基本不等式知识点归纳

合集下载

基本不等式知识点归纳

基本不等式知识点归纳

基本不等式知识点总结向量不等式:注意: a b 、同向或有0⇔||||||a b a b +=+≥||||||||a b a b -=-; a b 、反向或有0⇔||||||a b a b -=+≥||||||||a b a b -=+; a b 、不共线⇔||||||||||||a b a b a b -<±<+.这些和实数集中类似代数不等式:,a b 同号或有0||||||||||||a b a b a b a b ⇔+=+-=-≥; ,a b 异号或有0||||||||||||a b a b a b a b ⇔-=+-=+≥.绝对值不等式: 123123a a a a a a ++++≤双向不等式:a b a b a b -±+≤≤左边当0(0)ab ≤≥时取得等号,右边当0(0)ab ≥≤时取得等号.放缩不等式:①00a b a m >>>>,,则b m b b ma m a a m-+<<-+. 说明:b b m a a m+<+0,0a b m >>>,糖水的浓度问题. 拓展:,则,,000>>>>n m b a ba nb n a m a m b a b <++<<++<1. ②,,a bc R +∈,b d ac <,则b bd da a c c+<<+; ③n N +∈<< ④,1n N n +∈>,21111111n n n n n-<<-+-. ⑤ln 1x x -≤(0)x >,1xe x +≥()x R ∈.函数()(0)bf x ax a b x=+>、图象及性质1函数()0)(>+=b a xbax x f 、图象如图:2函数()0)(>+=b a xb ax x f 、性质:①值域:),2[]2,(+∞--∞ab ab ;②单调递增区间:(,-∞,)+∞;单调递减区间:(0,,[0). 基本不等式知识点总结重要不等式1、和积不等式:,a b R ∈⇒222a b ab +≥当且仅当a b =时取到“=”.变形:①222()22a b a b ab ++≤≤当a = b 时,222()22a b a b ab ++==注意:(,)2a b a b R ++∈,2()(,)2a b ab a b R +∈≤ 2、均值不等式:两个正数b a 、的调和平均数、几何平均数、算术平均数、均方根之间的关系,即“平方平均≥算术平均≥几何平均≥调和平均”.若0x >,则12x x +≥ 当且仅当1x =时取“=”; 若0x <,则12x x+≤- 当且仅当1x =-时取“=”若0x ≠,则11122-2x x x xxx+≥+≥+≤即或 当且仅当b a =时取“=”.若0>ab ,则2≥+ab ba 当且仅当b a =时取“=”若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 当且仅当b a =时取“=” 3、含立方的几个重要不等式a 、b 、c 为正数:3333a b c abc ++≥0a b c ++>等式即可成立,时取等或0=++==c b a c b a ;不等式的变形在证明过程中或求最值时,有广泛应用,如:当0>ab 时,ab b a 222≥+同时除以ab 得2≥+b a a b 或ba ab -≥-11; ,,b a 均为正数,b a ba -≥22八种变式: ①222b a ab +≤ ; ②2)2(b a ab +≤; ③2)2(222b a b a +≤+ ④)(222b a b a +≤+;⑤若b>0,则b a b a -≥22;⑥a>0,b>0,则ba b a +≥+411;⑦若a>0,b>0,则ab b a 4)11(2≥+; ⑧ 若0≠ab ,则222)11(2111b a ba +≥+; 上述八个不等式中等号成立的条件都是“b a =”;最值定理积定和最小①,0,x y x y >+≥由若积()xy P =定值,则当x y =时和x y +有最小值和定积最大②,0,x y x y >+≥由若和()x y S +=定值,则当x y =是积xy 有最大值214s .推广:已知R y x ∈,,则有xy y x y x 2)()(22+-=+.1若积xy 是定值,则当||y x -最大时,||y x +最大;当||y x -最小时,||y x +最小.2若和||y x +是定值,则当||y x -最大时,||xy 最小;当||y x -最小时,||xy 最大.③已知,,,R a x b y +∈,若1ax by +=,则有则的最小值为:21111()()2 ()by axax by a b a b ab a b x y x y x y+=++=+++++=+≥④已知,若则和的最小值为:①.②应用基本不等式求最值的“八种变形技巧”:⑴凑系数乘、除变量系数.例1.当 04x <<时,求函的数(82)y x x =-最大值.⑵凑项加、减常数项:例2.已知54x <,求函数1()4245f x x x =-+-的最大值.⑶调整分子:例3.求函数2710()(1)1x x f x x x ++=≠-+的值域; ⑷变用公式:基本不等式2a b ab +≥有几个常用变形2222a b a b ++≥,222()22a b a b ++≥不易想到,应重视;例4.求函数152152()22y x x x =--<<的最大值;⑸连用公式:例5.已知0a b >>,求216()y a b a b =+-的最小值;⑹对数变换:例6.已知1,12x y >>,且xy e =,求ln (2)yt x =的最大值;⑺三角变换:例7.已知20y x π<<≤,且tan 3tan x y =,求t x y =-的最大值;⑻常数代换逆用条件:例8.已知0,0a b >>,且21a b +=,求11t a b=+的最小值. “单调性”补了“基本不等式”的漏洞: ⑴平方和为定值若22x y a +=a 为定值,0a ≠,可设,,x a y a αα==,其中02απ<≤.①(,)2)4f x y x y a a a πααα=+==+在15[0,],[,2)44πππ上是增函数,在15[,]44ππ上是减函数; ②1(,)sin 22g x y xy a α==在1357[0,],[,],[,2)4444πππππ上是增函数,在1357[,],[,]4444ππππ上是减函数;③11(,)x y m x y x yxy +=+==.令sin cos )4t πααα=+=+,其中[1)(1,1)(1,2]t ∈--.由212sincos t αα=+,得22sin cos 1t αα=-,从而2(,)1)m x y t t==-在[1)(1,1)(1,2]--上是减函数. ⑵和为定值若x y b +=b 为定值,0b ≠,则.y b x =-①2(,)g x y xy x bx ==-+在(,]2b -∞上是增函数,在[,)2b +∞上是减函数;②211(,)x y bm x y x y xy x bx +=+==-+.当0b >时,在(,0),(0,]2b -∞上是减函数,在[,),(,)2b b b +∞上是增函数;当0b <时,在(,),(,]2b b b -∞上是减函数,在[,0),(0,)2b+∞上是增函数. ③2222(,)22n x y x y x bx b =+=++在(,]2b -∞上是减函数,在[,)2b +∞上是增函数;⑶积为定值若xy c =c为定值,0c ≠,则.c y x= ①(,)cf x y x y x x=+=+.当0c >时,在[上是减函数,在(,)-∞+∞上是增函数;当0c <时,在(,0),(0,)-∞+∞上是增函数;②111(,)()x y cm x y x x y xy c x+=+==+.当0c >时,在[上是减函数,在(,)-∞+∞上是增函数;当0c <时,在(,0),(0,)-∞+∞上是减函数;③222222(,)()2c c n x y x y x x c x x=+=+=+-在(,-∞上是减函数,在()+∞上是增函数.⑷倒数和为定值若112x y d +=d 为定值,111,,x d y ,则.c y x=成等差数列且均不为零,可设公差为z ,其中1z d≠±,则1111,,z z x d y d =-=+得,.11d d x y dz dz ==-+. ①222()1d f x x y d z =+=-.当0d >时,在11(,),(,0]d d -∞--上是减函数,在11[0,),(,)d d+∞上是增函数;当0d <时,在11(,),(,0]d d -∞上是增函数,在11[0,),(,)d d --+∞上减函数;②222(,).1d g x y xy d z ==-.当0d >时,在11(,),(,0]d d -∞--上是减函数,在11[0,),(,)d d+∞上是增函数;当0d <时,在11(,),(,0]d d -∞上是减函数,在11[0,),(,)d d --+∞上是增函数;③222222222(1)(,).(1)d d z n x y x y d z +=+=-.令221t d z =+,其中1t ≥且2t ≠,从而22222(,)4(2)4d t d n x y t t t==-+-在[1,2)上是增函数,在(2,)+∞上是减函数.。

基本不等式知识点和基本题型

基本不等式知识点和基本题型

基本不等式知识点和基本题型基本不等式专题辅导一、知识点总结1、基本不等式原始形式若$a,b\in R$,则$a+b\geq 2ab$,其中$a^2+b^2$为定值。

2、基本不等式一般形式(均值不等式)若$a,b\in R$,则$\frac{a+b}{2}\geq \sqrt{ab}$。

3、基本不等式的两个重要变形若$a,b\in R$,则$a+b\geq 2\sqrt{ab}$,其中$\frac{a+b}{2}\leq \sqrt{\frac{a^2+b^2}{2}}$。

总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最小值。

特别说明:以上不等式中,当且仅当$a=b$时取“=”。

4、求最值的条件:“一正,二定,三相等”。

5、常用结论若$x>1$,则$\frac{x+1}{2}>\sqrt{x}$(当且仅当$x=1$时取“=”)。

若$x<1$,则$\frac{x+1}{2}<-\frac{1}{x}$(当且仅当$x=-1$时取“=”)。

若$ab>0$,则$\frac{a}{b}+\frac{b}{a}\geq 2$(当且仅当$a=b$时取“=”)。

若$a,b\in R$,则$a^2+b^2\geq 2ab$,$\frac{a+b}{2}\geq \frac{2ab}{a+b}$,$\frac{a+b}{2}\leq \sqrt{a^2+b^2}$。

6、柯西不等式若$a,b\in R$,则$(a^2+b^2)(1+1)\geq (a+b)^2$。

题型分析题型一:利用基本不等式证明不等式1、设$a,b$均为正数,证明不等式:$ab\geq\frac{a^2+b^2}{2}$。

2、已知$a,b,c$为两两不相等的实数,求证:$a^2+b^2+c^2\geq ab+bc+ca$。

3、已知$a+b+c=1$,求证:$a^2+b^2+c^2+\frac{9}{4}\geq 2(ab+bc+ca)$。

(完整版)高考数学-基本不等式(知识点归纳)

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用一.基本不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。

基本不等式知识点汇总与例题讲解(题型超全)

基本不等式知识点汇总与例题讲解(题型超全)

基本不等式知识点总结与例题讲解一、本节知识点 (1)基本不等式.(2)利用基本不等式求最值.(3)基本不等式的拓展——三个正数的基本不等式. 二、本节题型(1)利用基本不等式求最值. (2)利用基本不等式证明不等式. (3)基本不等式的实际应用. (4)与基本不等式有关的恒成立问题. 三、知识点讲解知识点 基本不等式(均值不等式) 一般地,∈∀b a ,R ,有22b a +≥ab 2.当且仅当b a =时,等号成立.特别地,当0,0>>b a 时,分别用b a ,代替上式中的b a ,,可得2ba +≥ab . 当且仅当b a =时,等号成立. 通常称不等式2b a +≥ab 为基本不等式(也叫均值不等式),其中2ba +叫做正数b a ,的算术平均数,ab 叫做正数b a ,的几何平均数.基本不等式表明: 两个正数的算术平均数不小于它们的几何平均数.注意 重要不等式22b a +≥ab 2与基本不等式2ba +≥ab 成立的条件是不一样的.前者b a ,为任意实数,后者b a ,只能是正数.但两个不等式中等号成立的条件都是b a =.基本不等式的变形(1)b a +≥ab 2,ab ≤22⎪⎭⎫⎝⎛+b a .其中∈b a ,R +,当且仅当b a =时,等号成立.(2)当0>a 时,a a 1+≥2,当且仅当a a 1=,即1=a 时,等号成立; 当0<a 时,aa 1+≤2-,当且仅当1-=a 时,等号成立.实际上,当0<a 时,()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+--=+a a a a 11. ∵()⎪⎭⎫ ⎝⎛-+-a a 1≥2,∴()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+--a a 1≤2-,即a a 1+≤2-.当且仅当a a 1-=-,即1-=a (0<a )时,等号成立. (3)当b a ,同号时,b a a b +≥2,当且仅当b a =时,等号成立;当b a ,异号时,baa b +≤2-,当且仅当b a -=时,等号成立.(4)不等式链: ba 112+≤ab ≤2ba +≤222b a +(0,0>>b a ,当且仅当b a =时,等号成立.)其中,ba 112+,ab ,2b a +,222b a +分别叫做正数b a ,的调和平均数、几何平均数、算术平均数、平方平均数. 知识点 利用基本不等式求最值设0,0>>y x ,则有(1)若S y x =+(和为定值),则当y x =时,积xy 取得最大值42S ;(∵∈∀y x , R +,有xy ≤22Sy x =+,∴xy ≤42S .) 和定积最大.(2)若P xy =(积为定值),则当y x =时,和y x +取得最小值P 2. (∵∈∀y x , R +,有y x +≥xy 2,∴y x +≥P 2.)积定和最小.说明 上述结论可简记为: 和定积最大,积定和最小.即两个正数的和为定值时,可求出其积的最大值;两个正数的积为定值时,可求出其和的最小值.利用基本不等式求最值时,必须满足三个条件,即:一正、二定、三相等. 一正: 各项都必须为正数;二定: 和或积为定值.当和为定值时,积有最大值,当积为定值时,和有最小值; 三相等: 等号能取到,即取得最值的条件能满足.(1)对于函数()x x x f 4+=,当0>x 时,xx 4+≥44242==⋅x x ,即()x f ≥4,当x x 4=,即2=x 时,等号成立;当0<x 时,()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+--=+x x x x 44≤4-,()x f ≤4-,当2-=x 时,等号成立.由此可见,对于函数()xx x f 4+=,0>x 和0<x 的最值情况是不一样的. (2)当230<<x 时,求()x x 23-的最大值时,x 23-与x 的和不是定值,无法利用基本不等式求最值,此时可对原式进行等价变形,变形为()()x x x x 2232123⋅-=-,即可求出其最大值.∵()()x x x x 2232123⋅-=-≤89232122232122=⎪⎭⎫ ⎝⎛⨯=⎪⎭⎫ ⎝⎛+-⨯x x∴()x x 23-的最大值为89,当且仅当x x 223=-,即43=x 时,取得最大值.(3)求21222+++x x 的最小值时,虽然22+x 与212+x 都是正数,且乘积为定值1,但是当=+22x 212+x 时,有122=+x ,显然是不成立的,所以此时不能用基本不等式求其最小值.知识点 基本不等式的拓展——三个正数的基本不等式一般地,∈∀c b a ,,R +,有3cb a ++≥3abc . 当且仅当c b a ==时,等号成立.上面的不等式表明:三个正数的算术平均数不小于它们的几何平均数.设0,0,0>>>z y x ,则有(1)若M xyz =,则当z y x ==时,和z y x ++取得最小值为33M ;(2)若N z y x =++,则当z y x ==时,积xyz 取得最大值273N .关于三个正数的不等式链若c b a ,,均为正数,则有cb a 1113++≤3abc ≤3c b a ++≤3222c b a ++.当且仅当c b a ==时,等号成立.n 个正数的基本不等式对于n 个正数n a a a a ,,,,321 ,则有na a a a n++++ 321≥n n a a a a 321.当且仅当n a a a a ==== 321时,等号成立.上面的不等式表明: 对于n 个正数(n ≥2)的算术平均数不小于它们的几何平均数.四、例题讲解例1. 若0,0>>b a ,证明: ba 112+≤ab ≤2b a +≤222b a +.分析: 本题即要求证明两个正数的不等式链. 证明: ∵0,0>>b a∴()ab b a b a 22-+=-≥0∴b a +≥ab 2 ∴ab ≤2ba +(当且仅当b a =时,等号成立) ∴211b a +≥abab b a 1111==⋅∴ba 112+≤ab (当且仅当b a =时,等号成立).∵22b a +≥ab 2∴2222b a b a +++≥ab 222b a ++ ∴()222b a +≥()2b a +∴()2224⎪⎭⎫ ⎝⎛+=+b a b a ≤()2422222b a b a +=+,即22⎪⎭⎫ ⎝⎛+b a ≤222b a +. ∴根据正数可开方性得:22⎪⎭⎫ ⎝⎛+b a ≤222b a +. ∴2ba +≤222b a +(当且仅当b a =时,等号成立).综上所述,ba 112+≤ab ≤2ba +≤222b a +.例2. 函数xx y 41+-=(0>x )的最小值为_________,此时=x _________. 解: ∵0>x∴1441-+=+-=xx x x y ≥3142142=-=-⋅x x ,即y ≥3.当且仅当xx 4=,即2=x 时,取等号. ∴当2=x 时,函数x x y 41+-=(0>x )取得最小值3.例3. 已知3>a ,求34-+a a 的最小值.分析: 当利用基本不等式求最值时,若两项的乘积为定值(常数),可求出两项和的最小值.当然,某些式子需要进行适当的变形,但要注意三个必须满足的条件:一正、二定、三相等.解: ∵3>a ,∴03>-a .∴334334+-+-=-+a a a a ≥()733432=+-⋅-a a ,当且仅当343-=-a a ,即5=a 时,等号成立. ∴34-+a a 的最小值为7. 例4. 已知1>x ,且1=-y x ,则yx 1+的最小值是_________. 解: ∵1=-y x ,∴1+=y x .∵1>x ,∴01>+y ,∴0>y . ∴11111++=++=+y y y y y x ≥3112=+⋅yy . 当且仅当yy 1=,即1=y 时,等号成立. ∴yx 1+的最小值是3. 另解: ∵1=-y x ,∴1-=x y .∵1>x ,∴01>-=x y ∴1111111+-+-=-+=+x x x x y x ≥()311112=+-⋅-x x . 当且仅当111-=-x x ,即2=x 时,等号成立. ∴yx 1+的最小值是3. 例5. 已知0,0>>y x ,且12=+y x ,求yx 11+的最小值. 解: ∵12=+y x ,0,0>>y x∴y x x y y y x x y x y x ++=+++=+232211≥223223+=⋅+yx x y . 当且仅当yxx y =2,且12=+y x ,即221,12-=-=y x 时,等号成立.∴yx11+的最小值为223+.点评 本题若由()y x y x y x 21111+⎪⎭⎫ ⎝⎛+=+≥2422112=⋅⋅xy yx ,得y x 11+的最小值为24,则结论是错误的,错因是连续使用基本不等式时,忽视了等号成立的条件一致性.所以有下面的警示.易错警示 连续两次(多次)使用基本不等式时,应注意保证等号成立的条件是否相同. 例6. 已知0,0>>y x ,且191=+yx ,求y x +的最小值. 解: ∵0,0>>y x ,191=+yx ∴()x y y x x y y x y x y x y x ++=+++=⎪⎭⎫⎝⎛++=+91099191≥169210=⋅+x y y x . 当且仅当x y y x =9,且191=+yx ,即12,4==y x 时,等号成立. ∴y x +的最小值为16.另解(消元法): ∵191=+yx ,∴9-=y yx∵0,0>>y x ,∴09>-y y,∴9>y . ∴999919999+-+-+=+-+-=+-=+y y y y y y y y y x 99910-+-+=y y ≥()16999210=-⋅-+y y . 当且仅当999-=-y y ,且9-=y y x ,即12,4==y x 时,等号成立. ∴y x +的最小值为16.例7. 若正数y x ,满足xy y x 53=+,则y x 43+的最小值是 【 】(A )524 (B )528 (C )5 (D )6解: ∵xy y x 53=+,∴15351=+xy . ∵y x ,均为正数∴()x y y x x y y x x y y x y x 5125351351254595353514343++=+++=⎪⎭⎫ ⎝⎛++=+ ≥5562513512532513=⨯+=⋅+x y y x . 当且仅当x y y x 51253=,且xy y x 53=+,即21,1==y x 时,等号成立. ∴y x 43+的最小值是5. ∴选择答案【 C 】.例8.(1)已知45>x ,求代数式54124-+-x x 的最小值; (2)已知45<x ,求代数式54124-+-x x 的最大值.分析: 本题考查利用基本不等式求代数式的最值.注意三个必须满足的条件:一正、二定、三相等.解:(1)∵45>x ,∴054>-x . ∴35415454124+-+-=-+-x x x x ≥()53541542=+-⋅-x x . 当且仅当54154-=-x x ,即23=x 时,等号成立. ∴代数式54124-+-x x 的最小值为5;(2)∵45<x ,∴054<-x .∴34514535415454124+⎥⎦⎤⎢⎣⎡-+--=+-+-=-+-x x x x x x ≤()1323451452=+-=+-⋅--xx 当且仅当x x 45145-=-,即1=x 时,等号成立,54124-+-x x 取得最大值1.例9. 已知实数0,0>>b a ,且11111=+++b a ,则b a 2+的最小值是【 】 (A )23 (B )22 (C )3 (D )2解: ∵11111=+++b a ∴()()11111=+++++b a a b ,整理得:1=ab .∵0,0>>b a∴b a 2+≥221222222=⨯==⋅ab b a . 当且仅当b a 2=,即22,2==b a 时,等号成立. ∴b a 2+的最小值是22. ∴选择答案【 B 】.另解: ()()31212-+++=+b a b a .∵0,0>>b a ,11111=+++b a ∴()()[]()132112111111131212⨯-+++++++=⎪⎭⎫ ⎝⎛+++-+++=+a b b a b a b a b a ()11211+++++=a b b a ≥()22112112=++⋅++a b b a . 当且仅当()11211++=++a b b a ,且11111=+++b a ,即22,2==b a 时,等号成立. ∴b a 2+的最小值是22.例10. 设0,0>>y x ,且53=+y x ,则yx 311++的最小值为 【 】 (A )23(B )2 (C )32 (D )3 解: ∵53=+y x∴()813=++y x ,∴()18813=++yx .∵0,0>>y x ∴()()()8318819833118813311+++++=⎪⎭⎫ ⎝⎛++⎥⎦⎤⎢⎣⎡++=++x y y x y x y x y x ()()4318819++++=x y y x ≥()()234383243188192=+⨯=++⋅+x y y x . 当且仅当()()18819+=+x y y x ,且53=+y x ,即4,31==y x 时,等号成立. ∴y x 311++的最小值为23. ∴选择答案【 A 】.另解: ∵53=+y x ,∴x y 35-=.∵0,0>>y x ,∴⎩⎨⎧>->0350x x ,解之得:350<<x .∴x 的取值范围为⎪⎭⎫⎝⎛35,0.()()52383518353113112++-=-+=-++=++x x x x x x y x . 设()31631352322+⎪⎭⎫ ⎝⎛--=++-=x x x x f ∵⎪⎭⎫ ⎝⎛∈35,0x ,∴()⎥⎦⎤⎝⎛∈316,0x f . ∴当31=x 时,233168311min ==⎪⎭⎫⎝⎛++y x . ∴选择答案【 A 】.例11. 代数式11072+++x x x (1->x )的最小值为 【 】(A )2 (B )7 (C )9 (D )10分析: 形如edx c bx ax +++2的式子可化为()()t x f n x mf ++的形式. 解: 可设()()n x m x x x ++++=++1110722. ∴()1071222++=+++++x x n m x m x∴⎩⎨⎧=++=+10172n m m ,解之得:⎩⎨⎧==45n m . ∴()()415110722++++=++x x x x . ∴()()514114151110722++++=+++++=+++x x x x x x x x ∵1->x ,∴01>+x ∴5141++++x x ≥()951412=++⋅+x x . 当且仅当141+=+x x ,即1=x 时,等号成立. ∴代数式11072+++x x x (1->x )的最小值为9. ∴选择答案【 C 】.另解: ()()()[]()[]1411115211072+++++=+++=+++x x x x x x x x x ()()5141141512++++=+++++=x x x x x . ∵1->x ,∴01>+x∴5141++++x x ≥()951412=++⋅+x x . 当且仅当141+=+x x ,即1=x 时,等号成立,91107min2=⎪⎭⎫ ⎝⎛+++x x x . ∴选择答案【 C 】.例12. 求函数222163x x y ++=的最小值. 解: ∵022>+x∴()62162321632222-+++=++=xx x x y ≥()638621623222-=-+⋅+x x . 当且仅当()2221623x x +=+,即2334-±=x 时,等号成立.638min -=y . 例13. 已知函数()xa x x f +=4(0,0>>a x )在3=x 时取得最小值,则=a ______. 解: ∵0,0>>a x ∴()xa x x f +=4≥a x a x 442=⋅. 当且仅当x a x =4,即2a x =时,等号成立,函数()x f 取得最小值a 4. ∴32=a ,解之得:36=a . 实际上,函数()⎪⎪⎪⎪⎭⎫ ⎝⎛+=+=x a x x a x x f 444(0,0>>a x ),当24a a x ==时,函数()x f 取得最小值.所以32=a ,从而求得36=a . 例14. 设正实数y x ,满足xy y x =+2,若y x m m 222+<+恒成立,则实数m 的取值范围是_____________.分析: 利用基本不等式可求出y x 2+的最小值.要使y x m m 222+<+恒成立,只需()min 222y x m m +<+即可.解: ∵y x ,为正实数,xy y x =+2∴1212=+=+x y xy y x ∴()y x x y y x x y y x y x y x ++=+++=+⎪⎭⎫ ⎝⎛+=+442422122≥8424=⋅+y x x y 当且仅当yx x y =4,即2,4==y x 时,等号成立.∴()82min =+y x .∵y x m m 222+<+恒成立∴只需()min 222y x m m +<+即可∴822<+m m ,解之得:24<<-m .∴实数m 的取值范围是()2,4-.例15. 已知()()x x x f 22-=(10<<x ),求()x f 的最大值.分析: 当两个正数的和为定值S 时,这两个正数的乘积在两个正数相等时取得最大值,简称为:和定积最大.本题中,观察到()2222=-+x x 为定值,故考虑用基本不等式求函数()x f 的最大值,但要对原解析式解析等价变形.解: ∵10<<x ,∴022>-x∴()()()x x x x x f 2222122-⋅=-=≤211212222212=⨯=⎪⎭⎫ ⎝⎛-+⨯x x . 当且仅当x x 222-=,即21=x 时,等号成立. ∴()x f 的最大值为21. 另解: ∵10<<x ,∴022>-x∴()()()x x x x x f -⋅=-=1222≤2121221222=⎪⎭⎫ ⎝⎛⨯=⎪⎭⎫ ⎝⎛-+⨯x x . 当且仅当x x -=1,即21=x 时,等号成立. ∴()x f 的最大值为21. 例16. 求代数式12-x x (1<x )的最大值. 分析: 形如edx c bx ax +++2的式子可化为()()t x f n x mf ++的形式. 解: ∵1<x ,∴01>-x .∴()()21111111*********+-+-=-++=-+-+=-+-=-x x x x x x x x x x x ()2111+⎥⎦⎤⎢⎣⎡-+--=x x ≤()02221112=+-=+-⋅--x x 当且仅当xx -=-111,即0=x 时,等号成立. ∴代数式12-x x (1<x )的最大值为0. 注意 使用基本不等式法求最值时,一定要满足三个条件:一定、二正、三相等. 例17. 已知210<<x ,求()x x y 2121-=的最大值. 解: ∵210<<x ,∴021>-x . ∴()()x x x x y 212412121-⋅=-=≤161214122124122=⎪⎭⎫ ⎝⎛⨯=⎪⎭⎫ ⎝⎛-+⨯x x . 当且仅当x x 212-=,即41=x 时,等号成立. ∴161max =y . 例18. 设210<<m ,若m m 2121-+≥k 恒成立,则k 的最大值为_________. 分析: 只需min2121⎪⎭⎫ ⎝⎛-+m m ≥k 即可,这样问题就转化为求m m 2121-+的最小值的问题.解: ()()m m m m m m m m 211212212121-=-+-=-+. ∵210<<m ,∴021>-m ∴()()m m m m 212211211-⋅=-≥84121122122112=⨯=⎪⎭⎫ ⎝⎛-+⨯m m . 当且仅当m m 212-=,即41=m 时,等号成立.(注意,当210<<m 时,()0212>-m m ) ∴mm 2121-+的最小值为8.∵mm 2121-+≥k 恒成立 ∴k ≤8,k 的最大值为8. 另解: ∵210<<m ,∴021>-m ∴()[]221214221212122121+-+-+=⎪⎭⎫ ⎝⎛-+-+=-+m m m m m m m m m m m m m m 212144-+-+=≥82121424=-⋅-+m m m m . 当且仅当m m m m 21214-=-,即41=m 时,等号成立. ∴mm 2121-+的最小值为8. ∵mm 2121-+≥k 恒成立 ∴k ≤8,k 的最大值为8.例19. 若对任意0>x ,132++x x x ≤a 恒成立,则实数a 的取值范围是_________. 解: ∵0>x ∴311132++=++x x x x x ≤513213121=+=+⋅xx 当且仅当xx 1=,即1=x 时,等号成立. ∴5113max 2=⎪⎭⎫ ⎝⎛++x x x . ∵对任意0>x ,132++x x x ≤a 恒成立 ∴a ≥max213⎪⎭⎫ ⎝⎛++x x x . ∴a ≥51,即实数a 的取值范围是⎪⎭⎫⎢⎣⎡+∞,51. 例20. 已知0,0>>y x ,y x xy 2+=,若xy ≥2-m 恒成立,则实数m 的最大值是__________.分析: 可求出m 的取值范围,根据范围确定其最大值.这种方法叫做不等分析法.解: ∵y x xy 2+= ∴1122=+=+yx xy y x . ∵0,0>>y x ∴xyy x 22122=⋅≤112=+y x ∴xy8≤1,∴xy ≥8. 当且仅当y x 12=,即2,4==y x 时,等号成立.()8min =xy . ∵xy ≥2-m 恒成立∴2-m ≤()min xy ,即2-m ≤8,解之得:m ≤10.∴实数m 的最大值是10.例21. 若不等式xa x 29+≥1+a (常数0>a )对一切正实数x 恒成立,求实数a 的取值范围.解: ∵0>x ,0>a ∴xa x 29+≥a x a x 6922=⋅. 当且仅当x a x 29=,即3a x =时,等号成立. ∴a x a x 69min 2=⎪⎭⎫ ⎝⎛+. ∵xa x 29+≥1+a 对一切正实数x 恒成立 ∴只需min 29⎪⎭⎫ ⎝⎛+x a x ≥1+a 即可 ∴a 6≥1+a ,解之得:a ≥51.∴实数a 的取值范围是⎪⎭⎫⎢⎣⎡+∞,51. 方法总结 解决与不等式恒成立有关的问题,把参数从不等式中分离出来,使不等式的一端是含有参数的代数式,另一端是一个具体的函数,这样就把问题转化为只有一端是参数的不等式的形式,便于问题的解决.例22. 已知b a ,是正实数,且032=-+ab b a ,则ab 的最小值是_________,b a +的最小值是_________.解: ∵032=-+ab b a∴ab b a 32=+,∴13132=+ba . ∵b a ,是正实数 ∴()b a a b b a a b b a b a b a 332131332323132++=+++=+⎪⎭⎫ ⎝⎛+=+ ≥322133221+=⋅+b a a b . 当且仅当ba ab 332=,即312,322+=+=b a 时,等号成立. ∴b a +的最小值为3221+. ∵b a ,是正实数,13132=+b a ∴ab b a 92231322=⋅≤13132=+ba ∴ab ≥98. 当且仅当b a 3132=,即32,34==b a 时,等号成立. ∴ab 的最小值是98. 例23. 已知0,0>>y x ,且32=+y x ,则xy 的最大值是_________,xy y x +3的最小值是_________.解: ∵0,0>>y x ,32=+y x ∴xy y x 2222=⋅≤32=+y x∴xy ≤89,当且仅当y x 2=,即43,23==y x 时,等号成立. ∴xy 的最大值是89. ∵32=+y x ,∴1323=+y x . ∴37322323131323313++=+++=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=+=+x y y x x y y x y x y x y x xy y x ≥37623732237322+=+=+⋅x y y x . 当且仅当xy y x 32=,即106318,5363-=-=y x 时取等号. ∴xyy x +3的最小值是3762+. 例24. 要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是,平方米10元,则该容器的最低总造价是 【 】(A )80元 (B )120元 (C )160元 (D )240元 解: 由题意可知:该容器的底面积为4 m 2,设底面长为x m,则底面宽为x 4m,容器的总造价为y 元.则有804204102420+⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⨯⨯+⨯=x x x x y ≥160804220=+⋅⨯x x (元) 当且仅当xx 4=,即2=x 时,等号成立. ∴该容器的最低总造价是160元.∴选择答案【 C 】.例25. 设0,0>>y x ,52=+y x ,则()()xy y x 121++的最小值为_________.解: ∵52=+y x∴()()⎪⎪⎭⎫ ⎝⎛+=+=+=+++=++xy xy xy xy xy xy xyy x xy xy y x 326262122121. ≥34322=⋅⨯xy xy . 当且仅当xy xy 3=,且52=+y x ,即1,3==y x 或23,2==y x 时,等号成立. ∴()()xy y x 121++的最小值为34.注意 注意与下面的例25做比较.例26. 设0,>b a ,且1=+b a ,则abab 1+的最小值为_________. 分析: 利用基本不等式求最值时,一定要满足三个条件:一定、二正、三相等. ∵0,>b a ,∴ab ab 1+≥212=⋅ab ab . 当且仅当ab ab 1=时,等号成立,此时⎪⎩⎪⎨⎧=+=11b a ab ab 无实数解. ∴上面的等号是取不到的,即abab 1+的最小值不是2. 解: ∵0,>b a ,且1=+b a ∴ab ≤212=+b a ,∴ab <0≤41. 设t ab =,则⎥⎦⎤ ⎝⎛∈41,0t . ∵t t y 1+=在⎥⎦⎤ ⎝⎛∈41,0t 上单调递减 ∴4174414114141min =+=+=⎪⎭⎫ ⎝⎛=f y . ∴ab ab 1+的最小值为417. 例27. 设20<<x ,求代数式224x x -的最大值.解: ∵20<<x∴02>-x ∴()()x x x x x x -⋅=-=-2222242≤2222=-+⨯x x 当且仅当x x -=2,即1=x 时,等号成立.∴代数式224x x -的最大值2.例28. 已知0,0,0>>>z y x ,求证:⎪⎭⎫⎝⎛+x z x y ⎪⎭⎫ ⎝⎛+y z y x ⎪⎭⎫ ⎝⎛+z y z x ≥8. 证明: ∵0,0,0>>>z y x ∴x z x y +≥02>x yz ,y z y x +≥02>yxz ,z y z x +≥02>z xy . 当且仅当z y x ==时,上面三个等号同时成立.∴⎪⎭⎫ ⎝⎛+x z x y ⎪⎭⎫ ⎝⎛+y z y x ⎪⎭⎫ ⎝⎛+z y z x ≥888==⋅⋅xyzxyz xyz xy xz yz . 当且仅当z y x ==时,等号成立.例29. 已知0,0,0>>>c b a ,且1=++c b a .求证:cb a 111++≥9. 证明: ∵0,0,0>>>c b a ,1=++c b a ∴cc b a b c b a a c b a c b a ++++++++=++111 ⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++=c b b c c a a c b a a b 3 ≥922232223=+++=⋅+⋅+⋅+cb bc c a a c b a a b 当且仅当c b a ==时,等号成立.例30. 已知正数b a ,满足4=+b a ,求3111+++b a 的最小值. 解: ∵4=+b a ∴()()831=+++b a .∵b a ,均为正数∴()()[]31813111+++=+++b a b a ⎪⎭⎫ ⎝⎛+++++++=⎪⎭⎫ ⎝⎛+++113311813111a b b a b a ⎪⎭⎫ ⎝⎛++++++=13318141a b b a ≥21133128141=++⋅++⨯+a b b a . 当且仅当1331++=++a b b a ,即1,3==b a 时,等号成立. ∴3111+++b a 的最小值为21. 例31. 若实数2,1>>b a ,且满足062=-+b a ,则2211-+-b a 的最小值为______. 解: ∵062=-+b a∴()()2212=-+-b a .∵2,1>>b a ,∴02,01>->-b a . ∴()()[]212212211-+-=-+-b a b a ⎪⎭⎫ ⎝⎛-+-2211b a()()⎥⎦⎤⎢⎣⎡--+--+=⎥⎦⎤⎢⎣⎡+--+--+=12214212212214221a b b a a b b a≥()4122142212=--⋅--⨯+a b b a . 当且仅当()12214--=--a b b a ,即3,23==b a 时,等号成立. ∴2211-+-b a 的最小值为4. 例32. 已知0,0>>y x ,且21131=++y x ,则y x +的最小值为 【 】 (A )5 (B )6 (C )7 (D )8 (参见例9)解: ()33-++=+y x y x .∵0,0>>y x ,且21131=++y x∴()⎪⎭⎫⎝⎛++=-++=+y x y x y x 131233()[]33-++y x ⎪⎭⎫ ⎝⎛++++=-⎪⎭⎫ ⎝⎛+++++=y x x yy x x y 3321313312≥533221=+⋅+⨯+yx x y . 当且仅当yx x y 33+=+,即4,1==y x 时,等号成立. ∴y x +的最小值为5. ∴选择答案【 A 】.另解: ∵21131=++y x ,∴31211+-=x y . 整理得:()()2141412132++=+++=++=x x x x x y . ∵0,0>>y x ∴1141214++++=+++=+x x x x y x ≥()511412=++⋅+x x . 当且仅当141+=+x x ,即1=x (此时4=y )时,等号成立. ∴y x +的最小值为5. ∴选择答案【 A 】.点评 在利用基本不等式求最值时,根据需要有时要对关键条件进行变形,或对要求最值的代数式进行变形,以使和为定值或积为定值. 例33. 已知0>>y x ,求()y x y x -+42的最小值.分析: 注意到()x y x y =-+,所以()y x y -<0≤()4222x y x y =⎥⎦⎤⎢⎣⎡-+,这样就消去了字母y ,因此()y x y x -+42≥2216x x +≥4.当且仅当2216,xx y x y =-=时,等号成立.解: ∵0>>y x∴()y x y -<0≤()4222x y x y =⎥⎦⎤⎢⎣⎡-+(当且仅当y x y -=时,等号成立) ∴()[]42maxx y x y =-,()22min16444x x y x y ==⎥⎦⎤⎢⎣⎡-. ∴()y x y x -+42≥2216xx +≥816222=⋅x x .当且仅当2216x x =,y x y -=,即1,2==y x 时,等号成立. ∴()y x y x -+42的最小值是8.另解: ∵0>>y x ,∴()0>-y x y .∵()[]22y x y x -+=≥()y x y -4(这里,ab ≤22⎪⎭⎫⎝⎛+b a )(当且仅当y x y -=时,等号成立) ∴()y x y x -+42≥()()y x y y x y -+-44≥()()8442=-⋅-y x y y x y .(当且仅当()()y x y y x y -=-44,即()1=-y x y 时,等号成立)当且仅当()1,=--=y x y y x y ,即1,2==y x 时,等号成立. ∴()y x y x -+42的最小值是8.例34. 若b a >,且2=ab ,求证:ba b a -+22≥4.证明: ∵b a >,∴0>-b a .∵2=ab∴()ba b a b a ab b a b a b a -+-=-+-=-+42222≥()442=-⋅-b a b a .当且仅当ba b a -=-4,即13,13-=+=b a 或13,13--=+-=b a 时,等号成立.∴ba b a -+22≥4.例35. 已知b a ,为正数,求证:b a 41+≥()ba ++21222. 证明: ∵b a ,为正数,∴02>+b a .∴()b a a b b a a b b a b a 86482241++=+++=+⎪⎭⎫ ⎝⎛+ ≥()()21222232246826+=+=+=⋅+baa b . 当且仅当baa b 8=,即a b 22=时,等号成立. ∴b a 41+≥()ba ++21222.(这里,02>+b a ) ★例36. 若10<<x ,0,0>>b a .求证:xb x a -+122≥()2b a +. 分析: 注意到()11=-+x x 这一隐含条件. 证明: ∵10<<x ,∴01>-x .∴()[]()2222222211111b x x a x x b a x b x a x x x b x a +-+-+=⎪⎭⎫ ⎝⎛-+-+=-+ ≥()()22222222112b a ab b a xx a x x b b a +=++=-⋅-++. 当且仅当()x x a x x b -=-1122,即b a ax +=时,等号成立. ∴xb x a -+122≥()2b a +. 例37. 已知c b a ,,均为正数.求证:ccb a b bc a a a c b 33222332-++-++-+≥3. 证明: ∵c b a ,,均为正数∴ccb a b bc a a a c b 33222332-++-++-+ 33223332213231232132-⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=-++-++-+=c b b c c a a c b a a b cb c a b c b a a c a b≥336332232332222=-=-⋅+⋅+⋅cb bc c a a c b a a b . 当且仅当cbb c c a a c b a a b 3223,33,22===,即c b a 32==时,等号成立. ∴c c b a b b c a a a c b 33222332-++-++-+≥3. 例38. 已知0,0>>y x ,y yx x -=-812,则y x +2的最小值为 【 】 (A )2 (B )22 (C )23 (D )4分析: 注意到02>+y x ,根据题目所给条件的特点可先求出()[]min22y x +,然后开方即可得到()min 2y x +,而()()⎪⎭⎫ ⎝⎛++=+y x y x y x 81222.解: ∵y yx x -=-812,∴y x y x 812+=+.∵0,0>>y x ,∴02>+y x .∴()()y x y x +=+222⎪⎭⎫ ⎝⎛+y x 81x y y x x y y x ++=+++=16108162 ≥1816210=⋅+xyy x . 当且仅当xyy x =16,即22,22==y x (x y 4=)时,等号成立. ∴()22y x +的最小值为18. ∴y x +2的最小值为2318=. ∴选择答案【 C 】.例39. 已知0,0>>b a ,且8=+b a ,则ba ab43+的最大值是_________. 解: ∵0,0>>b a ,8=+b a∴()a b b a a b b a b a b a b a ab b a b a ab 452414424148131434343++=+++=⎪⎭⎫ ⎝⎛++=+=+=+ ≤38924452442524==+=⋅+abb a . 当且仅当a b b a 4=,即38,316==b a 时,等号成立. ∴b a ab 43+的最大值是38. 例40. 已知93,0,0=++>>xy y x y x ,则y x 3+的最小值为_________. 解: ∵93=++xy y x ,∴39+-=x xy . ∵0,0>>y x ∴()()633633336336333933-+++=-++=+++-+=+-+=+x x x x x x x x x x y x ≥()6612633632=-=-+⋅+x x . 当且仅当3363+=+x x ,即1,3==y x 时,等号成立. ∴y x 3+的最小值为 6. 点评: 上面的方法为消去元y 后,利用基本不等式求得最值.例41. 已知x 为正实数,且1222=+y x ,求21y x +的最大值. 解: ∵x 为正实数∴()⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=+=+22122212112222222y x y x y x y x≤423221122221222=+⨯=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⨯y x .当且仅当22122y x +=,即22,23±==y x 时,等号成立. ∴21y x +的最大值为423. 另解: ∵1222=+y x ,∴2222=+y x .∵x 为正实数∴()()()22222221222122111y x y x y x y x +=+⋅=+=+ ≤()4232122221222212222222=+⨯=++⨯=⎥⎦⎤⎢⎣⎡++⨯y x y x . 当且仅当2212y x +=,即22,23±==y x 时,等号成立. ∴21y x +的最大值为423. 例42. 求函数131-++-=x x x y 的最大值.解: 设1-=x t ,则t ≥0,∴12+=t x . ∴41312++=-++-=t t tx x x y .当0=t ,即1=x 时,0=y ; 当0>t ,即1>x 时,141++=t t y ≤511421=+⋅tt . 当且仅当tt 4=,即5,2==x t 时,取等号. ∴当1>x 时,函数131-++-=x x x y 的最大值为51.综上所述,函数131-++-=x x x y 的最大值为51.例43. 设正实数z y x ,,满足04322=-+-z y xy x ,则当zxy取得最大值时,代数式zy x 212-+的最大值为 【 】 (A )0 (B )1 (C )49(D )3 解: ∵04322=-+-z y xy x ,∴2243y xy x z +-=.∵z y x ,,为正实数 ∴341431432222-+=+-=+-=x y y x xy y xy x y xy x xy z xy ≤13421=-⋅xy y x .当且仅当xyy x 4=,即y x 2=时,等号成立,此时22y z =. ∴1112122122212222+⎪⎭⎫⎝⎛--=+-=-+=-+y y y y y y z y x ≤1 ∴当1=y 时,zy x 212-+的最大值为1. ∴选择答案【 B 】.例44. 若正数y x ,满足3039422=++xy y x ,则xy 的最大值是 【 】(A )34 (B )35 (C )2 (D )45解: ∵xy y x 39422++≥xy xy xy xy y x 153123322=+=+⋅⋅∴xy 15≤30,∴xy ≤2. ∴xy 的最大值是2. ∴选择答案【 C 】.例45. 设0,0>>b a ,且ba kb a +++11≥0恒成立,则实数k 的最小值等于 【 】 (A )0 (B )4 (C )4- (D )2-解: ∵ba kb a +++11≥0恒成立∴k ≥()abb a 2+-恒成立.(这里,注意0>+b a )只需k ≥()max2⎥⎦⎤⎢⎣⎡+-ab b a 即可,此时()ab b a 2+取得最小值. ∵0,0>>b a ∴()abb a 2+≥()4422==ababab ab ,当且仅当b a =时,等号成立. ∴()abb a 2+-≤4-,∴()4max2-=⎥⎦⎤⎢⎣⎡+-ab b a ∴k ≥4-,即k 的最小值为4-. ∴选择答案【 C 】.例46. 设c b a >>,且c b b a -+-11≥ca m-恒成立,求m 的取值范围; 解: ∵c b a >>,∴0,0,0>->->-c a c b b a .∵c b b a -+-11≥ca m-恒成立 ∴c b ca b a c a --+--≥m 恒成立,只需m ≤min⎪⎭⎫ ⎝⎛--+--c b c a b a c a 即可.∵cb ba b a c b c b c b b a b a c b b a c b c a b a c a --+--+=--+-+--+-=--+--2 ≥422=--⋅--+cb ba b a c b ∴当且仅当b c a 2=+时,等号成立,4min=⎪⎭⎫⎝⎛--+--c b c a b a c a . ∴m ≤4.∴m 的取值范围是(]4,∞-.例47. 对于任意∈x R ,不等式031222>++-x a x 恒成立,求实数a 的取值范围. 解: ∵031222>++-x a x 恒成立∴13222++<x x a 恒成立,只需<a min 22132⎪⎭⎫ ⎝⎛++x x 即可.()⎪⎪⎪⎪⎭⎫⎝⎛+++=+++=+++=++12112111*********2222222x x x x x x x x . 设t x =+12,则[)+∞∈,1t ,⎪⎪⎪⎪⎭⎫ ⎝⎛+=++t t x x 21213222. ∵[)+∞∈,1t ,且()⎪⎪⎪⎪⎭⎫ ⎝⎛+=t t t f 212在⎪⎪⎭⎫⎢⎣⎡+∞,22上单调递增 ∴()()321121min=⎪⎭⎫ ⎝⎛+==f t f ,即3132min22=⎪⎭⎫ ⎝⎛++x x . ∴3<a ,即实数a 的取值范围是()3,∞-.注意 本题不能用基本不等式求最值.当111222+=+x x 时,方程无解.例48. 设0,0>>b a ,5=+b a ,则31+++b a 的最大值为_________. 解: ∵()()()()()31293124312+++=+++++=+++b a b a b a b a≤()()18319=++++a a . 当且仅当31+=+b a ,即23,27==b a 时,取等号. ∴()231+++b a 的最大值为18.∵031>+++b a∴31+++b a 的最大值为2318=.例49. 已知3,2>>y x ,()()432=--y x ,则y x +的最小值是 【 】(A )7 (B )9 (C )5 (D )11解: ∵3,2>>y x ,∴03,02>->-y x .∵()()432=--y x ∴()()232-+-y x ≥()()2432==--y x∴25-+y x ≥2,∴y x +≥9. ∴y x +的最小值是9.∴选择答案【 B 】.另解: ∵3,2>>y x ,∴03,02>->-y x .∵()()432=--y x∴()()532+-+-=+y x y x ≥()()95425322=+⨯=+--y x .∴y x +的最小值是9.∴选择答案【 B 】. 例50. 若关于x 的不等式ax x -+4≥5在()+∞∈,a x 上恒成立,则实数a 的最小值为_________.解: ∵()+∞∈,a x ,∴0>-a x .∵ax x -+4≥5恒成立 ∴只需min 4⎪⎭⎫ ⎝⎛-+a x x ≥5即可. ∵a ax a x a x x +-+-=-+44≥()a a a x a x +=+-⋅-442 当且仅当ax a x -=-4,即2+=a x 时,等号成立. ∴a a x x +=⎪⎭⎫ ⎝⎛-+44min ∴a +4≥5,解之得:a ≥1.∴实数a 的最小值为1.例51. 已知0,0>>y x ,且121=+yx ,则y x xy ++的最小值为_________. 解: ∵121=+yx ∴xy y x =+2∴y x y x y x y x xy 232+=+++=++.∵0,0>>y x ∴⎪⎭⎫ ⎝⎛+=+y x y x 2123()y xx y y x x yy x 627462323++=+++=+≥3476227+=⋅+y xx y. 当且仅当y x x y 62=,即23,3323+=+=y x 时,等号成立.∴y x 23+,即y x xy ++的最小值为347+.例52. 已知0,0>>y x ,且053=+-+xy y x ,求xy 的最小值.解: ∵053=+-+xy y x∴xy y x 35=++.∵0,0>>y x∴5++y x ≥52+xy ,即xy 3≥52+xy ∴523--xy xy ≥0 ∴()()531-+xy xy ≥0解之得:xy ≥35.∴xy ≥925,当且仅当35==y x 时,等号成立.∴xy 的最小值为925.例53. 已知z y x ,,为正数,则222z y x yzxy +++的最大值为【 】 (A )1 (B )2 (C )22(D )2解: ∵z y x ,,为正数 ∴⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++=+++222222222z y y x yz xy z y x yz xy ≤yz xy yz xy 222222⨯+⨯+ ()22212==++=yz xy yzxy . 当且仅当y z x 22==时,等号成立. ∴222z y x yz xy +++的最大值为22. ∴选择答案【 C 】.例54. 设0>>b a ,则()b a a ab a -++112的最小值是 【 】 (A )1 (B )2 (C )3 (D )4解: ∵0>>b a ,∴0>-b a .∴()()()()ab ab b a a b a a b a a ab ab ab a b a a ab a 11111122++-+-=-+++-=-++ ≥()()41212=⋅+-⋅-abab b a a b a a . 当且仅当()()abab b a a b a a 1,1=-=-,即22,2==b a 时,等号成立. ∴()b a a ab a -++112的最小值是4. ∴选择答案【 D 】.例55. 设y x ,都是正数,且()1=+-y x xy .(1)求xy 的最小值;(2)求y x +的最小值.分析: 关于(1)的解决,参见例52.解:(1)∵()1=+-y x xy ∴xy y x =++1. ∵y x ,都是正数 ∴y x ++1≥xy 21+,即xy ≥xy 21+. ∴12--xy xy ≥0. 解之得:xy ≥21+. ∴xy ≥()223212+=+. 当且仅当21+==y x 时,等号成立. ∴xy 的最小值为223+;(2)由(1)知:xy y x =++1. ∵y x ,都是正数∴xy ≤()4222y x y x +=⎪⎭⎫ ⎝⎛+. (当且仅当21+==y x 时取等号) ∴()42y x +≥y x ++1,()()142-+-+y x y x ≥0. ∴()()442-+-+y x y x ≥0. 解之得:y x +≥222+. 当且仅当21+==y x 时,等号成立. ∴y x +的最小值为222+.。

高三数学知识点总结3:基本不等式

高三数学知识点总结3:基本不等式

基本不等式1.基本不等式:2b a ab +≤.(一正、二定、三相等) (1)基本不等式成立的条件:0,0≥≥b a .(2)等号成立的条件:当且仅当b a =时取等号. 2.算术平均数与几何平均数设,0,0>>b a 则b a ,的算术平均数为,2b a +几何平均数为,ab 基本不等式可叙述为两个正数的算术平均数大于或等于它的几何平均数.3.几个重要的不等式(1)),(222R b a ab b a ∈≥+;(2))0,0(2≥≥≥+b a ab b a ;(3)),(4)(2R b a b a ab ∈+≤;(4)222)()(2b a b a +≥+(R b a ∈,) 4.利用基本不等式求最值问题已知,0,0>>y x 则(1)如果积xy 是定值,p 那么当且仅当y x =时,y x +有最小值是.2p (2)如果和y x +是定值,s 那么当且仅当y x =时,xy 有最大值是.4s 2注:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正(各项均为正),二定(积或和为定值),三相等(等号能否取得)”,若忽略了某个条件,就会出现错误.解答题用基本不等式求最值一定要说明何时取等号,不说明会扣分。

如果多次用基本不等式求最值,必须保持每次取“=”的一致性.5.注意:正负要判断,等号要考虑例(1)已知,45<x 函数54124-+-=x x y 的最大值为_________答案:1. (2)函数4522++=x x y 的最小值是_________答案:.25 6.“1”的代换问题:例(3)设,32,0,0=+>>b a b a 则11a b+最小值是 答案:3223+. (4)已知P 是ABC ∆的边BC 上的任一点,且满足,,,R y x AC y AB x AP ∈+=则xy y x +4的最小值是 .答案:9.7.“y x +”与“xy ”的互相转化例(5)若正实数y x ,满足,62++=y x xy 则xy 的最小值是_________答案:18.(6)设y x ,为实数,若,1422=++xy y x 则y x +2的最大值是_________答案:.5102 8.巧妙运用换元法 例(7)设y x ,是正实数,且,1=+y x 则1222+++y y x x 的最小值是_________答案:41. (8)若,0,0>>b a 且,11121=+++b b a 则b a 2+的最小值为________答案:.321+ 9.灵活使用消元法例(9)已知正实数y x ,满足,42=++y x xy 则y x +的最小值为_____答案:62.3-(10)若ABC ∆的内角满足,sin 2sin 2sin C B A =+则C cos 的最小值是_____答案:.426-。

高中数学《基本不等式》知识点归纳

高中数学《基本不等式》知识点归纳
1、分类讨论思想
例1.已知不等式 ,(1)求该不等式中x的集合;(2)若1不是不等式的解,0是不等式的解,求k的取值范围。
解:(1)
当k>1时,解集为
当时 ,解集为
当k<1时,解集为
(2)
所以
小结:当一次项系数为0时,,不等式的解集为R(不等式成立时)或 (不等式不成立时)。
典型例题精选
题型一 对公式的简单运用
题型二:条件最值问题
【小结】条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数“1”代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.
【小结】看好形式上的特点,分子分母同时除以自变量x,或通过其他变形出现基本不等式的可用情况,如积为定值的形式.需要注意的是等号成立的条件,如果不成立,则需转化为对勾函数的知识,运用求导并结合其图像解题.


解得
从而

∴不等式的解集是
4、数形结合思想
例4.设a<0为常数,解不等式 。
解:不等式转化为
令函数 和
其图象如图所示

解得 (舍去)
∴两个函数图象的交点为
由图知,当 时,函数 的图象位于函数 的图象的上方
∴不等式的解集是
小结:在不等式的求解过程中,换元法和图象法是常用的技巧。
通过换元,可将较复杂的不等式化归为较简单的不等式或基本不等式,
例6. 解不等式
分析:本题若直接将左边通分采用解高次不等式的思维来做,运算较繁杂。
但注意到 ,且题中出现 ,
启示我们构造函数 去投石问路。
解:将原不等式化为

第7讲 基本不等式(知识点串讲)(解析版)

第7讲 基本不等式(知识点串讲)(解析版)
当且仅当x-2= ,即(x-2)2=1时等号成立,
解得x=1或3.又∵x>2,∴x=3,即a等于3时,函数f(x)在x=3处取得最小值.]
练习、(2019·山东济宁月考)已知0<x<1,则x(3-3x)取得最大值时x的值为()
A. B.
C. D.
【答案】B[∵0<x<1,∴x(3-3x)=3x(1-x)≤3 = .当且仅当x=1-x,即x= 时,“=”成立.]
练习、(2019·广东梅州月考)设a,b,c均为正数,满足a-2b+3c=0,则 的最小值是________.
【答案】3[∵a-2b+3c=0,∴b= ,∴ = ≥ =3,当且仅当a=3c时取“=”.]
【知识梳理】
6、用基本不等式求实际应用题的三个注意点
(1)设变量时一般要把求最大值或最小值的变量定义为函数.
(1)求S关于x的函数关系式;
(2)求S的最大值.
解(1)由题设,得S=(x-8) =-2x- +916,x∈(8,450).
(2)因为8<x<450,
所以2x+ ≥2 =240,
当且仅当x=60时等号成立,从而S≤676.
故当矩形温室的室内长为60 m时,三块种植植物的矩形区域的总面积最大,最大为676 m2.
(2)根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值.
(3)在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.
【考点精炼】
考点四、基本不等式的实际应用
例4、(2019·山东聊城月考)某化工企业2018年年底将投入100万元,购入一套污水处理设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.设该企业使用该设备x年的年平均污水处理费用为y(单位:万元).

基本不等式知识点归纳

基本不等式知识点归纳

基本不等式知识点归纳不等式是数学中重要的概念之一,其在代数中应用广泛。

基本的不等式知识点包括一元一次不等式、二元一次不等式、绝对值不等式以及高次不等式等内容。

本文将对这些基本不等式知识点进行归纳总结。

一、一元一次不等式一元一次不等式即只含有一个变量的一次方程,形如ax+b>0或ax+b<0,其中a、b均为已知常数,x为未知变量。

解一元一次不等式的关键是将其转化为等价的简单形式。

具体解法如下:1.当a>0时,将不等式转化为x>-b/a或x<-b/a,即可得到不等式的解集。

令x=-b/a,即x=b/a为关键点,将实数轴分成两个半区间,选取其中一个半区间,即可确定不等式的解集。

2.当a<0时,将不等式转化为x<-b/a或x>-b/a,即可得到不等式的解集。

同样令x=-b/a,即x=b/a为关键点,将实数轴分成两个半区间,选取其中一个半区间,即可确定不等式的解集。

二、二元一次不等式二元一次不等式即含有两个变量的一次方程,形如ax+by>c或ax+by<c,其中a、b、c均为已知常数,x、y为未知变量。

解二元一次不等式的关键是确定不等式的解集。

具体解法如下:1. 将不等式转化为等价的简单形式,即将不等式化为一个以上的不等式。

例如,对于ax+by>c,可以根据a、b的正负情况,分别得到x>c/a、x<c/a、y>c/b和y<c/b四个不等式。

2.根据得到的不等式,确定不等式的解集。

根据不等式的关系,将x、y的解集分别标在坐标平面上,其中各个解集的交集即为该二元一次不等式的解集。

三、绝对值不等式绝对值不等式是含有绝对值的不等式,形如,ax+b,>c或,ax+b,<c,其中a、b、c均为已知常数,x为未知变量。

解绝对值不等式的关键是确定绝对值不等式的情况,然后将其转化为简单的不等式。

具体解法如下:1. 当a>0时,原绝对值不等式可以转化为ax+b>c或ax+b<c的形式。

《基本不等式》知识点及题型总结

《基本不等式》知识点及题型总结

基本不等式 一、考点、热点回顾 1.基本不等式:ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号.2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ).(2)b a +a b≥2(a ,b 同号). (3)ab ≤⎝⎛⎭⎫a +b 22 (a ,b ∈R ).(4)a 2+b 22≥⎝⎛⎭⎫a +b 22 (a ,b ∈R ).以上不等式等号成立的条件均为a =b .3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数.4.利用基本不等式求最值问题已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值2p .(简记:积定和最小)(2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值p 24.(简记:和定积最大) 知识拓展不等式的恒成立、能成立、恰成立问题(1)恒成立问题:若f (x )在区间D 上存在最小值,则不等式f (x )>A 在区间D 上恒成立⇔f (x )min >A (x ∈D ); 若f (x )在区间D 上存在最大值,则不等式f (x )<B 在区间D 上恒成立⇔f (x )max <B (x ∈D ).(2)能成立问题:若f (x )在区间D 上存在最大值,则在区间D 上存在实数x 使不等式f (x )>A 成立⇔f (x )max >A (x ∈D ); 若f (x )在区间D 上存在最小值,则在区间D 上存在实数x 使不等式f (x )<B 成立⇔f (x )min <B (x ∈D ).(3)恰成立问题:不等式f (x )>A 恰在区间D 上成立⇔f (x )>A 的解集为D ;不等式f (x )<B 恰在区间D 上成立⇔f (x )<B 的解集为D .二、典型例题例1、设0a b ,则下列不等式中正确的是( )A .a <b << B. a <<<bC .a <<b < D .<a <<b变式训练1、已知等比数列的各项均为正数,公比0<q <1,设392a a P +=,Q =,则a 3,a 9,P 与Q 的大小关系是( )A .a 3>P >Q >a 9 B. a 3>Q >P >a 9C .a 9>P >a 3>QD .P >Q >a 3>a 9考点二、利用基本不等式求最值例2、(1)已知0<x <1,则x (4-3x )取得最大值时x 的值为________.(2)函数y =x 2+2x -1(x >1)的最小值为________. (3)设a >0,b >0,且21a b +=,则11a b+的最小值为 。

(完整版)基本不等式知识点

(完整版)基本不等式知识点

基本不等式知识点1、不等式的基本性质①(对称性)a b b a >⇔>②(传递性),a b b c a c >>⇒>③(可加性)a b a c b c >⇔+>+(同向可加性)d b c a d c b a +>+⇒>>,(异向可减性)d b c a d c b a ->-⇒<>,④(可积性)bc ac c b a >⇒>>0,bc ac c b a <⇒<>0,⑤(同向正数可乘性)0,0a b c d ac bd >>>>⇒> (异向正数可除性)0,0a b a b c d c d >><<⇒>⑥(平方法则)0(,1)n n a b a b n N n >>⇒>∈>且⑦(开方法则)0,1)a b n N n >>∈>且 ⑧(倒数法则)b a b a b a b a 110;110>⇒<<<⇒>>2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤②(基本不等式)2a b +≥()a b R +∈,,(当且仅当a b =时取到等号).变形公式:a b +≥2.2a b ab +⎛⎫≤ ⎪⎝⎭ 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)3a b c ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号).④()222a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号).⑤3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号)0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,,规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>⇔>⇔<->当时,或22.x a x a a x a <⇔<⇔-<< ⑨绝对值三角不等式.a b a b a b -≤±≤+3、几个著名不等式①平均不等式:1122a b a b --+≤≤≤+,,a b R +∈(,当且仅当a b =时取""=号).(即调和平均≤几何平均≤算术平均≤平方平均).变形公式:222;22a b a b ab ++⎛⎫≤≤ ⎪⎝⎭ 222().2a b a b ++≥ ②幂平均不等式:222212121...(...).n n a a a a a a n +++≥+++③二维形式的三角不等式:≥1122(,,,).x y x y R ∈④二维形式的柯西不等式:22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立.⑤三维形式的柯西不等式:2222222123123112233()()().a a ab b b a b a b a b ++++≥++⑥一般形式的柯西不等式: 2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++ ⑦向量形式的柯西不等式:设,αβ是两个向量,则,αβαβ⋅≤当且仅当β是零向量,或存在实数k ,使k αβ=时,等号成立.⑧排序不等式(排序原理):设1212...,...n n a a a b b b ≤≤≤≤≤≤为两组实数.12,,...,n c c c 是12,,...,n b b b 的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和),当且仅当12...n a a a ===或12...n b b b ===时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.4、不等式证明的几种常用方法 常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等. 常见不等式的放缩方法:①舍去或加上一些项,如22131()();242a a ++>+ ②将分子或分母放大(缩小),如211,(1)kk k <- 211,(1)k k k>+=⇒<*,1)k N k >∈>等.5、一元二次不等式的解法求一元二次不等式20(0)ax bx c ++><或 2(0,40)a b ac ≠∆=->解集的步骤:一化:化二次项前的系数为正数.二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩ (<≤“或”时同理)规律:把分式不等式等价转化为整式不等式求解.8、无理不等式的解法:转化为有理不等式求解⑴2()0(0)()f x a a f x a ≥⎧>>⇔⎨>⎩⑵2()0(0)()f x a a f x a ≥⎧<>⇔⎨<⎩⑶2()0()0()()0()0()[()]f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或⑷2()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩⑸()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩ 规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解.9、指数不等式的解法:⑴当1a >时,()()()()f x g x a a f x g x >⇔>⑵当01a <<时,()()()()f x g x a a f x g x >⇔< 规律:根据指数函数的性质转化.10、对数不等式的解法⑴当1a >时, ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩⑵当01a <<时, ()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据对数函数的性质转化.11、含绝对值不等式的解法: ⑴定义法:(0).(0)a a a a a ≥⎧=⎨-<⎩ ⑵平方法:22()()()().f x g x f x g x ≤⇔≤⑶同解变形法,其同解定理有: ①(0);x a a x a a ≤⇔-≤≤≥ ②(0);x a x a x a a ≥⇔≥≤-≥或 ③()()()()()(()0)f xg x g x f x g x g x ≤⇔-≤≤≥ ④()()()()()()(()0)f x g x f x g x f x g x g x ≥⇔≥≤-≥或规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集.13、含参数的不等式的解法解形如20ax bx c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有: ⑴讨论a 与0的大小;⑵讨论∆与0的大小;⑶讨论两根的大小.14、恒成立问题⑴不等式20ax bx c ++>的解集是全体实数(或恒成立)的条件是: ①当0a =时 0,0;b c ⇒=>②当0a ≠时00.a >⎧⇒⎨∆<⎩ ⑵不等式20ax bx c ++<的解集是全体实数(或恒成立)的条件是:①当0a =时0,0;b c ⇒=<②当0a ≠时00.a <⎧⇒⎨∆<⎩ ⑶()f x a <恒成立max ();f x a ⇔<()f x a ≤恒成立max ();f x a ⇔≤⑷()f x a >恒成立min ();f x a ⇔>()f x a ≥恒成立min ().f x a ⇔≥15、线性规划问题常见的目标函数的类型:①“截距”型:;z Ax By =+ ②“斜率”型:y z x =或;y b z x a -=-③“距离”型:22z x y =+或z = 22()()z x a y b =-+-或z =在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.。

基本不等式知识点梳理

基本不等式知识点梳理

基本不等式1、教学重点:应用数形结合的思想理解不等式ab b a 222≥+,并从不同角度探索不等式2a b ab +≤的证明过程; 通过简单的变形发现基本不等式在最值问题上的作用,并能够进行使用条件辨析及其简单运用。

2、教学难点:基本不等式2a b ab +≤使用限制条件 基本不等式2a b ab +≤等号成立条件 基本不等式在最值问题中的运用3、学生必须掌握的内容:1.重要不等式定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立.2.基本不等式(1)定理2:如果a ,b >0,那么2a b ab +≥ ( a +b 2≥ab),当且仅当a =b 时,等号成立.(2)定理2的应用:对两个正实数x ,y ,①如果它们的和S 是定值,则当且仅当x =y 时,它们的积P 取得最大值,最大值为S 24. ②如果它们的积P 是定值,则当且仅当x =y 时,它们的和S 取得最小值,最小值为2P .3.基本不等式ab ≤a +b 2的几何解释如图,AB 是⊙O 的直径,C 是AB 上任意一点,DE 是过C 点垂直AB 的弦.若AC =a ,BC =b ,则AB =a +b ,⊙O 的半径R =a +b 2,Rt △ACD ∽Rt △DCB ,CD 2=AC ·BC =ab ,CD =ab ,CD ≤R ⇒ab ≤a +b 2,当且仅当C 点与O 点重合时,CD =R =AB 2,即ab =a +b 2.4.几个常用的重要不等式(1)如果a ∈R ,那么a 2≥0,当且仅当a =0时取等号;(2)如果a ,b >0,那么ab ≤(a +b )24,当且仅当a =b 时等号成立. (3)如果a >0,那么a +1a ≥2,当且仅当a =1时等号成立.(4)如果ab >0,那么a b +b a ≥2,当且仅当a =b 时等号成立.3.三个正数的算术-几何平均不等式1.如果a 、b 、c ∈R +,那么a 3+b 3+c 3≥3abc ,当且仅当a =b =c 时,等号成立.2.(定理3)如果a 、b 、c ∈R +,那么3++≥a b c (a +b +c 3≥3abc),当且仅当a =b =c 时,等号成立.即三个正数的算术平均不小于它们的几何平均.3.如果a 1,a 2,…,a n ∈R +,那么a 1+a 2+…+a n n ≥n a 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.即对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均.4、容易出现的问题:学生容易忽略和混淆不等式取到等号的条件,容易遗忘不等式使用的限制条件.5、解决方法:找到具体实例,和学生一起分析存在的问题并及时纠正学生的易错之处.。

基本不等式完整版(非常全面)

基本不等式完整版(非常全面)

基本不等式专题辅导一、知识点总结1、基本不等式原始形式(1)若R b a ∈,,则ab b a 222≥+(2)若R b a ∈,,则222b a ab +≤2、基本不等式一般形式(均值不等式)若*,R b a ∈,则ab b a 2≥+3、基本不等式的两个重要变形 (1)若*,R b a ∈,则ab ba ≥+2(2)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值;特别说明:以上不等式中,当且仅当b a =时取“=”4、求最值的条件:“一正,二定,三相等”5、常用结论 (1)若0x >,则12x x+≥ (当且仅当1x =时取“=”) (2)若0x <,则12x x+≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”)(4)若R b a ∈,,则2)2(222b a b a ab +≤+≤ (5)若*,R b a ∈,则2211122b a b a ab b a +≤+≤≤+ 特别说明:以上不等式中,当且仅当b a =时取“=” 6、柯西不等式(1)若,,,abc d R ∈,则22222()()()a b c d a c b d ++≥+(2)若123123,,,,,a a a b b b R ∈,则有:22222221231123112233()()()a a a b b b a b a b a b ++++≥++(3)设1212,,,,,,n n a a a b b ⋅⋅⋅⋅⋅⋅与b 是两组实数,则有 222(a a a ++⋅⋅⋅+)222)b b b ++⋅⋅⋅+(2()a b a b a b ≥++⋅⋅⋅+二、题型分析题型一:利用基本不等式证明不等式1、设b a ,均为正数,证明不等式:ab ≥ba 112+2、已知cb a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++2223、已知1a b c ++=,求证:22213a b c ++≥4、已知,,a b c R+∈,且1a b c ++=,求证:a b cc b a 8)1)(1)(1(≥---5、已知,,a b c R+∈,且1a b c ++=,求证:1111118a bc ⎛⎫⎛⎫⎛⎫---≥ ⎪⎪⎪⎝⎭⎝⎭⎝⎭6、(2013年新课标Ⅱ卷数学(理)选修4—5:不等式选讲 设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤; (Ⅱ)2221a b c b c a++≥.7、(2013年江苏卷(数学)选修4—5:不等式选讲 已知0>≥b a ,求证:b a ab b a 223322-≥- 题型二:利用不等式求函数值域1、求下列函数的值域 (1)22213x x y += (2))4(x x y -=(3))0(1>+=x x x y (4))0(1<+=x xx y题型三:利用不等式求最值 (一)(凑项)1、已知2>x ,求函数42442-+-=x x y 的最小值;变式1:已知2>x ,求函数4242-+=x x y 的最小值;变式2:已知2<x ,求函数4242-+=x x y 的最大值;练习:1、已知54x >,求函数14245y x x =-+-的最小值;2、已知54x <,求函数14245y x x =-+-的最大值;题型四:利用不等式求最值 (二)(凑系数)1、当时,求(82)y x x =-的最大值;变式1:当时,求4(82)y x x =-的最大值;变式2:设230<<x ,求函数)23(4x x y -=的最大值。

高考数学-基本不等式(知识点归纳)

高考数学-基本不等式(知识点归纳)

高考数学-基本不等式(知识点归纳) 高中数学基本不等式的巧用一、基本不等式1.若$a,b\in\mathbb{R}$,则$a+b\geq 2ab$,$ab\leq\frac{(a+b)^2}{4}$(当且仅当$a=b$时取“=”)2.若$a,b\in\mathbb{R}$,则$\frac{a+b}{2}\geq\sqrt{ab}$(当且仅当$a=b$时取“=”)3.若$x>1$,则$x+\frac{1}{x}\geq 2$(当且仅当$x=1$时取“=”);若$x<1$,则$x+\frac{1}{x}\leq -2$(当且仅当$x=-1$时取“=”);若$x\neq 0$,则$x+\frac{1}{x}\geq 2$或$x+\frac{1}{x}\leq -2$(当且仅当$x=1$或$x=-1$时取“=”)4.若$a,b>0$,则$\frac{a}{b}+\frac{b}{a}\geq 2$(当且仅当$a=b$时取“=”);若$ab\neq 0$,则$\frac{a}{b}+\frac{b}{a}\geq 2$或$\frac{a}{b}+\frac{b}{a}\leq -2$(当且仅当$a=b$时取“=”)注:(1)当两个正数的积为定值时,可以求它们的和的最小值,当两个正数的和为定值时,可以求它们的积的最大值,正所谓“积定和最小,和定积最大”。

2)求最值的条件“一正,二定,三取等”。

3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用。

应用一:求最值例1:求下列函数的值域1.$y=3x+\frac{11}{2}$2.$y=x+\frac{1}{2x}$解:(1)$y=3x+\frac{11}{2}\geq 6$,所以值域为$[6,+\infty)$。

2)当$x>0$时,$y=x+\frac{1}{2x}\geq 2$;当$x<0$时,$y=x+\frac{1}{2x}\leq -2$;当$x=0$时,$y$无定义。

基本不等式知识点归纳

基本不等式知识点归纳

基本不等式知识点归纳基本不等式是数学中的重要概念,涉及到数值之间的大小关系。

在数学学习中,掌握基本不等式的知识点对于解决各类问题至关重要。

本文将对基本不等式的定义、性质以及常用的基本不等式进行归纳总结。

一、基本不等式的定义基本不等式是指关于变量的不等关系式,通常形式为a ≤ b 或 a < b,其中 a、b 为实数,表示 a 与 b 之间的大小关系。

二、基本不等式的性质1. 传递律:若a ≤ b 且b ≤ c,则a ≤ c。

2. 对称律:若a ≤ b,则b ≥ a。

3. 加法性:若a ≤ b,则a + c ≤ b + c。

4. 减法性:若a ≤ b,则 a - c ≤ b - c(其中 c 为正数)。

5. 乘法性:若a ≤ b 且c ≥ 0,则ac ≤ bc。

若c ≤ 0,则ac ≥ bc。

6. 除法性:若a ≤ b 且 c > 0,则a/c ≤ b/c。

若 c < 0,则a/c ≥ b/c。

三、常用的基本不等式1. 平均值不等式:对于任意非负实数 a₁、a₂、...、aₙ,有 (a₁ +a₂ + ... + aₙ)/n ≥ √(a₁a₂...aₙ)。

该不等式表明,若 n 个非负实数的算术平均值大于等于它们的几何平均值,那么这些数之间存在不等关系。

2. 柯西-施瓦茨不等式:对于任意实数 a₁、a₂、...、aₙ 和 b₁、b₂、...、bₙ,有(a₁b₁ + a₂b₂ + ... + aₙbₙ)² ≤ (a₁² + a₂² + ... + aₙ²)(b₁² + b₂²+ ... + bₙ²)。

柯西-施瓦茨不等式表明了两个向量内积的平方与两个向量长度乘积的平方之间的关系。

该不等式在数学分析、线性代数等领域有广泛应用。

3. 三角不等式:对于任意实数 a、b,有|a + b| ≤ |a| + |b|。

三角不等式表明了两个实数之和的绝对值小于等于两个实数的绝对值之和。

(完整版)基本不等式知识点和基本题型(最新整理)

(完整版)基本不等式知识点和基本题型(最新整理)

3、已知 x, y 0 , x 2 y 2xy 8 ,求 x 2 y 最小值;
变式 1:已知 a,b 0 ,满足 ab a b 3 ,求 ab 范围;
变式 2:(2010 山东)已知 x, y 0 , 1 1 1 ,求 xy 最大值;(提示:通分或三角换元) 2x 2 y 3
(2)若 x 0 ,则 x 1 2 (当且仅当 x 1 时取“=”) x
(3)若 ab 0 ,则 a b 2 (当且仅当 a b 时取“=”)
ba
(4)若 a, b R ,则 ab ( a b )2 a2 b2
2
2
(5)若 a, b R* ,则 1 ab a b a2 b2
基本不等式专题辅导
一、知识点总结
1、基本不等式原始形式
(1)若 a,b R ,则 a2 b2 2ab
(2)若 a, b R ,则 ab a 2 b2
2
2、基本不等式一般形式(均值不等式) 若 a, b R* ,则 a b 2 ab
3、基本不等式的两个重要变形
(1)若 a, b R* ,则 a b ab
4
的最小值;
n
题型六:分离换元法求最值(了解)
1、求函数 y x2 7x 10 (x 1) 的值域; x 1
变式:求函数 y x2 8 (x 1) 的值域; x 1
2、求函数 y
x2
的最大值;(提示:换元法)
2x 5
变式:求函数 y
x 1
的最大值;
4x 9
题型七:基本不等式的综合应用
此时 x y z
6
2
1 2 2 12 ( 2)2 22 3
,∴ x 2 , y 4 , z 4
3
3

基本不等式知识点

基本不等式知识点

基本不等式知识点1. 算术-几何平均不等式(AM-GM不等式)- 表述:对于所有非负实数 \(a_1, a_2, ..., a_n\),算术平均数总是大于或等于几何平均数。

- 数学表达:\(\frac{a_1 + a_2 + ... + a_n}{n} \geq\sqrt[n]{a_1 \cdot a_2 \cdot ... \cdot a_n}\)。

- 等号成立条件:当且仅当所有 \(a_i\) 相等时,等号成立。

2. 柯西-施瓦茨不等式(Cauchy-Schwarz不等式)- 表述:对于所有实数序列 \(a_1, a_2, ..., a_n\) 和 \(b_1,b_2, ..., b_n\),两序列对应元素乘积的和的平方不超过各自平方和的乘积。

- 数学表达:\((a_1b_1 + a_2b_2 + ... + a_nb_n)^2 \leq(a_1^2 + a_2^2 + ... + a_n^2)(b_1^2 + b_2^2 + ... + b_n^2)\)。

- 等号成立条件:当且仅当 \(a_i = \lambda b_i\) 对所有 \(i\) 成立时,等号成立,其中 \(\lambda\) 是一个常数。

3. 詹森不等式(Jensen's Inequality)- 表述:如果 \(\phi\) 是一个实数上的凸函数,对于任意实数序列 \(x_1, x_2, ..., x_n\),算术平均数的函数值总是小于或等于这些数的函数值的算术平均数。

- 数学表达:\(\phi\left(\frac{x_1 + x_2 + ... +x_n}{n}\right) \leq \frac{1}{n}\phi(x_1) +\frac{1}{n}\phi(x_2) + ... + \frac{1}{n}\phi(x_n)\)。

- 等号成立条件:当且仅当 \(x_1 = x_2 = ... = x_n\) 时,等号成立。

基本不等式知识点

基本不等式知识点

基本不等式知识点1.不等式的性质:不等式具有与等式类似的运算性质,例如可以进行加减乘除运算,并且可以对不等式的两边同时进行相同的运算。

但需要注意的是,当不等式两边同时乘或除以负数时,不等号的方向会发生改变。

2.加法不等式:对于实数a、b和c,若a<b,则a+c<b+c。

即不等式两边同时加上相同的数,不等式的关系保持不变。

3.减法不等式:对于实数a、b和c,若a<b,则a-c<b-c。

即不等式两边同时减去相同的数,不等式的关系保持不变。

4.乘法不等式:对于实数a、b和正数c,若a<b且c>0,则a·c<b·c。

即不等式两边同时乘以正数,不等式的关系保持不变。

需要注意,当c为负数时,不等号的方向会发生改变。

5.除法不等式:对于实数a、b和正数c,若a<b且c>0,则a/c<b/c。

即不等式两边同时除以正数,不等式的关系保持不变。

需要注意,当c为负数时,不等号的方向会发生改变。

6.平方不等式:对于实数a和正实数b,若a>b,则a²>b²。

即不等式两边同时取平方,不等式的关系保持不变。

7.绝对值不等式:对于任意实数a和正实数b,若,a,<b,则-b<a<b。

即如果一个实数的绝对值小于一个正实数,则这个实数的取值范围在-b和b之间。

8.基本不等式的应用:基本不等式可以应用于各类数学问题的解决,例如求解方程组、解决最值问题等。

这些应用需要根据具体问题,结合基本不等式的性质,并运用合适的不等式进行推导。

以上是基本不等式的主要知识点。

通过掌握这些知识点,我们能够更好地理解不等式的性质,并有效地运用于解决实际问题。

在学习和应用过程中,我们可以通过大量的练习,加深对基本不等式的理解和掌握,提高解决问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本不等式知识点总结向量不等式:【注意】: a b r r 、同向或有0r ⇔||||||a b a b +=+u r u r u r u r ≥||||||||a b a b -=-u r ur u r u r ; a b r r 、反向或有0r ⇔||||||a b a b -=+u r u r u r u r ≥||||||||a b a b -=+u r ur u r u r ; a b r r 、不共线⇔||||||||||||a b a b a b -<±<+u r u r u r u r u r u r .(这些和实数集中类似)代数不等式:,a b 同号或有0||||||||||||a b a b a b a b ⇔+=+-=-≥; ,a b 异号或有0||||||||||||a b a b a b a b ⇔-=+-=+≥.绝对值不等式: 123123a a a a a a ++++≤双向不等式:a b a b a b -±+≤≤(左边当0(0)ab ≤≥时取得等号,右边当0(0)ab ≥≤时取得等号.)放缩不等式:①00a b a m >>>>,,则b m b b ma m a a m-+<<-+. 【说明】:b b m a a m+<+(0,0a b m >>>,糖水的浓度问题). 【拓展】:,则,,000>>>>n m b a ba nb n a m a m b a b <++<<++<1. ②,,a bc R +∈,b d ac <,则b bd da a c c+<<+; ③n N +∈<< ④,1n N n +∈>,21111111n n n n n-<<-+-. ⑤ln 1x x -≤(0)x >,1xe x +≥()x R ∈.函数()(0)bf x ax a b x=+>、图象及性质(1)函数()0)(>+=b a xbax x f 、图象如图:(2)函数()0)(>+=b a xb ax x f 、性质:①值域:),2[]2,(+∞--∞ab ab Y ;②单调递增区间:(,-∞,)+∞;单调递减区间:(0,,[0). 基本不等式知识点总结重要不等式1、和积不等式:,a b R ∈⇒222a b ab +≥(当且仅当a b =时取到“=”).【变形】:①222()22a b a b ab ++≤≤(当a = b 时,222()22a b a b ab ++==)【注意】:(,)2a b a b R ++∈,2()(,)2a b ab a b R +∈≤ 2、均值不等式:两个正数b a 、的调和平均数、几何平均数、算术平均数、均方根之间的关系,即“平方平均≥算术平均≥几何平均≥调和平均”*.若0x >,则12x x +≥ (当且仅当1x =时取“=”); 若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x xxx+≥+≥+≤即或 (当且仅当b a =时取“=”)*.若0>ab ,则2≥+ab ba (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 3、含立方的几个重要不等式(a 、b 、c 为正数):3333a b c abc ++≥(0a b c ++>等式即可成立,时取等或0=++==c b a c b a );*不等式的变形在证明过程中或求最值时,有广泛应用,如:当0>ab 时,ab b a 222≥+同时除以ab 得2≥+b a a b 或ba ab -≥-11。

*,,b a 均为正数,b a ba -≥22八种变式: ①222b a ab +≤ ; ②2)2(b a ab +≤; ③2)2(222b a b a +≤+ ④)(222b a b a +≤+;⑤若b>0,则b a b a -≥22;⑥a>0,b>0,则ba b a +≥+411;⑦若a>0,b>0,则ab b a 4)11(2≥+; ⑧ 若0≠ab ,则222)11(2111b a b a +≥+。

上述八个不等式中等号成立的条件都是“b a =”。

最值定理(积定和最小)①,0,x y x y >+≥由()xy P =定值,则当x y =时和x y +有最小值(和定积最大)②,0,x y x y >+≥由()x y S +=定值,则当x y =是积xy 有最大值214s .【推广】:已知R y x ∈,,则有xy y x y x 2)()(22+-=+.(1)若积xy 是定值,则当||y x -最大时,||y x +最大;当||y x -最小时,||y x +最小.(2)若和||y x +是定值,则当||y x -最大时,||xy 最小;当||y x -最小时,||xy 最大.③已知,,,R a x b y +∈,若1ax by +=,则有则的最小值为:21111()()2 ()by axax by a b a b ab a b x y x y x y+=++=+++++=+≥④已知,若则和的最小值为:①.②应用基本不等式求最值的“八种变形技巧”:⑴凑系数(乘、除变量系数).例1.当 04x <<时,求函的数(82)y x x =-最大值.⑵凑项(加、减常数项):例2.已知54x <,求函数1()4245f x x x =-+-的最大值.⑶调整分子:例3.求函数2710()(1)1x x f x x x ++=≠-+的值域; ⑷变用公式:基本不等式2a b ab +≥2222a b a b ++≥,222()22a b a b ++≥不易想到,应重视;例4.求函数152152()22y x x x =--<<的最大值;⑸连用公式:例5.已知0a b >>,求216()y a b a b =+-的最小值;⑹对数变换:例6.已知1,12x y >>,且xy e =,求ln (2)yt x =的最大值;⑺三角变换:例7.已知20y x π<<≤,且tan 3tan x y =,求t x y =-的最大值;⑻常数代换(逆用条件):例8.已知0,0a b >>,且21a b +=,求11t a b=+的最小值. “单调性”补了“基本不等式”的漏洞: ⑴平方和为定值若22x y a +=(a 为定值,0a ≠),可设,,x a y a αα==,其中02απ<≤.①(,)2)4f x y x y a a a πααα=+==+在15[0,],[,2)44πππ上是增函数,在15[,]44ππ上是减函数; ②1(,)sin 22g x y xy a α==在1357[0,],[,],[,2)4444πππππ上是增函数,在1357[,],[,]4444ππππ上是减函数;③11(,)x y m x y x y xy +=+==.令sin cos )4t πααα=+=+,其中[1)(1,1)t ∈--U U .由212sin cos t αα=+,得22sin cos 1t αα=-,从而2(,)1)m x y t t==-在[1)(1,1)--U U 上是减函数. ⑵和为定值若x y b +=(b 为定值,0b ≠),则.y b x =-①2(,)g x y xy x bx ==-+在(,]2b -∞上是增函数,在[,)2b+∞上是减函数;②211(,)x y bm x y x y xy x bx +=+==-+.当0b >时,在(,0),(0,]2b -∞上是减函数,在[,),(,)2b b b +∞上是增函数;当0b <时,在(,),(,]2b b b -∞上是减函数,在[,0),(0,)2b+∞上是增函数.③2222(,)22n x y x y x bx b =+=++在(,]2b-∞上是减函数,在[,)2b +∞上是增函数; ⑶积为定值若xy c =(c 为定值,0c ≠),则.c y x= ①(,)cf x y x y x x=+=+.当0c >时,在[上是减函数,在(,)-∞+∞上是增函数;当0c <时,在(,0),(0,)-∞+∞上是增函数;②111(,)()x y cm x y x x y xy c x+=+==+.当0c >时,在[上是减函数,在(,)-∞+∞上是增函数;当0c <时,在(,0),(0,)-∞+∞上是减函数;③222222(,)()2c c n x y x y x x c x x=+=+=+-在(,-∞上是减函数,在()+∞上是增函数.⑷倒数和为定值若112x y d +=(d 为定值,111,,x d y ),则.c y x=成等差数列且均不为零,可设公差为z ,其中1z d≠±,则1111,,z z x d y d =-=+得,.11d d x y dz dz ==-+. ①222()1d f x x y d z =+=-.当0d >时,在11(,),(,0]d d -∞--上是减函数,在11[0,),(,)d d+∞上是增函数;当0d <时,在11(,),(,0]d d -∞上是增函数,在11[0,),(,)d d--+∞上减函数;②222(,).1d g x y xy d z ==-.当0d >时,在11(,),(,0]d d -∞--上是减函数,在11[0,),(,)d d+∞上是增函数;当0d <时,在11(,),(,0]d d -∞上是减函数,在11[0,),(,)d d--+∞上是增函数;③222222222(1)(,).(1)d d z n x y x y d z +=+=-.令221t d z =+,其中1t ≥且2t ≠,从而22222(,)4(2)4d t d n x y t t t==-+-在[1,2)上是增函数,在(2,)+∞上是减函数.。

相关文档
最新文档