时刻之间的函数关系式;(2)求注水多长时刻甲、乙两个蓄水池水的深度相同;(3)求注水多长时刻甲、乙两个蓄水池的蓄水量相同。

函数在日常生活中的应用

函数在日常生活中的应用

函数在日常生活中的应用函数不仅在我们的学习中应用广泛,日常生活中也有充分的应用。

在此举出一些例子并作适当分析。

当人们在社会生活中从事买卖活动或其他生产时,其中常涉及到变量的线性依存关系,经营者为达到宣传、促销或其他目的,往往会为我们提供两种或多种付款方案或优惠办法。

总之,函数渗透在我们生活中的各个方面,我们也经常遇到此类函数问题,这时我们应三思而后行,深入发掘自己头脑中的数学知识,用函数解决。

如:1.一次函数的应用:购物时总价与数量间的关系,是最基本的一次函数的应用,由函数解析式可以清楚地了解到其中的正比例关系,在单价一定的条件下,数量越大,总价越大。

此类问题非常基本,却也运用最为广泛。

2.二次函数的应用:当某一变量在因变量变化均匀时变化越来越快,常考虑用二次函数解决。

如细胞的分裂数量随时间的变化而变化、利润随销售时间的增加而增多、自由落体时速度随时间的推移而增大、计算弹道轨迹等。

二次函数的解析式及其图像可简明扼要地阐述出我们需要的一系列信息。

如增加的速度、增加的起点等。

3.反比例函数的应用:反比例函数在生活中应用广泛,其核心为一个恒定不变的量。

如木料的使用,当木料一定时长与宽的分别设置即满足相应关系。

还有总量一定的分配问题,可应用在公司、学校等地方。

所分配的数量及分配的单位即形成了这样的关系。

4.三角函数的应用:实际生活中,我们常常可以遇到三角形,而三角函数又蕴含其中。

如建筑施工时某物体高度的测量,确定航海行程问题,确定光照及房屋建造合理性以及河宽的测量都可以利用三角函数方便地测出。

在日常生活中,我们往往需要将各种函数结合起来灵活运用,以解决复杂的问题。

要时刻将函数的解析式与其图形联系起来,以得到最简单的解决办法。

浅谈生活里的函数应用

浅谈生活里的函数应用

浅谈生活里的函数应用函数与实际生活中的应用在中学的数学学习中, 函数是一个非常重要的部分. 不仅很多题目专考各种基础函数的综合运用, 有时其他的问题也需要运用函数的思想解决. 那么我们学习函数对我们有什么帮助呢?其实我们学习函数的目的就是应用于我们的生活中, 而事实上函数已经广泛应用于我们的生活中,使我们的生活更加便利在生活中,不同的函数被运用在不同的方面.下面,我用我们现阶段较熟悉的几种函數举出了几个不同的例子.1. 东海体育用品商场为了推销某一运动服,先做了市场调查,得到数据如下表:(1)以x作为点的横坐标,p作为纵坐标,把表中的数据,在图8中的直角坐标系中描出相应的点,观察连结各点所得的图形,判断p与x的函数关系式;(2)如果这种运动服的买入件为每件40元,试求销售利润y(元)与卖出价格x(元/件)的函数关系式(销售利润=销售收入-买入支出);(3)在(2)的条件下,当卖出价为多少时,能获得最大利润?解:(1)p与x成一次函数关系。

设函数关系式为p=kx+b ,则解得:k=-10,b=1000 ,∴ p=-10x+1000经检验可知:当x=52,p=480,当x=53,p=470时也适合这一关系式∴所求的函数关系为p=-10x+1000(2)依题意得:y=px-40p=(-10x+1000)x-40(-10x+1000)∴ y=-10x2+1400x-40000(3)由y=-10x2+1400x-40000 可知,当时,y有最大值∴卖出价格为70元时,能获得最大利润。

2、人站在平放在湿地上的木板上,当人和木板对湿地的压力一定时,随着木板面积的变化,人和木板对地面的压强将如何变化?如果人和木板对湿地地面的压力为600N,回答下列问题:(1)用含S的代数式表示p。

p是S的反比例函数吗?为什么?(2)当木板面积为0.2m2时,压强是多少?(3)如果要求压强不超过6000Pa,木板面积至少要多大?(4)画出相应的函数图象。

试论函数在经济生活当中的应用

试论函数在经济生活当中的应用

函数在经济生活中的应用一、函数在经济生活中的重要性函数在经济生活中至关重要,它们不仅仅是简单的数学概念,而是将数学应用于实际生活的工具。

函数可以帮助政府、企业和个人找到最有效的解决方案,从而节省时间和金钱,提高生产力。

例如,政府可以使用函数来分析经济状况,并制定有效的财政政策,以维持经济的稳定,促进社会发展。

企业也可以使用函数来分析市场,确定最佳的生产方式,以最小的成本获得最大的收益。

个人也可以使用函数来分析投资组合,以更好地控制风险,获得最大的投资回报。

此外,函数还可以帮助我们更好地理解和计算复杂的问题,比如气候变化、货币政策、社会福利等,从而使我们能够更好地制定有效的政策,促进社会的发展。

总之,函数在经济生活中起着不可或缺的作用,它们不仅可以帮助政府、企业和个人节省时间和金钱,提高生产力,还可以帮助我们更好地理解和计算复杂的问题,以制定有效的政策,促进社会的发展。

因此,函数在经济生活中起着至关重要的作用,它们是经济发展的重要基石。

二、函数在经济学中的应用在经济学中,函数的应用是极其重要的,它们可以帮助经济学家们更好地理解和分析经济活动。

函数有助于经济学家们更好地分析问题,从而帮助他们更好地解决经济问题。

例如,经济学家们可以使用函数来研究价格和供给之间的关系,以更好地控制和调整价格。

另一个例子是,经济学家们可以使用函数来研究不同种类的货币的购买力之间的关系,以更好地控制货币的流通。

此外,函数可以帮助经济学家们更好地分析投资和收益之间的关系。

例如,经济学家们可以使用函数来研究不同类型的投资和收益之间的关系,以更好地控制投资风险。

函数还可以帮助经济学家们更好地研究国家经济发展的趋势,以及不同国家经济发展之间的关系,以便更好地控制国家的经济发展趋势。

总之,函数在经济学中的应用是至关重要的,它们可以帮助经济学家们更好地分析和解决经济问题,从而促进经济的发展和改善。

三、函数在市场经济中的作用在市场经济中,函数发挥着至关重要的作用。

浅析函数在现实生活中的应用

浅析函数在现实生活中的应用

浅析函数在现实生活中的应用
函数在现实生活中的应用非常广泛,从我们日常生活中的交通、购物、娱乐等方面都可以看到函数的身影。

1、交通:函数可以用来解决交通运输问题,比如汽车行驶的路程和时间,船舶的航线设计,飞机的路线规划等。

2、购物:函数可以用来计算商品的价格,比如折扣、积分、优惠券等。

3、娱乐:函数可以用来设计游戏,比如用函数来模拟游戏中的物理运动、游戏角色的行为等。

4、科学研究:函数可以用来解决物理、化学、生物等科学问题,比如用函数来模拟物质的变化和运动,用函数来解决力学、热力学等问题。

5、社会研究:函数可以用来解决社会科学问题,比如经济学的供求曲线、社会学的社会关系等。

浅谈函数在现实生活中的应用

浅谈函数在现实生活中的应用

浅谈函数在现实生活中的应用
函数是数学中最重要的概念之一,它在现实生活中也有广泛应用。

函数可以用来描述实际世界的一些现象,也可以用来解决实际问题。

本文将讨论函数在日常生活中的应用,帮助读者更好地理解函数的用途。

首先,函数可以用来研究实际世界的常见现象。

例如,可以使用函数来描述人口的变化,温度的变化,污染物的浓度等,这些变化可以用函数描述出来,从而使我们能够更好地理解它们。

此外,研究人员还可以通过函数来分析市场趋势,如物价的变化、股票价格的变化等,从而了解市场动态,做出更好的投资决策。

其次,函数也可以用来解决实际问题。

比如,在机械行业,设计师经常使用函数来解决建筑设计、机械零件设计等问题。

函数可以帮助设计师更准确地了解参数之间的关系,从而设计出更加精确、稳定、可靠的产品。

此外,在电子领域,函数也可以用来解决实际问题,比如用于绘制键盘图形、设计传感器和模拟电路等。

最后,在科学研究中,函数也有重要的作用。

在物理学中,函数可以用来表示力学和能量的关系,帮助人们更好地理解物理现象。

在计算机科学中,函数也被称为算法,可以用来解决一些复杂的问题,如图像处理、人工智能等。

综上所述,函数是一种普适的数学概念,它在现实生活中也有广泛的应用,可以用来描述实际世界的现象,也可以用来解决实际问题,从而更好地发掘现实生活中的可能性。

【精品】函数在生活中的应用

【精品】函数在生活中的应用

【精品】函数在生活中的应用
函数在生活中可以有很多种应用,其中一些是每天我们都会接触到的:
一、制作图表
图表可以用来帮助我们更清楚地表达数据,例如做出折线图、柱状图等等,这就需要
用到相关的函数,例如三角函数等等。

二、对密码加密
密码是我们日常生活中非常重要的秘密,当我们在网上购物的时候,会涉及到信用卡
等重要信息,这就需要把数据变成一个不可识别的串,这时函数就可以派上用场了,在网
页上,函数可以帮助我们把信用卡号、密码等转换成一串乱码,安全保护我们的个人信息。

三、用来帮助定位地理信息
当我们在网上搜索某个城市的时候,我们还可以看到其周围的环境,这种功能有利于
我们定位自己,可以让我们轻松找到一个景点。

为了让地图变得更加细腻,就需要用到相
关的函数,例如对数函数等等,它们可以帮助我们把地理信息表达的更加准确。

四、影像处理
当我们在为图像添加效果时,会用到很多函数,例如图像美化、锐化、去噪等;或者
制作出漂亮的3D图形时,也会使用到函数,例如反射、透视等。

函数允许我们创建出更
逼真、生动的效果。

五、游戏开发
游戏的开发中也非常应用函数,例如会制作出精细的游戏地图,精确定位游戏角色的
位置,还有游戏AI的实现,函数可以帮助我们精确的设计出更加精细的游戏。

总的来说,函数是我们日常生活中很重要的一种工具,它可以给我们提供方便,把无
法计算出来的东西变成可以计算出来的东西,是高效解决复杂问题的一种方法,对于日常
生活中的处理有很大的助力!。

函数模型在实际生活中的应用

函数模型在实际生活中的应用

函数模型在实际生活中的应用函数应用题涉及的题型比较多,下面谈谈函数模型在实际生活中的应用:一、一次函数模型例1 假如你计划买一部手机,而你的朋友给你推荐手机消费有三种可供选择,如下表:从经济角度考虑,哪一种手机卡更为合适?分析:这道题目的背景是消费问题,用表格的形式给出了已知条件,其中存在的数学等量关系为:月消费金额=月租费+每分钟通话费×月通话时间,从而建立月通话时间与月消费金额之间的一次函数关系式.解:设月通话总时间为x 分钟,则三种手机卡的月消费金额分别:连通卡:36.012+=y ()0≥x神州卡:x y 6.0=)0(≥x都市卡:x y 2.024+=)0(≥x 由 ⎩⎨⎧=+=x y x y 6.036.012 解得: ⎩⎨⎧==3050y x 由 ⎩⎨⎧+==x y x y 2.0246.0 解得: ⎩⎨⎧==3660y x 由 ⎩⎨⎧+=+=x y x y 36.0122.024 解得:⎩⎨⎧==3975y x 由图可知:①当500<≤x 时,选用神州行卡;② 当50=x 时,选用神州行卡或连通卡更为经济合适;③ 当7550<<x 时,选用连通卡更为经济合适;④ 当75=x 时,选用都市卡或连通卡;⑤ 当75>x 时选用都市卡更为经济合适.评注:在求解该问题时要注意找出其中数学量之间的关系,从而建立一定的函数关系式来求解.二、分段函数模型例2:某旅行社组团去风景旅游,若每团人数在30人或30人以下,飞机票每张收费900元;若每团人数多于30人,则给予优惠:每多1人,机票每张减少10元,直到每张降为450元为止.每团乘飞机,旅行社需付给航空公司包机费15000元.(1)写出飞机票的价格关于人数的函数;(2)每团人数为多少时,旅行设可获得最大利润?分析:注意价格与人数之间的关系,从而确定函数的解析式.解:(1)设旅行团人数为x 人,由题得075x <≤飞机票价格为y 元,则90090010(30)y x ⎧=⎨--⎩0303075x x <≤<≤即900120010y x ⎧=⎨-⎩0303075x x <≤<≤ (2)设旅行社获利S 元则90015000(120010)15000x S x x -⎧=⎨--⎩0303075x x <≤<≤ 即29001500010(60)21000x S x -⎧=⎨--+⎩0303075x x <≤<≤故当60x =时,旅行设可获得最大利润. 评注:在对分段函数进行求最值时,一定要注意分析自变量的范围.三、二次函数模型二次函数是出现的比较多的函数模型,求解此类问题常常通过对其单调区间的讨论来求解.例3:某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示.(I )写出图一表示的市场售价与时间的函数关系P=f(t);写出图二表求援 种植成本与时间的函数关系式Q=g(t); (II )认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?注:市场售价和种植成本的单位:元/102kg ,时间单位:天)分析:这是一个分段函数与二次函数相结合的应用题,可以根据函数图象写出解析式,从而利用二次函数来确定函数的最值问题.解:(1)由图可得市场售价与时间的函数关系为: f (t )=⎩⎨⎧≤<-≤≤-;300200,3002,2000,300t t t t 由图2可得种植成本与时间的函数关系为:g (t )=2001(t -150)2+100,0≤t ≤300. (2)设t 时刻的纯收益为h (t ),则由题意得h (t )=f (t )-g (t ),即h (t )=⎪⎪⎩⎪⎪⎨⎧≤<-+-≤≤++-.300200,21025272001,2000,217521200122t t t t t t当0≤t ≤200时,配方整理得h (t )=-2001(t -50)2+100,所以,当t =50时,h (t )取得区间[0,200]上的最大值100;当200<t ≤300时,配方整理得h (t )=-2001(t -350)2+100, 所以,当t =300时,h (t )取得区间(200,300]上的最大值87.5.综上,由100>87.5可知,h (t )在区间[0,300]上可以取得最大值100,此时t =50,即从二月一日开始的第50天时,上市的西红柿纯收益最大.评注:求本题的最值时一定要注意先求出每一定义域中每一段上的最值,然后来加以比较.四、函数()xb ax x f +=()0,>b a 模型 这类函数的模型常常是通过均值定理或者函数的单调性求最值,此时要注意等号能否取到.例4:甲、乙两地相距120千米,汽车从甲地以速度v (千米/时)匀速行驶到乙地,速度不得超过100千米/时.已知汽车每小时的运输成本(单位:元)由可变部分和固定部分组成:固定部分为64元;可变部分与速度 v 的平方成正比,比例系数为0.01. (1)求汽车每小时的运输成本w(元)(2)把全程运输成本y (元)表示为速度v (千米/时)的函数,并指出函数的定义域;(3)为了使全程运输成本最小,汽车应以多大速度行驶?分析:本题可以先根据题意写出全程的运输成本,观察函数式的特点可以知道结合基本不等式来求解. 解:((1)分析可以得到6401.02+=v w ; (2)全程运输成本y (元)表示为速度v (千米/时)的函数关系式是:vv y 120)6401.0(2⋅+=,其中函数的定义域是]100,0(∈v ; (3)整理函数有)6401.0(120120)6401.0(2vv v v y +⋅=⋅+=, 根据基本不等式, 1926401.02120)6401.0(120=⋅⋅≥+⋅=v v v v y , 当且仅当]100,0(806401.0∈==v vv 即时,取等号成立, 故汽车应以80千米/时的速度行驶,全程运输成本最小为192元.评注:对基本不等式的应用要注意“一正二定三相等”的特点.当然,涉及函数的应用问题还有很多,关键是确定用哪种类型的函数.。

函数在生活中的应用

函数在生活中的应用

函数在生活中的应用吴雨桐一、一次函数:(1)基本概念:一次函数,也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。

(2)生活中的应用:1.当时间t一定,距离s是速度v的一次函数。

s=vt。

2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。

设水池中原有水量S。

g=S-ft。

3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y 是重物重量x的一次函数,即y=kx+b(k为任意正数)二、二次函数:(1)基本概念:二次函数(quadratic function)是指未知数的最高次数为二次的多项式函数。

二次函数可以表示为f(x)=ax^2+bx+c(a不为0)。

其图像是一条主轴平行于y 轴的抛物线。

(2)生活中的应用:抛物线。

三、反比例函数:(1)基本概念:形如函数y=k/x(k为常数且k≠0)叫做反比例函数,其中k叫做比例系数,x是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数。

(2)生活中的应用:A、在电学中的运用在物理学中,有很多量之间的变化是反比例函数的关系,因此,我们可以借助于反比例函数的图象和性质解决一些物理学中的问题,这也称为跨学科应用。

例1 在某一电路中,保持电压不变,电流I(安培)和电阻R(欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培.(a)求I与R之间的函数关系式;(b)当电流I=0.5时,求电阻R的值.(a)解:设I=∵R=5,I=2,于是=2×5=10,所以U=10,∴I=.(b)当I=0.5时,R===20(欧姆).B、在光学中运用例2 近视眼镜的度数y(度)与焦距x(m)成反比例,已知400•度近视眼镜镜片的焦距为0.25m.(a)试求眼镜度数y与镜片焦距x之间的函数关系式;(b)求1 000度近视眼镜镜片的焦距.分析:把实际问题转化为求反比例函数的解析式的问题.解:(a)设y=,把x=0.25,y=400代入,得400=,所以,k=400×0.25=100,即所求的函数关系式为y=.(b)当y=1000时,1000=,解得=0.1m.C、在排水方面的运用例3 如图所示是某一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间的函数关系图象.(a)请你根据图象提供的信息求出此蓄水池的蓄水量;(b)写出此函数的解析式;(c)若要6h排完水池中的水,那么每小时的排水量应该是多少?(d)如果每小时排水量是5 000m3,那么水池中的水将要多少小时排完?分析:当蓄水总量一定时,每小时的排水量与排水所用时间成反比例.解:(a)因为当蓄水总量一定时,每小时的排水量与排水所用时间成反比例3 •所以根据图象提供的信息可知此蓄水池的蓄水量为:4 000×12=48 000(m3).(b)因为此函数为反比例函数,所以解析式为:V=;(c)若要6h排完水池中的水,那么每小时的排水量为:V==8000(m3);(d)如果每小时排水量是5 000m3,那么要排完水池中的水所需时间为:t==8000(m3)。

函数在现实生活中的应用

函数在现实生活中的应用

函数在现实生活中的应用
1.金融领域:函数被广泛应用于金融领域,比如计算利率、复利、折旧、财务报表等等。

2.统计学:函数被用来处理数据,比如计算平均值、标准差、方差等等。

3.工程学:函数被广泛应用于工程学中,比如计算力学、电子电路、信号处理等等。

4.自然科学:函数在自然科学研究中也有很重要的作用,比如计算物理量、化学反应等等。

5.计算机科学:函数是计算机科学中最基本的概念之一,它被用来编写程序和算法,实现各种计算任务。

总之,函数是现代科学和工程技术中不可或缺的工具,它们被广泛应用于各个领域,为人类社会的发展做出了重要贡献。

数形结合思想在生活中的应用

数形结合思想在生活中的应用

数形结合思想在生活中的应用
一、函数思维在生活中的应用
1、健身减肥:运用函数思维,将健身活动函数化,以分解大问题为小问题,如果每周都坚持锻炼、控制在一定的体重,经过不断重复、不断纠错与提高,目标就一定会实现。

2、求职面试:通过函数思维可以把考试过程抽象成几个函数式:进行复习完善、准备材料准备,面试前准备、状态调整、细心观察等,不断地循环、反复检查,最终能够取得好的效果。

3、管理项目:将项目管理可以抽象为一个函数,函数首先需要明确、定义好整个项目的目标,然后再细化分解任务、管理过程,核对每一个环节,在遇到变数时及时调整,最终能够顺利完成项目。

二、函数思维在学习中的应用
1、学习复习:学习复习也可以用函数思维来思考,如果把学习内容归纳整理,把一个大的学习工程分解成多个小的函数式,做到分类知识的掌握,考试复习时再重温大纲,把知识连续衔接子,避免忘记,不断重复、不断提高,取得好的效果。

2、系统学习:将学习的内容抽象成函数,将学习的内容抓住要点,不慌不忙,有步骤地学习,就是用函数思维提升学习效率。

3、强化记忆:函数思维可以使学习者记忆更牢更深,重要知识点及时复习,仔细观察问题,把知识点牢记于死,多练习,把抽象的内容生动记忆,使学习的效果更加深刻。

三、总结
函数思维在我们的生活及学习中都具有极大的应用价值,函数思维重要的学习思想就是:分解大问题为小问题,不断重复、不断纠错与提高,最终能够取得好的效果,用函数思维可以把考试过程抽象成几个函数式,从而实现更细信息更丰富的学习以及生活,函数思维可以让我们的任务变得容易一些,让解决问题变得“函数”一些。

函数在现实生活中的应用

函数在现实生活中的应用

函数在现实生活中的应用杨韬12汽车服务二班学号:201241930213 上课时间:星期一身为大学生的我们在学校学习了许多类型的函数,函数作为高考的一大考点现在已经越来越让人注意起来,那么,各种函数在我们生活中又有什么应用呢?就此问题我们对此进行了研究与调查。

一,不同函数在生活中的运用1,一次函数在生活中的运用一元一次函数在我们的日常生活中应用十分广泛。

当人们在社会生活中从事买卖特别是消费活动时,若其中涉及到变量的线性依存关系,则可利用一元一次函数解决问题。

例如,当我们购物、租用车辆、入住旅馆时,经营者为达到宣传、促销或其他目的,往往会为我们提供两种或多种付款方案或优惠办法。

这时我们应三思而后行,深入发掘自己头脑中的数学知识,做出明智的选择。

俗话说:“从南京到北京,买的没有卖的精。

”我们切不可盲从,以免上了商家设下的小圈套,吃了眼前亏。

下面,我就为大家讲述我亲身经历的一件事。

我们再去超市中经常会遇到“选择性优惠”,很多人在面对不同的优惠方式时往往会中了商家的圈套,选择了那一种不值的优惠方式,但是,运用一次函数的知识可以很好地解决这个问题。

比如,有一次在美廉美超市购物,在快结账的出口的地方经常有一些促销的商品,有一次看见了一块醒目的牌子吸引了我,上面说购买茶壶、茶杯可以优惠,这似乎很少见。

更奇怪的是,居然有两种优惠方法:(1)卖一送一(即买一只茶壶送一只茶杯);(2)打九折(即按购买总价的90% 付款)。

其下还有前提条件是:购买茶壶3只以上(茶壶20元/个,茶杯5元/个)。

由此,我不禁想到:这两种优惠办法有区别吗?到底哪种更便宜呢?我便很自然的联想到了函数关系式,决心应用所学的函数知识,运用解析法将此问题解决。

设某顾客买茶杯x只,付款y元,(x>3且x∈N),则用第一种方法付款y1=4×20+(x-4)×5=5x+60;用第二种方法付款y2=(20×4+5x)×90%=4.5x+72.接着比较y1y2的相对大小.设d=y1-y2=5x+60-(4.5x+72)=0.5x-12.然后便要进行讨论:当d>0时,0.5x-12>0,即x>24;当d=0时,x=24;当d<0时,x<24.综上所述,当所购茶杯多于24只时,法(2)省钱;恰好购买24只时,两种方法价格相等;购买只数在4—23之间时,法(1)便宜.可见,利用一元一次函数来指导购物,即锻炼了数学头脑、发散了思维,又节省了钱财、杜绝了浪费,真是一举两得啊!2,二次函数在生活中的运用由于二次函数拥有一个极点,通过这个点可以求出这个函数的最大值或者最小值来解决一些问题。

函数的应用举例 (经济生活类)

函数的应用举例 (经济生活类)

假设国家收购某种农产品的价格是120 例 2 假设国家收购某种农产品的价格是 元征8元 元/担,其中征税标准为每 担 其中征税标准为每100元征 元(叫做 元征 税率为8个百分点 个百分点, ),计划可收购 税率为 个百分点,即8%),计划可收购 ),计划可收购m 万担。为了减轻农民负担,决定税率降低x个 万担。为了减轻农民负担,决定税率降低 个 百分点,预计收购量可增加2x个百分点 个百分点。 百分点,预计收购量可增加 个百分点。 (1)写出税收 (万元)与x的函数关系式; 的函数关系式; )写出税收y(万元) 的函数关系式 2)要使此项税收在税率调节后不低于原计划 的范围。 的78%,试确定 的范围。 ,试确定x的范围
3m 2 ( x + 42 x − 400 )( 0 < x ≤ 8 ) 答:税收y= − 125
,
x的范围是(ቤተ መጻሕፍቲ ባይዱ,2]。
例3 某工厂今年1月、2月、3月生产某产 品分别为1万件、1.2万件、1.3万件,为估 计以后每月的产量,以这三个月的产量为依 据,用一个函数模拟该产品的月产量y与月 份x的关系,模拟函数可选用二次函数或 x y = a ⋅ b + c (a,b,c为常数),已知四月份 该产品的产量为1.37万件,请问:用以上 哪个函数作模拟函数较好?说明理由。
练习: 我国工农业总产值从 我国工农业总产值从1980年到 年到2000年的 年 年的20年 练习:1.我国工农业总产值从 年到 年的 间 实 现 翻 两 番 的 目 标 , 设 平 均 每 年 的 增 长 率 为 x, 则 , ( A ) A(1+x)19=4 B (1+x)20=2 C (1+x)20=3 D (1+x)20=4 ( ) 2.由于电子技术的飞速发展 , 计算机的成本不断降低 。 由于电子技术的飞速发展, 由于电子技术的飞速发展 计算机的成本不断降低。 1 若每隔5年计算机的价格降低 现在价格为8100元的 若每隔 年计算机的价格降低 ,现在价格为 元的 计算机经过15年的价格可降为 ( 计算机经过 年的价格可降为 3 C ) A 300元 B 900元 C 2400元 D 3600元 元 元 元 元 3.某企业生产总值的月平均增长率为 ,则年平均增长率 某企业生产总值的月平均增长率为P, 某企业生产总值的月平均增长率为 为( D ) C (1+P)12 D (1+P)12-1 A P B P12 4.某商品零售价 某商品零售价2002年比 年比2001年上涨 年上涨25%, 欲控制 某商品零售价 年比 年上涨 , 2003年比 年比2001年上年涨 年上年涨10%,则2003年应比 年应比2002年 年比 年上年涨 , 年应比 年 降价(B ) 降价( A 15% B 12% C 10% D 5%

一次函数在生活中的具体应用

一次函数在生活中的具体应用

一次函数在生活中的具体应用一次函数是高中数学中比较基础的内容之一,它是一个如下形式的函数:y=ax+b。

其中a和b是常数,x是自变量,y是因变量。

一次函数在生活中有着广泛的应用,本文将介绍其中一部分。

1、货币兑换在国际贸易和旅游中,货币兑换是一个十分常见的问题。

假设有人要把100美元兑换成人民币,假设当时的汇率是1美元兑换6.7元人民币,那么人民币应该是多少呢?通过一次函数模型可以很容易地计算出来:y=6.7x,其中y表示人民币数量,x表示美元数量,那么当x=100时,y=670元人民币。

2、汽车租赁在租用汽车时,租车公司会按照时间和里程来对租金进行计算。

通常每天和每英里都会有一个固定的价格。

假设租金是每天50美元,每英里0.3美元,那么汽车租赁的总费用可以用一次函数来表示:y=50x+0.3x,其中y表示总费用,x表示租车的天数和里程数。

例如,租车3天,行驶总里程为100英里,总费用就是50*3+0.3*100=165美元。

3、飞机起飞在航空公司的飞机起飞过程中,需要经过一个加速过程,然后达到平飞速度,最后到达升空高度。

这是一个典型的一次函数模型,因为飞机加速时速度在不断增加,直到飞机达到平飞速度后就保持不变了。

如果飞机进入爬升模式,高度和速度将和时间成正比。

因此,飞机起飞是一个很好的一次函数示例。

4、电费计算在家庭中,电费的计算通常是按照消耗的电量来计算的。

电价通常是固定的,但有时也会根据消耗量的不同而变化。

因此,电费的计算可以用一次函数来表示:y=ax+b,其中a表示每度电的价格,b表示一定数量的固定费用,x表示消耗的电量。

例如,每度电的价格是0.5元,基本电费是20元,当月用电量是300度时,总电费可以计算为0.5*300+20=170元。

5、手机流量计算如今,手机已经成为人们日常生活中必不可少的物品之一。

在使用手机上网的过程中,流量是一个很重要的参数。

电话服务提供商通常会根据使用的流量和时长向用户收取费用。

函数单调性在生活中实际应用

函数单调性在生活中实际应用

函数单调性在生活中实际应用函数单调性在我们生活中有着广泛的应用,其中最常见的就是经济学中的供求关系。

例如在市场中,当价格上涨时,需求量会逐渐减少,反之价格下跌时,需求量会增加,这就是函数单调性的应用。

另外,函数单调性还可以应用在企业的生产管理方面,可以帮助企业确定生产规模,从而获取较大的经济效益,同时也可以有效的防止企业的生产成本过高。

此外,函数单调性也可以应用在社会管理方面,可以帮助政府有效的进行政策调整,以达到更好的社会效果。

例如,政府可以采取政策措施来控制房价,房价过高时政府可以采取控制房价的措施,从而降低房价;反之,如果房价过低时,政府可以采取政策手段来提高房价。

此外,函数单调性还可以应用在财政管理方面,可以帮助政府有效的调整财政支出和税率,从而获取较大的财政收入。

函数单调性作为一种运用自然现象的规律,其应用非常广泛,可以方便政府和企业更好的进行规划,实现更高效的管理。

此外,函数单调性也广泛应用在数学中,可以用来寻找极值点。

函数单调性可以帮助我们确定函数在某一点是最大值还是最小值,从而可以有效的计算函数的最大和最小值从而获得更好的结果。

因此函数单调性在解决数学难题方面也发挥着重要的作用。

另外,函数单调性在经济学的投资分析中也有重要作用,它可以帮助投资者对风险有效的进行评估和预测,以便于投资者采取更加谨慎的投资行为,从而获得最优投资收益。

总之,函数单调性在日常生活、社会管理、财政管理、数学以及投资分析中都发挥重要作用,它不仅可以帮助政府和企业更好的制定规划,同时也可以帮助投资者对风险有效的进行评估和预测。

此外,函数单调性在建筑设计、农业生产以及工程管理等领域也有着重要的作用。

在建筑设计中,函数单调性可以帮助建筑设计师确定合理的建筑尺寸,从而实现安全可靠的建筑设计。

在农业生产中,函数单调性可以帮助农民们确定合理的种植模式,从而最大化农作物的产量。

在工程管理中,函数单调性可以帮助工程管理者有效的完成复杂的工程,从而节约时间和金钱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小组成员心得体会
• 研究性学习是个集体项目,它不仅培养了我们的合作精神,
而且也培养了大家的团结友爱,互助协作的精神。组成小 组后,我们组就常常在一起讨论题目,等到讨论成熟后, 就进行计算研究。俗话说,三个臭皮匠顶个诸葛亮。大家 在一起如果做出一些东西来,就会有一种成就感,这是研 究性学习带给我们的乐趣所在。 • 研究性学习培养的是一种创新精神,以及快速解决问题的 能力。参加研究性学习小组,给了我们一次简单的科学研 究工作的体验。科学工作所需要的严谨,大胆都在这样活 动中有着完整的体现。使我们体会到了科研工作的艰辛, 这些将对我们今后的学Leabharlann 与工作产生积极的作用和深远的 影响。
对数函数模型: y k loga x b(k 0, a 0且a 1) 幂函数模型:
y kxn b(k 0, x 0)
活动过程记录
课题名称:函数图象特点的应用(投篮) 记录:程爱 审核:管彦海 活动时间:3月21日下午 活动内容:研究函数图象特点在投篮中的运用 活动目的:了解函数图象特点在投篮中的运用 参与人员:各组员 活动前准备:准备篮球和测量工具 活动过程记录:投篮,并进行数据记录,选择数据中较准确 的一组进行探究。得投篮轨迹满足y=(-44/75)x +(146/75)x+(8/5)的函数图象,由此得投篮中篮球运行轨迹 也运用到了二次函数的知识。 • 任务完成情况:总体来说,还是完成得不错,望下次能继续 努力。 • 成功之处:认真的态度。 • 我们对自己在活动中的表现分析如下:总体来说,我们的表 现都很积极,这使得我们能够完成这次的研究。
研究背景
• 在我们的日常生活中,函数的应用 是非常广泛的,一些抽象的、复杂 的问题。用函数表示出来或是画出 函数图像便能一目了然,使问题简 单化。同时,运用函数可以使我们 在解决许多问题上,更为方便、更 快捷、更有效率。所以我们应该去 认识函数、了解函数。
小组成员:
• 组长:管彦海 • 组员:赵爽,程爱,方春美,
• 研究的目的:加深我们对生活中的函数问 题的了解。 • 意义:我们的生活中有许许多多抽象复杂 的问题,但是我们可以通过函数使问题简 单化,让我们容易从问题中得到我们需要 的信息。同时,也提高了我们处理问题的 效率。

高一(22)班研究性学习小组制作
解:(1)由题设,调节后的税率为(8-x)%,
预计可收购m(1+2x%)万担, 总金额为120m(1+2x%)万元。 依题意得 y=120m(1+2x%)•(8-x)% 3 m = ( x 2 42 x 400 )( 0 x 8) 125 (2)原计划税收为120m•8%万元, 依题意120m(1+2x%)•(8-x)%≥120m•8%•78% 整理得 x 2 42x 88 0 解得 -44≤x≤2
赵大花,赵其 • 指导老师:
常见的函数模型有:
正比例函数模型: y kx(k 0) 一次函数模型: y ax b(a 0) 二次函数模型: y ax bx c(a 0)
2
反比例函数模型:
k y ( k 0) x
x y k ( 1 a ) (k 0, a 1且 0) 指数函数模型:
3m 2 ( x 42 x 400 )( 0 x 8) 答:税收y= 125
,
x的范围是(0,2]。
小组成员心得体会
通过这次研究性学习我们学会了很多东西,也懂得了很多。以 前学数学一般是理论性的比较多,缺乏与实际的联系,学了不知 道怎么用。这次研究性学习的最大所得,不在于取得什么成果, 而是培养一种思维习惯,一种将现实生活中的现象转化为问题并 进行研究的习惯。当我们在黑板上写字,用力过大而将粉笔折断 时,是否想到了粉笔多长才是最优化长度;当我们玩游戏时,能 否用离散和概率的思想。不禁一笑后,你会发现,其实这些问题 都来自于我们的生活,但是它们的复合与延伸,就可能涉及到今 日科学的前沿。 • 研究性学习是一项庞大的工程,单凭一人之力是无论如何也无法 完成的。这时候我们需要的是合作,是整个团队,是大家共同的 努力。这让我们深有体会。正是因为大家共同合作,互相帮助, 以集体的利益为主,我们小组才能顺利完成这个课题。虽然研究 任务很重,我们却也没有耽误很多学习时间。团队的精神在每个 人心中,合作为了共同的目标。
• • • • • • •
投篮时篮球运行轨迹满足的函 数图象
例 : 假设国家收购某种农产品的价格是120 元/担,其中征税标准为每100元征8元(叫做 税率为8个百分点,即8%),计划可收购m 万担。为了减轻农民负担,决定税率降低x个 百分点,预计收购量可增加2x个百分点。 (1)写出税收y(万元)与x的函数关系式; 2)要使此项税收在税率调节后不低于原计划 的78%,试确定x的范围。
相关文档
最新文档