初等数学建模试题极其标准答案

合集下载

数学建模试卷及参考答案

数学建模试卷及参考答案

数学建模试卷及参考答案一、选择题1. 已知函数 $y = 2x^3 - 5x^2 + 3x - 7$,求导数函数 $y'$ 的值。

A) $6x^2 - 10x + 3$\B) $6x - 10x^2 + 3$\C) $6x - 10x + 3$\D) $6x^2 - 10x^2 + 3$答案:A2. 设矩形的长为 $x$,宽为 $y$,满足 $x^2 + y^2 = 25$。

当矩形的面积最大时,求矩形的长和宽。

A) 长为 4,宽为 3\B) 长为 5,宽为 3\C) 长为 4,宽为 2.5\D) 长为 5,宽为 2.5答案:A3. 一条直线过点 $A(1,2)$ 和点 $B(3,-1)$,与另一条直线 $2x + y - 4 = 0$ 平行。

求该直线的方程。

A) $2x - y + 3 = 0$\B) $2x - y - 3 = 0$\C) $-2x + y - 3 = 0$\D) $2x - y - 5 = 0$答案:B4. 已知函数 $y = e^x$,求 $y$ 的微分值。

A) $e^x$\B) $e^x + C$\C) $e^x - C$\D) $C \cdot e^x$答案:A5. 一辆汽车以每小时 60 公里的速度行驶,途中经过两座相距 60 公里的城市。

假设两座城市间有一辆以每小时90 公里的速度行驶的列车,两车同时出发。

求两辆车首次相遇的时间。

A) 0.5 小时\B) 1 小时\C) 1.5 小时\D) 2 小时答案:A二、填空题6. 已知函数 $f(x) = \sin(x)$,求函数 $g(x) = f^{\prime}(x)$。

答案:$g(x) = \cos(x)$7. 若直线 $3x + ky = 2$ 与直线 $2x - y = 3$ 相垂直,则 $k$ 的值为\_\_\_。

答案:$k = 6$8. 设抛物线 $y = ax^2 - 3x + 2$ 的顶点为 $(2,1)$,则 $a$ 的值为\_\_\_。

数学建模试卷及参考答案

数学建模试卷及参考答案

数学建模 试卷及参考答案一.概念题(共3小题,每小题5分,本大题共15分)1、一般情况下,建立数学模型要经过哪些步骤?(5分)答:数学建模的一般步骤包括:模型准备、模型假设、模型构成、模型求解、模型分析、模型检验、模型应用。

2、学习数学建模应注意培养哪几个能力?(5分)答:观察力、联想力、洞察力、计算机应用能力。

3、人工神经网络方法有什么特点?(5分)答:(1)可处理非线性;(2)并行结构.;(3)具有学习和记忆能力;(4)对数据的可容性大;(5)神经网络可以用大规模集成电路来实现。

二、模型求证题(共2小题,每小题10分,本大题共20分)1、 某人早8:00从山下旅店出发,沿一条路径上山,下午5:00到达山顶并留宿.次日早8:00沿同一路径下山,下午5:00回到旅店.证明:这人必在2天中同一时刻经过路途中某一地点(15分) 证明:记出发时刻为t=a,到达目的时刻为t=b,从旅店到山顶的路程为s.设某人上山路径的运动方程为f(t), 下山运动方程为g(t),t 是一天内时刻变量,则f(t),g(t)在[a,b]是连续函数。

作辅助函数F(t)=f(t)-g(t),它也是连续的,则由f(a)=0,f(b)>0和g(a)>0,g(b)=0,可知F (a )<0, F(b)>0,由介值定理知存在t0属于(a,b)使F(t0)=0, 即f(t0)=g(t0) 。

2、三名商人各带一个随从乘船过河,一只小船只能容纳二人,由他们自己划行,随从们秘约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人们手中,商人们怎样才能安全渡河呢?(15分)解:模型构成记第k 次渡河前此岸的商人数为k x ,随从数为k y ,k=1,2,........,k x ,k y =0,1,2,3。

将二维向量k s =(k x ,k y )定义为状态。

安全渡河条件下的状态集合称为允许状态集合,记做S 。

数学建模试题(带答案)

数学建模试题(带答案)

数学建模试题(带答案)第一章4.在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四脚的连线呈正方形改为长方形,其余不变。

试构造模型并求解。

答:相邻两椅脚与地面距离之和分别定义为)()(a g a f 和。

f 和g 都是连续函数。

椅子在任何位置至少有三只脚着地,所以对于任意的a ,)()(a g a f 和中至少有一个不为零。

不妨设0)0(,0)0(g >=f 。

当椅子旋转90°后,对角线互换,0π/2)(,0)π/2(>=g f 。

这样,改变椅子的位置使四只脚同时着地。

就归结为证明如下的数学命题:已知a a g a f 是和)()(的连续函数,对任意0)π/2()0(,0)()(,===⋅f g a g a f a 且,0)π/2(,0)0(>>g f 。

证明存在0a ,使0)()(00==a g a f证:令0)π/2(0)0(),()()(<>-=h h a g a f a h 和则, 由g f 和的连续性知h 也是连续函数。

根据连续函数的基本性质,必存在0a (0<0a <π/2)使0)(0=a h ,即0)()(00==a g a f 因为0)()(00=•a g a f ,所以0)()(00==a g a f8第二章7.10.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便有效的排列方法,使加工出尽可能多的圆盘。

第三章5.根据最优定价模型 考虑成本随着销售量的增加而减少,则设kx q x q -=0)( (1)k 是产量增加一个单位时成本的降低 ,销售量x 与价格p 呈线性关系0,,>-=b a bp a x (2) 收入等于销售量乘以价格p :px x f =)( (3) 利润)()()(x q x f x r -= (4) 将(1)(2)(3)代入(4)求出ka q kbp pa bp x r --++-=02)(当k q b a ,,,0给定后容易求出使利润达到最大的定价*p 为bakb ka q p 2220*+--=6.根据最优定价模型 px x f =)( x 是销售量 p 是价格,成本q 随着时间增长,ββ,0t q q +=为增长率,0q 为边际成本(单位成本)。

初中数学模型试题及答案

初中数学模型试题及答案

初中数学模型试题及答案一、选择题(每题3分,共30分)1. 已知一个数的平方是25,那么这个数是()A. 5B. -5C. 5或-5D. 以上都不对答案:C2. 一个等腰三角形的两边长分别为4和6,那么第三边的长度是()A. 2B. 4C. 6D. 无法确定答案:C3. 如果一个角的补角是120°,那么这个角的度数是()A. 60°B. 30°C. 120°D. 180°答案:B4. 计算下列表达式的值:(2x+3)(x-1)()A. 2x^2 - x + 3B. 2x^2 - 5x + 3C. 2x^2 + x - 3D. 2x^2 - x - 3答案:B5. 一个数的绝对值是5,这个数可能是()A. 5B. -5C. 5或-5D. 以上都不对答案:C6. 已知一个直角三角形的两条直角边长分别为3和4,那么斜边的长度是()A. 5B. 7C. 9D. 12答案:A7. 以下哪个选项是不等式的解集:2x - 3 > 5()A. x > 4B. x < 4C. x > 2D. x < 2答案:A8. 一个数的立方是-8,那么这个数是()A. -2B. 2C. -2或2D. 以上都不对答案:A9. 一个圆的半径是3,那么这个圆的面积是()A. 9πB. 18πC. 27πD. 36π答案:C10. 计算下列表达式的值:(3x-2)^2()A. 9x^2 - 12x + 4B. 9x^2 + 12x + 4C. 9x^2 - 6x + 4D. 9x^2 + 6x + 4答案:A二、填空题(每题4分,共20分)11. 如果一个数的平方根是3,那么这个数是______。

答案:912. 一个等差数列的前三项分别是2,5,8,那么第四项是______。

答案:1113. 一个三角形的内角和是______。

答案:180°14. 一个数的相反数是-7,那么这个数是______。

数学建模试题及答案

数学建模试题及答案

1. 食品厂用三种原料生产两种糖果,糖果的成分要求和销售价见表1。

各种原料的可供量和成本见表2。

该厂根据订单至少需要生产600公斤高级奶糖,800公斤水果糖,为求最大利润,试建立线性规划模型并求解。

2.某商业公司计划开办5家新商店。

为了尽早建成营业,商业公司决定由5家建筑公司分别承建。

已知建筑公司i A (5,4,3,2,1=i )对新商店j B (5,4,3,2,1=j )的建造费用的报价(万元)为ij c (5,4,3,2,1,=j i ),见表3。

商业公司应当对5家建筑公司怎样分配建造任务,才能使总的建造费用最少?
3.求解下列方程的三个实根
x x 24=
提示:首先在21≤≤-x 和172≤≤x 两个不同区域中绘制函数图形。

4\.求图1所示网络中s v 到t v 的最短路径及长度。

2
v 5
t
图1 网络图
5.某商业公司计划开办5家新商店。

为了尽早建成营业,商业公司决定由5家建筑公司分别承建。

已知建筑公司i A (5,4,3,2,1=i )对新商店j B (5,4,3,2,1=j )的建造费用的报价(万元)为ij c (5,4,3,2,1,=j i ),见表3。

商业公司应当对5家建筑公司怎样分配建造任务,才能使总的建造费用最少?。

《数学建模》练习题库及答案.doc

《数学建模》练习题库及答案.doc

一、名词解释1.Table命令的使用格式;2.Solve命令的使用格式;3.Do命令的使用格式;4.Plot命令的使用格式;5.ListPlot命令的使用格式;6.Reduce命令的使用格式;7.Expand命令的使用格式;8.FindRoot命令的使用格式;9.Switch命令的使用格式;lO.ConstrainedMin命令的使用格式;11 .Factor命令的特点与几种使用格式。

12.Clear命令的特点与使用格式二、计算题1. 1959年8月4日是星期几,这一天与2001年12月4日之间共有多少天?2.求我国北京市的地理经纬度。

3.北美地区有几个国家?写出它们的名字。

4.求解递归关系式a” = 3% _2a”_2,ao =1,4 = 2。

5.求斐波那契(Fibonacci)数列Fibonacci[n]从n=l至【Jn = 50的值。

6.分别以0.1、0.01、0.001为误差上限,将J方化成近似分数。

7 .求下列矩阵的特征值与对应的特征向量:13•求解方程7% -和"—张+ 1X 14.求1+ 28+38+...+n 8的简洁表达式。

15.求Pell 方程.r 2 -234y 2 -1的最小正整数解。

16.将16进制的数字20转化为10进制的数字。

17.求下列矩阵的行列逆矩阵与转置矩‘1 2 3、A= 2 3 1、3 1 2,8.求多项式 f=( X1 + X2 +X3 + X4 + X5严中 Xi 3 x 23 X35 X42 X55 的系数。

9•求208素因子分解。

10. 用Lindo 求解下列整数线性规划问题。

max / = 20 兀 1 +10%兀1 +兀2 +兀3 = 30y, + y 2 + = 2020x l +10% = 30X 2 + 20y 2 = 25 x 3 + 15y 3s.tA 20兀i +10% <20*30 + 10*2030兀2+20y2 <30*30 + 20*20 25兀3+15儿 <25*30 + 15*20 x t , y j > 0,integers11. 求中国香港的地理经纬度。

数学建模题目及答案

数学建模题目及答案

1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。

试作合理的假设并建立数学模型说明这个现象。

(15分) 解:对于此题,如果不用任何假设很难证明,结果很可能是否定的。

因此对这个问题我们假设 : (1)地面为连续曲面(2)长方形桌的四条腿长度相同(3)相对于地面的弯曲程度而言,方桌的腿是足够长的 (4)方桌的腿只要有一点接触地面就算着地。

那么,总可以让桌子的三条腿是同时接触到地面。

现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。

以长方桌的中心为坐标原点作直角坐标系如图所示,方桌的四条腿分别在A 、B 、C 、D 处,A 、B,C 、D 的初始位置在与x 轴平行,再假设有一条在x 轴上的线ab,则ab 也与A 、B ,C 、D 平行。

当方桌绕中心0旋转时,对角线 ab 与x 轴的夹角记为θ。

容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。

为消除这一不确定性,令()f θ为A 、B 离地距离之和,()g θ为C 、D 离地距离之和,它们的值由θ唯一确定。

由假设(1),()f θ,()g θ均为θ的连续函数。

又由假设(3),三条腿总能同时着地, 故()f θ()g θ=0必成立(∀θ)。

不妨设(0)0f =,(0)0g >g (若(0)g 也为0,则初始时刻已四条腿着地,不必再旋转),于是问题归结为: 已知()f θ,()g θ均为θ的连续函数,(0)0f =,(0)0g >且对任意θ有00()()0f g θθ=,求证存在某一0θ,使00()()0f g θθ=。

证明:当θ=π时,AB 与CD 互换位置,故()0f π>,()0g π=。

作()()()h f g θθθ=-,显然,()h θ也是θ的连续函数,(0)(0)(0)0h f g =-<而()()()0h f g πππ=->,由连续函数的取零值定理,存在0θ,00θπ<<,使得0()0h θ=,即00()()f g θθ=。

初中数学建模大赛试卷

初中数学建模大赛试卷

一、选择题(每题5分,共20分)1. 下列哪项不是数学建模的基本步骤?A. 提出问题B. 收集数据C. 分析问题D. 解决问题2. 下列哪个公式是求解一元二次方程的公式?A. \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)B. \( y = mx + b \)C. \( z = \frac{a}{b} \)D. \( \sin(\theta) = \frac{opposite}{hypotenuse} \)3. 在下列函数中,哪个函数的图像是一条直线?A. \( f(x) = x^2 + 2x + 1 \)B. \( f(x) = 2x + 3 \)C. \( f(x) = \sqrt{x} \)D. \( f(x) = \log_2(x) \)4. 下列哪个单位是测量长度的国际单位?A. 米(m)B. 千克(kg)C. 秒(s)D. 安培(A)5. 在下列几何图形中,哪个图形是轴对称的?A. 正方形B. 长方形C. 三角形D. 圆形二、填空题(每题5分,共20分)6. 若一个长方体的长、宽、高分别为a、b、c,则其体积V可以表示为______。

7. 若一个圆的半径为r,则其周长C可以表示为______。

8. 若一个等差数列的首项为a1,公差为d,第n项为an,则an可以表示为______。

9. 若一个等比数列的首项为a1,公比为q,第n项为an,则an可以表示为______。

10. 若一个直角三角形的两条直角边分别为a和b,斜边为c,则根据勾股定理,c 可以表示为______。

三、解答题(每题15分,共45分)11. (15分)某学校计划组织一次校园运动会,共有50名学生报名参加。

已知参加100米短跑的学生有20人,参加200米中长跑的学生有15人,参加跳远的学生有10人。

请根据这些信息,建立一个数学模型来分析参加不同运动项目的学生人数之间的关系。

12. (15分)某商店销售一种新产品,已知每件产品的成本为100元,售价为150元。

初等数学方法建模练习题

初等数学方法建模练习题

初等数学方法建模练习题1.某人平时下班总是按预定时间到达某处,然后他妻子开车接他回家。

有一天,他比平时提早了三十分钟到达该处,于是此人就沿着妻子来接他的方向步行回去并在途中遇到了妻子,这一天,他比平时提前了十分钟到家,问此人共步行了多长时间?2.某人第一天由A地去B地,第二天由B地沿原路返回A 地。

问:在什么条件下,可以保证途中至少存在一地,此人在两天中的同一时间到达该地。

3. 交通灯在绿灯转换成红灯时,有一个过渡状态——亮一段时间的黄灯。

请分析黄灯应当亮多久。

4. 飞机失事时,黑匣子会自动打开,发射出某种射线。

为了搞清失事原因,人们必须尽快找回匣子。

确定黑匣子的位置,必须确定其所在的方向和距离,试设计一些寻找黑匣子的方法。

由于要确定两个参数,至少要用仪器检测两次,除非你事先知道黑匣子发射射线的强度。

5.商人们怎样安全过河三名商人各带一个随从乘船渡河。

现此岸有一小船只能容纳两人,由他们自己划行。

若在河的任一岸随从人数比商人多,他们就可能抢劫财物。

不过如何乘船渡河的大权由商人们掌握。

商人们怎样才能安全过河呢?6.汽车刹车距离美国的某些司机培训课程中的驾驶规则:正常驾驶条件下,车速每增10英里/小时,后面与前车的距离应增一个车身的长度,实现这个规则的简便方法是“2秒准则”:后车司机从前车经过某一标志开始默数2秒钟后到达同一标志,而不管车速如何。

判断“2秒准则”与“车身”规则是否一样;建立数学模型,寻求更好的驾驶规则。

7. 搭积木问题将一块积木作为基础,在它上面叠放其他积木,问上下积木之间的“向右前伸”可以达到多少?8. 蜂房结构小小的蜜蜂能够建造出精巧的蜂房,这是自然界的奇观之一。

蜂房的基本结构是一个个六角形巢房,每一个巢房是一个尖顶六棱柱。

它实际上是由有底的正六棱柱ABCDEF--A1B1C1D1E1F1被通过上底平面的对角线截后沿对角线翻转180度所得。

棱形APCP1内角为多大时,尖顶六棱柱表面积最小。

初中数学建模试题及答案

初中数学建模试题及答案

初中数学建模试题及答案一、单项选择题(每题3分,共30分)1. 某工厂生产一批零件,原计划每天生产100个,实际每天生产120个,原计划需要30天完成,实际需要多少天完成?A. 20天B. 25天C. 30天D. 35天答案:B2. 一个长方体的长、宽、高分别为2厘米、3厘米、4厘米,求其体积。

A. 12立方厘米B. 24立方厘米C. 36立方厘米D. 48立方厘米答案:C3. 某商店销售一种商品,进价为50元,售价为70元,若打8折销售,利润率为多少?A. 20%B. 30%C. 40%D. 50%答案:B4. 一个圆的半径为5厘米,求其面积。

A. 78.5平方厘米B. 157平方厘米C. 78.5平方分米D. 157平方分米答案:A5. 一个班级有50名学生,其中男生占60%,女生占40%,求男生和女生各有多少人?A. 男生30人,女生20人B. 男生30人,女生20人C. 男生25人,女生25人D. 男生35人,女生15人答案:B6. 某工厂生产一批零件,原计划每天生产100个,实际每天生产120个,原计划需要30天完成,实际需要多少天完成?A. 20天B. 25天C. 30天D. 35天答案:B7. 一个长方体的长、宽、高分别为2厘米、3厘米、4厘米,求其体积。

A. 12立方厘米B. 24立方厘米C. 36立方厘米D. 48立方厘米答案:C8. 某商店销售一种商品,进价为50元,售价为70元,若打8折销售,利润率为多少?A. 20%B. 30%C. 40%D. 50%答案:B9. 一个圆的半径为5厘米,求其面积。

A. 78.5平方厘米B. 157平方厘米C. 78.5平方分米D. 157平方分米答案:A10. 一个班级有50名学生,其中男生占60%,女生占40%,求男生和女生各有多少人?A. 男生30人,女生20人B. 男生30人,女生20人C. 男生25人,女生25人D. 男生35人,女生15人答案:B二、填空题(每题4分,共20分)1. 一个长方体的长、宽、高分别为3厘米、4厘米、5厘米,其体积为____立方厘米。

数学建模试卷(附答案)

数学建模试卷(附答案)

《数学建模》注意事项:1、本试卷共6页,满分100分,考试时间为120分钟。

2、答卷前将密封线内的项目填写清楚。

一、填空题(每题5分,共15分)1.一个连通图能够一笔画出的充分必要条件是。

2.设银行的年利率为0.2,则五年后的一百万元相当于现在的万元.3.在夏季博览会上,商人预测每天冰淇淋销量N将和下列因素有关:(1)参加展览会的人数n;(2)气温T超过10℃;(3)冰淇淋的售价由此建立的冰淇淋销量的比例模型应为。

二、简答题:(25分)1、建立数学模型的基本方法有哪些?写出建模的一般步骤。

(5分)2、写出优化模型的一般形式和线性规划模型的标准形式。

(10分)2、数据拟合方法在数学建模过程中有什么意义?常见的数据拟合方法有哪些?(10分)三、(每小题15分,共60分)1、设某产品的供给函数)(p ϕ与需求函数)(p f 皆为线性函数:9)(,43)(+-=+=kp p f p p ϕ其中p 为商品单价,试推导k 满足什么条件使市场稳定。

2、1968年,介壳虫偶然从澳大利亚传入美国,威胁着美国的柠檬生产。

随后,美国又从澳大利亚引入了介壳虫的天然捕食者——澳洲瓢虫。

后来,DDT 被普通使用来消灭害虫,柠檬园主想利用DDT 进一步杀死介壳虫。

谁料,DDT 同样杀死澳洲瓢虫。

结果,介壳虫增加起来,澳洲瓢虫反倒减少了。

试建立数学模型解释这个现象。

3、试建立人口Logistic(逻辑)模型,并说明模型中何参数为自然增长率,为什么?4、建立捕鱼问题的模型,并通过求解微分方程的办法给出最大的捕捞量数学建模 参考答案一、填空题1.奇数顶点个数是0或2 2.约40.1876 3.p T Kn N /)10(-=,(T ≥10℃),K 是比例常数 二、1、建立数学模型的基本方法:机理分析法,统计分析法,系统分析法2、优化模型的一般形式将一个优化问题用数学式子来描述,即求函数 ,在约束条件下的最大值或最小值,其中 为设计变量(决策变量), 为目标函数为可行域3、意义:数据拟合方法主要是用来从已给数据中发现一般规律从而建立起描述问题中变量之间的关系,即数学模型。

《数学建模》习题及参考答案 第一章 建立数学模型

《数学建模》习题及参考答案 第一章 建立数学模型

第一章部分习题3(5). 决定十字路口黄灯亮的时间长度.4. 在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四角的连线呈正方形改为长方形,其余不变,试构造模型并求解.5. 模仿1.4节商人过河问题中的状态转移模型,作下面这个众所周知的智力游戏:人带着猫、鸡、米过河,船除希望要人计划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米,设计一个安全过河方案,并使渡河次数尽量地少.6. 利用1.5节表1和表3给出的1790-2000年的美国实际人口资料建立下列模型: (1) 分段的指数增长模型. 将时间分为若干段,分别确定增长率r. (2) 阻滞增长模型. 换一种方法确定固有增长率r 和最大容量x m .7. 说明1.5节中Logistic 模型(9)可以表示为()()01t t r mex t x --+=,其中t 0是人口增长出现拐点的时刻,并说明t 0与r ,x m 的关系.8. 假定人口的增长服从这样的规律:时刻t 的人口为x (t),t 到t +△t 时间内人口的增量与x m -x (t)成正比(其中为x m 最大容量). 试建立模型并求解. 作出解的图形并与指数增长模型、阻滞增长模型的结果进行比较.9(3). 甲乙两站之间有电车相通,每隔10分钟甲乙两站相互发一趟车,但发车时刻不一定相同。

甲乙之间一中间站丙,某人每天在随机的时刻到达丙站,并搭乘最先经过丙站的那趟车,结果发现100天中约有90天到达甲站,约有10天到达乙站。

问开往甲乙两站的电车经过丙站的时刻表是如何安排的。

参考答案3(5). 司机看到黄灯后停车要有一定的刹车距离1s ,设通过十字路口的距离为2s ,汽车行驶速度为v ,则黄灯的时间长度t 应使距停车线1s 之内的汽车能通过路口,即()vs s t 21+≈其中s 1可由试验得到,或按照牛顿第二定律解运动方程,进一步可考察不同车重、不同路面及司机反应灵敏程度等因素的影响.4. 相邻两椅脚与地面距离之和分别定义为()()θθg f 和,将椅子旋转ο180,其余作法与1.3节相同.5. 人、猫、鸡、米分别记为4,3,2,1=i ,当i 在此岸时记1=i x ,否则记0=i x ,则此岸的状态可用()4321,,,x x x x s =表示。

数学建模课程及答案

数学建模课程及答案

《数学建模课程》练习题一一、填空题一、填空题1.1. 设开始时的人口数为0x ,时刻t 的人口数为)(t x ,若人口增长率是常数r ,那麽人口增长问题的马尔萨斯模型应为长问题的马尔萨斯模型应为 。

2.2. 设某种商品的需求量函数是,1200)(25)(+-=t p t Q 而供给量函数是3600)1(35)(--=t p t G ,其中)(t p 为该商品的价格函数,那麽该商品的均衡价格是 。

3. 3. 某服装店经营的某种服装平均每天卖出某服装店经营的某种服装平均每天卖出110件,进货一次的手续费为200元,存储费用为每件0.01元/天,店主不希望出现缺货现象,则最优进货周期与最优进货量分别为 。

4. 4. 一个连通图能够一笔画出的充分必要条件是一个连通图能够一笔画出的充分必要条件是一个连通图能够一笔画出的充分必要条件是 .5.5.设开始时的人口数为设开始时的人口数为0x ,时刻t 的人口数为)(t x ,若允许的最大人口数为m x ,人口增长率由sx r x r -=)(表示,则人口增长问题的罗捷斯蒂克模型为表示,则人口增长问题的罗捷斯蒂克模型为 . 6. 在夏季博览会上,商人预测每天冰淇淋销量N 将和下列因素有关:将和下列因素有关:(1)参加展览会的人数n ; (2)气温T 超过C10; (3)冰淇淋的售价p .由此建立的冰淇淋销量的比例模型应为由此建立的冰淇淋销量的比例模型应为 . 7、若银行的年利率是x %,则需要则需要 时间,存入的钱才可翻番存入的钱才可翻番.. 若每个小长方形街路的路的8. . 如图是一个邮路,邮递员从邮局如图是一个邮路,邮递员从邮局A 出发走遍所有长方形街路后再返回邮局出发走遍所有长方形街路后再返回邮局.. 边长横向均为1km ,纵向均为2km ,则他至少要走,则他至少要走 km.. A9. 设某种新产品的社会需求量为无限,开始时的生产量为100件,且设产品生产的增长率控制在0.1,t 时刻产品量为)(t x ,则)(t x = . 10. 商店以10元/件的进价购进衬衫,若衬衫的需求量模型是802,Q p p =-是销售单价(元(元//件),为获得最大利润,商店的出售价是,为获得最大利润,商店的出售价是 . 二、分析判断题二、分析判断题1.从下面不太明确的叙述中确定要研究的问题,需要哪些数据资料.从下面不太明确的叙述中确定要研究的问题,需要哪些数据资料(至少列举(至少列举3个),要做些甚麽建模的具体的前期工作(至少列举3个)个) ,建立何种数学模型:一座高层办公楼有四部电梯,早晨上班时间非常拥挤,该如何解决。

初等数学建模试题极其答案

初等数学建模试题极其答案

1.你要在雨中从一处沿直线走到另一处.雨速是常数.方向不变。

你是否走得越快.淋雨量越少呢?2.假设在一所大学中.一位普通教授以每天一本的速度开始从图书馆借出书。

再设图书馆平均一周收回借出书的1/10.若在充分长的时间内.一位普通教授大约借出多少年本书?3.一人早上6:00从山脚A上山.晚18:00到山顶B;第二天.早6:00从B下山.晚18:00到A。

问是否有一个时刻t,这两天都在这一时刻到达同一地点?4.如何将一个不规则的蛋糕I平均分成两部分?5.兄妹二人沿某街分别在离家3公里与2公里处同向散步回家.家中的狗一直在二人之间来回奔跑。

已知哥哥的速度为3公里/小时.妹妹的速度为2公里/小时.狗的速度为5公里/小时。

分析半小时后.狗在何处?6.甲乙两人约定中午12:00至13:00在市中心某地见面.并事先约定先到者在那等待10分钟.若另一个人十分钟内没有到达.先到者将离去。

用图解法计算.甲乙两人见面的可能性有多大?7.设有n个人参加某一宴会.已知没有人认识所有的人.证明:至少存在两人他们认识的人一样多。

8.一角度为60度的圆锥形漏斗装着10端小孔的面积为0.5平方厘米.9.假设在一个刹车交叉口.所有车辆都是由东驶上一个1/100的斜坡.计算这种情下的刹车距离。

如果汽车由西驶来.刹车距离又是多少?10. 水管或煤气管经常需要从外部包扎以便对管道起保护作用。

包扎时用很长的带子缠绕在管道外部。

为了节省材料.如何进行包扎才能使带子全部包住管道而且带子也没有发生重叠。

:顶=1:a:b.选坐.v>0,而设语雨L(1q -+v x ),v≤x Q(v)=L(v x -q +1),v>x2.解:由于教授每天借一本书.即一周借七本书.而图书馆平均每周收回书的1/10.设教授已借出书的册数是时间t 的函数小x(t)的函数.则它应满足(时间t 以周为单位)其中 初始条件表示开始时教授借出数的册数为0。

解该线性题得X(t) =70[1-e t 10 ]由于当t ∞时.其极限值为70,故在充分长的时间内.一位普通教授大约已借出70本书。

初中建模数学试卷及答案

初中建模数学试卷及答案

本试卷共分为三个部分,共计20题,满分100分。

考试时间为90分钟。

请将答案填写在答题卡上。

一、选择题(每题3分,共30分)1. 已知函数f(x) = 2x + 1,则函数f(x)的图像是()A. 一次函数图像B. 二次函数图像C. 指数函数图像D. 对数函数图像答案:A2. 下列哪个方程的解是x=2?A. x + 1 = 3B. 2x - 1 = 3C. 3x = 6D. x + 2 = 4答案:B3. 下列哪个数是正数?A. -3B. 0C. 1/2D. -1/2答案:C4. 已知三角形ABC中,AB=3,BC=4,AC=5,则三角形ABC是()A. 直角三角形B. 等腰三角形C. 等边三角形D. 钝角三角形答案:A5. 下列哪个数是正比例函数的图像?A. y = x^2B. y = 2xC. y = x^3D. y = 3/x答案:B二、填空题(每题5分,共20分)6. 已知函数f(x) = -x + 2,则f(0)的值为______。

答案:27. 若a > b,则下列哪个不等式成立?A. a - b > 0B. a + b > 0C. a - b < 0D. a + b < 0答案:A8. 已知等差数列的首项为2,公差为3,则第10项的值为______。

答案:319. 已知圆的半径为5,则圆的面积为______。

答案:78.5三、解答题(每题15分,共30分)10. (10分)已知一元二次方程ax^2 + bx + c = 0(a≠0)的解为x1和x2,求下列各式的值:(1)a(x1 + x2)^2 + b(x1 + x2) + c(2)a(x1^2 + x2^2) + b(x1 + x2) + c答案:(1)a(x1 + x2)^2 + b(x1 + x2) + c = a[(x1 + x2)^2] + b(x1 + x2) + c =a[x1^2 + 2x1x2 + x2^2] + b(x1 + x2) + c = ax1^2 + 2ax1x2 + ax2^2 + bx1 + bx2 + c = (ax1^2 + bx1 + c) + 2ax1x2 + ax2^2 = x1^2 + x2^2 + 2ax1x2 + c = (x1 + x2)^2 + c(2)a(x1^2 + x2^2) + b(x1 + x2) + c = a[(x1 + x2)^2 - 2x1x2] + b(x1 + x2) + c = a(x1 + x2)^2 - 2ax1x2 + bx1 + bx2 + c = (ax1^2 + bx1 + c) + (ax2^2 + bx2 + c) - 2ax1x2 = x1^2 + x2^2 + 2ax1x2 + c = (x1 + x2)^2 + c11. (15分)已知正方形的周长为16,求正方形的面积。

数学建模试题(带答案)

数学建模试题(带答案)

数学建模试题(带答案)第一章4.在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四脚的连线呈正方形改为长方形,其余不变。

试构造模型并求解。

答:相邻两椅脚与地面距离之和分别定义为)()(a g a f 和。

f 和g 都是连续函数。

椅子在任何位置至少有三只脚着地,所以对于任意的a ,)()(a g a f 和中至少有一个不为零。

不妨设0)0(,0)0(g >=f 。

当椅子旋转90°后,对角线互换,0π/2)(,0)π/2(>=g f 。

这样,改变椅子的位置使四只脚同时着地。

就归结为证明如下的数学命题:已知a a g a f 是和)()(的连续函数,对任意0)π/2()0(,0)()(,===⋅f g a g a f a 且,0)π/2(,0)0(>>g f 。

证明存在0a ,使0)()(00==a g a f证:令0)π/2(0)0(),()()(<>-=h h a g a f a h 和则, 由g f 和的连续性知h 也是连续函数。

根据连续函数的基本性质,必存在0a (0<0a <π/2)使0)(0=a h ,即0)()(00==a g a f 因为0)()(00=•a g a f ,所以0)()(00==a g a f8第二章7.10.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便有效的排列方法,使加工出尽可能多的圆盘。

第三章5.根据最优定价模型 考虑成本随着销售量的增加而减少,则设kx q x q -=0)( (1)k 是产量增加一个单位时成本的降低 ,销售量x 与价格p 呈线性关系0,,>-=b a bp a x (2) 收入等于销售量乘以价格p :px x f =)( (3) 利润)()()(x q x f x r -= (4) 将(1)(2)(3)代入(4)求出ka q kbp pa bp x r --++-=02)(当k q b a ,,,0给定后容易求出使利润达到最大的定价*p 为bakb ka q p 2220*+--=6.根据最优定价模型 px x f =)( x 是销售量 p 是价格,成本q 随着时间增长,ββ,0t q q +=为增长率,0q 为边际成本(单位成本)。

数学建模习题及答案

数学建模习题及答案
可得 ,若d一定,w趋于0, 趋于 /2;w趋于 d, 趋于0。若管道长度为 ,不考虑两端的影响时布条长度显然为 d /w,若考虑两端影响,则应加上 dw/sin 。对于其它形状管道,只需将 d改为相应的周长即可。
5.设圆盘半径为单位1,矩形板材长a,宽b;可以精确加工,即圆盘之间及圆盘与板材之间均可相切。
若 ,则 , 是平衡点; 的平衡点为 . 的平衡点为 ,其中 ,此时的差分方程变为
.
由 可得平衡点 .
在平衡点 处,由于 ,因此, 不稳定.
在在平衡点 处,因 ,所以
(i) 当 时,平衡点 不稳定;
(ii) 当 时,平衡点 不稳定.

1.判断下列数学模型是否为线性规划模型。(a,b,c为常数,x,y为变量)
(4)你能提出其他的方法吗。用你的方法分配上面的名额。
2.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。比如洁银牙膏50g装的每支1.50元,120g装的3.00元,二者单位重量的价格比是1.2:1。试用比例方法构造模型解释这个现象。
(1)分析商品价格C与商品重量w的关系。价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。
(2)单位重量价格 ,其简图如下:
显然c是w的减函数,说明大包装比小包装的商品便宜,;曲线是下凸的,说明单价的减少值随着包装的变大是逐渐降低的,不要追求太大包装的商品。
3.对于同一种鱼不妨认为其整体形状是相似的,密度也大体上相同,所以重量w与身长 的立方成正比,即 , 为比例系数。
常钓得较肥的鱼的垂钓者不一定认可上述模型,因为它对肥鱼和瘦鱼同等看待。如果只假定鱼的横截面积是相似的,则横截面积与鱼身最大周长的平方成正比,于是 , 为比例系数。

建模数学试题及答案

建模数学试题及答案

建模数学试题及答案一、选择题(每题3分,共30分)1. 以下哪个选项是线性方程的标准形式?A. \( ax + by = c \)B. \( ax^2 + by^2 = c \)C. \( ax^3 + by^3 = c \)D. \( ax + by + cz = d \)答案:A2. 函数 \( f(x) = x^2 \) 的导数是什么?A. \( 2x \)B. \( x^2 \)C. \( x \)D. \( 1 \)答案:A3. 以下哪个是二阶微分方程?A. \( y' = 2x \)B. \( y'' = 2x \)C. \( y = 2x \)D. \( y' + y = 2x \)答案:B4. 积分 \( \int x^2 dx \) 的结果是?A. \( \frac{x^3}{3} + C \)B. \( x^3 + C \)C. \( 2x^2 + C \)D. \( 3x^2 + C \)答案:A5. 以下哪个是矩阵?A. \( [a] \)B. \( (a, b) \)C. \( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \)D. \( \{a, b\} \)答案:C6. 以下哪个是概率论中的随机变量?A. 一个固定的数字B. 一个确定的函数C. 一个可能取不同值的变量D. 一个常数答案:C7. 以下哪个是线性代数中的基本概念?A. 函数B. 微分C. 向量空间D. 积分答案:C8. 函数 \( f(x) = \sin(x) \) 的不定积分是什么?A. \( -\cos(x) + C \)B. \( \cos(x) + C \)C. \( \sin(x) + C \)D. \( \tan(x) + C \)答案:B9. 以下哪个是微分方程?A. \( y = 2x \)B. \( y' = 2x \)C. \( y'' = 2x \)D. \( y''' = 2x \)答案:B10. 以下哪个是统计学中的基本概念?A. 函数B. 微分C. 样本D. 积分答案:C二、填空题(每题2分,共20分)1. 线性方程 \( ax + by = c \) 的斜率是 _______。

2023初中数学数学建模复习 题集附答案

2023初中数学数学建模复习 题集附答案

2023初中数学数学建模复习题集附答案2023初中数学数学建模复习题集附答案现如今,数学建模已成为初中学生备战数学竞赛的重要环节。

为了帮助同学们有效复习数学建模知识,本文准备了一套综合性的数学建模题集,附有详细答案供参考。

通过对不同类型问题的解答,同学们可以提高对数学建模的理解与掌握,以应对未来的数学建模挑战。

题1:某机场每分钟可起降飞机16架。

假设该机场连续运营8小时,共有60%的起降航班采用大型飞机,40%的起降航班采用小型飞机。

求这8小时内,起降的大型和小型飞机各有多少架?解答1:首先,我们需要先确定这8小时的分钟数,即8小时=8 * 60 = 480分钟。

根据题目要求,每分钟可起降飞机16架,因此总的起降飞机数量为16 * 480 = 7680架。

接下来,我们计算大型飞机的数量。

由题意可知,60%的航班采用大型飞机,所以大型飞机的数量为0.6 * 7680 = 4608架。

最后,我们计算小型飞机的数量。

40%的航班采用小型飞机,所以小型飞机的数量为0.4 * 7680 = 3072架。

综上所述,8小时内起降的大型飞机数量为4608架,小型飞机数量为3072架。

题2:某城市的公交车票价为每张2元。

假设某天该城市发行了30000张公交车票,此时票价突然降价为每张1.5元。

请计算这一天的总票款增加了多少?解答2:首先,我们需要计算改变票价之前一天的票款总额。

根据题意可知,票价为每张2元,发行了30000张公交车票,所以原票款总额为2元/张 * 30000张 = 60000元。

接下来,我们计算改变票价之后一天的票款总额。

票价降价为每张1.5元,发行了30000张公交车票,所以新的票款总额为1.5元/张 * 30000张 = 45000元。

最后,我们计算票款总额的增加量。

增加量为新的票款总额减去原票款总额,即45000元 - 60000元 = -15000元。

综上所述,这一天的总票款减少了15000元。

数学建模试题及答案

数学建模试题及答案

数学建模试题及答案试题一:已知函数 \(f(x) = ax^2 + bx + c\),其中 \(a, b, c\) 为常数,且 \(a > 0\)。

若 \(f(1) = 2\),\(f(2) = 5\),求 \(f(3)\) 的值。

答案:首先,根据题目给出的条件,我们可以得到两个方程:\[ f(1) = a(1)^2 + b(1) + c = 2 \]\[ f(2) = a(2)^2 + b(2) + c = 5 \]将 \(x = 1\) 和 \(x = 2\) 代入函数 \(f(x)\),得到:\[ a + b + c = 2 \]\[ 4a + 2b + c = 5 \]接下来,我们解这个方程组。

将第一个方程从第二个方程中减去,得到:\[ 3a + b = 3 \]现在我们有两个方程:\[ a + b + c = 2 \]\[ 3a + b = 3 \]将第二个方程乘以2,然后从第一个方程中减去,得到:\[ a = 1 \]将 \(a = 1\) 代入 \(3a + b = 3\),得到:\[ 3 + b = 3 \]\[ b = 0 \]最后,将 \(a = 1\) 和 \(b = 0\) 代入 \(a + b + c = 2\),得到:\[ 1 + 0 + c = 2 \]\[ c = 1 \]所以,函数 \(f(x) = x^2 + 1\)。

现在我们可以求 \(f(3)\):\[ f(3) = 3^2 + 1 = 9 + 1 = 10 \]试题二:一个圆的周长是 \(20\pi\),求这个圆的半径。

答案:圆的周长 \(C\) 与半径 \(r\) 的关系是 \(C = 2\pi r\)。

已知周长\(C = 20\pi\),我们可以求半径 \(r\):\[ 20\pi = 2\pi r \]将等式两边同时除以 \(2\pi\),得到:\[ r = \frac{20\pi}{2\pi} \]\[ r = 10 \]所以,这个圆的半径是 \(10\)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.你要在雨中从一处沿直线走到另一处,雨速是常数,方向不变。

你是否走得越快,淋雨量越少呢?
2.假设在一所大学中,一位普通教授以每天一本的速度开始从图书
馆借出书。

再设图书馆平均一周收回借出书的1/10,若在充分长的时间内,一位普通教授大约借出多少年本书?
3.一人早上6:00从山脚A上山,晚18:00到山顶B;第二天,早
6:00从B下山,晚18:00到A。

问是否有一个时刻t,这两天都在这一时刻到达同一地点?
4.如何将一个不规则的蛋糕I平均分成两部分?
5.兄妹二人沿某街分别在离家3公里与2公里处同向散步回家,家
中的狗一直在二人之间来回奔跑。

已知哥哥的速度为3公里/小时,妹妹的速度为2公里/小时,狗的速度为5公里/小时。

分析半小时后,狗在何处?
6.甲乙两人约定中午12:00至13:00在市中心某地见面,并事先
约定先到者在那等待10分钟,若另一个人十分钟内没有到达,先到者将离去。

用图解法计算,甲乙两人见面的可能性有多大?
7.设有n个人参加某一宴会,已知没有人认识所有的人,证明:至
少存在两人他们认识的人一样多。

8.一角度为60度的圆锥形漏斗装着10
端小孔的
面积为0.5
9.假设在一个刹车交叉口,所有车辆都是由东驶上一个1/100的斜
坡,计算这种情
下的刹车距离。

如果汽车由西驶来,刹车距离又是多少? 10. 水管或煤气管经常需要从外部包扎以便对管道起保护作用。

包扎时用很长的带子缠绕在管道外部。

为了节省材料,如何进行包扎才能使带子全部包住管道而且带子也没有发生重叠。

:顶=1:a:b ,选坐v>0,而设语雨速 L(
1q -+v
x
),v≤x
Q(v)=
L(
v
x
-q +1),v>x
2.解:由于教授每天借一本书,即一周借七本书,而图书馆平均每周
收回书的1/10,设教授已借出书的册数是时间t 的函数小x(t)的函数,则它应满足(时间t 以周为单位)
其中 初始条件表示开始时教授借出数的册数为0。

解该线性题得X(t) =70[1-e
t 10
]
由于当t ∞时,其极限值为70,故在充分长的时间内,一位普通教授大约已借出70本书。

3.解:我们从山脚A 点为始点记路程,设从A 到B 路程函数为f (t ), 即t 时刻走的距离为f (t );同样设从B 点到A 点的路程为函数g (t )。

由题意有 f(8)=0,f(18)=|AB|,g (8)=|AB|,g (18)=0;
令h (t )= f (t )--g (t ),则有h(8)= f(8) -- g (8)=-- |AB||<0, h(6)=f(6) -- g(6)= | AB|>0 又注意f (t ),g (t )都是时刻t 的连续函数,因此h (t )也是时刻t 的连续函数,由连续函数的介质定理,一定存在某时刻t 。

使h (t 。

)=0,即f (t 。

)=g (t 。

) 所以存在一个时刻t,这两天都在这一时刻到达同一地点。

4.解:设I 为平面上任一封闭曲线,p 为平面上一点(不妨设p 在I 内),则存在已过点p 的直线,将I 所围的面积二等 分,如下图
设l为过点p的一条直线,若S1= S1,则得证,否则设S1 >S2,l与x 轴夹角为a,让l逆时针绕p旋转S2 ,S2,则S1,S2随a的变化连续的变化,记其面积为S1a),S2(a),则记S1(a)= S1, S2(a)= S2, f(a+∏)<0,且f(a)连续,由连续函数的介值定理知,在(0,∏)存在ā使f(ā)=0,a=ā对应的直线即为所求。

5.解:哥哥与妹妹的速度分别为3公里/小时及2公里/小时,因此一小时后,哥哥与妹妹都已到家,而狗一直在二者之间,因此狗已到家。

6.解:设甲乙两人分别在12点x分及y分等可能到达到达约定地点,显然0≤x≦60,0≦y≦60,若两人相遇则有|x-y|≦10,这是一个几何概率问题,其中样本空间为A={(x,y)|≤x≦60,0≦y≦60}
它构成了空间直角标系中的正方形,相遇空间为
G={(x,y), |x-y|≦10}
其图形见上图阴影部分,Sa,Sg分别表示正方形、阴影部分的面积,从而相遇的概率为P=Sa/Sg=(60*60-2*1/2*50*50)/(60*60)≈0.306 7. 证明:设第i个人认识的人为s(i),则s(i)∈{0.1.2.3……N-1} 设没有两个人认识的人一样多,则s(1),s(2),……互不相等,则s(i)取遍集合{0、1、2……N-1}中的一个值,即至少存在某两个人k1,k2使s(k1)=N-1,s(k2)=0,而对第ki个人,由于(ki)=N-I,故他必然认识第k2人,故s(k)至少为1,与s(k2)=0矛盾,得证。

8.解:由水力学定律可知Q=dv/dt=0.62S gh
2,其中0.62为流量系数S为空口横截面,g为重力加速度,h为从从空口到水面的高度,故有dv=0.31gh
2dt,
另一方面,在△t时间内,水面由h降至h+dh(dh<0),则仅有
dv=-∏r*r*dh=-∏/3*h*h*dh, 所以有0.31gh 2dt=-∏/3*h*h*dh ,再由h(0)=10,联立求得其解为
t=(∏/3)*(2/5)*1/(0.31g 2(5.210-5.2h ,当水流完时,h=0, 解得t=2∏/(15*0.31g 2)*5.210
9.解:设t=0时为开始刹车的时刻,x (t )为从t=0到t 时刻所幸的距
离,由刹车时所受的制动力为
-uW
1
100*100100
+-W*1
100*1001
+,其中W 为车重,故x (t )满
足g
w *d (dt/dt )/dt=-uW
错误!未找到引用源。

-W*1
100*1001
+
又由x (0)=0,dx/dt|t=0=v 。

解得x (t )=-1/2(1
100*100100+ug +1100*100+g
)t 2
+v 。

*t
故制动时间为 t b =v 。

/(1
100*100100+ug
+1100*100+g )
因此刹车距离为 x(t b )=1/2*[ v 。

/(1
100*100100+ug
+1100*100+g )]
同理可得汽车由西驶来时,刹车距离为1/2*[ v 。

/(1
100*100100+ug
+1100*100+g )]
10.解:假设管道是直的圆的、粗细一样,带子宽度一样。

参数宽为W ,圆管周长为C ,缠绕角度为a,
则W=C*sina;a=arcsin(w/c)
当管道长为l,按上述方式包扎需要的带孔为L,此时管道表面积与带子总面积为L*W,则
2-
L*W,则L*W-l*C=W*W
c2
2-+l*C)/w
即L= (W*W
c2。

相关文档
最新文档