2019年西藏中考数学试卷及解析

合集下载

西藏林芝地区2019-2020学年中考中招适应性测试卷数学试题(3)含解析

西藏林芝地区2019-2020学年中考中招适应性测试卷数学试题(3)含解析

西藏林芝地区2019-2020学年中考中招适应性测试卷数学试题(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.的倒数是( )A .B .C .D .2.下列手机手势解锁图案中,是轴对称图形的是( )A .B .C .D .3.下列二次根式中,最简二次根式的是( ) A .15B .0.5C .5D .504.若一个三角形的两边长分别为5和7,则该三角形的周长可能是( ) A .12B .14C .15D .255.如图钓鱼竿AC 长6m ,露在水面上的鱼线BC 长32m ,钓者想看看鱼钓上的情况,把鱼竿AC 逆时针转动15°到AC′的位置,此时露在水面上的鱼线B'C'长度是( )A .3mB .33 mC .23 mD .4m6.如图,有一矩形纸片ABCD ,AB=10,AD=6,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,再将AED ∆以DE 为折痕向右折叠,AE 与BC 交于点F ,则CEF ∆的面积为( )A .4B .6C .8D .107.如图,从正方形纸片的顶点沿虚线剪开,则∠1的度数可能是( )A.44 B.45 C.46 D.47 8.若分式有意义,则x的取值范围是()A.x>3 B.x<3 C.x≠3D.x=39.方程13122x x-=--的解为()A.x=4 B.x=﹣3 C.x=6 D.此方程无解10.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点之间,线段最短D.经过两点,有且仅有一条直线11.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC,若∠A=60°,∠ADC=85°,则∠C的度数是()A.25°B.27.5°C.30°D.35°12.已知3a﹣2b=1,则代数式5﹣6a+4b的值是()A.4 B.3 C.﹣1 D.﹣3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.分解因式:a3-12a2+36a=______.14.如图,矩形ABCD中,BC=6,CD=3,以AD为直径的半圆O与BC相切于点E,连接BD则阴影部分的面积为____(结果保留π)15.点(a-1,y1)、(a+1,y2)在反比例函数y=kx(k>0)的图象上,若y1<y2,则a的范围是________.16.已知x(x+1)=x+1,则x=________.17.如图,线段AB两端点坐标分别为A(﹣1,5)、B(3,3),线段CD两端点坐标分别为C(5,3)、D (3,﹣1)数学课外兴趣小组研究这两线段发现:其中一条线段绕着某点旋转一个角度可得到另一条线段,请写出旋转中心的坐标________.18.函数y=21x+的自变量x的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)《如果想毁掉一个孩子,就给他一部手机!》这是2017年微信圈一篇热传的文章.国际上,法国教育部宣布从2018年9月新学期起小学和初中禁止学生使用手机.为了解学生手机使用情况,某学校开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图,已知“查资料”的人数是40人.请你根据以上信息解答下列问题:在扇形统计图中,“玩游戏”对应的百分比为,圆心角度数是度;补全条形统计图;该校共有学生2100人,估计每周使用手机时间在2小时以上(不含2小时)的人数.20.(6分)进入冬季,某商家根据市民健康需要,代理销售一种防尘口罩,进货价为20元/包,经市场销售发现:销售单价为30元/包时,每周可售出200包,每涨价1元,就少售出5包.若供货厂家规定市场价不得低于30元/包.试确定周销售量y(包)与售价x(元/包)之间的函数关系式;试确定商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式,并直接写出售价x的范围;当售价x(元/包)定为多少元时,商场每周销售这种防尘口罩所获得的利润w(元)最大?最大利润是多少?21.(6分)如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.判断直线CD和⊙O的位置关系,并说明理由.过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求BE的长.22.(8分)如图1所示,点E在弦AB所对的优弧上,且为半圆,C是上的动点,连接CA、CB,已知AB=4cm,设B、C间的距离为xcm,点C到弦AB所在直线的距离为y1cm,A、C两点间的距离为y2cm.小明根据学习函数的经验,分别对函数y1、y2岁自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整.按照下表中自变量x的值进行取点、画图、测量,分别得到了y1、y2与x的几组对应值:x/cm 0 1 2 3 4 5 6y1/cm 0 0.78 1.76 2.85 3.98 4.95 4.47y2/cm 4 4.69 5.26 5.96 5.94 4.47(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1、y2的图象;结合函数图象,解决问题:①连接BE,则BE的长约为cm.②当以A、B、C为顶点组成的三角形是直角三角形时,BC的长度约为cm.23.(8分)2018年春节,西安市政府实施“点亮工程”,开展“西安年·最中国”活动,元宵节晚上,小明一家人到“大唐不夜城”游玩,看美景、品美食。

西藏拉萨市2019-2020学年中考数学第四次调研试卷含解析

西藏拉萨市2019-2020学年中考数学第四次调研试卷含解析

西藏拉萨市2019-2020学年中考数学第四次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,右侧立体图形的俯视图是()A.B.C.D.2.如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为()A.105°B.110°C.115°D.120°3.-2的绝对值是()A.2 B.-2 C.±2 D.1 24.如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2,设弦AP的长为x,△APO的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是A.B.C.D.5.如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是()A .∠DAC=∠ABCB .AC 是∠BCD 的平分线 C .AC 2=BC•CD D .AD DC AB AC = 6.已知实数a <0,则下列事件中是必然事件的是( )A .a+3<0B .a ﹣3<0C .3a >0D .a 3>07.已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a 岁,中位数为b 岁,则下列结论中正确的是( )A .a <13,b=13B .a <13,b <13C .a >13,b <13D .a >13,b=138.如图,点D(0,3),O(0,0),C(4,0)在⊙A 上,BD 是⊙A 的一条弦,则cos ∠OBD =( )A .12B .34C .45D .359.已知5a b =r r ,下列说法中,不正确的是( )A .50a b -=r rB .a r 与b r方向相同 C .//a b r r D .||5||a b =r r10.已知圆内接正三角形的面积为3 )A .2B .1C 3D 311.如图,四边形ABCD 为平行四边形,延长AD 到E ,使DE=AD ,连接EB ,EC ,DB .添加一个条件,不能使四边形DBCE 成为矩形的是( )A .AB=BEB .BE ⊥DC C .∠ADB=90°D .CE ⊥DE12.如图,在6×4的正方形网格中,△ABC 的顶点均为格点,则sin ∠ACB=( )A .12B .2C .25D .13二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在直角坐标平面xOy 中,点A 坐标为()3,2,90AOB ∠=o ,30OAB ∠=o ,AB 与x 轴交于点C ,那么AC :BC 的值为______.14.已知关于x 的一元二次方程(a-1)x 2-2x+1=0有两个不相等的实数根,则a 的取值范围是_______________.15.因式分解:a 3b ﹣ab 3=_____.16.如图,线段AB=10,点P 在线段AB 上,在AB 的同侧分别以AP 、BP 为边长作正方形APCD 和BPEF ,点M 、N 分别是EF 、CD 的中点,则MN 的最小值是_______.17.若一元二次方程220x x k -+=有两个不相等的实数根,则k 的取值范围是 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.在图1中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;在图2中画出线段AB的垂直平分线.20.(6分)定义:在三角形中,把一边的中点到这条边的高线的距离叫做这条边的中垂距.例:如图①,在△ABC中,D为边BC的中点,AE⊥BC于E,则线段DE的长叫做边BC的中垂距.(1)设三角形一边的中垂距为d(d≥0).若d=0,则这样的三角形一定是,推断的数学依据是.(2)如图②,在△ABC中,∠B=15°,AB=32,BC=8,AD为边BC的中线,求边BC的中垂距.(3)如图③,在矩形ABCD中,AB=6,AD=1.点E为边CD的中点,连结AE并延长交BC的延长线于点F,连结AC.求△ACF中边AF的中垂距.21.(6分)已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D 作DE⊥MN于E.求证:DE是⊙O的切线;若DE=6cm,AE=3cm,求⊙O的半径.22.(8分)如图,把△EFP按图示方式放置在菱形ABCD中,使得顶点E、F、P分别在线段AB、AD、AC上,已知EP=FP=4,EF=43,∠BAD=60°,且AB>43.(1)求∠EPF的大小;(2)若AP=6,求AE+AF的值.23.(8分)阅读与应用:阅读1:a 、b 为实数,且a >0,b >0,因为()20a b -≥,所以20a ab b -+≥,从而2a b ab +≥(当a =b 时取等号).阅读2:函数m y x x=+(常数m >0,x >0),由阅读1结论可知: 2m m x x x x +≥⋅ 2m =,所以当m x x =即x m =时,函数m y x x=+的最小值为2m . 阅读理解上述内容,解答下列问题:问题1:已知一个矩形的面积为4,其中一边长为x ,则另一边长为4x ,周长为42x x ⎛⎫+ ⎪⎝⎭,求当x =__________时,周长的最小值为__________.问题2:已知函数y 1=x +1(x >-1)与函数y 2=x 2+2x +17(x >-1),当x =__________时, 21y y 的最小值为__________.问题3:某民办学习每天的支出总费用包含以下三个部分:一是教职工工资6400元;二是学生生活费每人10元;三是其他费用.其中,其他费用与学生人数的平方成正比,比例系数为0.1.当学校学生人数为多少时,该校每天生均投入最低?最低费用是多少元?(生均投入=支出总费用÷学生人数)24.(10分)某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题: 请将条形统计图补全;获得一等奖的同学中有14来自七年级,有14来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.25.(10分)如图,AB 是⊙O 的直径,点C 在⊙O 上,CE^ AB 于E , CD 平分ÐECB , 交过点B 的射线于D , 交AB 于F , 且BC=BD .(1)求证:BD是⊙O的切线;(2)若AE=9,CE=12,求BF的长.26.(12分)今年,我国海关总署严厉打击“洋垃圾”违法行动,坚决把“洋垃圾”拒于国门之外.如图,某天我国一艘海监船巡航到A港口正西方的B处时,发现在B的北偏东60°方向,相距150海里处的C点有一可疑船只正沿CA方向行驶,C点在A港口的北偏东30°方向上,海监船向A港口发出指令,执法船立即从A港口沿AC方向驶出,在D处成功拦截可疑船只,此时D点与B点的距离为752海里.(1)求B点到直线CA的距离;(2)执法船从A到D航行了多少海里?(结果保留根号)27.(12分)观察下列各个等式的规律:第一个等式:222112--=1,第二个等式:223212--=2,第三个等式:224312--=3…请用上述等式反映出的规律解决下列问题:直接写出第四个等式;猜想第n个等式(用n的代数式表示),并证明你猜想的等式是正确的.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)【解析】试题分析:从上边看立体图形得到俯视图即可得右侧立体图形的俯视图是,故选A.考点:简单组合体的三视图.2.C【解析】【分析】如图,首先证明∠AMO=∠2,然后运用对顶角的性质求出∠ANM=55°;借助三角形外角的性质求出∠AMO即可解决问题.【详解】如图,对图形进行点标注.∵直线a∥b,∴∠AMO=∠2;∵∠ANM=∠1,而∠1=55°,∴∠ANM=55°,∴∠2=∠AMO=∠A+∠ANM=60°+55°=115°,故选C.【点睛】本题考查了平行线的性质,三角形外角的性质,熟练掌握和灵活运用相关知识是解题的关键.3.A【解析】【分析】根据绝对值的性质进行解答即可【详解】解:﹣1的绝对值是:1.故选:A.【点睛】此题考查绝对值,难度不大【解析】如图,∵根据三角形面积公式,当一边OA固定时,它边上的高最大时,三角形面积最大,∴当PO⊥AO,即PO为三角形OA边上的高时,△APO的面积y最大。

西藏拉萨市2019-2020学年中考第五次质量检测数学试题含解析

西藏拉萨市2019-2020学年中考第五次质量检测数学试题含解析

西藏拉萨市2019-2020学年中考第五次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,一段抛物线:y=﹣x (x ﹣5)(0≤x≤5),记为C 1,它与x 轴交于点O ,A 1;将C 1绕点A 1旋转180°得C 2, 交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3, 交x 轴于点A 3;…如此进行下去,得到一“波浪线”,若点P (2018,m )在此“波浪线”上,则m 的值为( )A .4B .﹣4C .﹣6D .62.在海南建省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计,4月份互联网信息中提及“海南”一词的次数约48500000次,数据48500000科学记数法表示为( ) A .485×105 B .48.5×106 C .4.85×107 D .0.485×1083.如图,某同学不小心把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带( )A .带③去B .带②去C .带①去D .带①②去4.有若干个完全相同的小正方体堆成一个如图所示几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为( )A .2B .3C .4D .55.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( ) A .B .C .D .6.使用家用燃气灶烧开同一壶水所需的燃气量y (单位:3m )与旋钮的旋转角度x (单位:度)(090x <≤o o )近似满足函数关系y=ax 2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x 与燃气量y 的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.18o B.36o C.41o D.58o7.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D 作⊙O的切线交BC于点M,切点为N,则DM的长为()A.133B.92C.4133D.258.魏晋时期的数学家刘徽首创割圆术.为计算圆周率建立了严密的理论和完善的算法.作圆内接正多边形,当正多边形的边数不断增加时,其周长就无限接近圆的周长,进而可用正多边形的周长圆的直径来求得较为精确的圆周率.祖冲之在刘徽的基础上继续努力,当正多边形的边数增加24576时,得到了精确到小数点后七位的圆周率,这一成就在当时是领先其他国家一千多年,如图,依据“割圆术”,由圆内接正六边形算得的圆周率的近似值是()A.0.5 B.1 C.3 D.π9.如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,点E是△ABC的内心,过点E作EF∥AB交AC于点F,则EF的长为( )A .52B .154 C .83D .10310.如图,AB ∥CD ,DB ⊥BC ,∠2=50°,则∠1的度数是( )A .40°B .50°C .60°D .140°11.下列运算正确的是( ) A .235x x x +=B .236x x x +=C .325x x =()D .326x x =()12.如图,在平行线l 1、l 2之间放置一块直角三角板,三角板的锐角顶点A ,B 分别在直线l 1、l 2上,若∠l=65°,则∠2的度数是( )A .25°B .35°C .45°D .65°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在平面直角坐标系中,点A 的坐标为(a ,3),点B 的坐标是(4,b ),若点A 与点B 关于原点O 对称,则ab=_____. 14.观察下列等式: 第1个等式:a 1=111(1)1323=⨯-⨯; 第2个等式:a 2=1111()35235=⨯-⨯; 第3个等式:a 3=1111()57257=⨯-⨯; …请按以上规律解答下列问题: (1)列出第5个等式:a 5=_____; (2)求a 1+a 2+a 3+…+a n =4999,那么n 的值为_____. 154______.16.如图,在Rt △ACB 中,∠ACB=90°,∠A=25°,D 是AB 上一点,将Rt △ABC 沿CD 折叠,使点B 落在AC 边上的B′处,则∠ADB′等于_____.17.设[x)表示大于x的最小整数,如[3)=4,[−1.2)=−1,则下列结论中正确的是______ .(填写所有正确结论的序号)①[0)=0;②[x)−x的最小值是0;③[x)−x的最大值是0;④存在实数x,使[x)−x=0.5成立.18.长、宽分别为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某校对六至九年级学生围绕“每天30分钟的大课间,你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行随机抽样调查,从而得到一组数据.如图是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:该校对多少学生进行了抽样调查?本次抽样调查中,最喜欢篮球活动的有多少?占被调查人数的百分比是多少?若该校九年级共有200名学生,如图是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请估计全校六至九年级学生中最喜欢跳绳活动的人数约为多少?20.(6分)已知,如图,在四边形ABCD中,∠ADB=∠ACB,延长AD、BC相交于点E.求证:△ACE∽△BDE;BE•DC=AB•DE.21.(6分)小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:?1322x x+=--.她把这个数“?”猜成5,请你帮小华解这个分式方程;小华的妈妈说:“我看到标准答案是:方程的增根是2x=,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?22.(8分)光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见表:每台甲型收割机的租金每台乙型收割机的租金A地区1800 1600B地区1600 1200(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y 与x间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议.23.(8分)庐阳春风体育运动品商店从厂家购进甲,乙两种T恤共400件,其每件的售价与进货量m(件)之间的关系及成本如下表所示:T恤每件的售价/元每件的成本/元甲0.1100m-+50乙()0.21200200m m-+<<60()600050200400mm+≤≤(1)当甲种T恤进货250件时,求两种T恤全部售完的利润是多少元;若所有的T恤都能售完,求该商店获得的总利润y(元)与乙种T恤的进货量x(件)之间的函数关系式;在(2)的条件下,已知两种T恤进货量都不低于100件,且所进的T恤全部售完,该商店如何安排进货才能使获得的利润最大?24.(10分)已知:如图,△MNQ中,MQ≠NQ.(1)请你以MN为一边,在MN的同侧构造一个与△MNQ全等的三角形,画出图形,并简要说明构造的方法;(2)参考(1)中构造全等三角形的方法解决下面问题:如图,在四边形ABCD中,180ACB CAD∠+∠=︒,∠B=∠D.求证:CD=AB.25.(10分)小强的妈妈想在自家的院子里用竹篱笆围一个面积为4平方米的矩形小花园,妈妈问九年级的小强至少需要几米长的竹篱笆(不考虑接缝).小强根据他学习函数的经验做了如下的探究.下面是小强的探究过程,请补充完整:建立函数模型:设矩形小花园的一边长为x米,篱笆长为y米.则y关于x的函数表达式为________;列表(相关数据保留一位小数):根据函数的表达式,得到了x与y的几组值,如下表:x 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5y 17 10 8.3 8.2 8.7 9.3 10.8 11.6描点、画函数图象:如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点画出该函数的图象;观察分析、得出结论:根据以上信息可得,当x=________时,y有最小值.由此,小强确定篱笆长至少为________米.26.(12分)国家发改委公布的《商品房销售明码标价规定》,从2011年5月1日起商品房销售实行一套一标价.商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报.某市某楼盘准备以每平方米5000元的均价对外销售,由于新政策的出台,购房都持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.求平均每次下调的百分率;某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案发供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?27.(12分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的图象经过A(0,4),B(2,0),C(-2,0)三点.(1)求二次函数的表达式;(2)在x轴上有一点D(-4,0),将二次函数的图象沿射线DA方向平移,使图象再次经过点B.①求平移后图象顶点E的坐标;②直接写出此二次函数的图象在A,B两点之间(含A,B两点)的曲线部分在平移过程中所扫过的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】分析:根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m的值,由2017÷5=403…2,可知点P(2018,m)在此“波浪线”上C404段上,求出C404的解析式,然后把P(2018,m)代入即可.详解:当y=0时,﹣x(x﹣5)=0,解得x1=0,x2=5,则A1(5,0),∴OA1=5,∵将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…;如此进行下去,得到一“波浪线”,∴A1A2=A2A3=…=OA1=5,∴抛物线C404的解析式为y=(x﹣5×403)(x﹣5×404),即y=(x﹣2015)(x﹣2020),当x=2018时,y=(2018﹣2015)(2018﹣2020)=﹣1,故选C.点睛:此题主要考查了二次函数的平移规律,根据已知得出二次函数旋转后解析式是解题关键.2.C【解析】【分析】依据科学记数法的含义即可判断.【详解】解:48511111=4.85×117,故本题选择C.【点睛】把一个数M记成a×11n(1≤|a|<11,n为整数)的形式,这种记数的方法叫做科学记数法.规律:(1)当|a|≥1时,n的值为a的整数位数减1;(2)当|a|<1时,n的值是第一个不是1的数字前1的个数,包括整数位上的1.3.A【解析】【分析】第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃. 【详解】③中含原三角形的两角及夹边,根据ASA公理,能够唯一确定三角形.其它两个不行.故选:A.【点睛】此题主要考查全等三角形的运用,熟练掌握,即可解题.4.C【解析】若要保持俯视图和左视图不变,可以往第2排右侧正方体上添加1个,往第3排中间正方体上添加2个、右侧两个正方体上再添加1个,即一共添加4个小正方体,故选C.5.A【解析】【分析】根据轴对称图形的概念判断即可.A、是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、不是轴对称图形.故选:A.【点睛】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.C【解析】【分析】根据已知三点和近似满足函数关系y=ax2+bx+c(a≠0)可以大致画出函数图像,并判断对称轴位置在36和54之间即可选择答案.【详解】解:由图表数据描点连线,补全图像可得如图,抛物线对称轴在36和54之间,约为41℃∴旋钮的旋转角度x在36°和54°之间,约为41℃时,燃气灶烧开一壶水最节省燃气.故选:C,【点睛】本题考查了二次函数的应用,二次函数的图像性质,熟练掌握二次函数图像对称性质,判断对称轴位置是解题关键.综合性较强,需要有较高的思维能力,用图象法解题是本题考查的重点.7.A【解析】试题解析:连接OE,OF,ON,OG,在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB,BC分别与⊙O相切于E,F,G三点,∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四边形AFOE,FBGO是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切线,∴DN=DE=3,MN=MG,∴CM=5-2-MN=3-MN,在R t△DMC中,DM2=CD2+CM2,∴(3+NM)2=(3-NM)2+42,∴NM=43,∴DM=3+43=133,故选B.考点:1.切线的性质;3.矩形的性质.8.C【解析】【分析】连接OC、OD,根据正六边形的性质得到∠COD=60°,得到△COD是等边三角形,得到OC=CD,根据题意计算即可.【详解】连接OC、OD,∵六边形ABCDEF是正六边形,∴∠COD=60°,又OC=OD,。

西藏拉萨市2019-2020学年中考第三次质量检测数学试题含解析

西藏拉萨市2019-2020学年中考第三次质量检测数学试题含解析

西藏拉萨市2019-2020学年中考第三次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD的最小值是()A.310B.103C.9 D.922.如图,等腰直角三角板ABC的斜边AB与量角器的直径重合,点D是量角器上60°刻度线的外端点,连接CD交AB于点E,则∠CEB的度数为()A.60°B.65°C.70°D.75°3.如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为()A.12B.1 C.33D.34.若代数式22xx有意义,则实数x的取值范围是()A.x=0 B.x=2 C.x≠0D.x≠25.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是弧AC的中点,则∠D的度数是()A.60°B.35°C.30.5°D.30°6.浙江省陆域面积为101800平方千米。

数据101800用科学记数法表示为()A.1.018×104B.1.018×105C.10.18×105D.0.1018×1067.抛物线y=–x2+bx+c上部分点的横坐标x、纵坐标y的对应值如下表所示:x …–2 –1 0 1 2 …y …0 4 6 6 4 …从上表可知,下列说法错误的是A.抛物线与x轴的一个交点坐标为(–2,0) B.抛物线与y轴的交点坐标为(0,6)C.抛物线的对称轴是直线x=0 D.抛物线在对称轴左侧部分是上升的8.平面直角坐标系中,若点A(a,﹣b)在第三象限内,则点B(b,a)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限9.若一个三角形的两边长分别为5和7,则该三角形的周长可能是()A.12 B.14 C.15 D.2510.如图,点E是矩形ABCD的边AD的中点,且BE⊥AC于点F,则下列结论中错误的是()A.AF=12CF B.∠DCF=∠DFCC.图中与△AEF相似的三角形共有5个D.tan∠211.在,90ABC C∆∠=o中,2AC BC=,则tan A的值为()A.12B.2C5D2512.设x1,x2是方程x2-2x-1=0的两个实数根,则2112x xx x+的值是( )A.-6 B.-5 C.-6或-5 D.6或5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=________.14.如图,在△ABC中,AB=5,AC=4,BC=3,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB、AC于点M、N;②分别以点M、N为圆心,以大于12MN的长为半径作弧,两弧相交于点E;③作射线AE;④以同样的方法作射线BF,AE交BF于点O,连接OC,则OC=________.15.同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为 . 16.抛物线y=(x+1)2 - 2的顶点坐标是 ______ .17.如图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要___枚棋子.18.如图,平行线AB 、CD 被直线EF 所截,若∠2=130°,则∠1=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,BD 是菱形ABCD 的对角线,75CBD ∠=︒,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)在(1)条件下,连接BF ,求DBF ∠的度数.20.(6分)如图,抛物线2y a(x 1)4=-+与x 轴交于点A ,B ,与轴交于点C ,过点C 作CD ∥x 轴,交抛物线的对称轴于点D ,连结BD ,已知点A 坐标为(-1,0).求该抛物线的解析式;求梯形COBD 的面积.21.(6分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为度;请补全条形统计图;若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.22.(8分)如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足4a-+|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.a=,b=,点B的坐标为;当点P移动4秒时,请指出点P的位置,并求出点P的坐标;在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.23.(8分)某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:①该产品90天售量(n件)与时间(第x天)满足一次函数关系,部分数据如下表:时间(第x天) 1 2 3 10 …日销售量(n件)198 196 194 ? …②该产品90天内每天的销售价格与时间(第x天)的关系如下表:时间(第x天)1≤x<50 50≤x≤90销售价格(元/件)x+60 100求出第天日销售量;(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品的销售利润最大?最大利润是多少?(提示:每天销售利润=日销售量×(每件销售价格-每件成本))(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.24.(10分)先化简,再求值:x23x1x1x1-⎛⎫÷+-⎪--⎝⎭,其中x31.25.(10分)(定义)如图1,A,B为直线l同侧的两点,过点A作直线1的对称点A′,连接A′B交直线l于点P,连接AP,则称点P为点A,B关于直线l的“等角点”.(运用)如图2,在平面直坐标系xOy 中,已知A (2,),B (﹣2,﹣)两点.(1)C (4,),D (4,),E (4,)三点中,点 是点A ,B 关于直线x=4的等角点; (2)若直线l 垂直于x 轴,点P (m ,n )是点A ,B 关于直线l 的等角点,其中m >2,∠APB=α,求证:tan =;(3)若点P 是点A ,B 关于直线y=ax+b (a≠0)的等角点,且点P 位于直线AB 的右下方,当∠APB=60°时,求b 的取值范围(直接写出结果).26.(12分)如图,一次函数y =kx+b 与反比例函数y =6x(x >0)的图象交于A (m ,6), B (3,n )两点.求一次函数关系式;根据图象直接写出kx+b ﹣6x>0的x 的取值范围;求△AOB 的面积.27.(12分)如图,O e 是ABC V 的外接圆,AC 是O e 的直径,过圆心O 的直线PF AB ⊥于D ,交O e 于,E F ,PB 是O e 的切线,B 为切点,连接AP ,AF .(1)求证:直线PA 为O e 的切线; (2)求证:24EF OD OP =⋅;(3)若6BC =,1tan 2F ∠=,求AC 的长. 参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.A 【解析】解:如图,连接BE ,设BE 与AC 交于点P′,∵四边形ABCD 是正方形,∴点B 与D 关于AC 对称,∴P′D=P′B ,∴P′D+P′E=P′B+P′E=BE 最小.即P 在AC 与BE 的交点上时,PD+PE 最小,为BE 的长度.∵直角△CBE 中,∠BCE=90°,BC=9,CE=13CD=3,∴BE=2293+=310.故选A .点睛:此题考查了轴对称﹣﹣最短路线问题,正方形的性质,要灵活运用对称性解决此类问题.找出P 点位置是解题的关键. 2.D 【解析】 【详解】 解:连接OD ∵∠AOD=60°, ∴ACD=30°.∵∠CEB 是△ACE 的外角,∴△CEB =∠ACD+∠CAO=30°+45°=75° 故选:D3.B【解析】【分析】连接BC,由网格求出AB,BC,AC的长,利用勾股定理的逆定理得到△ABC为等腰直角三角形,即可求出所求.【详解】如图,连接BC,由网格可得AB=BC=5,AC=10,即AB2+BC2=AC2,∴△ABC为等腰直角三角形,∴∠BAC=45°,则tan∠BAC=1,故选B.【点睛】本题考查了锐角三角函数的定义,解直角三角形,以及勾股定理,熟练掌握勾股定理是解本题的关键.4.D【解析】【分析】根据分式的分母不等于0即可解题.【详解】解:∵代数式22xx有意义,∴x-2≠0,即x≠2,故选D.【点睛】本题考查了分式有意义的条件,属于简单题,熟悉分式有意义的条件是解题关键. 5.D【解析】【分析】根据圆心角、弧、弦的关系定理得到∠AOB=12∠AOC,再根据圆周角定理即可解答.【详解】连接OB,∵点B是弧AC的中点,∴∠AOB=12∠AOC=60°,由圆周角定理得,∠D=12∠AOB=30°,故选D.【点睛】此题考查了圆心角、弧、弦的关系定理,解题关键在于利用好圆周角定理.6.B【解析】5101800 1.01810=⨯.故选B.点睛:在把一个绝对值较大的数用科学记数法表示为10na⨯的形式时,我们要注意两点:①a必须满足:110a≤<;②n比原来的数的整数位数少1(也可以通过小数点移位来确定n).7.C【解析】当x=-2时,y=0,∴抛物线过(-2,0),∴抛物线与x轴的一个交点坐标为(-2,0),故A正确;当x=0时,y=6,∴抛物线与y轴的交点坐标为(0,6),故B正确;当x=0和x=1时,y=6,∴对称轴为x=12,故C错误;当x<12时,y随x的增大而增大,∴抛物线在对称轴左侧部分是上升的,故D正确;故选C.8.D【解析】分析:根据题意得出a和b的正负性,从而得出点B所在的象限.详解:∵点A在第三象限,∴a<0,-b<0,即a<0,b>0,∴点B在第四象限,故选D.点睛:本题主要考查的是象限中点的坐标特点,属于基础题型.明确各象限中点的横纵坐标的正负性是解题的关键.9.C【解析】【分析】先根据三角形三条边的关系求出第三条边的取值范围,进而求出周长的取值范围,从而可的求出符合题意的选项.【详解】∴三角形的两边长分别为5和7,∴2<第三条边<12,∴5+7+2<三角形的周长<5+7+12,即14<三角形的周长<24,故选C.【点睛】本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可.10.D【解析】【分析】由1122AE AD BC==,又AD∥BC,所以12AE AFBC FC==,故A正确,不符合题意;过D作DM∥BE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=12BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故B正确,不符合题意;根据相似三角形的判定即可求解,故C正确,不符合题意;由△BAE∽△ADC,得到CD与AD的大小关系,根据正切函数可求tan∠CAD的值,故D错误,符合题意. 【详解】 A.∵AD ∥BC ,∴△AEF ∽△CBF ,∴12AE AF BC FC ==, ∵1122AE AD BC ==,∴12AF FC =,故A 正确,不符合题意; B. 过D 作DM ∥BE 交AC 于N , ∵DE ∥BM,BE ∥DM ,∴四边形BMDE 是平行四边形, ∴12BM DE BC ==, ∴BM=CM , ∴CN=NF ,∵BE ⊥AC 于点F,DM ∥BE , ∴DN ⊥CF , ∴DF=DC ,∴∠DCF=∠DFC ,故B 正确,不符合题意;C. 图中与△AEF 相似的三角形有△ACD ,△BAF ,△CBF ,△CAB ,△ABE 共有5个,故C 正确,不符合题意;D. 设AD=a,AB=b,由△BAE ∽△ADC,有2.ab a b=∵tan ∠CAD 2,2CD b AD a === 故D 错误,符合题意. 故选:D. 【点睛】考查相似三角形的判定,矩形的性质,解直角三角形,掌握相似三角形的判定方法是解题的关键. 11.A 【解析】 【分析】本题可以利用锐角三角函数的定义求解即可. 【详解】 解:tanA=BCAC, ∵AC=2BC , ∴tanA=12. 故选:A . 【点睛】本题考查了正切函数的概念,掌握直角三角形中角的对边与邻边的比是关键 . 12.A 【解析】试题解析:∵x 1,x 2是方程x 2-2x-1=0的两个实数根, ∴x 1+x 2=2,x 1∙x 2=-1∴2112x x x x +=2221212121212()24261x x x x x x x x x x ++-+===--. 故选A.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.(a+1)1. 【解析】 【分析】原式提取公因式,计算即可得到结果. 【详解】原式=(a+1)[1+a+a (a+1)+a (a+1)2+…+a (a+1)98], =(a+1)2[1+a+a (a+1)+a (a+1)2+…+a (a+1)97], =(a+1)3[1+a+a (a+1)+a (a+1)2+…+a (a+1)96], =…, =(a+1)1. 故答案是:(a+1)1. 【点睛】考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键. 14. 【解析】 【分析】直接利用勾股定理的逆定理结合三角形内心的性质进而得出答案.【详解】过点O作OD⊥BC,OG⊥AC,垂足分别为D,G,由题意可得:O是△ACB的内心,∵AB=5,AC=4,BC=3,∴BC2+AC2=AB2,∴△ABC是直角三角形,∴∠ACB=90°,∴四边形OGCD是正方形,∴DO=OG=3452+-=1,∴2.2.【点睛】此题主要考查了基本作图以及三角形的内心,正确得出OD的长是解题关键.15.1 6【解析】试题分析:首先列表,然后根据表格求得所有等可能的结果与两个骰子的点数相同的情况,再根据概率公式求解即可.解:列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)∴一共有36种等可能的结果,两个骰子的点数相同的有6种情况,∴两个骰子的点数相同的概率为:=.故答案为.考点:列表法与树状图法.16.(-1,-2)【解析】试题分析:因为y=(x+1)2﹣2是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(﹣1,﹣2),故答案为(﹣1,﹣2).考点:二次函数的性质.17.1.【解析】【分析】根据题意分析可得:第1个图案中棋子的个数5个,第2个图案中棋子的个数5+6=11个,…,每个图形都比前一个图形多用6个,继而可求出第30个“小屋子”需要的棋子数.【详解】根据题意分析可得:第1个图案中棋子的个数5个.第2个图案中棋子的个数5+6=11个.….每个图形都比前一个图形多用6个.∴第30个图案中棋子的个数为5+29×6=1个.故答案为1.【点睛】考核知识点:图形的规律.分析出一般数量关系是关键.18.50°【解析】【分析】利用平行线的性质推出∠EFC=∠2=130°,再根据邻补角的性质即可解决问题.【详解】∵AB∥CD,∴∠EFC=∠2=130°,∴∠1=180°-∠EFC=50°,故答案为50°【点睛】本题考查平行线的性质、邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考基础题.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)答案见解析;(2)45°.【解析】【分析】(1)分别以A、B为圆心,大于12AB长为半径画弧,过两弧的交点作直线即可;(2)根据∠DBF=∠ABD﹣∠ABF计算即可;【详解】(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC12∠ABC=75°,DC∥AB,∠A=∠C,∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°.∵EF垂直平分线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF =∠ABD ﹣∠FBE =45°. 【点睛】本题考查了线段的垂直平分线作法和性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题.20.(1)2y (x 1)4=--+(2)()OCDA 133S 62+⨯==梯形【解析】 【分析】(1)将A 坐标代入抛物线解析式,求出a 的值,即可确定出解析式.(2)抛物线解析式令x=0求出y 的值,求出OC 的长,根据对称轴求出CD 的长,令y=0求出x 的值,确定出OB 的长,根据梯形面积公式即可求出梯形COBD 的面积. 【详解】(1)将A (―1,0)代入2y a(x 1)4=-+中,得:0=4a+4,解得:a=-1. ∴该抛物线解析式为2y (x 1)4=--+.(2)对于抛物线解析式,令x=0,得到y=2,即OC=2, ∵抛物线2y (x 1)4=--+的对称轴为直线x=1,∴CD=1. ∵A (-1,0),∴B (2,0),即OB=2. ∴()OCDA 133S 62+⨯==梯形.21. (1) 60,90;(2)见解析;(3) 300人 【解析】 【分析】(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;(2)由(1)可求得了解的人数,继而补全条形统计图; (3)利用样本估计总体的方法,即可求得答案. 【详解】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人); ∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:1560×360°=90°; 故答案为60,90; (2)60﹣15﹣30﹣10=5; 补全条形统计图得:(3)根据题意得:900×15560+=300(人), 则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人. 【点睛】本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的相关知识点.22.(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒. 【解析】试题分析:(1460.a b --=可以求得,a b 的值,根据长方形的性质,可以求得点B 的坐标; (2)根据题意点P 从原点出发,以每秒2个单位长度的速度沿着O C B A O ----的线路移动,可以得到当点P 移动4秒时,点P 的位置和点P 的坐标;(3)由题意可以得到符合要求的有两种情况,分别求出两种情况下点P 移动的时间即可. 试题解析:(1)∵a 、b 460.a b --= ∴a−4=0,b−6=0, 解得a=4,b=6, ∴点B 的坐标是(4,6), 故答案是:4,6,(4,6);(2)∵点P 从原点出发,以每秒2个单位长度的速度沿着O−C−B−A−O 的线路移动, ∴2×4=8, ∵OA=4,OC=6,∴当点P 移动4秒时,在线段CB 上,离点C 的距离是:8−6=2,即当点P 移动4秒时,此时点P 在线段CB 上,离点C 的距离是2个单位长度,点P 的坐标是(2,6); (3)由题意可得,在移动过程中,当点P 到x 轴的距离为5个单位长度时,存在两种情况, 第一种情况,当点P 在OC 上时, 点P 移动的时间是:5÷2=2.5秒, 第二种情况,当点P 在BA 上时,点P 移动的时间是:(6+4+1)÷2=5.5秒, 故在移动过程中,当点P 到x 轴的距离为5个单位长度时,点P 移动的时间是2.5秒或5.5秒. 23.(1)1件;(2)第40天,利润最大7200元;(3)46天 【解析】试题分析:(1)根据待定系数法解出一次函数解析式,然后把x=10代入即可;(2)设利润为y 元,则当1≤x <50时,y=﹣2x 2+160x+4000;当50≤x≤90时,y=﹣120x+12000,分别求出各段上的最大值,比较即可得到结论;(3)直接写出在该产品销售的过程中,共有46天销售利润不低于5400元.试题解析:解:(1)∵n 与x 成一次函数,∴设n=kx+b ,将x=1,m=198,x=3,m=194代入,得:1983194k b k b +=⎧⎨+=⎩,解得:2200k b =-⎧⎨=⎩,所以n 关于x 的一次函数表达式为n=-2x+200; 当x=10时,n=-2×10+200=1. (2)设销售该产品每天利润为y 元,y 关于x 的函数表达式为:221604000150120120005090y x x x y x x ⎧=-++≤⎨=-+≤≤⎩(<)() 当1≤x <50时,y=-2x 2+160x+4000=-2(x-40)2+7200, ∵-2<0,∴当x=40时,y 有最大值,最大值是7200; 当50≤x≤90时,y=-120x+12000,∵-120<0,∴y 随x 增大而减小,即当x=50时,y 的值最大,最大值是6000;综上所述:当x=40时,y 的值最大,最大值是7200,即在90天内该产品第40天的销售利润最大,最大利润是7200元;(3)在该产品销售的过程中,共有46天销售利润不低于5400元. 24.解:原式=1x 2+,3. 【解析】 【分析】 【详解】试题分析:先将括号里面的通分后,将除法转换成乘法,约分化简.然后代x 的值,进行二次根式化简.解:原式=()()2x 2x 4x 2x 11x 1x 1x 1x 2x 2x 2----÷=⋅=---+-+. 当x1时,原式===.25.(1)C(2)(3)b<﹣且b≠﹣2或b>【解析】【分析】(1)先求出B关于直线x=4的对称点B′的坐标,根据A、B′的坐标可得直线AB′的解析式,把x=4代入求出P点的纵坐标即可得答案;(2)如图:过点A作直线l的对称点A′,连A′B′,交直线l于点P,作BH⊥l于点H,根据对称性可知∠APG=A′PG,由∠AGP=∠BHP=90°可证明△AGP∽△BHP,根据相似三角形对应边成比例可得m=根据外角性质可知∠A=∠A′=,在Rt△AGP中,根据正切定义即可得结论;(3)当点P位于直线AB的右下方,∠APB=60°时,点P在以AB为弦,所对圆周为60°,且圆心在AB下方,若直线y=ax+b(a≠0)与圆相交,设圆与直线y=ax+b(a≠0)的另一个交点为Q根据对称性质可证明△ABQ是等边三角形,即点Q为定点,若直线y=ax+b(a≠0)与圆相切,易得P、Q重合,所以直线y=ax+b(a≠0)过定点Q,连OQ,过点A、Q分别作AM⊥y轴,QN⊥y轴,垂足分别为M、N,可证明△AMO∽△ONQ,根据相似三角形对应边成比例可得ON、NQ的长,即可得Q点坐标,根据A、B、Q的坐标可求出直线AQ、BQ的解析式,根据P与A、B重合时b的值求出b的取值范围即可.【详解】(1)点B关于直线x=4的对称点为B′(10,﹣),∴直线AB′解析式为:y=﹣,当x=4时,y=,故答案为:C(2)如图,过点A作直线l的对称点A′,连A′B′,交直线l于点P作BH⊥l于点H∵点A和A′关于直线l对称∴∠APG=∠A′PG∵∠BPH=∠A′PG∴∠APG=∠BPH∵∠AGP=∠BHP=90°∴△AGP∽△BHP∴,即,∴mn=2,即m=,∵∠APB=α,AP=AP′,∴∠A=∠A′=,在Rt△AGP中,tan(3)如图,当点P位于直线AB的右下方,∠APB=60°时,点P在以AB为弦,所对圆周为60°,且圆心在AB下方若直线y=ax+b(a≠0)与圆相交,设圆与直线y=ax+b(a≠0)的另一个交点为Q 由对称性可知:∠APQ=∠A′PQ,又∠APB=60°∴∠APQ=∠A′PQ=60°∴∠ABQ=∠APQ=60°,∠AQB=∠APB=60°∴∠BAQ=60°=∠AQB=∠ABQ∴△ABQ是等边三角形∵线段AB为定线段∴点Q为定点若直线y=ax+b(a≠0)与圆相切,易得P、Q重合∴直线y=ax+b(a≠0)过定点Q连OQ,过点A、Q分别作AM⊥y轴,QN⊥y轴,垂足分别为M、N∵A(2,),B(﹣2,﹣)∴OA=OB=∵△ABQ是等边三角形∴∠AOQ=∠BOQ=90°,OQ=,∴∠AOM+∠NOD=90°又∵∠AOM+∠MAO=90°,∠NOQ=∠MAO∵∠AMO=∠ONQ=90°∴△AMO∽△ONQ∴,∴,∴ON=2,NQ=3,∴Q点坐标为(3,﹣2)设直线BQ解析式为y=kx+b将B、Q坐标代入得,解得,∴直线BQ的解析式为:y=﹣,设直线AQ的解析式为:y=mx+n,将A、Q两点代入,解得,∴直线AQ的解析式为:y=﹣3,若点P与B点重合,则直线PQ与直线BQ重合,此时,b=﹣,若点P与点A重合,则直线PQ与直线AQ重合,此时,b=,又∵y=ax+b(a≠0),且点P位于AB右下方,∴b<﹣且b≠﹣2或b>.【点睛】本题考查对称性质、相似三角形的判定与性质、根据待定系数法求一次函数解析式及锐角三角函数正切的定义,熟练掌握相关知识是解题关键.26.(1)y=-2x+1 ;(2)1<x<2 ;(2)△AOB的面积为1 .【解析】试题分析:(1)首先根据A(m,6),B(2,n)两点在反比例函数y=6x(x>0)的图象上,求出m,n的值各是多少;然后求出一次函数的解析式,再根据一元二次不等式的求法,求出x的取值范围即可.(2)由-2x+1-6x<0,求出x的取值范围即可.(2)首先分别求出C点、D点的坐标的坐标各是多少;然后根据三角形的面积的求法,求出△AOB的面积是多少即可.试题解析:(1)∵A(m,6),B(2,n)两点在反比例函数y=6x(x>0)的图象上,∴6=6m,63n=,解得m=1,n=2,∴A(1,6),B(2,2),∵A(1,6),B(2,2)在一次函数y=kx+b的图象上,∴6{32 k bk b++==,解得2 {8kb-==,∴y=-2x+1.(2)由-2x+1-6x<0,解得0<x<1或x>2.(2)当x=0时,y=-2×0+1=1,∴C点的坐标是(0,1);当y=0时,0=-2x+1,解得x=4,∴D 点的坐标是(4,0);∴S △AOB =12×4×1-12×1×1-12×4×2=16-4-4=1. 27.(1)证明见解析;(2)证明见解析;(3)1.【解析】【分析】(1)连接OA ,由OP 垂直于AB ,利用垂径定理得到D 为AB 的中点,即OP 垂直平分AB ,可得出AP=BP ,再由OA=OB ,OP=OP ,利用SSS 得出三角形AOP 与三角形BOP 全等,由PA 为圆的切线,得到OA 垂直于AP ,利用全等三角形的对应角相等及垂直的定义得到OB 垂直于BP ,即PB 为圆O 的切线;(2)由一对直角相等,一对公共角,得出三角形AOD 与三角形OAP 相似,由相似得比例,列出关系式,由OA 为EF 的一半,等量代换即可得证.【详解】(1)连接OB ,∵PB 是⊙O 的切线,∴∠PBO=90°.∵OA=OB ,BA ⊥PO 于D ,∴AD=BD ,∠POA=∠POB .又∵PO=PO ,∴△PAO ≌△PBO .∴∠PAO=∠PBO=90°,∴直线PA 为⊙O 的切线.(2)由(1)可知,90OAP ∠=︒,FE AB ⊥Q ,90ADO ∴∠=︒,OAP ADO ∴∠=∠=90︒,DOA AOP ∠=∠Q ,AOD POA ∴△∽△,OD OA OA OP∴=,即2OA OD OP =⋅,EF Q 是O e 直径,OE ∴是O e 半径12OE OA EF ∴==, 2OA OD OP =⋅Q ,212EF OD OP ⎛⎫∴=⋅ ⎪⎝⎭, 整理得24EF OD OP =⋅;(3)O Q 是AC 中点,D 是AB 中点, OD ∴是ABC V 的中位线,12OD BC ∴=162=⨯3=, AB EF ⊥Q ,90ADF ∴∠=︒,ADF ∴V 是直角三角形,Q 在Rt ADF V 中,1tan 2F =, 1tan 2AD F FD ∴==, 2FD AD ∴=,FD OF OD =+Q ,OF FD OD ∴=-,则23OF AD =-, OF Q 、OA 是O e 半径,23OA OF AD ∴==-,Q 在Rt AOD △中,3OD =,23OA AD =-, ∴由勾股定理得:222OA OD AD =+,即222(23)3AD AD -=+,解得:4=AD 或0AD =(舍去), 23OA AD ∴=-243=⨯-5=, 2AC OA ∴=25=⨯10=.【点睛】本题考查了切线的判定与性质,相似及全等三角形的判定与性质以及锐角三角函数关系等知识,熟练掌握切线的判定与性质是解本题的关键.。

2019年西藏中考数学试卷以及解析版

2019年西藏中考数学试卷以及解析版

2019年西藏中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是最符合题目要求的,不选、铝选或多选均不得分.)1.(3分)﹣3的相反数是()A.3B.﹣3C.D.2.(3分)习近平总书记提出精准扶贫战略以来,各地积极推进精准扶贫,加大帮扶力度,全国脱贫人口数不断增加,脱贫人口接近11000000人,将数据11000000用科学记数法表示为()A.1.1×106B.1.1×107C.1.1×108D.1.1×1093.(3分)下列图形是轴对称图形但不是中心对称图形的是()A.B.C.D.4.(3分)下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.a3÷a2=a D.(a2)3=a5 5.(3分)如图,AB∥CD,若∠1=65°,则∠2的度数是()A.65°B.105°C.115°D.125°6.(3分)如图,在△ABC中,D,E分别为AB、AC边上的中点,则△ADE与△ABC的面积之比是()A.1:4B.1:3C.1:2D.2:17.(3分)把函数y=﹣x2的图象,经过怎样的平移变换以后,可以得到函数y=﹣(x ﹣1)2+1的图象()A.向左平移1个单位,再向下平移1个单位B.向左平移1个单位,再向上平移1个单位C.向右平移1个单位,再向上平移1个单位D.向右平移1个单位,再向下平移1个单位8.(3分)如图,在⊙O中,半径OC垂直弦AB于D,点E在⊙O上,∠E=22.5°,AB =2,则半径OB等于()A.1B.C.2D.29.(3分)已知点A是直线y=2x与双曲线y=(m为常数)一支的交点,过点A作x 轴的垂线,垂足为B,且OB=2,则m的值为()A.﹣7B.﹣8C.8D.710.(3分)如图,从一张腰长为90cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为()A.15cm B.12cm C.10cm D.20cm11.(3分)把一些书分给几名同学,如果每人分3本,那么余6本;如果前面的每名同学分5本,那么最后一人就分不到3本,这些书有______本,共有______人.()A.27本,7人B.24本,6人C.21本,5人D.18本,4人12.(3分)如图,在矩形ABCD中,AB=6,AD=3,动点P满足S△P AB=S矩形ABCD,则点P到A、B两点距离之和P A+PB的最小值为()A.2B.2C.3D.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)因式分解:x2y﹣y3=.14.(3分)一元二次方程x2﹣x﹣1=0的根是.15.(3分)若实数m、n满足|m﹣3|+=0,且m、n恰好是直角三角形的两条边,则该直角三角形的斜边长为.16.(3分)如图,在Rt△ABC中,∠ACB=90°,点D是边AB上的一点,CD⊥AB于D,AD=2,BD=6,则边AC的长为.17.(3分)如图,把一张长为4,宽为2的矩形纸片,沿对角线折叠,则重叠部分的面积为.18.(3分)观察下列式子第1个式子:2×4+1=9=32第2个式子:6×8+1=49=72第3个式子:14×16+1=225=152……请写出第n个式子:.三、解答题(本大题共7小题,共46分.解答需写出必要的文字说明、证明过程或演算步骤)19.(5分)计算(2019﹣π)0﹣2sin30°++(﹣)﹣3.20.(5分)如图,点E、C在线段BF上,BE=CF,AB=DE,AC=DF.求证:∠ABC=∠DEF.21.(6分)某校为研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干学生的兴趣爱好,并将调查的结果绘制成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次研究中,一共调查了名学生;若该校共有1500名学生,估计全校爱好运动的学生共有名;(2)补全条形统计图,并计算阅读部分圆心角是;(3)在全校同学中随机选出一名学生参加演讲比赛,用频率估计概率,则选出的恰好是爱好阅读的学生概率是.22.(6分)列方程(组)解应用题绿水青山就是金山银山,为了创造良好的生态环境,防止水土流失,某村计划在荒坡上种树600棵,由于青年志愿者支援,实际每天种树的棵树是原计划的2倍,结果提前4天完成任务,则原计划每天种树多少棵?23.(6分)由我国完全自主设计,自主建造的首艘国产航母于2018年5月成功完成首次海上试验任务.如图,航母由西向东航行,到达B处时,测得小岛A在北偏东60°方向上,航行20海里到达C点,这时测得小岛A在北偏东30°方向上,小岛A周围10海里内有暗礁,如果航母不改变航线继续向东航行,有没有触礁危险?请说明理由.24.(8分)如图,在△ABC中.∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠BCP=∠BAC.(1)求证:CP是⊙O的切线;(2)若BC=3,cos∠BCP=,求点B到AC的距离.25.(10分)已知:如图,抛物线y=ax2+bx+3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线解析式;(2)当点P运动到什么位置时,△P AB的面积最大?(3)过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E,连接DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求点P的坐标;若不存在,说明理由.2019年西藏中考数学试卷答案与解析一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是最符合题目要求的,不选、铝选或多选均不得分.)1.【分析】由相反数的定义容易得出结果.【解答】解:﹣3的相反数是3,故选:A.【点评】本题考查了相反数的定义;熟记相反数的定义是解决问题的关键.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将11000000用科学记数法表示为1.1×107.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、不是轴对称图形,不是中心对称图形,故此选项不合题意;C、是轴对称图形,是中心对称图形,故此选项不合题意;D、是轴对称图形,不是中心对称图形,故此选项符合题意;故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、幂的乘方运算法则分别化简得出答案.【解答】解:A、a2+a3,无法计算,故此选项错误;B、a2•a3=a5,故此选项错误;C、a3÷a2=a,正确;D、(a2)3=a6,故此选项错误;故选:C.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算、幂的乘方运算,正确掌握相关运算法则是解题关键.5.【分析】利用平行线的性质即可解决问题.【解答】解:如图,∵AB∥CD,∴∠2+∠3=180°,∵∠1=∠3=65°,∴∠2+65°=180°,∴∠2=180°﹣65°=115°,故选:C.【点评】本题考查平行线的性质,解题的关键是熟练掌握两直线平行,同旁内角互补.6.【分析】根据相似三角形的性质即可求出答案.【解答】解:由题意可知:DE是△ABC的中位线,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴=()2=,故选:A.【点评】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于基础题型.7.【分析】根据抛物线顶点的变换规律作出正确的选项.【解答】解:抛物线y=﹣x2的顶点坐标是(0,0),抛物线线y=﹣(x﹣1)2+1的顶点坐标是(1,1),所以将顶点(0,0)向右平移1个单位,再向上平移1个单位得到顶点(1,1),即将函数y=﹣x2的图象向右平移1个单位,再向上平移1个单位得到函数y=﹣(x ﹣1)2+1的图象.故选:C.【点评】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.8.【分析】直接利用垂径定理进而结合圆周角定理得出△ODB是等腰直角三角形,进而得出答案.【解答】解:∵半径OC⊥弦AB于点D,∴=,∴∠E=∠BOC=22.5°,∴∠BOD=45°,∴△ODB是等腰直角三角形,∵AB=2,∴DB=OD=1,则半径OB等于:=.故选:B.【点评】此题主要考查了勾股定理,垂径定理和圆周角定理,正确得出△ODB是等腰直角三角形是解题关键.9.【分析】易求得A点的坐标,代入y=(m为常数)即可求出m.【解答】解:由题意,可知点A的横坐标是±2,由点A在正比例函数y=2x的图象上,∴点A的坐标为(2,4)或(﹣2,﹣4),又∵点A在反比例函数y=(m为常数)的图象上,∴m+1=8,即m=7,故选:D.【点评】本题综合考查反比例函数与一次函数的交点问题.先由点的坐标求函数解析式,体现了数形结合的思想.10.【分析】根据等腰三角形的性质得到OE的长,再利用弧长公式计算出弧CD的长,设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到r,然后利用勾股定理计算出圆锥的高.【解答】解:过O作OE⊥AB于E,∵OA=OB=90cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=45cm,∴弧CD的长==30π,设圆锥的底面圆的半径为r,则2πr=30π,解得r=15.故选:A.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.11.【分析】设有x名同学,则就有(3x+6)本书,根据每名同学分5本,那么最后一人就分不到3本的不等关系建立不等式组求出其解即可.【解答】解:设有x名同学,则就有(3x+6)本书,由题意,得:0≤3x+6﹣5(x﹣1)<3,解得:4<x≤5.5,∵x为非负整数,∴x=5.∴书的数量为:3×5+6=21.故选:C.【点评】本题考查了列一元一次不等式组解实际问题的运用,一元一次不等式组的解法的运用,解答时根据题意中的不相等关系建立不等式组是关键.12.【分析】先由S△P AB=S矩形ABCD,得出动点P在与AB平行且与AB的距离是2的直线l上,作A关于直线l的对称点E,连接AE,BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即可得到P A+PB的最小值.【解答】解:设△ABP中AB边上的高是h.∵S△P AB=S矩形ABCD,∴AB•h=AB•AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=6,AE=2+2=4,∴BE===2,即P A+PB的最小值为2.故选:A.【点评】本题考查了轴对称﹣最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.二、填空题(本大题共6小题,每小题3分,共18分)13.【分析】先提公因式,再利用平方差公式分解因式即可;【解答】解:x2y﹣y3=y(x2﹣y2)=y(x+y)(x﹣y).故答案为y(x+y)(x﹣y)【点评】本题考查因式分解﹣提公因式法,解题的关键是熟练掌握因式分解的方法,属于中考常考题型、14.【分析】先计算判别式的值,然后利用求根公式解方程.【解答】解:△=(﹣1)2﹣4×(﹣1)=5,x=,所以x1=,x2=.故答案为x1=,x2=.【点评】本题考查了解一元二次方程﹣公式法:用求根公式解一元二次方程的方法是公式法.15.【分析】利用非负数的性质求出m,n即可解决问题.【解答】解:∵|m﹣3|+=0,又∵|m﹣3|≥0,≥0,∴m=3,n=4,①当m,n是直角边时,∴直角三角形的斜边==5,②当m=4是斜边时,斜边为4,故答案为5或4.【点评】本题考查非负数的性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.【分析】根据射影定理列式计算即可.【解答】解:由射影定理得,AC2=AD•AB=2×(2+6),解得,AC=4,故答案为:4.【点评】本题考查的是射影定理,直角三角形中,每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.17.【分析】设BF长为x,则CF=x,FD=4﹣x,在直角三角形CDF中,利用勾股定理可求出x,继而利用三角形面积公式进行计算求解.【解答】解:设BF长为x,则FD=4﹣x,∵∠ACB=∠BCE=∠CBD,∴△BCF为等腰三角形,BF=CF=x,在Rt△CDF中,(4﹣x)2+22=x2,解得:x=2.5,∴BF=2.5,∴S△BFC=BF×CD=×2.5×2=2.5.即重叠部分面积为2.5.故答案为:2.5.【点评】此题考查了图形的折叠变换,能够根据折叠的性质和勾股定理求出BF的长是解答此题的关键.18.【分析】由题意可知:①等号左边是两个连续偶数的积(其中第二个因数比第一个因数大2)与1的和;右边是比左边第一个因数大1的数的平方;②第1个式子的第一个因数是22﹣2,第2个式子的第一个因数是23﹣2,第3个式子的第一个因数是24﹣2,以此类推,得出第n个式子的第一个因数是2n+1﹣2,从而能写出第n个式子.【解答】解:∵第1个式子:2×4+1=9=32,即(22﹣2)×22+1=(22﹣1)2,第2个式子:6×8+1=49=72,即(23﹣2)×23+1=(23﹣1)2,第3个式子:14×16+1=225=152,即(24﹣2)×24+1=(24﹣1)2,……∴第n个等式为:(2n+1﹣2)×2n+1+1=(2n+1﹣1)2.故答案为:(2n+1﹣2)×2n+1+1=(2n+1﹣1)2.【点评】此题主要考查了规律型:数字的变化类,根据已知得出等式左边第一个因数的规律是解题关键.三、解答题(本大题共7小题,共46分.解答需写出必要的文字说明、证明过程或演算步骤)19.【分析】本题涉及零指数幂、负指数幂、二次根式化简、特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1﹣2×+2﹣8=1﹣1+2﹣8=2﹣8.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.【分析】先证明△ABC≌△DEF,然后利用全等三角形的性质即可求出∠ABC=∠DEF.【解答】解:∵BE=CF,∴BE+EC=CF+EC,∴BC=EF,在△ABC与△DEF中,∴△ABC≌△DEF(SSS)∴∠ABC=∠DEF【点评】本题考查全等三角形的判定与性质,解题的关键是熟练运用全等三角形的判定,本题属于基础题型.21.【分析】(1)根据爱好运动人数的百分比,以及运动人数即可求出共调查的人数;利用样本估计总体即可估计爱好运动的学生人数.(2)根据两幅统计图即可求出阅读的人数以及上网的人数,从而可补全图形.(3)根据爱好阅读的学生人数所占的百分比即可估计选出的恰好是爱好阅读的学生的概率.【解答】解:(1)爱好运动的人数为40,所占百分比为40%∴共调查人数为:40÷40%=100,爱好运动的学生人数所占的百分比为40%,∴全校爱好运动的学生共有:1500×40%=600人;故答案为:100,600;(2)爱好上网的人数所占百分比为10%∴爱好上网人数为:100×10%=10,∴爱好阅读人数为:100﹣40﹣20﹣10=30,补全条形统计图,如图所示,阅读部分圆心角是360°×=108°,故答案为:108;(3)爱好阅读的学生人数所占的百分比30%,∴用频率估计概率,则选出的恰好是爱好阅读的学生的概率为;故答案为:.【点评】本题考查统计与概率,解题的关键是正确利用两幅统计图的信息,本题属于中等题型.22.【分析】设原计划每天种树x棵.根据工作量=工作效率×工作时间列出方程,解答即可.【解答】解:设原计划每天种树x棵.由题意,得﹣=4解得,x=75经检验,x=75是原方程的解.答:原计划每天种树75棵.【点评】此题主要考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.工程类问题主要用到公式:工作总量=工作效率×工作时间.23.【分析】过A作AD⊥BC于点D,求出∠CAD、∠DAB的度数,求出∠BAC和∠ABC,根据等边对等角得出AC=BC=12,根据含30度角的直角三角形性质求出CD,根据勾股定理求出AD即可.【解答】解:如果渔船不改变航线继续向东航行,没有触礁的危险,理由如下:过点A作AD⊥BC,垂足为D,根据题意可知∠ABC=30°,∠ACD=60°,∵∠ACD=∠ABC+∠BAC,∴∠BAC=30°=∠ABC,∴CB=CA=20,在Rt△ACD中,∠ADC=90°,∠ACD=60°,sin∠ACD=,∴sin60°=,∴AD=20×sin60°=20×=10>10,∴渔船不改变航线继续向东航行,没有触礁的危险.【点评】本题考查了解直角三角形的应用,解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.24.【分析】(1)证明△ABC为等腰三角形,则∠NAC+∠NCA=90°,即α+∠ACB=90°,即可求解;(2)在△ACN中,AN==,同理AC=,利用S△ABC=AN×BC =AC•h,即可求解.【解答】解:(1)连接AN,则AN⊥BC,∵∠ABC=∠ACB,∴△ABC为等腰三角形,∴∠BAN=CAN∠=α=BAC=∠BCP,∠NAC+∠NCA=90°,即α+∠ACB=90°,∴CP是⊙O的切线;(2)∵△ABC为等腰三角形,∴NC=BC=,cos∠BCP==cosα,则tanα=,在△ACN中,AN==,同理AC=,设:点B到AC的距离为h,则S△ABC=AN×BC=AC•h,即:×3=h,解得:h=,故点B到AC的距离为.【点评】本题考查的是切线定理的判断与运用,涉及到解直角三角形、三角形面积计算等,难度适中.25.【分析】(1)用待定系数法即可求抛物线解析式.(2)设点P横坐标为t,过点P作PF∥y轴交AB于点F,求直线AB解析式,即能用t 表示点F坐标,进而表示PF的长.把△P AB分成△P AF与△PBF求面积和,即得到△P AB面积与t的函数关系,配方即得到t为何值时,△P AB面积最大,进而求得此时点P 坐标.(3)设点P横坐标为t,即能用t表示PD的长.根据对称性可知点P、E关于抛物线对称轴对称,用中点坐标公式可得用t表示点E横坐标,进而用t表示PE的长(注意点P、E左右位置不确定,需分类讨论).由于△PDE要成为等腰直角三角形,∠DPE=90°,所以PD=PE,把含t的式子代入求值即得到点P坐标.【解答】解:(1)∵抛物线y=ax2+bx+3过点B(﹣3,0),C(1,0)∴解得:∴抛物线解析式为y=﹣x2﹣2x+3(2)过点P作PH⊥x轴于点H,交AB于点F∵x=0时,y=﹣x2﹣2x+3=3∴A(0,3)∴直线AB解析式为y=x+3∵点P在线段AB上方抛物线上∴设P(t,﹣t2﹣2t+3)(﹣3<t<0)∴F(t,t+3)∴PF=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∴S△P AB=S△P AF+S△PBF=PF•OH+PF•BH=PF•OB=(﹣t2﹣3t)=﹣(t+)2+∴点P运动到坐标为(﹣,),△P AB面积最大(3)存在点P使△PDE为等腰直角三角形设P(t,﹣t2﹣2t+3)(﹣3<t<0),则D(t,t+3)∴PD=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∵抛物线y=﹣x2﹣2x+3=﹣(x+1)2+4∴对称轴为直线x=﹣1∵PE∥x轴交抛物线于点E∴y E=y P,即点E、P关于对称轴对称∴=﹣1∴x E=﹣2﹣x P=﹣2﹣t∴PE=|x E﹣x P|=|﹣2﹣2t|∵△PDE为等腰直角三角形,∠DPE=90°∴PD=PE①当﹣3<t≤﹣1时,PE=﹣2﹣2t∴﹣t2﹣3t=﹣2﹣2t解得:t1=1(舍去),t2=﹣2∴P(﹣2,3)②当﹣1<t<0时,PE=2+2t∴﹣t2﹣3t=2+2t解得:t1=,t2=(舍去)∴P(,)综上所述,点P坐标为(﹣2,3)或(,)时使△PDE为等腰直角三角形.【点评】本题考查了二次函数的图象与性质,求二次函数最值,等腰直角三角形的性质,中点坐标公式,一元二次方程的解法.分类讨论进行计算时,要注意讨论求得的解是否符合分类条件,是否需要舍去.。

(数学3份试卷)2019年拉萨市中考达标检测化学试题

(数学3份试卷)2019年拉萨市中考达标检测化学试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.正方形ABCD在直角坐标系中的位置如图所示,将正方形ABCD绕点A按顺时针方向旋转180°后,C 点的坐标是( )A.(2,0) B.(3,0) C.(2,-1) D.(2,1)【答案】B【解析】试题分析:正方形ABCD绕点A顺时针方向旋转180°后,C点的对应点与C一定关于A对称,A 是对称点连线的中点,据此即可求解.试题解析:AC=2,则正方形ABCD绕点A顺时针方向旋转180°后C的对应点设是C′,则AC′=AC=2,则OC′=3,故C′的坐标是(3,0).故选B.考点:坐标与图形变化-旋转.2.下列各式中的变形,错误的是(()A.B.C.D.【答案】D【解析】根据分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变,可得答案.【详解】A、,故A正确;B、分子、分母同时乘以﹣1,分式的值不发生变化,故B正确;C、分子、分母同时乘以3,分式的值不发生变化,故C正确;D、≠,故D错误;故选:D.【点睛】本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变.3.我国古代数学著作《九章算术》中,将底面是直角三角形,且侧棱与底面垂直的三棱柱称为“堑堵”某“堑堵”的三视图如图所示(网格图中每个小正方形的边长均为1),则该“堑堵”的侧面积为()A.16+162B.16+82C.24+162D.4+42【答案】A【解析】分析出此三棱柱的立体图像即可得出答案.【详解】由三视图可知主视图为一个侧面,另外两个侧面全等,是长×高=22×4=82,所以侧面积之和为82×2+4×4= 16+162,所以答案选择A项.【点睛】本题考查了由三视图求侧面积,画出该图的立体图形是解决本题的关键.4.如图所示的几何体的主视图是()A.B.C.D.【答案】A【解析】找到从正面看所得到的图形即可.【详解】解:从正面可看到从左往右2列一个长方形和一个小正方形,故选A.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.已知二次函数y=(x+m)2–n的图象如图所示,则一次函数y=mx+n与反比例函数y=mnx的图象可能是()A .B .C .D .【答案】C【解析】试题解析:观察二次函数图象可知: 00m n ,,∴一次函数y=mx+n 的图象经过第一、二、四象限,反比例函数mn y x的图象在第二、四象限. 故选D.6.在同一坐标系中,反比例函数y =k x与二次函数y =kx 2+k(k≠0)的图象可能为( ) A . B .C .D .【答案】D【解析】根据k >0,k <0,结合两个函数的图象及其性质分类讨论.【详解】分两种情况讨论:①当k <0时,反比例函数y=k x ,在二、四象限,而二次函数y=kx 2+k 开口向上下与y 轴交点在原点下方,D 符合;②当k >0时,反比例函数y=k x,在一、三象限,而二次函数y=kx 2+k 开口向上,与y 轴交点在原点上方,都不符.分析可得:它们在同一直角坐标系中的图象大致是D .故选D .【点睛】本题主要考查二次函数、反比例函数的图象特点.7.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是( )A.18B.16C.14D.12【答案】B【解析】根据简单概率的计算公式即可得解.【详解】一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12中可能,其中能组成孔孟的有2种,所以两次摸出的球上的汉字能组成“孔孟”的概率是1 6 .故选B.考点:简单概率计算. 8.3的倒数是()A.3B.3-C.13D.13-【答案】C【解析】根据倒数的定义可知.解:3的倒数是.主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.9.已知=2{=1xy是二元一次方程组+=8{=1mx nynx my-的解,则2m n-的算术平方根为()A.±2 B.C.2 D.4【答案】C【解析】二元一次方程组的解和解二元一次方程组,求代数式的值,算术平方根.【分析】∵=2{=1xy是二元一次方程组+=8{=1mx nynx my-的解,∴2+=8{2=1m nn m-,解得=3{=2mn.∴2=232=4=2m n-⨯-.即2m n-的算术平方根为1.故选C.10.如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=kx(x>0)的图象上,若AB=2,则k的值为()A.4 B.2C.2 D2【答案】A【解析】作BD⊥AC于D,如图,先利用等腰直角三角形的性质得到AC=2AB=22,BD=AD=CD=2,再利用AC⊥x轴得到C(2,22),然后根据反比例函数图象上点的坐标特征计算k的值.【详解】作BD⊥AC于D,如图,∵△ABC为等腰直角三角形,∴AC=2AB=22,∴BD=AD=CD=2,∵AC⊥x轴,∴C(2,22),把C(2,22)代入y=kx得k=2×22=4,故选A.【点睛】本题考查了等腰直角三角形的性质以及反比例函数图象上点的坐标特征,熟知反比例函数y=kx(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k是解题的关键.二、填空题(本题包括8个小题)11.分解因式:2x2﹣8=_____________【答案】2(x+2)(x﹣2)【解析】先提公因式,再运用平方差公式.【详解】2x2﹣8,=2(x2﹣4),=2(x+2)(x﹣2).【点睛】考核知识点:因式分解.掌握基本方法是关键.12.如图,在直角坐标系中,点A,B分别在x轴,y轴上,点A的坐标为(﹣1,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果3P运动一周时,点Q运动的总路程为__________.【答案】4【解析】首先根据题意正确画出从O→B→A运动一周的图形,分四种情况进行计算:①点P从O→B时,路程是线段PQ的长;②当点P从B→C时,点Q从O运动到Q,计算OQ的长就是运动的路程;③点P 从C→A时,点Q由Q向左运动,路程为QQ′;④点P从A→O时,点Q运动的路程就是点P运动的路程;最后相加即可.【详解】在Rt△AOB中,∵∠ABO=30°,AO=1,∴AB=2,BO=22-=213①当点P从O→B时,如图1、图2所示,点Q运动的路程为3,②当点P从B→C时,如图3所示,这时QC⊥AB,则∠ACQ=90°∵∠ABO=30°∴∠BAO=60°∴∠OQD=90°﹣60°=30°∴AQ=2AC,又∵CQ=3,∴AQ=2∴OQ=2﹣1=1,则点Q运动的路程为QO=1,③当点P从C→A时,如图3所示,点Q运动的路程为QQ′=2﹣3,④当点P从A→O时,点Q运动的路程为AO=1,∴点Q运动的总路程为:3+1+2﹣3+1=4故答案为4.考点:解直角三角形13.科技改变生活,手机导航极大方便了人们的出行.如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶6千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C.小明发现古镇C恰好在A地的正北方向,则B、C两地的距离是_____千米.【答案】36【解析】作BE⊥AC于E,根据正弦的定义求出BE,再根据正弦的定义计算即可.【详解】解:作BE⊥AC于E,在Rt△ABE中,sin∠BAC=BE AB,∴BE=AB•sin∠BAC=3633=由题意得,∠C=45°,∴BC=BEsin C =233362=,故答案为6.【点睛】本题考查的是解直角三角形的应用-方向角问题,掌握方向角的概念、熟记锐角三角函数的定义是解题的关键.14.在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A与点B关于原点O对称,则ab=_____.【答案】1【解析】直接利用关于原点对称点的性质得出a,b的值,进而得出答案.【详解】∵点A的坐标为(a,3),点B的坐标是(4,b),点A与点B关于原点O对称,∴a=﹣4,b=﹣3,则ab=1,故答案为1.【点睛】本题考查了关于原点对称的点的坐标,熟知关于原点对称的两点的横、纵坐标互为相反数是解题的关键.15.已知反比例函数y=2mx-,当x>0时,y随x增大而减小,则m的取值范围是_____.【答案】m>1.【解析】分析:根据反比例函数y=2mx-,当x>0时,y随x增大而减小,可得出m﹣1>0,解之即可得出m的取值范围.详解:∵反比例函数y=2mx-,当x>0时,y随x增大而减小,∴m﹣1>0,解得:m>1.故答案为m>1.点睛:本题考查了反比例函数的性质,根据反比例函数的性质找出m﹣1>0是解题的关键.16.若a:b=1:3,b:c=2:5,则a:c=_____.【答案】2∶1【解析】分析:已知a、b两数的比为1:3,根据比的基本性质,a、b两数的比1:3=(1×2):(3×2)=2:6;而b、c的比为:2:5=(2×3):(5×3)=6:1;,所以a、c两数的比为2:1.详解:a:b=1:3=(1×2):(3×2)=2:6;b:c=2:5=(2×3):(5×3)=6:1;,所以a:c=2:1;故答案为2:1.点睛:本题主要考查比的基本性质的实际应用,如果已知甲乙、乙丙两数的比,那么可以根据比的基本性质求出任意两数的比.17.如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是__________.【答案】同位角相等,两直线平行.【解析】试题解析:利用三角板中两个60°相等,可判定平行考点:平行线的判定18.在平面直角坐标系的第一象限内,边长为1的正方形ABCD 的边均平行于坐标轴,A 点的坐标为(a ,a ).如图,若曲线3(0)y x x=> 与此正方形的边有交点,则a 的取值范围是________.3-3【解析】根据题意得出C 点的坐标(a-1,a-1),然后分别把A 、C 的坐标代入求得a 的值,即可求得a 的取值范围.【详解】解:反比例函数经过点A 和点C .当反比例函数经过点A 时,即2a =3,解得:3;当反比例函数经过点C 时,即2(1)a -=3,解得:3,33故答案为: 33 【点睛】本题考查的是反比例函数图象上点的坐标特点,关键是掌握反比例函数y=k x(k 为常数,k≠0)的图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .三、解答题(本题包括8个小题) 19.解不等式组:2(2)3{3122x xx +>-≥-,并将它的解集在数轴上表示出来.【答案】-1≤x<4,在数轴上表示见解析.【解析】试题分析: 分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.试题解析:()223{3x122x x+>-≥-①②,由①得,x<4;由②得,x ⩾−1.故不等式组的解集为:−1⩽x<4.在数轴上表示为:20.太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300cm,AB的倾斜角为,BE=CA=50cm,支撑角钢CD,EF与底座地基台面接触点分别为D,F,CD垂直于地面,于点E.两个底座地基高度相同(即点D,F到地面的垂直距离相同),均为30cm,点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少cm(结果保留根号)2903【解析】过点A作AG CD⊥,垂足为G,利用三角函数求出CG,从而求出GD,继而求出CD.连接FD 并延长与BA的延长线交于点H,利用三角函数求出CH,由图得出EH,再利用三角函数值求出EF.【详解】过点A作AG CD⊥,垂足为G.则30CAG∠=︒,在Rt ACG中,()1sin3050252CG AC cm=︒=⨯=,由题意,得()GD503020cm=-=,∴()252045CD CG GD cm=+=+=,连接FD并延长与BA的延长线交于点H.由题意,得30H∠=︒.在Rt CDH中,()290sin30CDCH CD cm===︒,∴()300505090290EH EC CH AB BE AC CH cm =+=--+=--+=.在Rt EFH 中,()32903tan 3029033EF EH cm =︒=⨯=. 答:支角钢CD 的长为45cm ,EF 的长为29033cm .考点:三角函数的应用21.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载,某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C ,再在笔直的车道l 上确定点D ,使CD 与l 垂直,测得CD 的长等于24米,在l 上点D 的同侧取点A 、B ,使∠CAD =30°,∠CBD =60°.求AB 的长(结果保留根号);已知本路段对校车限速为45千米/小时,若测得某辆校车从A 到B 用时1.5秒,这辆校车是否超速?说明理由.(参考数据:3≈1.7,2≈1.4)【答案】 (1)163 ;(2)此校车在AB 路段超速,理由见解析.【解析】(1)结合三角函数的计算公式,列出等式,分别计算AD 和BD 的长度,计算结果,即可.(2)在第一问的基础上,结合时间关系,计算速度,判断,即可.【详解】解:(1)由题意得,在Rt △ADC 中,tan30°==, 解得AD =24.在 Rt △BDC 中,tan60°==, 解得BD =8所以AB =AD ﹣BD =24﹣8=16(米).(2)汽车从A 到B 用时1.5秒,所以速度为16÷1.5≈18.1(米/秒), 因为18.1(米/秒)=65.2千米/时>45千米/时,所以此校车在AB 路段超速.【点睛】考查三角函数计算公式,考查速度计算方法,关键利用正切值计算方法,计算结果,难度中等. 22.如图,已知AC 和BD 相交于点O ,且AB ∥DC ,OA=OB .求证:OC=OD .【答案】证明见解析.【解析】试题分析:首先根据等边对等角可得∠A=∠B ,再由DC ∥AB ,可得∠D=∠A ,∠C=∠B ,进而得到∠C=∠D ,根据等角对等边可得CO=DO .试题解析:证明:∵AB ∥CD∴∠A =∠D ∠B =∠C∵OA=OB∴∠A =∠B∴∠C =∠D∴OC =OD考点:等腰三角形的性质与判定,平行线的性质23.阅读材料:已知点00(,)P x y 和直线y kx b =+,则点P 到直线y kx b =+的距离d 可用公式0021kx y bd k -+=+.例如:求点(2,1)P -到直线1y x =+的距离.解:因为直线1y x =+可变形为10x y -+=,其中1,1k b ==,所以点(2,1)P -到直线1y x =+的距离为:00221(2)1122111kx y bd k -+⨯--+====++根据以上材料,求:点(1,1)P 到直线32y x =-的距离,并说明点P 与直线的位置关系;已知直线1y x =-+与3y x =-+平行,求这两条直线的距离.【答案】(1)点P 在直线32y x =-上,说明见解析;(22.【解析】解:(1) 求:(1)直线32y x =-可变为320x y --=,22312013d --==+说明点P 在直线32y x =-上;(2)在直线1y x =-+上取一点(0,1),直线3y x =-+可变为30x y +-=则d ==∴.24.某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?【答案】(1)50%;(2)今年该地至少有1900户享受到优先搬迁租房奖励.【解析】(1)设年平均增长率为x ,根据“2015年投入资金×(1+增长率)2=2017年投入资金”列出方程,解方程即可;(2)设今年该地有a 户享受到优先搬迁租房奖励,根据“前1000户获得的奖励总数+1000户以后获得的奖励总和≥500万”列不等式求解即可.【详解】(1)设该地投入异地安置资金的年平均增长率为x ,根据题意,得:1280(1+x )2=1280+1600,解得:x=0.5或x=﹣2.25(舍),答:从2015年到2017年,该地投入异地安置资金的年平均增长率为50%;(2)设今年该地有a 户享受到优先搬迁租房奖励,根据题意,得:1000×8×400+(a ﹣1000)×5×400≥5000000,解得:a≥1900,答:今年该地至少有1900户享受到优先搬迁租房奖励.考点:一元二次方程的应用;一元一次不等式的应用.25.先化简:(1111x x --+)÷221x x ,再从﹣2,﹣1,0,1这四个数中选择一个合适的数代入求值. 【答案】22x ,1. 【解析】先算括号内的减法,同时把除法变成乘法,再根据分式的乘法进行计算,最后代入求出即可.【详解】原式=1111x x x x +--+-()()()()•112x x x +-+()() =211x x +-()()•112x x x +-+()() =22x +. ∵由题意,x 不能取1,﹣1,﹣2,∴x 取2.当x=2时,原式=22x +=202+=1. 【点睛】本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解答此题的关键.26.新农村社区改造中,有一部分楼盘要对外销售.某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案:降价8%,另外每套房赠送a元装修基金;降价10%,没有其他赠送.请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数表达式;老王要购买第十六层的一套房,若他一次性付清所有房款,请帮他计算哪种优惠方案更加合算.【答案】(1)30+37601850+3600923x x xyx x x≤≤⎧⎨≤≤⎩(,为整数)=(,为整数);(2)当每套房赠送的装修基金多于10 560元时,选择方案一合算;当每套房赠送的装修基金等于10 560元时,两种方案一样;当每套房赠送的装修基金少于10 560元时,选择方案二合算.【解析】解:(1)当1≤x≤8时,每平方米的售价应为:y=4000﹣(8﹣x)×30="30x+3760" (元/平方米)当9≤x≤23时,每平方米的售价应为:y=4000+(x﹣8)×50=50x+3600(元/平方米).∴30+37601850+3600923x x xyx x x≤≤⎧⎨≤≤⎩(,为整数)=(,为整数)(2)第十六层楼房的每平方米的价格为:50×16+3600=4400(元/平方米),按照方案一所交房款为:W1=4400×120×(1﹣8%)﹣a=485760﹣a(元),按照方案二所交房款为:W2=4400×120×(1﹣10%)=475200(元),当W1>W2时,即485760﹣a>475200,解得:0<a<10560,当W1<W2时,即485760﹣a<475200,解得:a>10560,∴当0<a<10560时,方案二合算;当a>10560时,方案一合算.【点睛】本题考查的是用一次函数解决实际问题,读懂题目信息,找出数量关系表示出各楼层的单价以及是交房款的关系式是解题的关键.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图钓鱼竿AC 长6m ,露在水面上的鱼线BC 长32m ,钓者想看看鱼钓上的情况,把鱼竿AC 逆时针转动15°到AC′的位置,此时露在水面上的鱼线B'C'长度是( )A .3mB .33mC .23mD .4m【答案】B 【解析】因为三角形ABC 和三角形AB′C′均为直角三角形,且BC 、B′C′都是我们所要求角的对边,所以根据正弦来解题,求出∠CAB ,进而得出∠C′AB′的度数,然后可以求出鱼线B'C'长度.【详解】解:∵sin ∠CAB =322BC AC == ∴∠CAB =45°. ∵∠C′AC =15°,∴∠C′AB′=60°.∴sin60°=''362B C =, 解得:B′C′=3.故选:B .【点睛】此题主要考查了解直角三角形的应用,解本题的关键是把实际问题转化为数学问题.2.如图,等腰直角三角形ABC 位于第一象限,2AB AC ==,直角顶点A 在直线y x =上,其中点A 的横坐标为1,且两条直角边AB ,AC 分别平行于x 轴、y 轴,若反比例函数k y x=的图象与ABC △有交点,则k 的取值范围是( ).A .12k <<B .13k ≤≤C .14k ≤<D .14k ≤≤【答案】D 【解析】设直线y=x 与BC 交于E 点,分别过A 、E 两点作x 轴的垂线,垂足为D 、F ,则A (1,1),而AB=AC=2,则B (3,1),△ABC 为等腰直角三角形,E 为BC 的中点,由中点坐标公式求E 点坐标,当双曲线与△ABC 有唯一交点时,这个交点分别为A 、E ,由此可求出k 的取值范围.解:∵2AC BC ==,90CAB ∠=︒.()1,1A .又∵y x =过点A ,交BC 于点E ,∴2EF ED ==, ∴()2,2E ,∴14k ≤≤.故选D.3.在△ABC 中,AB=AC=13,BC=24,则tanB 等于( )A .513B .512C .1213D .125【答案】B【解析】如图,等腰△ABC 中,AB=AC=13,BC=24,过A 作AD ⊥BC 于D ,则BD=12,在Rt △ABD 中,AB=13,BD=12,则,225AB BD -=,故tanB=512AD BD =. 故选B .【点睛】考查的是锐角三角函数的定义、等腰三角形的性质及勾股定理.4.点M(a,2a)在反比例函数y=8x的图象上,那么a的值是( )A.4 B.﹣4 C.2 D.±2 【答案】D【解析】根据点M(a,2a)在反比例函数y=8x的图象上,可得:228a=,然后解方程即可求解.【详解】因为点M(a,2a)在反比例函数y=8x的图象上,可得:228a=,24a=,解得:2a=±,故选D.【点睛】本题主要考查反比例函数图象的上点的特征,解决本题的关键是要熟练掌握反比例函数图象上点的特征. 5.五个新篮球的质量(单位:克)分别是+5、﹣3.5、+0.7、﹣2.5、﹣0.6,正数表示超过标准质量的克数,负数表示不足标准质量的克数.仅从轻重的角度看,最接近标准的篮球的质量是()A.﹣2.5 B.﹣0.6 C.+0.7 D.+5【答案】B【解析】求它们的绝对值,比较大小,绝对值小的最接近标准的篮球的质量.【详解】解:|+5|=5,|-3.5|=3.5,|+0.7|=0.7,|-2.5|=2.5,|-0.6|=0.6,∵5>3.5>2.5>0.7>0.6,∴最接近标准的篮球的质量是-0.6,故选B.【点睛】本题考查了正数和负数,掌握正数和负数的定义以及意义是解题的关键.6.如图,反比例函数kyx=(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为()A.1 B.2 C.3 D.4【答案】C【解析】本题可从反比例函数图象上的点E 、M 、D 入手,分别找出△OCE 、△OAD 、矩形OABC 的面积与|k|的关系,列出等式求出k 值.【详解】由题意得:E 、M 、D 位于反比例函数图象上,则OCE OAD kkS S 22∆∆==,,过点M 作MG ⊥y 轴于点G ,作MN ⊥x 轴于点N ,则S □ONMG =|k|.又∵M 为矩形ABCO 对角线的交点,∴S 矩形ABCO =4S □ONMG =4|k|,∵函数图象在第一象限,k >0, ∴k k 94k 22++=. 解得:k=1.故选C .【点睛】本题考查反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,本知识点是中考的重要考点,同学们应高度关注.781 )A .9B .±9C .±3D .3【答案】D【解析】根据算术平方根的定义求解.【详解】∵81, 又∵(±1)2=9,∴9的平方根是±1,∴9的算术平方根是1. 811.故选:D .【点睛】考核知识点:算术平方根.理解定义是关键.8.如图,甲圆柱型容器的底面积为30cm2,高为8cm,乙圆柱型容器底面积为xcm2,若将甲容器装满水,然后再将甲容器里的水全部倒入乙容器中(乙容器无水溢出),则乙容器水面高度y(cm)与x(cm2)之间的大致图象是()A.B.C.D.【答案】C【解析】根据题意可以写出y关于x的函数关系式,然后令x=40求出相应的y值,即可解答本题.【详解】解:由题意可得,y=308x=240x,当x=40时,y=6,故选C.【点睛】本题考查了反比例函数的图象,根据题意列出函数解析式是解决此题的关键.9.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是( )A.13B.23C.34D.45【答案】C【解析】易证△DEF∽△DAB,△BEF∽△BCD,根据相似三角形的性质可得EFAB=DFDB,EFCD=BFBD,从而可得EFAB+EFCD=DFDB+BFBD=1.然后把AB=1,CD=3代入即可求出EF的值.【详解】∵AB、CD、EF都与BD垂直,∴AB∥CD∥EF,∴△DEF∽△DAB,△BEF∽△BCD,∴EFAB =DFDB,EFCD=BFBD,∴EF AB +EF CD =DF DB +BF BD =BD BD=1. ∵AB=1,CD=3, ∴1EF +3EF =1, ∴EF=34. 故选C.【点睛】本题考查了相似三角形的判定及性质定理,熟练掌握性质定理是解题的关键.10.等腰三角形底角与顶角之间的函数关系是( )A .正比例函数B .一次函数C .反比例函数D .二次函数 【答案】B【解析】根据一次函数的定义,可得答案.【详解】设等腰三角形的底角为y ,顶角为x ,由题意,得x+2y=180,所以,y=﹣12x+90°,即等腰三角形底角与顶角之间的函数关系是一次函数关系, 故选B .【点睛】本题考查了实际问题与一次函数,根据题意正确列出函数关系式是解题的关键.二、填空题(本题包括8个小题)11.已知点P (a ,b )在反比例函数y=2x 的图象上,则ab=_____. 【答案】2【解析】接把点P (a ,b )代入反比例函数y=2x 即可得出结论. 【详解】∵点P (a ,b )在反比例函数y=2x 的图象上, ∴b=2a, ∴ab=2,故答案为:2.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.12.如图,为保护门源百里油菜花海,由“芬芳浴”游客中心A 处修建通往百米观景长廊BC 的两条栈道AB ,AC .若∠B=56°,∠C=45°,则游客中心A 到观景长廊BC 的距离AD 的长约为_____米.(sin56°≈0.8,tan56°≈1.5)【答案】60【解析】根据题意和图形可以分别表示出AD 和CD 的长,从而可以求得AD 的长,本题得以解决.【详解】∵∠B=56°,∠C=45°,∠ADB=∠ADC=90°,BC=BD+CD=100米, ∴BD=tan 56AD ︒,CD=tan 45AD ︒, ∴tan 56AD ︒+tan 45AD ︒=100, 解得,AD≈60 考点:解直角三角形的应用. 13.如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm ,则这块扇形铁皮的半径是_____cm .【答案】40cm【解析】首先根据圆锥的底面直径求得圆锥的底面周长,然后根据底面周长等于展开扇形的弧长求得铁皮的半径即可.【详解】∵圆锥的底面直径为60cm ,∴圆锥的底面周长为60πcm ,∴扇形的弧长为60πcm ,设扇形的半径为r ,则270180r π=60π, 解得:r=40cm ,故答案为:40cm .【点睛】本题考查了圆锥的计算,解题的关键是首先求得圆锥的底面周长,利用圆锥的底面周长等于扇形的弧长求解.14.方程21x -=1的解是_____. 【答案】x=3【解析】去分母得:x ﹣1=2,解得:x=3,经检验x=3是分式方程的解,【点睛】本题主要考查解分式方程,解分式方程的思路是将分式方程化为整式方程,然后求解.去分母后解出的结果须代入最简公分母进行检验,结果为零,则原方程无解;结果不为零,则为原方程的解.15.因式分解:32a ab-=_______________.【答案】a(a+b)(a-b).【解析】分析:本题考查的是提公因式法和利用平方差公式分解因式.解析:原式= a(a+b)(a-b).故答案为a(a+b)(a-b).16.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为______.【答案】1.【解析】试题解析:设俯视图的正方形的边长为a.∵其俯视图为正方形,从主视图可以看出,正方形的对角线长为22,∴()22222+=,a aa=,解得24∴这个长方体的体积为4×3=1.17.一只蚂蚁从数轴上一点A出发,爬了7 个单位长度到了+1,则点A 所表示的数是_____【答案】﹣6 或8【解析】试题解析:当往右移动时,此时点A 表示的点为﹣6,当往左移动时,此时点A 表示的点为8. 18.从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是__________.【答案】【解析】根据概率的公式进行计算即可.【详解】从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是.【点睛】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.三、解答题(本题包括8个小题)19.某超市预测某饮料会畅销、先用1800元购进一批这种饮料,面市后果然供不应求,又用8100元购进这种饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.第一批饮料进货单价多少元?若两次进饮料都按同一价格销售,两批全部售完后,获利不少于2700元,那么销售单价至少为多少元?【答案】(1)4元/瓶.(2) 销售单价至少为1元/瓶.【解析】(1)设第一批饮料进货单价为x元/瓶,则第二批饮料进货单价为(x+2)元/瓶,根据数量=总价÷单价结合第二批购进饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)由数量=总价÷单价可得出第一、二批购进饮料的数量,设销售单价为y元/瓶,根据利润=销售单价×销售数量﹣进货总价结合获利不少于2100元,即可得出关于y的一元一次不等式,解之取其最小值即可得出结论.【详解】(1)设第一批饮料进货单价为x元/瓶,则第二批饮料进货单价为(x+2)元/瓶,依题意,得:81002x+=3×1800x,解得:x=4,经检验,x=4是原方程的解,且符合题意.答:第一批饮料进货单价是4元/瓶;(2)由(1)可知:第一批购进该种饮料450瓶,第二批购进该种饮料1350瓶.设销售单价为y元/瓶,依题意,得:(450+1350)y﹣1800﹣8100≥2100,解得:y≥1.答:销售单价至少为1元/瓶.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.20.计算532224mmm m-⎛⎫+-÷⎪--⎝⎭.【答案】26m+【解析】分析:先计算522mm+--,再做除法,结果化为整式或最简分式.详解:。

(3份试卷汇总)2019-2020学年西藏林芝地区中考数学统考试题

(3份试卷汇总)2019-2020学年西藏林芝地区中考数学统考试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.5{152x yx y=+=-B.5{1+52x yx y=+=C.5{2-5xyx y=+=D.-5{2+5x yx y==2.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是()A.12B.14C.16D.1163.已知方程组2728x yx y+=⎧⎨+=⎩,那么x+y的值()A.-1 B.1 C.0 D.54.在△ABC中,AB=AC=13,BC=24,则tanB等于()A.513B.512C.1213D.1255.如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为()A.7.2 cm B.5.4 cm C.3.6 cm D.0.6 cm6.如图是二次函数2y ax bx c=++的图象,有下面四个结论:0abc>①;0a b c②-+>;230a b+>③;40c b->④,其中正确的结论是()7.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )A .110B .158C .168D .1788.如图,一次函数1y ax b 和反比例函数2ky x=的图象相交于A ,B 两点,则使12y y >成立的x 取值范围是( )A .20x -<<或04x <<B .2x <-或04x <<C .2x <-或4x >D .20x -<<或4x >9.在△ABC 中,∠C =90°,sinA =45,则tanB 等于( ) A .43 B .34C .35D .4510.二次函数y=x 2+bx –1的图象如图,对称轴为直线x=1,若关于x 的一元二次方程x 2–2x –1–t=0(t 为实数)在–1<x<4的范围内有实数解,则t 的取值范围是A .t≥–2B .–2≤t<7C .–2≤t<2D .2<t<7二、填空题(本题包括8个小题)11.如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点,若AB=5,AD=12,则四边形ABOM 的周长为 .13.分解因式:3m2﹣6mn+3n2=_____.14.将直角边长为5cm的等腰直角△ABC绕点A逆时针旋转15°后,得到△AB′C′,则图中阴影部分的面积是_____cm1.15.某物流仓储公司用如图A,B两种型号的机器人搬运物品,已知A型机器人比B型机器人每小时多搬运20kg,A型机器人搬运1000kg所用时间与B型机器人搬运800kg所用时间相等,设B型机器人每小时搬运x kg物品,列出关于x的方程为_____.16.如图,在平面直角坐标系中,以点O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心.大于12MN的长为半径画弧,两弧在第二象限内交于点p(a,b),则a与b的数量关系是________.17.如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是▲(结果保留π).18.已知m、n是一元二次方程x2+4x﹣1=0的两实数根,则11=_____.时针旋转90°,得到△AFB,连接EF.求证:EF=ED;若AB=22,CD=1,求FE的长.20.(6分)老师布置了一个作业,如下:已知:如图1ABCD的对角线AC的垂直平分线EF交AD于点F,交BC于点E,交AC于点O.求证:四边形AECF是菱形.某同学写出了如图2所示的证明过程,老师说该同学的作业是错误的.请你解答下列问题:能找出该同学错误的原因吗?请你指出来;请你给出本题的正确证明过程.21.(6分)如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.求二次函数y=ax2+2x+c的表达式;连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.22.(8分)已知:如图,∠ABC,射线BC上一点D,求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.边形;如图2,点P 是四边形ABCD 内一点,且满足PA=PB ,PC=PD ,∠APB=∠CPD ,点E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH 的形状.(不必证明)24.(10分)发现如图1,在有一个“凹角∠A 1A 2A 3”n 边形A 1A 2A 3A 4……A n 中(n 为大于3的整数),∠A 1A 2A 3=∠A 1+∠A 3+∠A 4+∠A 5+∠A 6+……+∠A n ﹣(n ﹣4)×180°.验证如图2,在有一个“凹角∠ABC”的四边形ABCD 中,证明:∠ABC =∠A+∠C+∠D .证明3,在有一个“凹角∠ABC”的六边形ABCDEF 中,证明;∠ABC =∠A+∠C+∠D+∠E+∠F ﹣360°.延伸如图4,在有两个连续“凹角A 1A 2A 3和∠A 2A 3A 4”的四边形A 1A 2A 3A 4……A n 中(n 为大于4的整数),∠A 1A 2A 3+∠A 2A 3A 4=∠A 1+∠A 4+∠A 5+∠A 6……+∠A n ﹣(n ﹣ )×180°.25.(10分)如图,在平行四边形ABCD 中,E ,F 为BC 上两点,且BE=CF ,AF=DE 求证:(1)△ABF ≌△DCE ;四边形ABCD 是矩形.26.(12分)如图,在平面直角坐标系中,一次函数()10y kx b k =+≠与反比例函数()20my m x=≠的图像交于点()3,1A 和点B ,且经过点()0,2C -.求反比例函数和一次函数的表达式;求当12y y >时自变量x 的取值范围.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.A【解析】【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:5152x yx y=+⎧⎪⎨=-⎪⎩.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.2.B【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案.【详解】画树状图如下:由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,41本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.3.D【解析】【详解】解:2728x yx y+=⎧⎨+=⎩①②,①+②得:3(x+y)=15,则x+y=5,故选D4.B【解析】如图,等腰△ABC中,AB=AC=13,BC=24,过A作AD⊥BC于D,则BD=12,在Rt△ABD中,AB=13,BD=12,则,225AB BD-=,故tanB=512ADBD=.故选B.【点睛】考查的是锐角三角函数的定义、等腰三角形的性质及勾股定理.5.B【解析】【分析】由已知可证△ABO∽CDO,故CD OCAB OA=,即1.813AB=.【详解】由已知可得,△ABO∽CDO,所以,CD OCAB OA=,【点睛】本题考核知识点:相似三角形. 解题关键点:熟记相似三角形的判定和性质. 6.D 【解析】 【分析】根据抛物线开口方向得到a 0>,根据对称轴02bx a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >;1x =-时,由图像可知此时0y >,所以0a b c -+>;由对称轴123b x a =-=,可得230a b +=;当2x =时,由图像可知此时0y >,即420a b c ++>,将23a b =-代入可得40c b ->. 【详解】①根据抛物线开口方向得到0a >,根据对称轴02bx a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >,故①正确.②1x =-时,由图像可知此时0y >,即0a b c -+>,故②正确. ③由对称轴123b x a =-=,可得230a b +=,所以230a b +>错误,故③错误; ④当2x =时,由图像可知此时0y >,即420a b c ++>,将③中230a b +=变形为23a b =-,代入可得40c b ->,故④正确. 故答案选D. 【点睛】本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。

西藏拉萨市2019-2020学年中考中招适应性测试卷数学试题(1)含解析

西藏拉萨市2019-2020学年中考中招适应性测试卷数学试题(1)含解析

西藏拉萨市2019-2020学年中考中招适应性测试卷数学试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣12的绝对值是()A.﹣12B.12C.﹣2 D.22.如图,这是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,根据统计图提供的信息,可得到该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.8,9 B.8,8.5 C.16,8.5 D.16,10.53.如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125°B.135°C.145°D.155°4.如图,在△ABC中,AB=AC,点D是边AC上一点,BC=BD=AD,则∠A的大小是().A.36°B.54°C.72°D.30°5.正比例函数y=2kx的图象如图所示,则y=(k-2)x+1-k的图象大致是()A.B .C .D .6.若不等式组236x m x x <⎧⎨-<-⎩无解,那么m 的取值范围是( ) A .m≤2 B .m≥2 C .m <2 D .m >27.已知反比例函数y =﹣6x ,当﹣3<x <﹣2时,y 的取值范围是( ) A .0<y <1 B .1<y <2C .2<y <3D .﹣3<y <﹣2 8.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB=8,CD=2,则EC 的长为()A .215B .8C .210D .2139.计算3a 2-a 2的结果是( )A .4a 2B .3a 2C .2a 2D .310.下列图形中,哪一个是圆锥的侧面展开图?( )A .B .C .D .11.下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是( )A .y=(x ﹣2)2+1B .y=(x+2)2+1C .y=(x ﹣2)2﹣3D .y=(x+2)2﹣312.如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,…,按照此规律继续下去,则S 9的值为( )A.(12)6B.(12)7C.(22)6D.(22)7二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知Rt△ABC中,∠C=90°,AC=3,BC=7,CD⊥AB,垂足为点D,以点D为圆心作⊙D,使得点A在⊙D外,且点B在⊙D内.设⊙D的半径为r,那么r的取值范围是_________.14.若式子2x有意义,则x的取值范围是_____.15.将一个含45°角的三角板ABC,如图摆放在平面直角坐标系中,将其绕点C顺时针旋转75°,点B的对应点'B恰好落在轴上,若点C的坐标为(1,0),则点'B的坐标为____________.16.如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.(Ⅰ)AC的长等于_____;(Ⅱ)在线段AC上有一点D,满足AB2=AD•AC,请在如图所示的网格中,用无刻度的直尺,画出点D,并简要说明点D的位置是如何找到的(不要求证明)_____.17.如图,AC、BD为圆O的两条垂直的直径,动点P从圆心O出发,沿线段线段DO的路线作匀速运动.设运动时间为t秒,∠APB的度数为y度,则下列图象中表示y与t的函数关系最恰当的是()A.B.C.D.18.从长度分别是3,4,5的三条线段中随机抽出一条,与长为2,3的两条线段首尾顺次相接,能构成三角形的概率是_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在自动向西的公路l上有一检查站A,在观测点B的南偏西53°方向,检查站一工作人员家住在与观测点B的距离为7132km,位于点B南偏西76°方向的点C处,求工作人员家到检查站的距离AC.(参考数据:sin76°≈2425,cos76°≈625,tan 76°≈4,sin53°≈35,tan53°≈43)20.(6分)如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD 沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.21.(6分)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?22.(8分)在平面直角坐标系中,O为原点,点A(3,0),点B(0,4),把△ABO绕点A顺时针旋转,得△AB′O′,点B,O旋转后的对应点为B′,O.(1)如图1,当旋转角为90°时,求BB′的长;(2)如图2,当旋转角为120°时,求点O′的坐标;(3)在(2)的条件下,边OB上的一点P旋转后的对应点为P′,当O′P+AP′取得最小值时,求点P′的坐标.(直接写出结果即可)23.(8分)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.求每件甲种、乙种玩具的进价分别是多少元?商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?24.(10分)某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A,B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A 30人/辆380元/辆B 20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数设学校租用A型号客车x辆,租车总费用为y元.求y与x的函数解析式,请直接写出x的取值范围;若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案总费用最省?最省的总费用是多少?25.(10分)有一项工作,由甲、乙合作完成,合作一段时间后,乙改进了技术,提高了工作效率.图①表示甲、乙合作完成的工作量y(件)与工作时间t(时)的函数图象.图②分别表示甲完成的工作量y甲(件)、乙完成的工作量y乙(件)与工作时间t(时)的函数图象.(1)求甲5时完成的工作量;(2)求y甲、y乙与t的函数关系式(写出自变量t的取值范围);(3)求乙提高工作效率后,再工作几个小时与甲完成的工作量相等?26.(12分)如图,在平行四边形ABCD中,过点A作AE⊥DC,垂足为点E,连接BE,点F为BE上一点,连接AF,∠AFE=∠D.(1)求证:∠BAF=∠CBE;(2)若AD=5,AB=8,sinD=45.求证:AF=BF.27.(12分)小雁塔位于唐长安城安仁坊(今陕西省西安市南郊)荐福寺内,又称“荐福寺塔”,建于唐景龙年间,与大雁塔同为唐长安城保留至今的重要标志.小明在学习了锐角三角函数后,想利用所学知识测量“小雁塔”的高度,小明在一栋高9.982米的建筑物底部D处测得塔顶端A的仰角为45°,接着在建筑物顶端C处测得塔顶端A的仰角为37.5°.已知AB⊥BD,CD⊥BD,请你根据题中提供的相关信息,求出“小雁塔”的高AB的长度(结果精确到1米)(参考数据:sin37.5°≈0.61,cos37.5°≈0.79,tan37.5°≈0.77)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据求绝对值的法则,直接计算即可解答.【详解】111()222-=--=,故选:B.【点睛】本题主要考查求绝对值的法则,掌握负数的绝对值等于它的相反数,是解题的关键.2.A【解析】【分析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【详解】解:众数是一组数据中出现次数最多的数,即8;而将这组数据从小到大的顺序排列后,处于20,21两个数的平均数,由中位数的定义可知,这组数据的中位数是9.故选A.【点睛】考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.3.A【解析】分析:如图求出∠5即可解决问题.详解:∵a∥b,∴∠1=∠4=35°,∵∠2=90°,∴∠4+∠5=90°,∴∠5=55°,∴∠3=180°-∠5=125°,故选:A.点睛:本题考查平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题.4.A【解析】【分析】由BD=BC=AD 可知,△ABD ,△BCD 为等腰三角形,设∠A=∠ABD=x ,则∠C=∠CDB=2x ,又由AB=AC可知,△ABC 为等腰三角形,则∠ABC=∠C=2x .在△ABC 中,用内角和定理列方程求解.【详解】解:∵BD=BC=AD ,∴△ABD ,△BCD 为等腰三角形,设∠A=∠ABD=x ,则∠C=∠CDB=2x .又∵AB=AC ,∴△ABC 为等腰三角形,∴∠ABC=∠C=2x .在△ABC 中,∠A+∠ABC+∠C=180°,即x+2x+2x=180°,解得:x=36°,即∠A=36°.故选A .【点睛】本题考查了等腰三角形的性质.关键是利用等腰三角形的底角相等,外角的性质,内角和定理,列方程求解.5.B【解析】试题解析:由图象可知,正比函数y=2kx 的图象经过二、四象限,∴2k<0,得k<0,∴k−2<0,1−k>0,∴函数y=(k−2)x+1−k 图象经过一、二、四象限,故选B.6.A【解析】【分析】先求出每个不等式的解集,再根据不等式组解集的求法和不等式组无解的条件,即可得到m 的取值范围.【详解】236x m x x <⎧⎨-<-⎩①②由①得,x <m ,由②得,x >1,又因为不等式组无解,所以m≤1.故选A .【点睛】此题的实质是考查不等式组的求法,求不等式组的解集,要根据以下原则:同大取较大,同小较小,小大大小中间找,大大小小解不了.7.C 【解析】分析:由题意易得当﹣3<x<﹣2时,函数6yx=-的图象位于第二象限,且y随x的增大而增大,再计算出当x=-3和x=-2时对应的函数值,即可作出判断了. 详解:∵在6yx=-中,﹣6<0,∴当﹣3<x<﹣2时函数6yx=-的图象位于第二象限内,且y随x的增大而增大,∵当x=﹣3时,y=2,当x=﹣2时,y=3,∴当﹣3<x<﹣2时,2<y<3,故选C.点睛:熟悉“反比例函数的图象和性质”是正确解答本题的关键.8.D【解析】∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=1.设⊙O的半径为r,则OC=r-2,在Rt△AOC中,∵AC=1,OC=r-2,∴OA2=AC2+OC2,即r2=12+(r﹣2)2,解得r=2.∴AE=2r=3.连接BE,∵AE是⊙O的直径,∴∠ABE=90°.在Rt△ABE中,∵AE=3,AB=8,∴2222BE AE AB1086=--=.在Rt△BCE中,∵BE=6,BC=1,∴2222CE BE BC64213=+=+=D.9.C【解析】【分析】根据合并同类项法则进行计算即可得. 【详解】3a2-a2=(3-1)a2=2a2,故选C.【点睛】本题考查了合并同类项,熟记合并同类项的法则是解题的关键.合并同类项就是把同类项的系数相加减,字母和字母的指数不变.10.B【解析】【分析】根据圆锥的侧面展开图的特点作答.【详解】A选项:是长方体展开图.B选项:是圆锥展开图.C选项:是棱锥展开图.D选项:是正方体展开图.故选B.【点睛】考查了几何体的展开图,注意圆锥的侧面展开图是扇形.11.C【解析】试题分析:根据顶点式,即A、C两个选项的对称轴都为,再将(0,1)代入,符合的式子为C选项考点:二次函数的顶点式、对称轴点评:本题考查学生对二次函数顶点式的掌握,难度较小,二次函数的顶点式解析式为,顶点坐标为,对称轴为12.A【解析】试题分析:如图所示.∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴S2+S2=S1.观察发现规律:S1=22=4,S2=12S1=2,S2=12S2=1,S4=12S2=12,…,由此可得S n=(12)n﹣2.当n=9时,S9=(12)9﹣2=(12)6,故选A . 考点:勾股定理.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.7944x p p . 【解析】【分析】先根据勾股定理求出AB 的长,进而得出CD 的长,由点与圆的位置关系即可得出结论.【详解】解:∵Rt △ABC 中,∠ACB=90,AC=3,,∴.∵CD ⊥AB ,∴. ∵AD•BD=CD 2,设AD=x ,BD=1-x .解得x=94, ∴点A 在圆外,点B 在圆内,r 的范围是7944x <<, 故答案为7944x <<. 【点睛】本题考查的是点与圆的位置关系,熟知点与圆的三种位置关系是解答此题的关键.14.x≥﹣2且x≠1.【解析】20x +≥,∴2x ≥-,又∵x 在分母上,∴0x ≠.故答案为2x ≥-且0x ≠.15.()1+【解析】【分析】先求得∠ACO=60°,得出∠OAC=30°,求得AC=2OC=2,从而求出B′的坐标.【详解】解:∵∠ACB=45°,∠BCB′=75°,∴∠ACB′=120°,∴∠ACO=60°,∴∠OAC=30°,∴AC=2OC ,∵点C 的坐标为(1,0),∴OC=1,∴AC=2OC=2,∵△ABC 是等腰直角三角形,AB BC ∴==B C A B '''∴==1OB '∴=+∴B′点的坐标为(1+【点睛】此题主要考查了旋转的性质及坐标与图形变换,同时也利用了直角三角形性质,首先利用直角三角形的性质得到有关线段的长度,即可解决问题.16.5 见解析.【解析】【分析】(1)由勾股定理即可求解;(2)寻找格点M 和N ,构建与△ABC 全等的△AMN ,易证MN ⊥AC ,从而得到MN 与AC 的交点即为所求D 点.【详解】5=;(2)如图,连接格点M 和N ,由图可知:AB=AM=4,=,5=,∴△ABC ≌△MAN ,∴∠AMN=∠BAC,∴∠MAD+∠CAB=∠MAD+∠AMN=90°,∴MN⊥AC,易解得△MAN以MN为底时的高为165,∵AB2=AD•AC,∴AD=AB2÷AC=165,综上可知,MN与AC的交点即为所求D点.【点睛】本题考查了平面直角坐标系中定点的问题,理解第2问中构造全等三角形从而确定D点的思路. 17.C.【解析】分析:根据动点P在OC上运动时,∠APB逐渐减小,当P在上运动时,∠APB不变,当P在DO 上运动时,∠APB逐渐增大,即可得出答案.解答:解:当动点P在OC上运动时,∠APB逐渐减小;当P在上运动时,∠APB不变;当P在DO上运动时,∠APB逐渐增大.故选C.18.2 3【解析】共有3种等可能的结果,它们是:3,2,3;4, 2, 3;5, 2, 3;其中三条线段能够成三角形的结果为2,所以三条线段能构成三角形的概率=23.故答案为23.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.工作人员家到检查站的距离AC的长约为92 km.【解析】分析:过点B作BH⊥l交l于点H,解Rt△BCH,得出CH=BC•sin∠CBH=274,BH=BC•cos∠CBH=2716.再解Rt△BAH中,求出AH=BH•tan∠ABH=94,那么根据AC=CH-AH计算即可.详解:如图,过点B作BH⊥l交l于点H,∵在Rt△BCH中,∠BHC=90°,∠CBH=76°,BC=7132km,∴CH=BC•sin∠CBH≈2252427 32254⨯=,BH=BC•cos∠CBH≈225627 322516⨯=.∵在Rt△BAH中,∠BHA=90°,∠ABH=53°,BH=27 16,∴AH=BH•tan∠ABH≈2749 1634⨯=,∴AC=CH﹣AH=2799442-=(km).答:工作人员家到检查站的距离AC的长约为92 km.点睛:本题考查的是解直角三角形的应用-方向角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.20.△A′DE是等腰三角形;证明过程见解析.【解析】试题分析:当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.先证明CD=DA=DB,得到∠DAC=∠DCA,由AC∥A′C′即可得到∠DA′E=∠DEA′由此即可判断△DA′E的形状.由EF∥AB 推出∠CEF=∠EA′D,∠EFC=∠A′D′C=∠A′DE,再根据A′D=DE=EF即可证明.试题解析:当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.理由:∵△BCA是直角三角形,∠ACB=90°,AD=DB,∴CD=DA=DB,∴∠DAC=∠DCA,∵A′C∥AC,∴∠DA′E=∠A,∠DEA′=∠DCA,∴∠DA′E=∠DEA′,∴DA′=DE,∴△A′DE是等腰三角形.∵四边形DEFD′是菱形,∴EF=DE=DA′,EF∥DD′,∴∠CEF=∠DA′E,∠EFC=∠CD′A′,∵CD∥C′D′,∴∠A′DE=∠A′D′C=∠EFC,在△A′DE和△EFC′中,,∴△A′DE≌△EFC′.考点:1.菱形的性质;2.全等三角形的判定;3.平移的性质.21.(1)捐款增长率为10%.(2)第四天该单位能收到13310元捐款.【解析】【分析】(1)根据“第一天收到捐款钱数×(1+每次降价的百分率)2=第三天收到捐款钱数”,设出未知数,列方程解答即可.(2)第三天收到捐款钱数×(1+每次降价的百分率)=第四天收到捐款钱数,依此列式子解答即可.【详解】(1)设捐款增长率为x,根据题意列方程得:()2100001x12100⨯-=,解得x1=0.1,x2=-1.9(不合题意,舍去).答:捐款增长率为10%.(2)12100×(1+10%)=13310元.答:第四天该单位能收到13310元捐款.22.(1)2;(2)O'(92,332);(3)P'(275,635).【解析】【分析】(1)先求出AB.利用旋转判断出△ABB'是等腰直角三角形,即可得出结论;(2)先判断出∠HAO'=60°,利用含30度角的直角三角形的性质求出AH,OH,即可得出结论;(3)先确定出直线O'C的解析式,进而确定出点P的坐标,再利用含30度角的直角三角形的性质即可得出结论.【详解】解:(1)∵A(3,0),B(0,4),∴OA=3,OB=4,∴AB=5,由旋转知,BA=B'A,∠BAB'=90°,∴△ABB'是等腰直角三角形,∴BB'=2AB=52;(2)如图2,过点O'作O'H⊥x轴于H,由旋转知,O'A=OA=3,∠OAO'=120°,∴∠HAO'=60°,∴∠HO'A=30°,∴AH=12AO'=32,OH=3AH=332,∴OH=OA+AH=92,∴O'(93322,);(3)由旋转知,AP=AP',∴O'P+AP'=O'P+AP.如图3,作A关于y轴的对称点C,连接O'C交y轴于P,∴O'P+AP=O'P+CP=O'C,此时,O'P+AP的值最小.∵点C与点A关于y轴对称,∴C(﹣3,0).∵O'(9332,),∴直线O'C的解析式为y=3x+33,令x=0,∴y=33,∴P(0,33),∴O'P'=OP=33,作P'D⊥O'H于D.∵∠B'O'A=∠BOA=90°,∠AO'H=30°,∴∠DP'O'=30°,∴O'D=12O'P'=3310,P'D=3O'D=910,∴DH=O'H﹣O'D=635,O'H+P'D=275,∴P'(276355,).【点睛】本题是几何变换综合题,考查了旋转的性质,等腰直角三角形的性质,含30度角的直角三角形的性质,构造出直角三角形是解答本题的关键.23.(1)甲,乙两种玩具分别是15元/件,1元/件;(2)共有四种方案.【解析】【分析】(1)设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解.(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解.【详解】解:设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,x=15,经检验x=15是原方程的解.∴40﹣x=1.甲,乙两种玩具分别是15元/件,1元/件;(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,,解得20≤y<2.因为y是整数,甲种玩具的件数少于乙种玩具的件数,∴y取20,21,22,23,共有4种方案.考点:分式方程的应用;一元一次不等式组的应用.24.(1) 21≤x≤62且x为整数;(2)共有25种租车方案,当租用A型号客车21辆,B型号客车41辆时,租金最少,为19460元.【解析】【分析】(1)根据租车总费用=A、B两种车的费用之和,列出函数关系式,再根据AB两种车至少要能坐1441人即可得取x的取值范围;(2)由总费用不超过21940元可得关于x的不等式,解不等式后再利用函数的性质即可解决问题.【详解】(1)由题意得y=380x+280(62-x)=100x+17360,∵30x+20(62-x)≥1441,∴x≥20.1,∴21≤x≤62且x为整数;(2)由题意得100x+17360≤21940,解得x≤45.8,∴21≤x≤45且x为整数,∴共有25种租车方案,∵k=100>0,∴y随x的增大而增大,当x=21时,y有最小值,y最小=100×21+17360=19460,故共有25种租车方案,当租用A型号客车21辆,B型号客车41辆时,租金最少,为19460元.【点睛】本题考查了一次函数的应用、一元一次不等式的应用等,解题的关键是理解题意,正确列出函数关系式,会利用函数的性质解决最值问题.25.(1)1件;(2)y甲=30t(0≤t≤5);y乙=()20026080(25)t tt t⎧≤≤⎨-<≤⎩;(3)23小时;【解析】【分析】(1)根据图①可得出总工作量为370件,根据图②可得出乙完成了220件,从而可得出甲5小时完成的工作量;(2)设y甲的函数解析式为y=kx+b,将点(0,0),(5,1)代入即可得出y甲与t的函数关系式;设y乙的函数解析式为y=mx(0≤t≤2),y=cx+d(2<t≤5),将点的坐标代入即可得出函数解析式;(3)联立y甲与改进后y乙的函数解析式即可得出答案.【详解】(1)由图①得,总工作量为370件,由图②可得出乙完成了220件,故甲5时完成的工作量是1.(2)设y甲的函数解析式为y=kt(k≠0),把点(5,1)代入可得:k=30故y甲=30t(0≤t≤5);乙改进前,甲乙每小时完成50件,所以乙每小时完成20件,当0≤t≤2时,可得y乙=20t;当2<t≤5时,设y=ct+d,将点(2,40),(5,220)代入可得:240 5220c dc d+=⎧⎨+=⎩,解得:6080 cd=⎧⎨=-⎩,故y乙=60t﹣80(2<t≤5).综上可得:y甲=30t(0≤t≤5);y乙=()2002 6080(25)t tt t⎧≤≤⎨-<≤⎩.(3)由题意得:306080y ty t=⎧⎨=-⎩,解得:t=83,故改进后83﹣2=23小时后乙与甲完成的工作量相等.【点睛】本题考查了一次函数的应用,解题的关键是能读懂函数图象所表示的信息,另外要熟练掌握待定系数法求函数解析式的知识.26.(1)见解析;(2)【分析】(1)根据相似三角形的判定,易证△ABF ∽△BEC ,从而可以证明∠BAF=∠CBE 成立;(2)根据锐角三角函数和三角形的相似可以求得AF 的长【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AD=BC ,∴∠D+∠C=180°,∠ABF=∠BEC ,∵∠AFB+∠AFE=180°,∠AFE=∠D ,∴∠C=∠AFB ,∴△ABF ∽△BEC ,∴∠BAF=∠CBE ;(2)∵AE ⊥DC ,AD=5,AB=8,sin ∠D=45, ∴AE=4,DE=3∴EC=5∵AE ⊥DC ,AB ∥DC ,∴∠AED=∠BAE=90°,在Rt △ABE 中,根据勾股定理得:=∵BC=AD=5,由(1)得:△ABF ∽△BEC ,∴ AF BC =AB AE =BF EC即5AF =5BF解得:【点睛】本题考查相似三角形的判定与性质、平行四边形的性质、解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答27.43米【解析】【分析】作CE ⊥AB 于E ,则四边形BDCE 是矩形,BE=CD=9.982米,设AB=x .根据tan ∠ACE=AE EC,列出方程即可解决问题.解:如图,作CE⊥AB于E.则四边形BDCE是矩形,BE=CD=9.982米,设AB=x.在Rt△ABD中,∵∠ADB=45°,∴AB=BD=x,在Rt△AEC中,tan∠ACE==tan37.5°≈0.77,∴=0.77,解得x≈43,答:“小雁塔”的高AB的长度约为43米.【点睛】本题考查解直角三角形的应用-仰角俯角问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用构建方程的思想思考问题.。

西藏林芝地区2019-2020学年中考数学统考试题

西藏林芝地区2019-2020学年中考数学统考试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知方程组2728x y x y +=⎧⎨+=⎩,那么x+y 的值( ) A .-1 B .1 C .0 D .52.如图,从边长为a 的正方形中去掉一个边长为b 的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是( )A .22()()a b a b a b +-=-B .222()2a b a ab b -=-+C .222()2a b a ab b +=++D .2()a ab a a b +=+3.如图,直线l 1、l 2、l 3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有( )A .1处B .2处C .3处D .4处4.下列运算正确的是( )A .﹣(a ﹣1)=﹣a ﹣1B .(2a 3)2=4a 6C .(a ﹣b )2=a 2﹣b 2D .a 3+a 2=2a 5 5.已知x 1,x 2是关于x 的方程x 2+ax -2b =0的两个实数根,且x 1+x 2=-2,x 1·x 2=1,则b a 的值是( ) A . B .- C .4 D .-16.如图,在平面直角坐标系中,A (1,2),B (1,-1),C (2,2),抛物线y=ax 2(a≠0)经过△ABC 区域(包括边界),则a 的取值范围是( )A .1a ≤- 或 2a ≥B .10a -≤< 或 02a <≤C .10a -≤< 或112a <≤ D .122a ≤≤ 7.若抛物线y =kx 2﹣2x ﹣1与x 轴有两个不同的交点,则k 的取值范围为( )A .k >﹣1B .k≥﹣1C .k >﹣1且k≠0D .k≥﹣1且k≠08.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( )A .B .C .D .9.把一副三角板如图(1)放置,其中∠ACB =∠DEC =90°,∠A =41°,∠D =30°,斜边AB =4,CD =1.把三角板DCE 绕着点C 顺时针旋转11°得到△D 1CE 1(如图2),此时AB 与CD 1交于点O ,则线段AD 1的长度为( )A .13B .5C .22D .410.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是( )A .9分B .8分C .7分D .6分二、填空题(本题包括8个小题)11.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为______.12.如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,E 为BC 上一点,5CE =,F 为DE 的中点.若CEF ∆的周长为18,则OF 的长为________.13.已知二次函数2y ax bx c =++的图象如图所示,若方程2ax bx c k ++=有两个不相等的实数根,则k的取值范围是_____________.14.如图,AB 是⊙O 的直径,点C 在⊙O 上,AE 是⊙O 的切线,A 为切点,连接BC 并延长交AE 于点D .若AOC=80°,则ADB 的度数为( )A .40°B .50°C .60°D .20°15.若正六边形的边长为2,则此正六边形的边心距为______.16.如图,直线y =x +2与反比例函数y =k x的图象在第一象限交于点P.若OP =10,则k 的值为________.17.某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是_____.18.从﹣2,﹣1,2这三个数中任取两个不同的数相乘,积为正数的概率是_____.三、解答题(本题包括8个小题)19.(6分)如图,在东西方向的海岸线MN 上有A ,B 两港口,海上有一座小岛P ,渔民每天都乘轮船从A ,B 两港口沿AP ,BP 的路线去小岛捕鱼作业.已知小岛P 在A 港的北偏东60°方向,在B 港的北偏西45°方向,小岛P 距海岸线MN 的距离为30海里.求AP,BP的长(参考数据:2≈1.4,3≈1.7,5≈2.2);甲、乙两船分别从A,B两港口同时出发去小岛P捕鱼作业,甲船比乙船晚到小岛24分钟.已知甲船速度是乙船速度的1.2倍,利用(1)中的结果求甲、乙两船的速度各是多少海里/时?20.(6分)瑞安市曹村镇“八百年灯会”成为温州“申遗”的宝贵项目.某公司生产了一种纪念花灯,每件纪念花灯制造成本为18元.设销售单价x(元),每日销售量y(件)每日的利润w(元).在试销过程中,每日销售量y(件)、每日的利润w(元)与销售单价x(元)之间存在一定的关系,其几组对应量如下表所示:(元)19 20 21 30(件)62 60 58 40(1)根据表中数据的规律,分别写出毎日销售量y(件),每日的利润w(元)关于销售单价x(元)之间的函数表达式.(利润=(销售单价﹣成本单价)×销售件数).当销售单价为多少元时,公司每日能够获得最大利润?最大利润是多少?根据物价局规定,这种纪念品的销售单价不得高于32元,如果公司要获得每日不低于350元的利润,那么制造这种纪念花灯每日的最低制造成本需要多少元?21.(6分)如图,已知直线AB经过点(0,4),与抛物线y=14x2交于A,B两点,其中点A的横坐标是2 .求这条直线的函数关系式及点B的坐标.在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在请说明理由.过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?22.(8分)如图,有四张背面相同的卡片A、B、C、D,卡片的正面分别印有正三角形、平行四边形、圆、正五边形(这些卡片除图案不同外,其余均相同).把这四张卡片背面向上洗匀后,进行下列操作:若任意抽取其中一张卡片,抽到的卡片既是中心对称图形又是轴对称图形的概率是;若任意抽出一张不放回,然后再从余下的抽出一张.请用树状图或列表表示摸出的两张卡片所有可能的结果,求抽出的两张卡片的图形是中心对称图形的概率.23.(8分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由;如果△ABC是等边三角形,试求这个一元二次方程的根.24.(10分)如图,二次函数y=12x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点坐标是(8,6).求二次函数的解析式;求函数图象的顶点坐标及D点的坐标;二次函数的对称轴上是否存在一点C,使得△CBD的周长最小?若C点存在,求出C点的坐标;若C点不存在,请说明理由.25.(10分)2019年1月,温州轨道交通1S线正式运营,1S线有以下4种购票方式:A.二维码过闸B.现金购票C.市名卡过闸D.银联闪付某兴趣小组为了解最受欢迎的购票方式,随机调查了某区的若干居民,得到如图所示的统计图,已知选择方式D的有200人,求选择方式A的人数.小博和小雅对A,B,C三种购票方式的喜爱程度相同,随机选取一种方式购票,求他们选择同一种购票方式的概率.(要求列表或画树状图). 26.(12分)现有一次函数y=mx+n和二次函数y=mx2+nx+1,其中m≠0,若二次函数y=mx2+nx+1经过点(2,0),(3,1),试分别求出两个函数的解析式.若一次函数y=mx+n经过点(2,0),且图象经过第一、三象限.二次函数y=mx2+nx+1经过点(a,y1)和(a+1,y2),且y1>y2,请求出a的取值范围.若二次函数y=mx2+nx+1的顶点坐标为A(h,k)(h≠0),同时二次函数y=x2+x+1也经过A点,已知﹣1<h<1,请求出m的取值范围.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.D【解析】【详解】解:2728x y x y +=⎧⎨+=⎩①②, ①+②得:3(x+y)=15,则x+y=5,故选D2.A【解析】【分析】由图形可以知道,由大正方形的面积-小正方形的面积=矩形的面积,进而可以证明平方差公式.【详解】解:大正方形的面积-小正方形的面积=22a b -,矩形的面积=()()a b a b +-,故22()()a b a b a b +-=-,故选:A .【点睛】本题主要考查平方差公式的几何意义,用两种方法表示阴影部分的面积是解题的关键.3.D【解析】【分析】到三条相互交叉的公路距离相等的地点应是三条角平分线的交点.把三条公路的中心部位看作三角形,那么这个三角形两个内角平分线的交点以及三个外角两两平分线的交点都满足要求.【详解】满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处.如图所示,故选D.【点睛】本题考查了角平分线的性质;这是一道生活联系实际的问题,解答此类题目时最直接的判断就是三角形的角平分线,很容易漏掉外角平分线,解答时一定要注意,不要漏解.4.B【解析】【分析】根据去括号法则,积的乘方的性质,完全平方公式,合并同类项法则,对各选项分析判断后利用排除法求解.【详解】解:A、因为﹣(a﹣1)=﹣a+1,故本选项错误;B、(﹣2a3)2=4a6,正确;C、因为(a﹣b)2=a2﹣2ab+b2,故本选项错误;D、因为a3与a2不是同类项,而且是加法,不能运算,故本选项错误.故选B.【点睛】本题考查了合并同类项,积的乘方,完全平方公式,理清指数的变化是解题的关键.5.A【解析】【分析】根据根与系数的关系和已知x1+x2和x1•x2的值,可求a、b的值,再代入求值即可.【详解】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=,∴b a =()2=.故选A . 6.B【解析】试题解析:如图所示:分两种情况进行讨论:当0a >时,抛物线2y ax =经过点()1,2A 时,2,a =抛物线的开口最小,a 取得最大值2.抛物线2y ax =经过△ABC 区域(包括边界),a 的取值范围是:0 2.a <≤当0a <时,抛物线2y ax =经过点()1,1B -时,1,a =-抛物线的开口最小,a 取得最小值 1.-抛物线2y ax =经过△ABC 区域(包括边界),a 的取值范围是:10.a -≤<故选B.点睛:二次函数()20,y ax bx c a =++≠ 二次项系数a 决定了抛物线开口的方向和开口的大小, 0,a >开口向上,0,a <开口向下.a 的绝对值越大,开口越小.7.C【解析】【分析】根据抛物线y =kx 2﹣2x ﹣1与x 轴有两个不同的交点,得出b 2﹣4ac >0,进而求出k 的取值范围.【详解】∵二次函数y =kx 2﹣2x ﹣1的图象与x 轴有两个交点,∴b 2﹣4ac =(﹣2)2﹣4×k×(﹣1)=4+4k >0,∴k>﹣1,∵抛物线y=kx2﹣2x﹣1为二次函数,∴k≠0,则k的取值范围为k>﹣1且k≠0,故选C.【点睛】本题考查了二次函数y=ax2+bx+c的图象与x轴交点的个数的判断,熟练掌握抛物线与x轴交点的个数与b2-4ac的关系是解题的关键.注意二次项系数不等于0.8.D【解析】【分析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是D.【详解】解:观察图形可知图案D通过平移后可以得到.故选D.【点睛】本题考查图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.9.A【解析】试题分析:由题意易知:∠CAB=41°,∠ACD=30°.若旋转角度为11°,则∠ACO=30°+11°=41°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=4,则AO=OC=2.在Rt△AOD1中,OD1=CD1-OC=3,由勾股定理得:AD1故选A.考点: 1.旋转;2.勾股定理.10.C【解析】分析: 根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案.详解: 将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为:7分,故答案为:C.点睛: 本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.二、填空题(本题包括8个小题)11.1.【解析】试题解析:设俯视图的正方形的边长为a .∵其俯视图为正方形,从主视图可以看出,正方形的对角线长为∴(222a a +=, 解得24a =,∴这个长方体的体积为4×3=1.12.72【解析】【分析】先根据直角三角形的性质求出DE 的长,再由勾股定理得出CD 的长,进而可得出BE 的长,由三角形中位线定理即可得出结论.【详解】解:∵四边形ABCD 是正方形,∴BO DO =,BC CD =,90BCD ︒∠=.在Rt DCE ∆中,F 为DE 的中点, ∴12CF DE EF DF ===. ∵CEF ∆的周长为18,5CE =,∴18513CF EF +=-=,∴13DE DF EF =+=.在Rt DCE ∆中,根据勾股定理,得12DC ==,∴12BC =,∴1257BE =-=.在BDE ∆中,∵BO DO =,F 为DE 的中点,又∵OF 为BDE ∆的中位线, ∴1722OF BE ==.故答案为:72. 【点睛】本题考查的是正方形的性质,涉及到直角三角形的性质、三角形中位线定理等知识,难度适中. 13.5k < 【解析】分析:先移项,整理为一元二次方程,让根的判别式大于0求值即可. 详解:由图象可知:二次函数y=ax 2+bx+c 的顶点坐标为(1,1), ∴244ac b a-=1,即b 2-4ac=-20a ,∵ax 2+bx+c=k 有两个不相等的实数根,∴方程ax 2+bx+c-k=0的判别式△>0,即b 2-4a (c-k )=b 2-4ac+4ak=-20a+4ak=-4a (1-k )>0 ∵抛物线开口向下 ∴a <0 ∴1-k >0 ∴k <1. 故答案为k <1.点睛:本题主要考查了抛物线与x 轴的交点问题,以及数形结合法;二次函数中当b 2-4ac >0时,二次函数y=ax 2+bx+c 的图象与x 轴有两个交点. 14.B . 【解析】试题分析:根据AE 是⊙O 的切线,A 为切点,AB 是⊙O 的直径,可以先得出∠BAD 为直角.再由同弧所对的圆周角等于它所对的圆心角的一半,求出∠B ,从而得到∠ADB 的度数.由题意得:∠BAD=90°,∵∠B=∠AOC=40°,∴∠ADB=90°-∠B=50°.故选B .考点:圆的基本性质、切线的性质. 153【解析】 【分析】连接OA 、OB ,根据正六边形的性质求出∠AOB ,得出等边三角形OAB ,求出OA 、AM 的长,根据勾股定理求出即可. 【详解】连接OA 、OB 、OC 、OD 、OE 、OF ,∵正六边形ABCDEF ,∴∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠AOF ,∴∠AOB=60°,OA=OB , ∴△AOB 是等边三角形,∴OA=OB=AB=2,∵AB ⊥OM ,∴AM=BM=1, 在△OAM 中,由勾股定理得:3 16.1 【解析】设点P (m ,m+2), ∵10, ∴()222m m ++10,解得m 1=1,m 2=﹣1(不合题意舍去), ∴点P (1,1), ∴1=1k, 解得k=1.点睛:本题考查了反比例函数与一次函数的交点坐标,仔细审题,能够求得点P 的坐标是解题的关键. 17.85 【解析】 【分析】根据中位数求法,将学生成绩从小到大排列,取中间两数的平均数即可解题. 【详解】解:将六位同学的成绩按从小到大进行排列为:75,75,84,86,92,99, 中位数为中间两数84和86的平均数, ∴这六位同学成绩的中位数是85. 【点睛】本题考查了中位数的求法,属于简单题,熟悉中位数的概念是解题关键. 18.13【解析】【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与积为正数的情况,再利用概率公式求解即可求得答案.【详解】列表如下:由表可知,共有6种等可能结果,其中积为正数的有2种结果,所以积为正数的概率为13,故答案为13.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.三、解答题(本题包括8个小题)19.(1)AP=60海里,BP=42(海里);(2)甲船的速度是24海里/时,乙船的速度是20海里/时【解析】【分析】(1)过点P作PE⊥AB于点E,则有PE=30海里,由题意,可知∠PAB=30°,∠PBA=45°,从而可得AP=60海里,在Rt△PEB中,利用勾股定理即可求得BP的长;(2)设乙船的速度是x海里/时,则甲船的速度是1.2x海里/时,根据甲船比乙船晚到小岛24分钟列出分式方程,求解后进行检验即可得.【详解】(1)如图,过点P作PE⊥MN,垂足为E,由题意,得∠PAB=90°-60°=30°,∠PBA=90°-45°=45°,∵PE=30海里,∴AP=60海里,∵PE⊥MN,∠PBA=45°,∴∠PBE=∠BPE=45°,∴PE=EB=30海里,在Rt△PEB中,BP=≈42海里,故AP=60海里,BP=42(海里);(2)设乙船的速度是x海里/时,则甲船的速度是1.2x海里/时,根据题意,得604224 1.260x x-=,解得x=20,经检验,x=20是原方程的解,甲船的速度为1.2x=1.2×20=24(海里/时).,答:甲船的速度是24海里/时,乙船的速度是20海里/时.【点睛】本题考查了勾股定理的应用,分式方程的应用,含30度角的直角三角形的性质,等腰直角三角形的判定与性质,熟练掌握各相关知识是解题的关键.20.(1)y=﹣2x+100,w=﹣2x2+136x﹣1800;(2)当销售单价为34元时,每日能获得最大利润,最大利润是1元;(3)制造这种纪念花灯每日的最低制造成本需要648元.【解析】【分析】(1)观察表中数据,发现y与x之间存在一次函数关系,设y=kx+b.列方程组得到y关于x的函数表达式y=﹣2x+100,根据题意得到w=﹣2x2+136x﹣1800;(2)把w=﹣2x2+136x﹣1800配方得到w=﹣2(x﹣34)2+1.根据二次函数的性质即可得到结论;(3)根据题意列方程即可得到即可.【详解】解:(1)观察表中数据,发现y与x之间存在一次函数关系,设y=kx+b.则62196020k bk b=+⎧⎨=+⎩,解得k2b100=-⎧⎨=⎩,∴y=﹣2x+100,∴y关于x的函数表达式y=﹣2x+100,∴w=(x﹣18)•y=(x﹣18)(﹣2x+100)∴w=﹣2x2+136x﹣1800;(2)∵w=﹣2x2+136x﹣1800=﹣2(x﹣34)2+1.∴当销售单价为34元时,∴每日能获得最大利润1元;(3)当w=350时,350=﹣2x2+136x﹣1800,解得x =25或43, 由题意可得25≤x≤32,则当x =32时,18(﹣2x+100)=648,∴制造这种纪念花灯每日的最低制造成本需要648元. 【点睛】此题主要考查了二次函数的应用,根据已知得出函数关系式. 21.(1)直线y=32x+4,点B 的坐标为(8,16);(2)点C 的坐标为(﹣12,0),(0,0),(6,0),(32,0);(3)当M 的横坐标为6时,MN+3PM 的长度的最大值是1. 【解析】 【分析】(1)首先求得点A 的坐标,然后利用待定系数法确定直线的解析式,从而求得直线与抛物线的交点坐标; (2)分若∠BAC=90°,则AB 2+AC 2=BC 2;若∠ACB=90°,则AB 2=AC 2+BC 2;若∠ABC=90°,则AB 2+BC 2=AC 2三种情况求得m 的值,从而确定点C 的坐标;(3)设M (a ,14a 2),得MN=14a 2+1,然后根据点P 与点M 纵坐标相同得到x=2166a -,从而得到MN+3PM=﹣14a 2+3a+9,确定二次函数的最值即可. 【详解】(1)∵点A 是直线与抛物线的交点,且横坐标为-2,21(2)14y =⨯-=,A 点的坐标为(-2,1),设直线的函数关系式为y=kx+b ,将(0,4),(-2,1)代入得421b k b =⎧⎨-+=⎩解得324k b ⎧=⎪⎨⎪=⎩∴y =32x +4 ∵直线与抛物线相交,231424x x ∴+= 解得:x=-2或x=8, 当x=8时,y=16,∴点B 的坐标为(8,16); (2)存在.∵由A(-2,1),B(8,16)可求得AB 2=22(82)(161)=325.设点C(m ,0),同理可得AC 2=(m +2)2+12=m 2+4m +5, BC 2=(m -8)2+162=m 2-16m +320,①若∠BAC =90°,则AB 2+AC 2=BC 2,即325+m 2+4m +5=m 2-16m +320,解得m =-12; ②若∠ACB =90°,则AB 2=AC 2+BC 2,即325=m 2+4m +5+m 2-16m +320,解得m =0或m =6; ③若∠ABC =90°,则AB 2+BC 2=AC 2,即m 2+4m +5=m 2-16m +320+325,解得m =32, ∴点C 的坐标为(-12,0),(0,0),(6,0),(32,0) (3)设M(a ,14a 2),则MN 2114a =+, 又∵点P 与点M 纵坐标相同, ∴32x +4=14a 2, ∴x=2166a - ,∴点P 的横坐标为2166a -,∴MP =a -2166a -,∴MN +3PM =14a 2+1+3(a -2166a -)=-14a 2+3a +9=-14 (a -6)2+1,∵-2≤6≤8,∴当a =6时,取最大值1,∴当M 的横坐标为6时,MN +3PM 的长度的最大值是1 22.(1)14;(2)16. 【解析】 【分析】(1)既是中心对称图形又是轴对称图形只有圆一个图形,然后根据概率的意义解答即可; (2)画出树状图,然后根据概率公式列式计算即可得解. 【详解】(1)∵正三角形、平行四边形、圆、正五边形中只有圆既是中心对称图形又是轴对称图形,∴抽到的卡片既是中心对称图形又是轴对称图形的概率是14;(2)根据题意画出树状图如下:一共有12种情况,抽出的两张卡片的图形是中心对称图形的是B、C共有2种情况,所以,P(抽出的两张卡片的图形是中心对称图形)21 126.【点睛】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.23.(1) △ABC是等腰三角形;(2)△ABC是直角三角形;(3) x1=0,x2=﹣1.【解析】试题分析:(1)直接将x=﹣1代入得出关于a,b的等式,进而得出a=b,即可判断△ABC的形状;(2)利用根的判别式进而得出关于a,b,c的等式,进而判断△ABC的形状;(3)利用△ABC是等边三角形,则a=b=c,进而代入方程求出即可.试题解析:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)∵方程有两个相等的实数根,∴(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=﹣1.考点:一元二次方程的应用.24.(1)y=12x1﹣4x+6;(1)D点的坐标为(6,0);(3)存在.当点C的坐标为(4,1)时,△CBD的周长最小 【解析】 【分析】(1)只需运用待定系数法就可求出二次函数的解析式;(1)只需运用配方法就可求出抛物线的顶点坐标,只需令y=0就可求出点D 的坐标;(3)连接CA ,由于BD 是定值,使得△CBD 的周长最小,只需CD+CB 最小,根据抛物线是轴对称图形可得CA=CD ,只需CA+CB 最小,根据“两点之间,线段最短”可得:当点A 、C 、B 三点共线时,CA+CB 最小,只需用待定系数法求出直线AB 的解析式,就可得到点C 的坐标. 【详解】(1)把A (1,0),B (8,6)代入212y x bx c =++,得 14202164862b c b c ⎧⨯++=⎪⎪⎨⎪⨯++=⎪⎩ 解得:46b c =-⎧⎨=⎩∴二次函数的解析式为21462y x x =+﹣; (1)由2211464222y x x x =+=﹣(﹣)﹣,得 二次函数图象的顶点坐标为(4,﹣1). 令y=0,得214602x x +=﹣, 解得:x 1=1,x 1=6, ∴D 点的坐标为(6,0);(3)二次函数的对称轴上存在一点C ,使得CBD 的周长最小. 连接CA ,如图,∵点C 在二次函数的对称轴x=4上, ∴x C =4,CA=CD , ∴CBD 的周长=CD+CB+BD=CA+CB+BD ,根据“两点之间,线段最短”,可得 当点A 、C 、B 三点共线时,CA+CB 最小, 此时,由于BD 是定值,因此CBD 的周长最小. 设直线AB 的解析式为y=mx+n ,把A (1,0)、B (8,6)代入y=mx+n ,得208m n m n +=⎧⎨+=⎩ 解得:12m n =⎧⎨=-⎩∴直线AB 的解析式为y=x ﹣1. 当x=4时,y=4﹣1=1,∴当二次函数的对称轴上点C 的坐标为(4,1)时,CBD 的周长最小.【点睛】本题考查了(1)二次函数综合题;(1)待定系数法求一次函数解析式;(3)二次函数的性质;(4)待定系数法求二次函数解析式;(5)线段的性质:(6)两点之间线段最短. 25. (1)600人(2)13【解析】 【分析】(1)计算方式A 的扇形圆心角占D 的圆心角的分率,然后用方式D 的人数乘这个分数即为方式A 的人数; (2)列出表格或树状图分别求出所有情况以及两名同学恰好选中同一种购票方式的情况后,利用概率公式即可求出两名同学恰好选中同一种购票方式的概率. 【详解】 (1)120200600(36090110)⨯=--(人),∴最喜欢方式A 的有600人(2)列表法: A B C A A ,A A ,B A ,C B B ,A B ,B B ,C C C ,AC ,BC ,C树状法:∴P (同一种购票方式)13= 【点睛】本题考查扇形统计图的运用和列表法或画树状图求概率的运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小. 26.(1)y =x ﹣2,y=12-x 2+32+1;(2)a <12;(3)m <﹣2或m >1. 【解析】 【分析】(1)直接将点代入函数解析式,用待定系数法即可求解函数解析式;(2)点(2,1)代入一次函数解析式,得到n =−2m ,利用m 与n 的关系能求出二次函数对称轴x =1,由一次函数经过一、三象限可得m >1,确定二次函数开口向上,此时当 y 1>y 2,只需让a 到对称轴的距离比a +1到对称轴的距离大即可求a 的范围.(3)将A (h ,k )分别代入两个二次函数解析式,再结合对称抽得h =n2m-,将得到的三个关系联立即可得到11h m =-+,再由题中已知−1<h <1,利用h 的范围求出m 的范围. 【详解】(1)将点(2,1),(3,1),代入一次函数y =mx+n 中,0213m nm n =+⎧⎨=+⎩, 解得12m n =⎧⎨=-⎩,∴一次函数的解析式是y =x ﹣2,再将点(2,1),(3,1),代入二次函数y =mx 2+nx+1,04211931m n m n =++⎧⎨=++⎩,解得1232m n ⎧=-⎪⎪⎨⎪=⎪⎩, ∴二次函数的解析式是213122y x =-++. (2)∵一次函数y =mx+n 经过点(2,1),∴n =﹣2m ,∵二次函数y =mx 2+nx+1的对称轴是x =n 2m -, ∴对称轴为x =1,又∵一次函数y =mx+n 图象经过第一、三象限,∴m >1,∵y 1>y 2,∴1﹣a >1+a ﹣1,∴a <12. (3)∵y =mx 2+nx+1的顶点坐标为A (h ,k ),∴k =mh 2+nh+1,且h =n 2m-, 又∵二次函数y =x 2+x+1也经过A 点,∴k =h 2+h+1,∴mh 2+nh+1=h 2+h+1, ∴11h m =-+, 又∵﹣1<h <1,∴m <﹣2或m >1.【点睛】本题考点:点与函数的关系;二次函数的对称轴与函数值关系;待定系数法求函数解析式;不等式的解法;数形结合思想是解决二次函数问题的有效方法.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在Rt△ABC 中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是()A.312B.36C.33D.322.已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是()A.4≤m<7 B.4<m<7 C.4≤m≤7D.4<m≤73.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO 为α,则树OA的高度为( )A.30tanα米B.30sinα米C.30tanα米D.30cosα米4.如图是一个由正方体和一个正四棱锥组成的立体图形,它的主视图是()A.B.C.D.5.下列各式:33②177;2682;2432;其中错误的有().A.3个B.2个C.1个D.0个6.如图,两个一次函数图象的交点坐标为(2,4),则关于x,y的方程组111222,y k x by k x b=+⎧⎨=+⎩的解为()A .2,4x y =⎧⎨=⎩B .4,2x y =⎧⎨=⎩C .4,0x y =-⎧⎨=⎩D .3,0x y =⎧⎨=⎩7.如图,等腰直角三角形ABC 位于第一象限,2AB AC ==,直角顶点A 在直线y x =上,其中点A 的横坐标为1,且两条直角边AB ,AC 分别平行于x 轴、y 轴,若反比例函数k y x=的图象与ABC △有交点,则k 的取值范围是( ).A .12k <<B .13k ≤≤C .14k ≤<D .14k ≤≤8.若△ABC 与△DEF 相似,相似比为2:3,则这两个三角形的面积比为( )A .2:3B .3:2C .4:9D .9:49.下列图形中,线段MN 的长度表示点M 到直线l 的距离的是( )A .B .C .D .10.分式方程213x x =-的解为( ) A .x=-2 B .x=-3 C .x=2 D .x=3二、填空题(本题包括8个小题)11.如图,已知△ABC 和△ADE 均为等边三角形,点OAC 的中点,点D 在A 射线BO 上,连接OE ,EC ,若AB =4,则OE 的最小值为_____.12.同圆中,已知弧AB 所对的圆心角是100°,则弧AB 所对的圆周角是_____.13.把小圆形场地的半径增加5米得到大圆形场地,此时大圆形场地的面积是小圆形场地的4倍,设小圆形场地的半径为x 米,若要求出未知数x ,则应列出方程 (列出方程,不要求解方程). 14.分解因式:3x 3﹣27x =_____.15.如图,直线m ∥n ,以直线m 上的点A 为圆心,适当长为半径画弧,分别交直线m ,n 于点B 、C ,连接AC 、BC ,若∠1=30°,则∠2=_____.16.下列图形是用火柴棒摆成的“金鱼”,如果第1个图形需要8根火柴,则第2个图形需要14根火柴,第n 根图形需要____________根火柴.17.如图,AB 为⊙O 的弦,C 为弦AB 上一点,设AC =m ,BC =n(m >n),将弦AB 绕圆心O 旋转一周,若线段BC 扫过的面积为(m 2﹣n 2)π,则m n=______18.如图,已知AB ∥CD ,α∠=____________三、解答题(本题包括8个小题)19.(6分)如图,CD 是一高为4米的平台,AB 是与CD 底部相平的一棵树,在平台顶C 点测得树顶A 点的仰角30α=︒,从平台底部向树的方向水平前进3米到达点E ,在点E 处测得树顶A 点的仰角60β=︒,求树高AB(结果保留根号).20.(627﹣(﹣2)0+|13|+2cos30°.21.(6分)如图,抛物线2y a(x 1)4=-+与x 轴交于点A ,B ,与轴交于点C ,过点C 作CD ∥x 轴,交抛物线的对称轴于点D ,连结BD ,已知点A 坐标为(-1,0). 求该抛物线的解析式;求梯形COBD 的面积.22.(8分)如图,四边形ABCD 是平行四边形,点E 在BC 上,点F 在AD 上,BE=DF ,求证:AE=CF .23.(8分)已知:如图,一次函数y kx b =+与反比例函数3y x=的图象有两个交点(1,)A m 和B ,过点A 作AD x ⊥轴,垂足为点D ;过点B 作BC y ⊥轴,垂足为点C ,且2BC =,连接CD .求m ,k ,b 的值;求四边形ABCD 的面积.24.(10分)如图,某校准备给长12米,宽8米的矩形ABCD 室内场地进行地面装饰,现将其划分为区域Ⅰ(菱形PQFG ),区域Ⅱ(4个全等的直角三角形),剩余空白部分记为区域Ⅲ;点O 为矩形和菱形的对称中心,OP AB ,2OQ OP =,12AE PM =,为了美观,要求区域Ⅱ的面积不超过矩形ABCD 面积的18,若设OP x =米.甲 乙 丙 单价(元/米2) 2m 5n 2m(1)当83x=时,求区域Ⅱ的面积.计划在区域Ⅰ,Ⅱ分别铺设甲,乙两款不同的深色瓷砖,区域Ⅲ铺设丙款白色瓷砖,①在相同光照条件下,当场地内白色区域的面积越大,室内光线亮度越好.当x为多少时,室内光线亮度最好,并求此时白色区域的面积.②三种瓷砖的单价列表如下,,m n均为正整数,若当2x=米时,购买三款瓷砖的总费用最少,且最少费用为7200元,此时m=__________,n=__________.25.(10分)已知关于x的方程(a﹣1)x2+2x+a﹣1=1.若该方程有一根为2,求a的值及方程的另一根;当a为何值时,方程的根仅有唯一的值?求出此时a的值及方程的根.26.(12分)如图,已知▱ABCD.作∠B的平分线交AD于E点。

西藏拉萨市2019-2020学年中考数学第二次调研试卷含解析

西藏拉萨市2019-2020学年中考数学第二次调研试卷含解析

西藏拉萨市2019-2020学年中考数学第二次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形中,可以看作中心对称图形的是( )A .B .C .D .2.民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是( )A .B .C .D .3.李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是( )已知:如图,在ABC V 中,点D ,E ,F 分别在边AB ,AC ,BC 上,且DE //BC ,DF//AC , 求证:ADE V ∽DBF V .证明:①又DF//AC Q ,DE //BC Q ②,A BDF ∠∠∴=③,ADE B ∠∠∴=④,ADE ∴V ∽DBF V .A .③②④①B .②④①③C .③①④②D .②③④①4.tan45º的值为( )A .12B .1C .22D .25.如图,点A 、B 、C 、D 、O 都在方格纸的格点上,若△COD 是由△AOB 绕点O 按逆时针方向旋转而得,则旋转的角度为( )A .30°B .45°C .90°D .135°6.我国古代数学著作《九章算术》中,将底面是直角三角形,且侧棱与底面垂直的三棱柱称为“堑堵”某“堑堵”的三视图如图所示(网格图中每个小正方形的边长均为1),则该“堑堵”的侧面积为()A.16+162B.16+82C.24+162D.4+427.下列选项中,可以用来证明命题“若a2>b2,则a>b“是假命题的反例是()A.a=﹣2,b=1 B.a=3,b=﹣2 C.a=0,b=1 D.a=2,b=18.如图,在▱ABCD中,AB=1,AC=42,对角线AC与BD相交于点O,点E是BC的中点,连接AE交BD于点F.若AC⊥AB,则FD的长为()A.2 B.3 C.4 D.69.下列说法中正确的是()A.检测一批灯泡的使用寿命适宜用普查.B.抛掷一枚均匀的硬币,正面朝上的概率是12,如果抛掷10次,就一定有5次正面朝上.C.“367人中有两人是同月同日生”为必然事件.D.“多边形内角和与外角和相等”是不可能事件.10.一个圆锥的侧面积是12π,它的底面半径是3,则它的母线长等于()A.2 B.3 C.4 D.611.一个几何体由大小相同的小正方体搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在这个位置小正方体的个数.从左面看到的这个几何体的形状图的是()A.B.C.D.12.一个布袋内只装有1个黑球和2个白球,这些球除颜色不同外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( )A .49B .13C .16D .19二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.用换元法解方程2231512x x x x -+=-,设y=21x x -,那么原方程化为关于y 的整式方程是_____. 14.如图,一组平行横格线,其相邻横格线间的距离都相等,已知点A 、B 、C 、D 、O 都在横格线上,且线段AD ,BC 交于点O ,则AB :CD 等于______.15.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,请根据这组数的规律写出第10个数是______.16.如图,在5×5的正方形(每个小正方形的边长为1)网格中,格点上有A 、B 、C 、D 、E 五个点,如果要求连接两个点之后线段的长度大于3且小于4,则可以连接_____. (写出一个答案即可)17.计算2x 3·x 2的结果是_______.18.如图,直线y kx b =+经过(2,1)A 、(1,2)B --两点,则不等式122x kx b >+>-的解集为_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某蔬菜加工公司先后两次收购某时令蔬菜200吨,第一批蔬菜价格为2000元/吨,因蔬菜大量上市,第二批收购时价格变为500元/吨,这两批蔬菜共用去16万元.(1)求两批次购蔬菜各购进多少吨?(2)公司收购后对蔬菜进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润800元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?20.(6分) “扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y (件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.21.(6分)某校九年级数学测试后,为了解学生学习情况,随机抽取了九年级部分学生的数学成绩进行统计,得到相关的统计图表如下.成绩/分120﹣111 110﹣101 100﹣91 90以下成绩等级 A B C D请根据以上信息解答下列问题:(1)这次统计共抽取了名学生的数学成绩,补全频数分布直方图;(2)若该校九年级有1000名学生,请据此估计该校九年级此次数学成绩在B等级以上(含B等级)的学生有多少人?(3)根据学习中存在的问题,通过一段时间的针对性复习与训练,若A等级学生数可提高40%,B等级学生数可提高10%,请估计经过训练后九年级数学成绩在B等级以上(含B等级)的学生可达多少人?22.(8分)小强想知道湖中两个小亭A、B之间的距离,他在与小亭A、B位于同一水平面且东西走向的湖边小道I上某一观测点M处,测得亭A在点M的北偏东30°,亭B在点M的北偏东60°,当小明由点M沿小道I向东走60米时,到达点N处,此时测得亭A恰好位于点N的正北方向,继续向东走30米时到达点Q处,此时亭B恰好位于点Q的正北方向,根据以上测量数据,请你帮助小强计算湖中两个小亭A、B之间的距离.23.(8分)如图,在平行四边形ABCD中,AD>AB.(1)作出∠ABC的平分线(尺规作图,保留作图痕迹,不写作法);(2)若(1)中所作的角平分线交AD于点E,AF⊥BE,垂足为点O,交BC于点F,连接EF.求证:四边形ABFE为菱形.24.(10分)有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和-1;乙袋中有三个完全相同的小球,分别标有数字-1、0和1.小丽先从甲袋中随机取出一个小球,记录下小球上的数字为x;再从乙袋中随机取出一个小球,记录下小球上的数字为y,设点P的坐标为(x,y).(1)请用表格或树状图列出点P所有可能的坐标;(1)求点P在一次函数y=x+1图象上的概率.25.(10分)如图,在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B的直线与CD的延长线交于点F,AC∥BF.(1)若∠FGB=∠FBG,求证:BF是⊙O的切线;(2)若tan∠F=34,CD=a,请用a表示⊙O的半径;(3)求证:GF2﹣GB2=DF•GF.26.(12分)在□ABCD中,E为BC边上一点,且AB=AE,求证:AC=DE。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档