中考专题复习-一元一次方程(组)含答案
中考数学专题复习一元一次方程(含解析)
中考备考专题复习:一元一次方程一、单选题1、(2016•大连)方程2x+3=7的解是()A、x=5B、x=4C、x=3.5D、x=22、(2016•梧州)一元一次方程3x﹣3=0的解是()A、x=1B、x=﹣1C、x=D、x=03、若关于x的方程(k-1)x2+x-1=0是一元一次方程.则k=( )A、0B、1C、2D、34、(2016•泰安)当1≤x≤4时.mx﹣4<0.则m的取值范围是()A、m>1B、m<1C、m>4D、m<45、已知方程2x-3=+x的解满足|x|-1=0.则m的值是()A、-6B、-12C、-6与-12D、任何数6、若2(a+3)的值与4互为相反数.则a的值为()A、﹣1B、﹣C、﹣5D、7、下列各式中.是方程的个数为()(1)-3-3=-7 (2)3x-5=2x+1 (3)2x+6(4)x-y=0 (5)a+b>3 (6)a2+a-6=0A、1个B、2个C、3个D、4个8、如果等式ax=b成立.则下列等式恒成立的是().A、abx=abB、x=C、b-ax=a-bD、b+ax=b+b9、已知关于x的方程x2+bx+a=0有一个根是-a(a≠0) . 则a-b的值为().A、-1B、0C、1D、210、在如图的2016年6月份的月历表中.任意框出表中竖列上三个相邻的数.这三个数的和不可能是()A、27B、51C、69D、7211、互联网“微商”经营已成为大众创业新途径.某微信平台上一件商品标价为200元.按标价的五折销售.仍可获利20元.则这件商品的进价为()A、120元B、100元C、80元D、60元12、某场音乐会贩卖的座位分成一楼与二楼两个区域.若一楼售出与未售出的座位数比为4:3.二楼售出与未售出的座位数比为3:2.且此场音乐会一、二楼未售出的座位数相等.则此场音乐会售出与未售出的座位数比为何?()A、2:1B、7:5C、17:12D、24:1713、某车间有26名工人.每人每天可以生产800个螺钉或1000个螺母.1个螺钉需要配2个螺母.为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉.则下面所列方程正确的是()A、2×1000(26﹣x)=800xB、1000(13﹣x)=800xC、1000(26﹣x)=2×800xD、1000(26﹣x)=800x14、8月份是新学期开学准备季.东风和百惠两书店对学习用品和工具实施优惠销售.优惠方案分别是:在东风书店购买学习用品或工具书累计花费60元后.超出部分按50%收费.在百惠书店购买学习用品或工具书累计花费50元后.超出部分按60%收费.郝爱同学准备买价值300元的学习用品和工具书.她在哪家书店消费更优惠()A、东风B、百惠C、两家一样D、不能确定15、在解方程时.方程两边同时乘以6.去分母后.正确的是()A、2x﹣1+6x=3(3x+1)B、2(x﹣1)+6x=3(3x+1)C、2(x﹣1)+x=3(3x+1)D、(x﹣1)+x=3(x+1)二、填空题16、已知方程(a-2)x|a|-1=1是一元一次方程.则a=________.x=________ .17、如果关于x的方程x2﹣3x+k=0有两个相等的实数根.那么实数k的值是________.18、一件服装的标价为300元.打八折销售后可获利60元.则该件服装的成本价是________元.19、为了改善办学条件.学校购置了笔记本电脑和台式电脑共100台.已知笔记本电脑的台数比台式电脑的台数的还少5台.则购置的笔记本电脑有________台.20、书店举行购书优惠活动:①一次性购书不超过100元.不享受打折优惠.②一次性购书超过100元但不超过200元一律打九折.③一次性购书200元一律打七折.小丽在这次活动中.两次购书总共付款229.4元.第二次购书原价是第一次购书原价的3倍.那么小丽这两次购书原价的总和是________元.三、计算题21、先化简:÷ + .再求当x+1与x+6互为相反数时代数式的值.四、解答题22、在红城中学举行的“我爱祖国”征文活动中.七年级和八年级共收到征文118篇.且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇.求七年级收到的征文有多少篇?23、世界读书日.某书店举办“书香”图书展.已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元.《汉语成语大词典》按标价的50%出售.《中华上下五千年》按标价的60%出售.小明花80元买了这两本书.求这两本书的标价各多少元.五、综合题24、在纪念中国抗日战争胜利70周年之际.某公司决定组织员工观看抗日战争题材的影片.门票有甲乙两种.甲种票比乙种票每张贵6元.买甲种票10张.乙种票15张共用去660元.(1)求甲、乙两种门票每张各多少元?(2)如果公司准备购买35张门票且购票费用不超过1000元.那么最多可购买多少张甲种票?25、如图是一根可伸缩的鱼竿.鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩.完全收缩后.鱼竿长度即为第1节套管的长度(如图1所示):使用时.可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm.第2节套管长46cm.以此类推.每一节套管均比前一节套管少4cm.完全拉伸时.为了使相邻两节套管连接并固定.每相邻两节套管间均有相同长度的重叠.设其长度为xcm.(1)请直接写出第5节套管的长度.(2)当这根鱼竿完全拉伸时.其长度为311cm.求x的值.26、随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进.拥有的养老床位不断增加.(1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个.求该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率.(2)若该市某社区今年准备新建一养老中心.其中规划建造三类养老专用房间共100间.这三类养老专用房间分别为单人间(1个养老床位).双人间(2个养老床位).三人间(3个养老床位).因实际需要.单人间房间数在10至30之间(包括10和30).且双人间的房间数是单人间的2倍.设规划建造单人间的房间数为t.①若该养老中心建成后可提供养老床位200个.求t的值.答案解析部分一、单选题1、【答案】 D【考点】一元一次方程的解【解析】【解答】解:2x+3=7. 移项合并得:2x=4.解得:x=2.故选D【分析】方程移项合并.把x系数化为1.即可求出解.此题考查了一元一次方程的解.方程的解即为能使方程左右两边相等的未知数的值.2、【答案】 A【考点】一元一次方程的解【解析】【解答】解:3x﹣3=0.3x=3.x=1.故选:A.【分析】直接移项.再两边同时除以3即可.此题主要考查了一元一次方程的解.关键是掌握使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.3、【答案】B【考点】一元一次方程的定义【解析】【解答】根据题意得:k-1=0.解得:k=1.故答案是:B.【分析】只含有一个未知数(元).并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a.b是常数且a≠0).高于一次的项系数是0.据此可得出关于k的方程.继而可求出k的值.4、【答案】 B【考点】一元一次方程的解【解析】【解答】解:设y=mx﹣4.由题意得.当x=1时.y<0.即m﹣4<0.解得m<4.当x=4时.y<0.即4m﹣4<0.解得.m<1.则m的取值范围是m<1.故选:B.【分析】设y=mx﹣4.根据题意列出一元一次不等式.解不等式即可.本题考查的是含字母系数的一元一次不等式的解法.正确利用函数思想、数形结合思想是解题的关键.5、【答案】 C【考点】一元一次方程的解.含绝对值符号的一元一次方程【解析】【解答】∵|x|-1=0∴x=±1当x=1时.把x=1代入方程2x-3=+x2-3=+1∴m=-6.当x=-1时.把x=-1代入方程2x-3=+x-2-3=-1∴m=-12∴m的值是-6与-12.【分析】根据方程的解满足|x|-1=0就可得到x=±1.即±1是方程的解.把x=±1分别代入方程2x-3= m 3 +x就得到关于m的方程.从而求出m的值.本题含有一个未知的系数.根据已知条件求未知系数的方法叫待定系数法.在以后的学习中.常用此法求函数解析式.6、【答案】C【考点】相反数.解一元一次方程【解析】【解答】解:∵2(a+3)的值与4互为相反数.∴2(a+3)+4=0.∴a=﹣5.故选C【分析】先根据相反数的意义列出方程.解方程即可.此题是解一元一次方程.主要考查了相反数的意义.一元一次方程的解法.掌握相反数的意义是解本题的关键.7、【答案】C【考点】一元一次方程的定义.二元一次方程的定义.一元二次方程的定义【解析】【解答】根据方程的定义依次分析即可。
2022年中考数学培优复习考点一元一次方程专项训练(含答案)
一元一次方程专项训练一.选择题1.下列方程:①3x﹣y=2:②x++2=0;③=1;④x=0;⑤3x﹣1≥5:⑥x2﹣2x﹣3=0;⑦x.其中一元一次方程有()A.5个B.4个C.3个D.2个2.若代数式a+3的值为﹣2,则a等于()A.﹣2B.﹣3C.﹣4D.﹣53.下列变形错误的是()A.如果a=b,那么a+5=b+5B.如果a=b,那么a﹣c=b﹣c.C.如果ac=bc,那么a=bD.如果,那么a=b4.商场将进价为100元的商品提高80%后标价,销售时按标价打折销售,结果仍获利44%,则这件商品销售时打几折()A.7折B.7.5折C.8折D.8.5折5.将连续的奇数1,3,5,7,9,…排成如图所示的数表,平移十字方框,方框内的5个数字之和可能是()A.405B.545C.2012D.20156.一项工程,甲单独做5天完成,乙单独做8天完成.若甲先做1天,然后甲、乙合作完成此项工作的.若设甲一共做了x天,则所列方程为()A.B.C.D.7.阅读下列解方程的过程,此过程从上一步到所给步有的产生了错误,则其中没有错误的是()解方程:.①;②2(10x﹣30)﹣5(10x+40)=160;③20x﹣60﹣50x+200=160;④﹣30x=300.A.①B.②C.③D.④8.已知关于x的方程2x+m﹣9=0的解是x=3,则m的值为()A.3B.4C.5D.69.若整数a使关于x的方程ax+3=﹣9﹣x有负整数解,且a也是四条直线在平面内交点的个数,则满足条件的所有a的个数为()A.3B.4C.5D.610.定义一种新运算“a☆b”的含义为:当a≥b时,a☆b=a+b;当a<b时,a☆b=a﹣b.例如:3☆(﹣4)=3+(﹣4)=﹣1,(﹣6)☆=(﹣6)﹣=﹣6,则方程(3x﹣7)☆(3﹣2x)=2的值为()A.1B.C.6或D.6二.填空题11.某玩具店销售一种玩具,按规定会员购买打八折,非会员购买打九折,同样购买一样玩具,小芳用会员卡比小明不用会员卡购买少花了3元钱,则这种玩具用会员卡购买的价格是元.12.已知方程(m﹣2)x|m|﹣1+7=0是关于x的一元一次方程,则m=.13.若关于x的方程2x+a=3与x+2a=7的解相同,则a的值为.14.关于x的方程2x﹣3=kx的解是整数,则整数k可以取的值是.15.对有理数a,b规定运算“*”的意义为a*b=a+2b,比如:5*7=5+2×7,则方程3x*=2﹣x的解为.三.解答题16.解方程:(1)5x+3(2﹣x)=10;(2)x=+4.17.小明在解方程=﹣1,方程两边都乘以各分母的最小公倍数去分母时,漏乘了不含分母的项﹣1,得到方程的解是x=3,请你帮助小明求出m的值和原方程正确的解.18.公司推出两种手机付费方式:甲种方式不交月租费,每通话1分钟付费0.15元;乙种方式需交18元的月租费,每通话1分钟付费0.10元,两种方式不足1分钟均按1分钟计算.(1)如果一个月通话100分钟,甲种方式应付话费多少元?用乙种方式应付话费多少元?(2)求一个月通话多少分钟时两种方式的费用相同?(列方程解)19.我们规定,若关于x的一元一次方程ax=b的解为a+b,则称该方程为“合并式方程”,例如:3x=﹣的解为﹣,且﹣,则该方程3x =﹣是合并式方程.(1)判断x=1是否是合并式方程并说明理由;(2)若关于x的一元一次方程5x=m+1是合并式方程,求m的值.20.已知数轴上三点A,O,B对应的数分别为﹣2,0,3,点P为数轴上任意一点,其对应的数为x.(1)AB的长为;(2)如果点P到点A、点B的距离相等,那么x的值是;(3)动点M从点O出发,以每秒3个单位长度的速度沿数轴正方向运动,点N从点B出发,以每秒1个单位长度的速度沿数轴正方向运动.求动点M经过几秒追上动点N?参考答案一.选择题1.解:下列方程:①3x﹣y=2:②x++2=0;③=1;④x=0;⑤3x ﹣1≥5:⑥x2﹣2x﹣3=0;⑦x.其中一元一次方程有③④⑦,共3个.故选:C.2.解:根据题意,可得:a+3=﹣2,解得a=﹣5.故选:D.3.解:∵a=b,∴a+5=b+5,∴选项A不符合题意;∵a=b,∴a﹣c=b﹣c,∴选项B不符合题意;∵ac=bc,c=0时,a可以不等于b,∴选项C符合题意;∵,∴a=b∴选项D不符合题意.故选:C.4.解:设这件商品销售时打x折,依题意,得100×(1+80%)×﹣100=100×44%,解得:x=8.故选:C.5.解:设方框中间的数为x,则方框中的5个数字之和:x+(x﹣10)+(x+10)+(x﹣2)(x+2)=5x,平移十字方框时,方框中间的数x只能在第2或3或4列.A、405÷5=81,在第一列,故本选项不符合题意;B、545÷5=109,在第五列,故本选项不符合题意;C、2012÷5=402.4,数表中都是奇数,故本选项不符合题意;D、2015÷5=403,在第二列,故本选项符合题意;故选:D.6.解:设甲一共做了x天,由题意得:+=,故选:B.7.解:A、过程①中1.6变成16,错误,本选项不符合题意;B、过程②去分母正确,本选项符合题意;C、过程③去括号时应该为﹣200,错误,本选项不符合题意;D、过程④移项及合并同类项时应该化简为﹣30x=20错误,本选项不符合题意;故选:B.8.解:∵关于x的方程2x+m﹣9=0的解是x=3,∴2×3+m﹣9=0,∴m=3.故选:A.9.解:(1)当四条直线平行时,无交点,(2)当三条平行,另一条与这三条不平行时,有三个交点,(3)当两两直线平行时,有4个交点,(4)当有两条直线平行,而另两条不平行时,有5个交点,(5)当四条直线同交于一点时,只有一个交点,(6)当四条直线两两相交,且不过同一点时,有6个交点,(7)当有两条直线平行,而另两条不平行并且交点在平行线上时,有3个交点,故四条直线在平面内交点的个数是0或1或3或4或5或6;解方程ax+3=﹣9﹣x得x=﹣,∵x是负整数,a是整数,∴a+1=1或2或3或4或6或12,解得a=0或1或2或3或5或11.综上所述,a=0或1或3或5,满足条件的所有a的个数为4.故选:B.10.解:当3x﹣7≥3﹣2x,即x≥2时,由题意得:(3x﹣7)+(3﹣2x)=2,解得x=6;当3x﹣7<3﹣2x,即x<2时,由题意得:(3x﹣7)﹣(3﹣2x)=2,解得x=(舍去),∴x的值为6.故选:D.二.填空题11.解:设这种玩具原价是x元,根据题意可得:0.9x﹣0.8x=3,解得:x=30,∴0.8x=24(元)答:这种玩具用会员卡购买的价格是24元.故答案为:24.12.解:∵方程(m﹣2)x|m|﹣1+7=0是关于x的一元一次方程,∴m﹣2≠0且|m|﹣1=1,解得m=﹣2.故答案为:﹣2.13.解:联立方程得:,②×2﹣①得,3a=11,解得a=.故答案为:.14.解:移项、合并,得(2﹣k)x=3,解得x=,∵x为整数,k为整数,∴,,解得k=±1或3或5.故答案为:±1或3或5.15.解:根据题中的新定义化简得:3x+=2﹣x,去分母得:6x+1=4﹣2x,解得:x=.故答案为:.三.解答题16.解:(1)去括号得:5x+6﹣3x=10,移项得:5x﹣3x=10﹣6,合并得:2x=4,解得:x=2;(2)去分母得:3x=x﹣2+12,移项得:3x﹣x=﹣2+12,合并得:2x=10,解得:x=5.17.解:根据题意,x=3是方程4(2x﹣1)=3(x+m)﹣1的解,将x=3代入得4×(2×3﹣1)=3(3+m)﹣1,解得m=4,所以原方程为=﹣1,解方程得x=.18.解:(1)甲:0.15×100=15(元);乙:18+0.10×100=28(元);答:甲种方式付话费15元,乙种方式付话费28元.(2)设一个月通话x分钟时两种方式的费用相同,由题意得:18+0.10x=0.15x,解得x=360.答:一个月通话360分钟时两种方式的费用相同.19.解:(1)∵x=1,∴x=2,∵+1≠2,∴x=1不是合并式方程;(2)∵关于x的一元一次方程5x=m+1是合并式方程,∴5+m+1=,解得:m=﹣.天天向上独家原创-2022故m的值为﹣.20.解:(1)AB=|﹣2﹣3|=5.故答案为:5;(2)依题意,得:|x﹣(﹣2)|=|x﹣3|,即x+2=x﹣3或x+2=3﹣x,方程无解或x=0.5.故答案为:0.5;(3)设动点M经过t秒恰好追上动点N,依题意,得:3t=3+t,解得:t=1.5.答:动点M经过1.5秒恰好追上动点N.11 / 11。
中考数学《一元一次方程》专题练习(附带答案)
中考数学《一元一次方程》专题练习(附带答案)一、单选题1.方程x ﹣3=2x ﹣4的解为( )A .1B .﹣1C .7D .﹣72.下列等式变形正确的是( ) A .如果s=12ab ,那么b=s2aB .如果12x=6,那么x=3C .如果x ﹣3=y ﹣3,那么x ﹣y=0D .如果mx=my ,那么x=y3.某种商品,若单价降低110,要保持销售收入不变,那么销售量应增加( )A .110B .19C .18D .174.一个长方形的周长为 26cm ,若这个长方形的长减少 2cm ,宽增加 3cm ,就可以成一个正方形.设长方形的长为 xcm ,可列方程( ) A .x +2=(13−x)−3 B .x +2=(26−x)−3 C .x −2=(26−x)+3D .x −2=(13−x)+35.某超市将两件商品都以84元售出,一件提价 40% ,一件降价 20% ,则最后是( )A .无法确定B .亏本3元C .盈利3元D .不赢不亏6.下列方程变形中,正确的是( )A .方程3x +4=4x −5,移项得3x −4x =5−4B .方程−32x =4,系数化为1得x =4×(−32)C .方程3−2(x +1)=5,去括号得3−2x −2=5D .方程x−12−1=3x+13,去分母得3(x −1)−1=2(3x +1) 7.已知关于x 的一元一次方程 12020x +3=2x +b 的解为x=-3,那么关于y 的一元一次方程 12020(y +1)+3=2(y +1)+b 的解为( ) A .y=1B .y=-1C .y=-3D .y=-48.若(m ﹣2)x |2m ﹣3|=6是一元一次方程,则m 等于( )A .1B .2C .1或2D .任何数9.若关于x 的方程(k+1)x 2﹣ √2−k x+ 14=0有实数根,则k 的取值范围是( )A .k≤2且k≠﹣1B .k≤ 12且k≠﹣1C .k≤ 12D .k≥ 1210.下面是一个被墨水污染过的方程 12(1-2ax)=x+a ,答案显示此方程的解是x=-2,被墨水遮盖的是一个常数a ,则这个常数是( )A .1B .−52C .52D .−1211.把方程x2﹣x−16=1去分母,正确的是( )A .3x ﹣(x ﹣1)=1B .3x ﹣x ﹣1=1C .3x ﹣x ﹣1=6D .3x ﹣(x ﹣1)=612.解方程 2x−13+3x−44=0 时,去分母正确的是( ) A .4(2x −1)+9x −4=12 B .4(2x −1)+3(3x −4)=12 C .8x −1+9x +12=0D .4(2x −1)+3(3x −4)=0二、填空题13.湘潭历史悠久,因盛产湘莲,被誉为“莲城”.李红买了8个莲蓬,付50元,找回38元,设每个莲蓬的价格为x 元,根据题意,列出方程 .14.如表所示,已知a ,b 满足表格中的条件,则b 的值是 .x ﹣1 ax ﹣1 ax 2+b415.若关于x ,y 的方程组{x −y =m +2x +3y =m的解适合方程x +y =−2,则m = .16.某村原有林地108公顷,旱地54公公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的20%.设把x 公顷旱地改为林地,则为可列方程为 .17.将方程 2x +3y =6 写成用含x 的代数式表示y ,则y= .18.在①2x ﹣1②2x+1=3x ③|π﹣3|=π﹣3④t+1=3中,等式有 方程有 (填入式子的序号)三、综合题19.在习近平主席提出的“一带一路”战略构想下,甲、乙两城市决定开通动车组高速列车,如图, AD是从乙城开往甲城的第一列动车组列车距甲城的路程 s(km) 与运行时间 t(ℎ) 的函数图象, BC 是一列从甲城开往乙城的普通快车离开甲城的路程 s(km) 与运行时间 t(ℎ) 的函数图象,它比第一列动车组动车晚出发 1 小时,请根据图中的信息,解答下列问题:(1)填空:甲、乙两城市之间的距离为千米(2)若普通快车的速度为100km/ℎ,①用待定系数法求BC的函数表达式,并写出自变量的取值范围:②若普通快车与第一列动车组列车相遇后0.4小时与第二列动车组列车相遇,请直接写出相邻两列动车组列车间隔的时间③在②的条件下,请直接写出第二列动车组列车与第一列动车组列车和普通快车距离相等时的t值.20.某超市购进甲、乙两种节能灯共1200只,这两种商品的进价、售价如下表进价(元|只)售价(元|只)甲2530乙4560(2)为确保乙型节能灯顺利畅销,在(1)的条件下,商家决定对乙型节能灯进行打折出售,且全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折?21.根据下列条件列出方程(1)x比它的78大15(2)2xy与5的差的3倍等于24(3)y的13与5的差等于y与1的差.22.“双11”期间,某市各大商场掀起促销狂潮,现有甲、乙、丙三个商场开展的促销活动如下表所示商场优惠活动甲全场按标价的6折销售乙实行“每满100元送100元的购物券”的优惠,购物券可以在再购买时冲抵现金(如顾客购衣服220元,赠券200元,再购买裤子时可冲抵现金,不再送券)丙实行“每满100元减50元的优惠”(如某顾客购物220元,他只需付款120元)(1)三个商场同时出售某种标价为370元的破壁机和某种标价为350元的空气炸锅,若赵阿姨想买这两样厨房电器,她选择哪家商场最实惠?(2)黄先生发现在甲、乙商场同时购买一件标价为280元的上衣和一条标价为200多元的裤子,最后付款额一样,请问这条裤子的标价是多少元?(3)如果某品牌的巴西大豆在三所商场的标价都是5元/kg,请探究是否存在分别在三个商场付同样多的100多元,并且都能够购买同样质量同品牌的该大豆?如果存在,请求出在乙商场购买该大豆的方案(并指出在三个商场购买大豆的质量是多少千克,支付的费用是多少元)如果不存在,请直接回答“不存在”.23.如图,点A、B、C是数轴上三点,点A、B、C表示的数分别为-10、2、6,我们规定数铀上两点之间的距离用字母表示.例如点A与点B之间的距离,可记为AB(1)写出AB= ,BC=,AC=(2)点P是A、C之间的点,点P在数轴上对应的数为x①若PB=5时,则x=②PA =,PC=(用含x的式子表示)(3)动点M、N同时从点A、C出发,点M以每秒2个单位长度的速度沿数轴向右运动,点N以每秒2个单位长度的速度沿数向左运动,设运动时间为t(t>0)秒,求当t为何值时,点M、N之间相距2个单位长度?24.某商场将进货价为35元台灯以50元销售价售出,平均每月能售出500个,市场调研表明当销售价每上涨1元时,其销售量就将减少10个,若设每个台灯的销售价上涨a元.(1)试用含a的代数式填空涨价后,每个台灯的销售价为元,每台利润为元,商场的台灯平均每月的销售量为台,共可获利元.(2)如果商场要想销售利润平均每月至少达到10000元,现有三种方案.方案一“在原售价每台50元的基础上再上涨25元”方案二“在原售价每台50元的基础上在上涨15元”方案三“在原售价每台50元的基础上在上涨8元”.若为了减少库存,应该采用哪一种方案?并说明理由.参考答案1.【答案】A2.【答案】C3.【答案】B4.【答案】D5.【答案】C6.【答案】C7.【答案】D8.【答案】A9.【答案】C 10.【答案】B 11.【答案】D 12.【答案】D 13.【答案】8x+38=50 14.【答案】3 15.【答案】−316.【答案】20%(108+x )=54﹣x 17.【答案】6−2x 3 (或 2−23x )18.【答案】②③④②④ 19.【答案】(1)600(2)解①设BC 的解析式为s=kt+b , 由题意B (1,0),C (7,600),则有 {k +b =07k +b =600 ,解得 {k =100b =−100 .∴s=100t − 100(1≤t≤7)②设普通快车与第一列动车组列车x 小时后相遇,则100(x -1)+150x=600 解得x=145(小时) 设第二列动车组列车行驶了y 小时与普通快车相遇,则150y+100×(0.4+ 145-1)=600 解得y=3815∴相邻两列动车组列车间隔的时间= 145 − ( 3815 − 0.4)= 23(小时)③当t= 145小时时,普通快车与第一列动车组列车相遇,此时第二列动车组列车与第一列动车组列车和普通快车距离相等.当 100(t −1)+150(t −23)−600=23×150 时,第二列动车组列车与第一列动车组列车和普通快车距离相等.∴100(t −1)+150(t −23)−600=23×150解得 t =185答第二列动车组列车与第一列动车组列车和普通快车距离相等时,t 的值是 145 或 185 .20.【答案】(1)解设商场购进甲型节能灯x 只,则购进乙型节能灯(1200-x )只由题意,得25x+45(1200-x )=46000 解得x=400购进乙型节能灯1200-x=1200-400=800只.答购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元(2)解设乙型节能灯需打a折0.1×60a-45=45×20%解得a=9答乙型节能灯需打9折.21.【答案】(1)解根据题意可得x﹣78x=15(2)解根据题意可得3(2xy﹣5)=24(3)解根据题意可得13y﹣5=y﹣122.【答案】(1)解选甲商场需付(370+350)×0.6=432(元)选乙商场需付370+(350−3×100)=420(元)选丙商场需付370+350−7×50=370(元)因为370<420<432,故答案为丙商场最实惠.(2)解设这条裤子的标价为x元.根据题意,得(280+x)×0.6=280+x−2×100解得x=220.故这条裤子的标价为220元.(3)解设在乙商场先购买ykg大豆,需付100多元,再用100元的购物券再在乙商场购买100÷5=20kg 大豆.根据题意,得5(y+20)×0.6=5y,解得y=30.此时,在甲商场和乙商场都购买了30+20=50kg大豆,都需付30×5=150元.在丙商场购买50kg需付5×50−2×50=150元.所以存在分别在三个商场付同样多的100多元,并且都能买到同样质量同样品牌的该大豆.所以在乙商场的购买方案为先购买30kg大豆付150元,再用100元的购物券再在乙商场购买20kg大豆,共付了150元,购买了50kg大豆.23.【答案】(1)12416(2)解-3x+106-x(3)解相遇前,(6-2t)-(-10+2t) =2,解得t= 3.5相遇后(-10+2t)-(6-2t) = 2,解得t= 4.5.答当t=3.5或t=4.5时,点M、N之间相距2个单位长度.24.【答案】(1)(50+a)(15+a)(500-10a)(15+a)(500-10a)(2)解方案一当a=25时,(15+25)(500-10×25)=10000(元).方案二当a=15时,(15+15)(500-10×15)=10500(元).方案三当a=8时,(15+8)(500-10×8)=9660(元)<10000元,故舍去该方案.因为要减少库存,所以应采用方案二.。
九年级数学中考复习专题——方程与不等式(附答案)
知识点一 一元一次方程及其解法1.一元一次方程:只含有一个未知数,并且未知数的次数为1,这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠.注意:x 前面的系数不为0.2.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 3.一元一次方程0(0)ax b a +=≠的求解步骤知识点二 二元一次方程(组)及解法1.二元一次方程:含有2个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程. 2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.二元一次方程组由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量,其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.二元一次方程组的解法(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,消去一个未知数,化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数,化二元一次方程组为一元一次方程.知识点三分式方程及其解法1.分式方程:分母中含有的方程叫做分式方程;2.分式方程的解法:(1)解分式方程的基本思路是把分式方程转化为整式方程。
(2)解分式方程的一般步骤:第一步:,将分式方程转化为整式方程;第二步:解整式方程;第三步:.(3)增根:在进行分式方程去分母的变形时,有时可能产生使原方程分母为的根,称为方程的增根。
因此,解分式方程时必须验根,验根的方法是代入最简公分母,使最简公分母为的根是增根应舍去。
(4)产生增根的原因:将分式方程化为整式方程时,在方程两边同乘以使最简公分母为的因式。
知识点四一元二次方程及其解法1.一元二次方程:只含有个未知数(一元),并且未知数最高次数是2(二次)的方程,叫做一元二次方程。
中考专题复习-一元一次方程(组)含答案
中考数学总复习-方程与不等式一次方程(组)【基础知识回顾】一、等式的概念及性质:1、等式:用“=”连接表示关系的式子叫做等式2、等式的性质:①、性质1:等式两边都加(减)所得结果仍是等式,即:若a=b,那么a±c=②、性质2:等式两边都乘以或除以(除数不为0)所得结果仍是等式即:若a=b,那么a c= ,若a=b(c≠o)那么a c =【名师提醒:①用等式性质进行等式变形,必须注意“都",不能漏项②等式两边都除以一个数或式时必须保证它的值】二、方程的有关概念:1、含有未知数的叫做方程2、使方程左右两边相等的的值,叫做方程的组3、叫做解方程4、一个方程两边都是关于未知数的,这样的方程叫做整式方程三、一元一次方程:1、定义:只含有一个未知数,并且未知数的次数都是的方程叫做一元一次方程,一元一次方程一般可以化成的形式。
2、解一元一次方程的一般步骤:1。
2。
3。
4。
5。
【名师提醒:1、一元一次方程的解法的各个步骤的依据分别是等式的性质和合并同类法则,要注意灵活准确运用;2、特别提醒:去分母时应注意不要漏乘项,移项时要注意.】四、二元一次方程组及解法:1、二元一次方程的一般形式:ax+by+c=0(a.b 。
c 是常数,a≠0,b≠0);2、由几个含有相同未知数的 合在一起,叫做二元一次方程组;3、 二元一次方程组中两个方程的 叫做二元一次方程组的解;4、 解二元一次方程组的基本思路是: ;5、 二元一次方程组的解法:① 消元法 ② 消元法【名师提醒:1、一个二元一次方程的解有 组,我们通常在实际应用中要求其正整数解2、二元一次方程组的解应写成五、列方程(组)解应用题:一般步骤:1、审:弄清题意,分清题目中的已知量和未知量2、设:直接或间接设未知数3、列:根据题意寻找等量关系列方程(组)4、解:解这个方程(组),求出未知数的值5、验:检验方程(组)的解是否符合题意6:答:写出答案(包括单位名称)【名师提醒:1、列方程(组)解应用题的关键是: 2、几个常用的等量关系:①路程= × ②工作效率= 】 【重点考点例析】考点一:二元一次方程组的解法对应训练 1.(2016•湘西州)解方程组: 213211x y x y +=⎧⎨-=⎩①②. .x=a y=b 的形式考点二:一(二)元一次方程的应用例2 (2016•齐齐哈尔)假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案()A.5种B.4种C.3种D.2种故选:C.例3 (2016•张家界)为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2。
中考数学总复习《一元一次方程》专项测试题-附参考答案
中考数学总复习《一元一次方程》专项测试题-附参考答案(考试时间:60分钟总分:100分)一、选择题(共8题,共40分)1.过去时全班同学每人互发一条祝福短信,共发了380条,设全班有x名同学,列方程为( )A.12x(x−1)=380B.x(x−1)=380C.2x(x−1)=380D.x(x+1)=3802.若关于x的方程2x+a−4=0的解是x=−2,则a的值等于( )A.−8B.0C.2D.83.如果x=2是方程12x+a=−1的解,那么a的值是( )A.−2B.2C.0D.−64.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( )A.3场B.4场C.5场D.6场5.解方程x−16=3−2x−14,去分母时,方程两边乘各分母的最小公倍数( )A.10B.12C.24D.66.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.则此人第三天走的路程为( )A.96里B.48里C.24里D.12里7.如图,用火柴棍分别拼成一排三角形组成的图形和一排正方形组成的图形,如果搭建三角形和正方形一共用了2020根火柴,且三角形的个数比正方形的个数多4个,则搭建三角形的个数是( )A.402B.406C.410D.4208.一元一次方程x−2=0的解是( )A.x=2B.x=−2C.x=0D.x=1二、填空题(共5题,共15分)9.一件商品如果按标价的八折销售,仍可获得25%的利润.已知该商品的成本价是40元,则该商品标价为元.10.小明在做作业时,不小心把方程中的一个常数污染了看不清楚,被污染的方程为:2y−12y=12−■,怎么办?小明想了想,便翻看了书后的答案,此方程的解为y=−53,于是,他很快知道了这个常数,他补出的这个常数是.11.若x=−2是方程m(x+3)−3m−x=6的解,则m的值为.12.关于x的一元一次方程x2022−1=2022x+m的解为x=−2019,则关于y的方程3−y2022−1=2022(3−y)+m的解为.13.−113的倒数的相反数是。
中考数学一轮复习《一元一次方程》练习题(含答案)
中考数学一轮复习《一元一次方程》练习题(含答案)一、单选题1.下列方程中解是2x =的方程是( )A .360x +=B .240x -+=C .122x =D .240x += 2.关于x 的不等式21x a +≥的解集如图所示,则a 的值是( )A .-1B .1C .2D .33.已知a =b ,根据等式的性质,错误的是( )A .22a b +=+B .ac bc =C .a b c c =D .2211a b c c =++ 4.若方程()2180m m x---=是关于x 的一元一次方程,则m =( ) A .1 B .2 C .3 D .1或35.下列命题中是真命题的是( )A .同位角相等,两直线平行B .钝角三角形的两个锐角互余C .若实数a ,b 满足a 2=b 2,则a =bD .若实数a ,b 满足a <0,b >0,则ab >06.某车间原计划用15小时生产一批零件,实际每小时多生产了10件,用了13小时不但完成了任务,而且还多生产了80件,设原计划每小时生产x 个零件,那么下列方程正确的是( )A .11(10)801513x x =++B .11(10)801513x x +=+ C .1513(10)80x x =++D .13(10)1580x x +=+ 7.若a b =,下列变形错误的是( )A .11a b +=+B .a m b m -=-C .22a b =D .23a b = 8.《孙子算经》中记载:今有百鹿入城,家取一鹿,不尽,又三家共鹿适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?设有x 户人家,可列方程为( )A .3100x x +=B .3100x x -=C .1003x x -=D .1003x x += 9.已知点P 的坐标为()2,3x x +,点M 的坐标为()1,2x x -,PM 平行于y 轴,则P 点的坐标为( )A .()2,2-B .()6,6C .()2,2-D .()6,6--10.在平面直角坐标系中,若直线y x m =-+不经过第一象限,则关于x 的方程210mx x ++=的实数根的个数为( )A .0个B .1个C .2个D .1或2个11.如图,将4张形状、大小完全相同的小长方形纸片分别以图1、图2的方式放入长方形ABCD 中,若图1中的阴影部分周长比图2的阴影部分周长少1,则图中BE 的长为( )A .14B .12C .1D .212.小江去商店购买签字笔和笔记本(其中签字笔和笔记本的单价相同).若购买20支签字笔和15本笔记本,则他身上的钱还缺25元;若购买19支签字笔和12本笔记本,则他身上的钱会剩下15元.若小江购买17支签字笔和9本笔记本,则( )A .他身上的钱还缺65元B .他身上的钱会剩下65元C .他身上的钱还缺115元D .他身上的钱会剩下115元二、填空题13.已知等式285x y -+=,则32x y -+=______.14.若方程2x -m =1和方程3x =2(x -1)的解相同,则m 的值为__________.15.一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是___ 1621x -5x 的值为 _____.17.若()235k y k x -=-+是一次函数,则k =_________.18.已知x =﹣2时,二次三项式x 2﹣2mx +4的值等于﹣4,当x =_____时,这个二次三项式的值等于﹣1.19.对于实数a ,b ,定义运算“※”如下:a ※b =a 2﹣ab ,例如,5※3=52﹣5×3=10.若(1)x +※(4)10x -=,则x 的值为_____.20.一个装有红豆和黄豆共计200颗的瓶子,现将瓶中豆子充分摇匀,再从瓶中取出80颗豆子时,发现其中有20颗红豆,根据实验估计该瓶装有红豆大约_________颗.三、解答题21.解方程:(1)2﹣3x =5﹣2x ;(2)3(3x ﹣2)=4(1+x ).22.解下列方程:(1)4385-=+x x ; (2)7531132y y --=-.23.一个正数a 的两个不相等的平方根分别是21b -和4b +.(1)求b 的值;(2)求a b +的立方根.24.我们规定一种运算=-a b ad cb c d,如232534245=⨯-⨯=-,再如14224-=-+-x x .按照这种运算规定,解答下列各题:(1)计算3245--=___________;(2)若22235-=-x x,求x 的值;(3)若88123332--+-mx x与51--n x的值始终相等,求m,n的值.25.某移动公司设了两类通讯业务,A类收费标准为不管通话时间多长使用者都应缴50元月租费,然后每通话1分钟,付0.4元,B类收费标准为用户不缴月租费,每通话1分钟,付话费0.6元,若一个月通讯x分钟,两种方式费用分别是A y,B y元.(1)分别写出A y,B y与x之间的函数关系式.(2)某人估计一个月通话时间为300分钟,应选哪种通讯方式合算些,请书写计算过程.(3)小明用的A卡,他计算了一下,若是B卡,他本月话费将会比现在多100元,请你算一下小明实际话费是多少元?26.接种疫苗是阻断新冠病毒传播的有效途径,为保障人民群众的身体健康,我市启动新冠疫苗加强针接种工作,已知今年3月甲接种点平均每天接种加强针的人数比乙接种点平均每天接种加强针的人数多20%,两接种点平均每天共有440人接种加强针.(1)求3月平均每天分别有多少人前往甲、乙两接种点接种加强针?(2)4月份,甲接种点平均每天接种加强针的人数比3月少10m人,乙接种点平均每天接种加强针的人数比3月多30%,在m天期间,甲、乙两接种点共有2250人接种加强针,求m 的值.27.冰墩墩(BingDwenDwen),是2022年北京冬季奥运会的吉祥物.将熊猫形象与富有超能量的冰晶外壳相结合,头部外壳造型取自冰雪运动头盔,装饰彩色光环,整体形象酷似航天员.冬奥会来临之际,冰墩墩玩偶非常畅销.小冬在某网店选中A,B两款冰墩墩玩偶,决定从该网店进货并销售.两款玩偶的进货价和销售价如下表:进货价(元/个)20 15 销售价(元/个)28 20(1)第一次小冬550元购进了A ,B 两款玩偶共30个,求两款玩偶各购进多少个.(2)第二次小冬进货时,网店规定A 款玩偶进货数量不得超过B 款玩偶进货数量的一半.小冬计划购进两款玩偶共30个,应如何设计进货方案才能获得最大利润,最大利润是多少?28.对于数轴上的点P ,Q ,给出如下定义:若点P 到点Q 的距离为d (0d ≥),则称d 为点P 到点Q 的追击值,记作[]d PQ .例如,在数轴上点P 表示的数是5,点Q 表示的数是2,则点P 到点Q 的追击值为[]3d PQ =.(1)点M ,N 都在数轴上,点M 表示的数是1,且点N 到点M 的追击值[]d MN a =(0a ≥),则点N 表示的数是______(用含a 的代数式表示);(2)如图,点C 表示的数是1,在数轴上有两个动点A ,B 都沿着正方向同时移动,其中A 点的速度为每秒4个单位,B 点的速度为每秒1个单位,点A 从点C 出发,点B 从表示数b 的点出发,且数b 不超过5,设运动时间为t (0t ≥).①当4b =且t =______时,点A 到点B 的追击值[]2d AB =;②当时间t 不超过3秒时,求点A 到点B 的追击值[]d AB 的最大值是多少?(用含b 的代数式表示)参考答案1.B2.D3.C4.C5.A6.D7.D8.D9.A10.D11.B12.B13.614.-515.100元16.317.-318.﹣1或﹣519.120.5021.(1)2﹣3x =5﹣2x2352x x -=-3x -=解得3x =-(2)3(3x ﹣2)=4(1+x )9644x x -=+9446x x -=+510x =2x =22.(1)解:4385-=+x x4835-=+x x48x -=2x =-.(2)解:7531132y y --=- ()()2756331y y -=--1410693y y -=-+1096314y y -+=+-5y -=-5y =.23.(1)解:一个正数a 的两个不相等的平方根分别是21b -和4b +,21(4)0b b +∴-=+,解得1b .(2)解:由(1)已得:1b, []22(21)2(1)19a b ∴=-=⨯--=,9(1)8a b +=+-=∴,a b ∴+的立方根2=.24.(1)解:根据题意354(2)73245---⨯⨯-=-=-, 故答案为:7-(2)解:根据题意22235-=-x x, 转化为2(5)3(2)2x x ⨯--⨯-=, 解方程,得12x =-. (3)解:88123833(81)(2)243732332mx x mx x mx x --+=----+=--+-; 515(1)()5x n x n n x -=---=--;根据题意24375mx x x n --+=-恒成立,即(243)75m x x n --+=-,2435m --=,7n -=, 解得,13m =-,7n =-. 25.(1)解:根据题意得,A 类的费用是月租费加上通话费,即500.4A y x =+; B 类的费用是通话费与时间的乘积,即0.6B y x =,∴500.4A y x =+,0.6B y x =.(2)解:通话时间为300分钟,根据(1)中的结论得,500.4500.4300170A y x =+=+⨯=(元),0.60.6300180B y x ==⨯=(元)∵A B y y <,∴选择A 类.(3)解:根据题意得,100A B y y +=,∴500.41000.6x x ++=,解方程得,750x =,即小明打电话的时间为750分钟, ∴500.4500.4750350A y x =+=+⨯=(元),∴小明实际话费是350元.26.(1)解:设3月平均每天有x 人前往乙接种点接种加强针,则3月平均每天有(1+20%)x 人前往甲接种点接种加强针,依题意得:(1+20%)x +x =440,解得:x =200,∴(1+20%)x =(1+20%)×200=240.答:3月平均每天有240人前往甲接种点接种加强针,有200人前往乙接种点接种加强针;(2)解:依题意得:(240-10m )m +200×(1+30%)m =2250,整理得:m 2-50m +225=0,解得:m 1=5,m 2=45.当m =5时,240-10m =240-10×5=190>0,符合题意;当m =45时,240-10m =240-10×45=-210<0,不符合题意,舍去.答:m 的值为5.27.(1)解:设A 款玩偶购进x 个,B 款玩偶购进(30)x -个,由题意,得2015(30)550x x +-=,解得:20x .302010-=(个).答:A 款玩偶购进20个,B 款玩偶购进10个;(2)解:设A 款玩偶购进a 个,B 款玩偶购进(30)a -个,获利y 元,由题意,得(2820)(2015)(30)3150y a a a =-+--=+. A 款玩偶进货数量不得超过B 款玩偶进货数量的一半.1(30)2a a ∴-, 10a ∴,3150y a =+.30k ∴=>,y ∴随a 的增大而增大.10a ∴=时,180y =最大元.B ∴款玩偶为:301020-=(个).答:按照A 款玩偶购进10个、B 款玩偶购进20个的方案进货才能获得最大利润,最大利润是180元.28.(1)由题意可得:点M 到点N 的距离为a , 当N 在M 左侧时,则N 表示的数为1a -, 当N 在M 右侧时,则N 表示的数为1a +, 故答案为1a -或1a +;(2)①由题意可得:点A 表示的数为14t +,点B 表示的数为4t + 当点A 在B 的左侧时,即144t t +<+,解得1t <, ∵[]2d AB =,∴()4142t t +-+=,解得13t = 当点A 在B 的右侧时,即144t t +>+,解得1t >, ∵[]2d AB =,∴()1442t t +-+=,解得2t = 综上,53t =或13t =时,[]2d AB =; 故答案为:53或13; ②由题意可得:点A 表示的数为14t +,点B 表示的数为b t + 当点B 在点A 的左侧或重合时,此时1b ≤,随着t 的增大,A 与B 之间的距离越来越大, ∵03t ≤≤时,即3t =时,[]143(3)10d AB b b =+⨯-+=-, ∵b 不超过5,∴105b -≥当点B 在点A 的右侧时,此时1b >,在AB 、不重合的情况下,A B 、之间的距离越来越小,[]d AB 最大为初始状态,即0=t 时,[]1d AB b =-,∵b 不超过5,∴14b -≤在AB 、可以重合的情况下,14t b t +=+,13b t =+,b 的最大值为10,又数b 不超过5, ∴,A B 不重合,综上, []d AB 最大值是10b -.。
中考数学复习专题元一次方程含中考真题解析
专题06 一元一次方程2年中考2015年题组1.2015梧州一元一次方程410x +=的解是A .14B . 14-C . 4D . 4-答案B .解析试题分析:41x =-,所以14x =-.故选B . 考点:解一元一次方程.2.2015无锡方程2132x x -=+的解为A .x=1B .x=﹣1C .x=3D .x=﹣3答案D .解析试题分析:移项得:2x ﹣3x=2+1,合并得:﹣x=3.解得:x=﹣3,故选D .考点:解一元一次方程.3.2015南充学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,今年购置计算机的数量是A.25台 B.50台 C.75台 D.100台答案C.考点:一元一次方程的应用.4.2015深圳某商品的标价为200元,8折销售仍赚40元,则商品进价为元.A.140 B.120 C.160 D.100答案B.解析试题分析:设商品的进价为每件x元,售价为每件×200元,由题意,得×200=x+40,解得:x=120.故选B.考点:一元一次方程的应用.5.2015永州永州市双牌县的阳明山风光秀丽,历史文化源远流长,尤以山顶数万亩野生杜鹃花最为壮观,被誉为“天下第一杜鹃红”.今年“五一”期间举办了“阳明山杜鹃花旅游文化节”,吸引了众多游客前去观光赏花.在文化节开幕式当天,从早晨8:00开始每小时进入阳明山景区的游客人数约为1000人,同时每小时走出景区的游客人数约为600人,已知阳明上景区游客的饱和人数约为2000人,则据此可知开幕式当天该景区游客人数饱和的时间约为A.10:00 B.12:00 C.13:00 D.16:00答案C.解析试题分析:设开幕式当天该景区游客人数饱和的时间约为x点,则x﹣8×1000﹣600=2000,解得x=13.即开幕式当天该景区游客人数饱和的时间约为13:00.故选C.考点:一元一次方程的应用.6.2015长沙长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为A.元 B.875元 C.550元 D.750元答案B.考点:一元一次方程的应用.7.2015大庆某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总额相同,则1月份的售价为A .880元B .800元C .720元D .1080元答案A .解析试题分析:设1月份每辆车售价为x 元,则2月份每辆车的售价为x ﹣80元,依题意得 100x=x ﹣80×100×1+10%,解得x=880.即1月份每辆车售价为880元.故选A .考点:一元一次方程的应用.8.2015济南若代数式45x -与212x -的值相等,则x 的值是A .1B .32C .23 D .2答案B .解析 试题分析:根据题意得:21452x x --=,去分母得:8x ﹣10=2x ﹣1,解得:x=32,故选B . 考点:解一元一次方程.9.2015杭州某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x 公顷旱地改为林地,则可列方程A .54﹣x=20%×108B .54﹣x=20%108+xC .54+x=20%×162D .108﹣x=20%54+x答案B .解析试题分析:设把x 公顷旱地改为林地,根据题意可得方程:54﹣x=20%108+x .故选B .考点:由实际问题抽象出一元一次方程.10.2015大连方程32(1)4x x +-=的解是A .25x =B .56x =C .x=2D .x=1答案C .考点:解一元一次方程.二、填空题11.2015崇左4个数a 、b 、c 、d 排列成 a bc d ,我们称之为二阶行列式,规定它的运算法则为: a b ad bc c d =-.若 3 3123 3x x x x +-=-+,则x=____.答案1.解析 试题分析:根据规定可得:223 3(3)(3)12123 3x x x x x x x +-=+--==-+,整理得:1x =,故答案为:1.考点:1.解一元一次方程;2.新定义.12.2015常州已知2x =是关于x 的方程1(1)2a x a x +=+的解,则a 的值是 . 答案45.解析试题分析:把2x =代入方程得:1322a a =+,解得:a=45.故答案为:45. 考点:一元一次方程的解. 13.2015甘孜州已知关于x 的方程332x a x -=+的解为2,则代数式221a a -+的值是 .答案1.解析 试题分析:∵关于x 的方程332x a x -=+的解为2,∴23232a -=+,解得a=2,∴原式=4﹣4+1=1.故答案为:1.考点:一元一次方程的解.14.2015孝感某市为提倡节约用水,采取分段收费.若每户每月用水不超过20m3,每立方米收费2元;若用水超过20m3,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水 m3.答案28.解析试题分析:设该用户居民五月份实际用水x 立方米,故20×2+x﹣20×3=64,故x=28.故答案为:28.考点:一元一次方程的应用.15.2015荆门王大爷用280元买了甲、乙两种药材,甲种药材每千克20元,乙种药材每千克60元,且甲种药材比乙种药材多买了2千克,则甲种药材买了千克.答案5.考点:一元一次方程的应用.16.2015安徽省已知实数a、b、c满足a+b=ab=c,有下列结论:①若c≠0,则111a b+=;②若a=3,则b+c=9;③若a=b=c,则abc=0;④若a、b、c中只有两个数相等,则a+b+c=8.其中正确的是把所有正确结论的序号都选上.答案①③④.解析试题分析:①∵a+b=ab≠0,∴111a b+=,此选项正确;②∵a=3,则3+b=3b,b=32,c=92,∴b+c=3922+=6,此选项错误;③∵a=b=c,则2a=2a=a,∴a=0,abc=0,此选项正确;④∵a、b、c中只有两个数相等,不妨a=b,则2a=2a,a=0,或a=2,a=0不合题意,a=2,则b=2,c=4,∴a+b+c=8,此选项正确.其中正确的是①③④.故答案为:①③④.考点:1.分式的混合运算;2.解一元一次方程.17.2015白银关于x的方程22403kx x--=有实数根,则k的取值范围是.答案k≥﹣6.解析试题分析:当k=0时,2403x--=,解得x=16-,当k≠0时,方程22403kx x--=是一元二次方程,根据题意可得:△=2164()03k-⨯-≥,解得k≥﹣6,且k≠0,综上k≥﹣6,故答案为:k≥﹣6.考点:1.根的判别式;2.一元一次方程的解.18.2015湘潭湘潭盘龙大观园开园啦其中杜鹃园的门票售价为:成人票每张50元,儿童票每张30元.如果某日杜鹃园售出门票100张,门票收入共4000元.那么当日售出成人票张.答案50.考点:一元一次方程的应用.19.2015牡丹江某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为元.答案100.解析试题分析:设该商品每件的进价为x元,则150×80%﹣10﹣x=x×10%,解得x=100.即该商品每件的进价为100元.故答案为:100.考点:一元一次方程的应用.20.2015龙东某超市“五一放价”优惠顾客,若一次性购物不超过300元不优惠,超过300元时按全额9折优惠.一位顾客第一次购物付款180元,第二次购物付款288元,若这两次购物合并成一次性付款可节省元.答案18或.考点:1.一元一次方程的应用;2.分类讨论;3.综合题.21.2015鄂尔多斯如图,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行.若甲的速度是乙的速度的3倍,则它们第2015次相遇在边上.答案AB.解析试题分析:设正方形的边长为a,因为乙的速度是甲的速度的3倍,时间相同,甲乙所行的路程比为3:1,把正方形的每一条边平均分成2份,由题意知:①第一次相遇甲乙行的路程和为2a,甲行的路程为2a×113+=2a,乙行的路程为2a×313+=32a,在AB边相遇;②第二次相遇甲乙行的路程和为4a,甲行的路程为4a×113+=a,乙行的路程为4a×313+=3a,在CB边相遇;③第三次相遇甲乙行的路程和为4a,甲行的路程为4a×113+=a,乙行的路程为4a×313+=3a,在DC边相遇;④第四次相遇甲乙行的路程和为4a,甲行的路程为4a×113+=a,乙行的路程为4a×313+=3a,在AB边相遇;⑤第五次相遇甲乙行的路程和为4a,甲行的路程为4a×113+=a,乙行的路程为4a×313+=3a,在AD边相遇;…因为2015=350344⨯,所以它们第2015次相遇在边AB上.故答案为:AB.考点:1.一元一次方程的应用;2.动点型.22.2015重庆市从﹣2,﹣1,0,1,2这5个数中,随机抽取一个数记为a,则使关于x 的不等式组21162212x x a -⎧≥-⎪⎨⎪-<⎩有解,且使关于x 的一元一次方程32123x a x a -++=的解为负数的概率为 .答案35.考点:1.概率公式;2.一元一次方程的解;3.解一元一次不等式组;4.综合题;5.压轴题.23.2015义乌实验室里,水平桌面上有甲、乙、丙三个圆柱形容器容器足够高,底面半径之比为1:2:1,用两个相同的管子在容器的5cm 高度处连通即管子底端离容器底5cm,现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升65cm,则开始注入 分钟的水量后,甲与乙的水位高度之差是0.5cm .答案35或3320或17140.考点:1.一元一次方程的应用;2.分类讨论.24.2015嘉兴公元前1700年的古埃及纸草书中,记载着一个数学问题:“它的全部,加上它的七分之一,其和等于19.”此问题中“它”的值为________.答案133 8.解析试题分析:设“它”为x,根据题意得:1197x x+=,解得:x=1338,则“它”的值为1338,故答案为:1338.考点:1.一元一次方程的应用;2.数字问题.25.2015百色某次知识竞赛有20道必答题,每一题答对得10分,答错或不答都扣5分,3道抢答题,每一题抢答对得10分,抢答错扣20分,抢答不到不得分也不扣分.甲乙两队决赛,甲队必答题得了170分,乙队必答题只答错了1题.1甲队必答题答对答错各多少题2抢答赛中,乙队抢答对了第1题,又抢到了第2题,但还没作答时,甲队拉拉队队员小黄说:“我们甲队输了”,小汪说:“小黄的话不一定对”,请你举一例说明“小黄的话”有何不对.答案1甲队答对18道题,则甲队答错或不答的有2道题;2举例见试题解析.考点:1.一元一次方程的应用;2.分类讨论;3.综合题.26.2015泰州某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标答案20.解析试题分析:设每件衬衫降价x元,根据销售完这批衬衫正好达到盈利45%的预期目标,列出方程求解即可.试题解析:设每件衬衫降价x元,依题意有:120×400+120﹣x×100=80×500×1+45%,解得x=20.答:每件衬衫降价20元时,销售完这批衬衫正好达到盈利45%的预期目标.考点:1.一元一次方程的应用;2.销售问题.27.2015深圳下表为深圳市居民每月用水收费标准,单位:元/m3.1某用户用水10立方米,公交水费23元,求a的值;2在1的前提下,该用户5月份交水费71元,请问该用户用水多少立方米答案1;228.考点:一元一次方程的应用.28.2015宁德为支持亚太地区国家基础设施建设,由中国倡议设立亚投行,截止2015年4月15日,亚投行意向创始成员国确定为57个,其中意向创始成员国数亚洲是欧洲的2倍少2个,其余洲共5个,求亚洲和欧洲的意向创始成员国各有多少个答案亚洲的意向创始成员国有34个,欧洲的意向创始成员国有18个.解析试题分析:设欧洲的意向创始成员国有x个,亚洲的意向创始成员国有2x ﹣2个,根据题意得出方程求解即可.试题解析:设欧洲的意向创始成员国有x个,亚洲的意向创始成员国有2x ﹣2个,根据题意得:2x﹣2+x+5=57,解得:x=18,∴2x﹣2=34.答:亚洲的意向创始成员国有34个,欧洲的意向创始成员国有18个.考点:一元一次方程的应用.29.2015海南省小明想从“天猫”某网店购买计算器,经査询,某品牌A号计算器的单价比B型号计算器的单价多10元,5台A型号的计算器与7台B型号的计算器的价钱相同,问A、B两种型号计算器的单价分别是多少答案A 35元,B 25元.解析试题分析:设A号计算器的单价为x元,则B型号计算器的单价是x﹣10元,根据题意列出方程并解答.试题解析:设A号计算器的单价为x元,则B型号计算器的单价是x﹣10元,依题意得:5x=7x﹣10,解得x=35.所以35﹣10=25元.答:A号计算器的单价为35元,则B型号计算器的单价是25元.考点:一元一次方程的应用.30.2015怀化小明从今年1月初起刻苦练习跳远,每个月的跳远成绩都比上一个月有所增加,而且增加的距离相同.2月份,5月份他的跳远成绩分别为4.1m,4.7m.请你算出小明1月份的跳远成绩以及每个月增加的距离.答案小明1月份的跳远成绩是3.9m,每个月增加的距离是0.2m.考点:一元一次方程的应用.31.2015云南省为有效开展阳光体育活动,云洱中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少答案5,3.解析试题分析:设胜了x场,那么负了8﹣x场,根据得分为13分可列方程求解.试题解析:设胜了x场,那么负了8﹣x场,根据题意得:2x+18﹣x=13,x=5,8﹣5=3.答:九年级一班胜5场、负3场.考点:一元一次方程的应用.32.2015本溪暑期临近,本溪某旅行社准备组织“亲子一家游”活动,去我省沿海城市旅游,报名的人数共有69人,其中成人的人数比儿童人数的2倍少3人.1旅游团中成人和儿童各有多少人2旅行社为了吸引游客,打算给游客准备一件T恤衫,成人T恤衫每购买10件赠送1件儿童T恤衫不足10件不赠送,儿童T恤衫每件15元,旅行社购买服装的费用不超过1200元,请问每件成人T恤衫的价格最高是多少元答案1成人有45人,儿童有24人;220.考点:1.一元一次不等式的应用;2.一元一次方程的应用;3.最值问题.2014年题组1.2014年广西玉林中考下面的数中,与﹣2的和为0的是A.2 B.2- C.12 D.12-答案A.解析试题分析:设这个数为x,由题意得:x+﹣2=0,解得,x=2,故选A.考点1.有理数的加法;2.方程思想的应用.2. 2014年湖北咸宁中考若代数式x+4的值是2,则x 等于A. 2B. 2-C. 6D. 6-答案B .解析试题分析:依题意,得x+4=2,解得x=﹣2.故选B .考点:解一元一次方程.3. 2014年山东滨州中考方程2x 13-=的解是A .-1B .12 C .1 D .2答案D .解析试题分析:根据方程两边左右相等的未知数的值叫做方程的解的定义,将各选项代入2x 13-=验证即可知2是方程的解或解方程2x 13-=与各选项比较.故选D .考点:方程的解.4.2014·湖州中考方程2x ﹣1=0的解是x= .答案1 2.解析试题分析:根据等式性质计算.即解方程步骤中的移项、系数化为1:移项得:2x=1,系数化为1得:x=1 2.考点:方程的解.5.2014年黑龙江大庆中考某市出租车起步价是5元3公里及3公里以内为起步价,以后每公里收费是元,不足1公里按1公里收费,小明乘出租车到达目的地时计价器显示为元,则此出租车行驶的路程可能为A. 5.5公里B. 公里C. 公里D. 公里答案B.考点:一元一次方程的应用.6.2014年江苏无锡中考某文具店一支铅笔的售价为元,一支圆珠笔的售价为2元.该店在“61儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x支,则依题意可列得的一元一次方程为A. 1.2×+2×60+x=87B. ×+2×60﹣x=87C. 2×+×60+x=87D. 2×+×60﹣x=87答案B.解析试题分析:要列方程,首先要根据题意找出存在的等量关系,本题根据“铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元”,得出等量关系:x支铅笔的售价+60﹣x支圆珠笔的售价=87,据此列出方程:×+2×60﹣x=87.故选B.考点:由实际问题抽象出一元一次方程销售问题.7.2014年山东枣庄中考某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是A. 350元B. 400元C. 450元D. 500元答案B.解析试题分析:设该服装标价为x元,由题意,根据售价﹣进价=利润得﹣200=200×20%,解得:x=400.∴该服装标价为400元.故选B.考点:一元一次方程的应用.8.2014·绍兴中考天平呈平衡状态,其中左侧秤盘中有一袋玻璃球,右侧秤盘中也有一袋玻璃球,还有2个各20克的砝码.现将左侧袋中一颗玻璃球移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图2,则被移动的玻璃球的质量为A .10克B .15克C .20克D .25克答案A .考点:一元一次方程的应用.9. 2014年山东滨州中考解方程:2x 11x 232++-= 答案解:去分母,得()()1222x 131x -+=+,去括号,得124x 233x --=+,移项,得4x 3x 3122--=-+,合并同类项,得7x 7-=-,化x 的系数为1,得x 1=.∴原方程的解为x 1=.考点:解一元一次方程.10.2014·吉林中考为促进交于均能发展,A市实行“阳光分班”,某校七年级一班共有新生45人,其中男生比女生多3人,求该班男生、女生各有多少人.答案该班男生、女生分别是24人、21人.考点:一元一次方程的应用.考点归纳归纳 1:有关概念基础知识归纳:一元一次方程的概念1、方程含有未知数的等式叫做方程.2、方程的解能使方程两边相等的未知数的值叫做方程的解.3、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程 叫做一元一次方程的标准形式,a 是未知数x 的系数,b 是常数项.基本方法归纳:判断一元一次方程时只需看未知数的个数及未知数的次数为1即可;方程的解只需带入方程看等式是否成立即可.注意问题归纳: 未知数的系数必须不能为零.例12014·眉山方程312x -=的解是A .1x =B .1x =-C .13x =-D .13x = 答案A .解析 试题分析:将原方程移项合并同类项得:3x=3,解得:x=1.故选A . 考点:一元一次方程的解.归纳 2:一元一次方程的解法基础知识归纳:1、等式的性质1等式的两边都加上或减去同一个数或同一个整式,所得结果仍是等式.2等式的两边都乘以或除以同一个数除数不能是零,所得结果仍是等式.2、解一元一次方程的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1.基本方法归纳:根据解一元一次方程的步骤计算即可.注意问题归纳:利用等式的性质2时注意:除数不能是零;解方程去分母时应该每项都乘;去括号时注意应该变号.例22014年山东滨州中考解方程:2x11x 232++ -=考点:解一元一次方程.归纳 3:一元一次方程的应用基础知识归纳:1、列一元一次方程解应用题的一般步骤:1审题,分析题中已知什么,未知什么,明确各量之间的关系,寻找等量关系.2设未知数,一般求什么就设什么为x,但有时也可以间接设未知数.3列方程,把相等关系左右两边的量用含有未知数的代数式表示出来,列出方程.4解方程.5检验,看方程的解是否符合题意.6写出答案.2、解应用题的书写格式:设→根据题意→解这个方程→答.基本方法归纳:解题时先理解题意找到等量关系列出方程再解方程最后检验即可.注意问题归纳:找对等量关系最后一定要检验.例32014山东淄博为鼓励居民节约用电,某省试行阶段电价收费制,具体执行方案如表:第二档大于200小于400第三档大于等于400例如:一户居民七月份用电420度,则需缴电费420×=357元.某户居民五、六月份共用电500度,缴电费元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度.问该户居民五、六月份各月电多少度答案1.考点:一元一次方程的应用.1年模拟1.2015届北京市门头沟区中考二模为了倡导绿色出行,某市为市民提供了自行车租赁服务,其收费标准如下:如果小明某次租赁自行车3小时,缴费14元,请判断小明该次租赁自行车所在地区的类别是类填“A、B、C”中的一个.答案B.解析试题分析:如果租赁自行车所在地区的类别是A类,应该收费:×4+×8=28元,如果停车所在地区的类别是B类,应该收费:×4+×8=14元,如果停车所在地区的类别是C类,应该收费:0×4+×8=6元,故答案为:B.考点:1.一元一次方程的应用;2.分段函数.2.2015届广东省佛山市初中毕业班综合测试某种衣服每件的进价为100元,如果按标价的八折销售时,每件的利润率为20%,则这种衣服每件的标价是元.答案150.解析试题分析:设这种衣服的标价是x元,80%x-100=100×20%,x=150,这种衣服的标价是150元.故答案为:150.考点:一元一次方程的应用.3.2015届北京市门头沟区中考二模列方程或方程组解应用题:4年北京市生产运营用水和居民家庭用水的总和为亿立方米,其中居民家庭用水比生产运营用水的3倍还多亿立方米,问生产运营用水和居民家庭用水各多少亿立方米.答案和.考点:一元一次方程的应用.。
中考数学一轮复习专题训练:一元一次方程(附答案)
2020 年中考数学一轮复习专题训练:一元一次方程一.选择题(共 8 小题)1.以下四个式子中,是方程的是()A .3+2=5B .x= 1C. 2x﹣ 3< 022 D. a +2ab+b2.若对于 x 的方程 2x﹣( 2a﹣1) x+3=0 的解是 x=3,则 a=()A .1B .0C. 2D. 33.解是 x=2 的方程是()A .2( x﹣ 1)= 6B .C.D.4.以下等式变形正确的选项是()A .若﹣ 3x= 5,则 x=﹣B .若,则2x+3(x﹣1)=1C.若 5x﹣ 6=2x+8,则 5x+2x= 8+6D .若 3( x+1)﹣ 2x= 1,则 3x+3 ﹣2x= 15.在解方程 3x+5=﹣ 2x﹣ 1 的过程中,移项正确的选项是()A .3x﹣ 2x=﹣ 1+5B.﹣ 3x﹣ 2x= 5﹣ 1C. 3x+2x=﹣ 1﹣ 5D.﹣ 3x﹣ 2x=﹣ 1﹣ 56.解方程: 2﹣=﹣,去分母得()A .2﹣ 2 (2x﹣ 4)=﹣( x﹣ 7)B. 12﹣ 2 ( 2x﹣ 4)=﹣ x﹣7C. 2﹣( 2x﹣4)=﹣( x﹣ 7)D. 12﹣ 2 ( 2x﹣ 4)=﹣( x﹣ 7)7.有以下结论:①若 a+b+c= 0,则 abc≠ 0;②若 a( x﹣ 1)= b( x﹣ 1)有独一的解,则a≠b;③若 b=2a,则对于 x 的方程 ax+b= 0( a≠ 0)的解为 x=﹣;④若 a+b+c= 1,且 a≠ 0,则 x= 1 必定是方程 ax+b+c= 1 的解;此中结论正确的个数有()A.4 个B.3 个C.2 个D.1 个8.若对于x 的方程 |2x﹣3|+m= 0 无解, |3x﹣ 4|+n= 0 只有一个解, |4x﹣ 5|+k= 0 有两个解,A .m >n > kB .n > k > mC . k > m > nD . m > k > n二.填空题(共8 小题)9.比 a 的 3 倍大 5 的数等于 a 的 4 倍用等式表示为. 10.已知等式 5x m+2m =.+3= 0 是对于 x 的一元一次方程,则11.在 ① 2x ﹣ 1; ② 2x+1= 3x ; ③ |π﹣ 3|= π﹣ 3 ; ④ t+1 = 3 中,等式有,方程有.(填入式子的序号)12.已知 x =5 是方程 ax ﹣ 8= 20+a 的解,则 a = .13.小强在解方程时,不当心把一个数字用墨水污染成了x =1﹣ ,他翻阅了答案知道这个方程的解为 x = 1,于是他判断●应当是.14.已知代数式 与 互为相反数,则 x 的值是 .15.已知方程的解也是方程 |3x ﹣ 2|= b 的解,则b = .16.已知 x ﹣3y = 3,则 7+6y ﹣ 2x =.三.解答题(共 6 小题)17.解方程:( 1) 3x ﹣ 9= 6x ﹣1;( 2) x ﹣= 1﹣.18.若方程 3(x+1 )= 2+x 的解与对于 x 的方程 = 2( x+3)的解互为倒数,求 k 的值.19.已知对于 x 的方程( m+5) x|m|﹣4+18= 0 是一元一次方程.试求:( 1)m 的值;( 2)代数式 的值.20.依据题意设未知数,并列出方程(不用求解).( 1)有两个工程队,甲队人数30 名,乙队人数10 名,问如何调整两队的人数,才能使甲队的人数是乙队人数的7 倍.( 2)有一个班的同学准备去划船,租了若干条船,他们计算了一下,假如比原计划多租1 条船,那么正好每条船坐 6 人;假如比原计划少租 1 条船,那么正好每条船坐9 人.问这个班共有多少名同学?21.我们规定:若对于 x 的一元一次方程ax= b 的解为 b+a,则称该方程为“和解方程” .比如:方程 2x=﹣ 4 的解为 x=﹣ 2,而﹣ 2=﹣ 4+2,则方程 2x=﹣ 4 为“和解方程”.请依据上述规定解答以下问题:( 1)已知对于x 的一元一次方程3x= m 是“和解方程” ,求 m 的值;( 2)已知对于x 的一元一次方程﹣2x= mn+n 是“和解方程” ,而且它的解是x=n,求 m,n 的值.22.先阅读以下解题过程,而后解答问题(1)、( 2)、( 3).例:解绝对值方程:|2x|= 1.解:议论:①当 x≥ 0 时,原方程可化为2x= 1,它的解是x=.②当 x<0 时,原方程可化为﹣2x= 1,它的解是x=﹣.∴原方程的解为x=和﹣.问题( 1):依例题的解法,方程|的解是;问题( 2):试试解绝对值方程:2|x﹣2|= 6;问题( 3):在理解绝对值方程解法的基础上,解方程:|x﹣ 2|+|x﹣ 1|= 5.参照答案一.选择题(共8 小题)1.【解答】解:A、不是方程,由于不含有未知数,故本选项错误;B、是方程, x 是未知数,式子又是等式,故本选项正确;C、不是方程,由于它是不等式而非等式,故本选项错误;D、不是方程,由于它不是等式,故本选项错误;应选: B.2.【解答】解:把x=3 代入方程获得:6﹣ 3( 2a﹣ 1) +3= 0解得: a= 2.应选: C.3.【解答】解:将x=2 分别代入题目中的四个选项得:A、 2( x﹣ 1)= 2( 2﹣ 1)= 2≠ 6,因此, A 错误;B.= +1=2= X=2,因此, B 正确;C.==,因此,C错误;D .==≠1﹣x=1﹣2=﹣1,因此D错误;应选: B.4.【解答】解: A、若﹣ 3x=5,则 x=﹣,错误,故本选项不切合题意;B、若,则2x+3(x﹣1)=6,错误,故本选项不切合题意;C、若 5x﹣ 6=2x+8,则 5x﹣ 2x= 8+6,错误,故本选项不切合题意;D 、若 3( x+1)﹣ 2x= 1,则 3x+3 ﹣2x= 1,正确,故本选项切合题意;应选: D.5.【解答】解:方程3x+5=﹣ 2x﹣ 1 移项得: 3x+2 x=﹣ 1﹣ 5.应选: C.6.【解答】解:去分母得:12﹣2( 2x﹣ 4)=﹣( x﹣ 7),应选: D.7.【解答】解:① 错误,当a=0, b= 1, c=﹣ 1 时, a+b+c=0+1 ﹣ 1=0,可是 abc= 0;②正确,方程整理得:( a﹣ b) x= a﹣b,③ 错误,由 a ≠ 0, b = 2a ,方程解得: x =﹣ =﹣ 2;④ 正确,把 x = 1,a+b+c = 1 代入方程左侧得: a+b+c = 1,右侧= 1,故若 a+b+c = 1,且 a ≠ 0,则 x = 1 必定是方程 ax+b+c = 1 的解,应选: C .8.【解答】解: ( 1)∵ |2x ﹣ 3|+m = 0 无解,∴ m > 0.( 2)∵ |3x ﹣ 4|+n = 0 有一个解,∴ n = 0.( 3)∵ |4x ﹣ 5|+k = 0 有两个解,∴ k < 0.∴ m > n > k .应选: A .二.填空题(共 8 小题)9.【解答】解:依据题意得: 3a+5 = 4a .故答案为: 3a+5= 4.10.【解答】解:由于 5x m+2+3= 0 是对于 x 的一元一次方程,因此 m+2= 1,解得 m =﹣ 1.故填:﹣ 1.11.【解答】解:等式有 ②③④ ,方程有 ②④ .故答案为: ②③④ ,②④ .12.【解答】解:把 x = 5 代入方程 ax ﹣ 8= 20+a得: 5a ﹣ 8= 20+a ,解得: a = 7.故答案为: 7.13.【解答】解:●用 a 表示,把 x = 1 代入方程得 1= 1﹣,解得: a = 1.故答案是: 1.514.【解答】解:∵代数式与x﹣3 互为相反数,∴﹣=x﹣3,解得 x=.故答案为:.15.【解答】解:2(x﹣ 2)= 20﹣ 5( x+3),2x﹣ 4=20﹣ 5x﹣ 15,7x= 9,解得: x=.把 x=代入方程|3x﹣2|=b得:|3×﹣2|=b,解得: b=.故答案为:.16.【解答】解:x﹣ 3y= 3,方程两边都乘以﹣2,得6y﹣ 2x=﹣ 6,方程两边都加7,得7+6y﹣ 2x=﹣ 6+7= 1,故答案为: 1.三.解答题(共 6 小题)17.【解答】解:( 1)移项归并得:3x=﹣ 8,解得: x=﹣;(2)去分母得: 4x﹣ x+1=4﹣ 6+2x,移项归并得: x=﹣ 3.18.【解答】解:解3( x+1)= 2+x,得 x=﹣,∵双方程的解互为倒数,∴将 x=﹣ 2 代入=2(x+3)得=2,解得 k=0.19.【解答】解:( 1)由题意得,|m|﹣ 4= 1, m+5≠ 0,解得, m= 5;(2)当 m=5 时,原方程化为 10x+18 =0,解得, x=﹣,∴==﹣.20.【解答】解:(1)设从乙队调x 人去甲队,则乙队此刻有10﹣ x 人,甲队有30+x 人,由题意得30+x= 7( 10﹣ x);(2)设这个班共有 x 名同学,由题意得﹣1= +1.21.【解答】解:( 1)∵方程3x= m 是和解方程,∴= m+3,解得: m=﹣.(2)∵对于 x 的一元一次方程﹣ 2x= mn+n 是“和解方程” ,而且它的解是 x= n,∴﹣ 2n= mn+n,且 mn+n﹣2= n,解得 m=﹣ 3, n=﹣.22.【解答】解:( 1) |x|= 2,①当 x≥0 时,原方程可化为x= 2,它的解是x= 4;②当 x<0 时,原方程可化为﹣x=2,它的解是x=﹣ 4;∴原方程的解为x= 4 和﹣ 4,故答案为: x= 4 和﹣ 4.(2) 2|x﹣ 2|= 6,①当 x﹣ 2≥ 0 时,原方程可化为2(x﹣ 2)= 6,它的解是x= 5;②当 x﹣ 2< 0 时,原方程可化为﹣2(x﹣ 2)= 6,它的解是x=﹣ 1;∴原方程的解为x= 5 和﹣ 1.( 3) |x﹣ 2|+|x﹣ 1|= 5,①当 x﹣ 2≥ 0,即 x≥ 2 时,原方程可化为x﹣ 2+x﹣ 1= 5,它的解是x= 4;②当 x﹣ 1≤ 0,即 x≤ 1 时,原方程可化为2﹣ x+1﹣ x= 5,它的解是x=﹣ 1;③当 1< x< 2 时,原方程可化为2﹣x+x﹣ 1= 5,此时方程无解;∴原方程的解为x= 4 和﹣ 1.。
中考总复习:《一次方程及方程组》知识网络及经典例题解析
中考总复习:《一次方程及方程组》知识网络及经典例题解析【考纲要求】1.了解等式、方程、一元一次方程的概念,会解一元一次方程;2.了解二元一次方程组的定义,会用代入消元法、加减消元法解二元一次方程组;3.能根据具体问题中的数量关系列出方程(组),体会方程思想和转化思想.【知识网络】【考点梳理】考点一、一元一次方程 1.等式性质(1)等式的两边都加上(或减去)同一个数(或式子),结果仍是等式. (2)等式的两边都乘以(或除以)同一个数(除数不为零),结果仍是等式. 2.方程的概念(1)含有未知数的等式叫做方程.(2)使方程两边相等的未知数的值,叫做方程的解(一元方程的解也叫做根). (3)求方程的解的过程,叫做解方程. 3.一元一次方程(1)只含有一个未知数,且未知数的次数是一次的整式方程叫做一元一次方程.(2)一元一次方程的一般形式:0(0)ax b a +=≠.(3)解一元一次方程的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化成1;⑥检验(检验步骤可以不写出来). 要点诠释:解一元一次方程的一般步骤 步骤名 称 方 法依 据注 意 事 项1去分母在方程两边同时乘以所有分母的最小公倍数(即把每个含分母的部分和不含分母的部分都乘以所有分母的最小公倍数)等式性质21、不含分母的项也要乘以最小公倍数;2、分子是多项式的一定要先用括号括起来.2 去括号 去括号法则(可先分配再去括号)乘法分配律 注意正确的去掉括号前带负数的括号3移项把未知项移到方程的一边(左边),常数项移到另一边等式性质1移项一定要改变符号说明:(1)上表仅说明了在解一元一次方程时经常用到的几个步骤,但并不是说,解每一个方程都必须经过六个步骤;(2)解方程时,一定要先认真观察方程的形式,再选择步骤和方法;(3)对于形式较复杂的方程,可依据有效的数学知识将其转化或变形成我们常见的形式,再依照一般方法解.考点二、二元一次方程组 1. 二元一次方程组的定义两个含有两个未知数,且未知数的次数是一次的整式方程组成的一组方程,叫做二元一次方程组. 要点诠释:判断一个方程组是不是二元一次方程组应从方程组的整体上看,若一个方程组内含有两个未知数,并且未知数的次数都是1次,这样的方程组都叫做二元一次方程组. 2.二元一次方程组的一般形式111222a xb yc a x b y c +=⎧⎨+=⎩ 要点诠释:a 1、a 2不同时为0,b 1、b 2不同时为0,a 1、b 1不同时为0,a 2、b 2不同时为0. 3. 二元一次方程组的解法(1) 代入消元法; (2) 加减消元法. 要点诠释:(1)二元一次方程组的解有三种情况,即有唯一解、无解、无限多解.教材中主要是研究有唯一解的情况,对于其他情况,可根据学生的接受能力给予渗透.(2)一元一次方程与一次函数、一元一次不等式之间的关系:当二元一次方程中的一个未知数的取值确定范围时,可利用一元一次不等式组确定另一个未知数的取值范围,由于任何二元一次方程都可以转化为一次函数的形式,所以解二元一次方程可以转化为:当y =0时,求x 的值.从图象上看,这相当于已知纵坐标,确定横坐标的值.考点三、一次方程(组)的应用列方程(组)解应用题的一般步骤:1.审:分析题意,找出已知、未知之间的数量关系和相等关系;2.设:选择恰当的未知数(直接或间接设元),注意单位的统一和语言完整;3.列:根据数量和相等关系,正确列出代数式和方程(组);4.解:解所列的方程(组);5.验: (有三次检验 ①是否是所列方程(组)的解;②是否使代数式有意义;③是否满足实际意义);6.答:注意单位和语言完整.要点诠释:列方程应注意:(1)方程两边表示同类量;(2)方程两边单位一定要统一;(3)方程两边的数值相等.【典型例题】类型一、一元一次方程及其应用1.如果方程2n 731x 157--=是关于x 的一元一次方程,则n 的值为( ). A.2 B.4 C.3 D.1 【思路点拨】未知数x 的指数是1即可. 【答案】B ;【解析】由题意可知2n-7=1,∴n=4.【总结升华】根据一元一次方程的定义求解. 举一反三:【变式1】已知关于x 的方程4x-3m=2的解是x=5,则m 的值为 . 【答案】由题意可知4×5-3m =2,∴m=6.【变式2】若a ,b 为定值,关于x 的一元一次方程2632=--+bxx x ka 无论k 为何值时,它的解总是1,求a ,b 的值.【答案】a=0,b=11.2.一收割机收割一块麦田,上午收割了麦田的25%,下午收割了剩下麦田的20%,结果还剩下6公顷麦田未收割.这块麦田一共有多少公顷?【思路点拨】设这块麦田一共有x 公顷,根据上午收割了麦田的25%,则剩余x (1﹣25%)公顷,再利用下午收割了剩下麦田的20%,则剩余x (1﹣25%)(1﹣20%)公顷,进而求出即可. 【答案与解析】解:设这块麦田一共有x 公顷, 根据题意得出:x (1﹣25%)(1﹣20%)=6, 解得:x=10,答:这块麦田一共有10公顷.【总结升华】此题主要考查了一元一次方程的应用,正确表示出两次剩余小麦的亩数是解题关键.举一反三:【变式】“五一”期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元.设该电器的成本价为x 元,根据题意,下面所列方程正确的是( ) A .()130%80%2080x +⨯= B . 30%80%2080x ⋅⋅= C . 208030%80%x ⨯⨯= D . 30%208080%x ⋅=⨯【答案】成本价提高30%后标价为()130%x +,打8折后的售价为()130%80%x +⨯.根据题意,列方程得()130%80%2080x +⨯=,故选A .类型二、二元一次方程组及其应用3.解下列方程组. (1)(2).【思路点拨】代入消元法或加减消元法均可. 【答案与解析】 解:(1),将②代入①得:2(﹣2y+3)+3y=7, 去括号得:﹣4y+6+3y=7, 解得:y=﹣1,将y=﹣1代入②得:x=2+3=5, 则方程组的解;(2),①×4+②×3得:17m=34, 解得:m=2,将m=2代入①得:4+3n=13, 解得:n=3, 则方程组的解为.【总结升华】解方程组要善于观察方程组的特点,灵活选用适当的方法,提高解题速度.举一反三:① ②【变式1解方程组【答案】方程②化为,再用加减法解,答案:【变式2】解方程组⎩⎨⎧=++=.36,5:4:3::c b a c b a【答案】a=9,b=12,c=15.4.小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m ),解答下列问题:(1)写出用含x 、y 的代数式表示的地面总面积;(2)已知客厅面积比卫生间面积多21m 2,且地面总面积是卫生间面积的15倍,铺1m 2地砖的平均费用为80元,求铺地砖的总费用为多少元?【思路点拨】根据题意找出等量关系式,列出方程或方程组解题. 【答案与解析】(1)地面总面积为:(6x +2y +18)m 2; (2)由题意,得6221,6218152.x y x y y -=⎧⎨++=⨯⎩解之,得4,3.2x y =⎧⎪⎨=⎪⎩∴地面总面积为:6x +2y +18=6×4+2×32+18=45(m 2). ∵铺1m 2地砖的平均费用为80元,∴铺地砖的总费用为:45×80=3600(元). 【总结升华】注意不要丢掉题中的单位. 举一反三:【变式】利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是( )A.73cm B.74cm C.75cm D.76cm【答案】设桌子高度为acm,木块竖放为bcm,木块横放为ccm.则80,a=7570a b ca c b+-=⎧⎨+-=⎩解得.故选C.类型三、一次方程(组)的综合运用5.某县为鼓励失地农民自主创业,在2012年对60位自主创业的失地农民进行奖励,共计划奖励10万元.奖励标准是:失地农民自主创业连续经营一年以上的给予1000元奖励;自主创业且解决5人以上失业人员稳定就业一年以上的,再给予2000元奖励.问:该县失地农民中自主创业连续经营一年以上的和自主创业且解决5人以上失业人员稳定就业一年以上的农民分别有多少人?【思路点拨】根据失地农民自主创业连续经营一年以上的给予1000元奖励:自主创业且解决5人以上失业人员稳定就业一年以上的,再给予2000元奖励列方程求解.【答案与解析】方法一:设失地农民中自主创业连续经营一年以上的有x人,则根据题意列出方程 1000x+(60–x)(1000+2000)=100000,解得:x=40,∴60-x =60-40=20答:失地农民中自主创业连续经营一年以上的有40人,自主创业且解决5人以上失业人员稳定就业一年以上的农民有20人.方法二:设失地农民中自主创业连续经营一年以上的和自主创业且解决5人以上失业人员稳定就业一年以上的农民有分别有x,y人,根据题意列出方程组:601000(10002000)100000 x yx y+=⎧⎨++=⎩解得:2040 yx=⎧⎨=⎩答:失地农民中自主创业连续经营一年以上的有40,自主创业且解决5人以上失业人员稳定就业一年以上的农民有20人.【总结升华】本题考查理解题意的能力,关键是找到人数和钱数作为等量关系.举一反三:【变式】某公园的门票价格如下表所示:购票人数1~50人51~100人100人以上票价10元/人8元/人5元/人某校七年级甲、乙两班共100多人去该公园举行联欢活动,其中甲班50多人,乙班不足50人.如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一团体购票,一共只要付515元.问:甲、乙两班分别有多少人? 【答案】设甲班有x 人,乙班有y 人,由题意得:8109205()515x y x y +=⎧⎨+=⎩ 解得:5548x y =⎧⎨=⎩. 答:甲班有55人,乙班有48人.6.在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:甲同学说:“二环路车流量为每小时10000辆”; 乙同学说:“四环路比三环路车流量每小时多2000辆”;丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍”; 请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少? 【思路点拨】根据甲、乙、丙三位同学提供的信息找出等量关系列出方程组求解. 【答案与解析】设高峰时段三环路的车流量为每小时辆,四环路的车流量为每小时辆,根据题意得:解得答:高峰时段三环路的车流量为每小时11000辆,四环路的车流量为每小时13000辆. 【总结升华】通过甲、乙、丙三位同学调查结果找到车流量的等量关系式是解题的关键.。
中考数学总复习《一次函数与一元一次方程》专题训练(附答案)
中考数学总复习《一次函数与一元一次方程》专题训练(附答案)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.一次函数图象如图所示,下列说法错误的是( )A .解析式为223y x =-+ B .()3,3-是图象上的点 C .该图象y 随x 的增大而减小 D .3x >时0y <2.如图,直线1y k x =与2y k x b =+交于点(1,2)A --,则不等式21k x b k x +>的解集是( ).A .1x <-B .1x >-C .<2x -D .2x >-3.一次函数6y kx =+的图象与x 轴的交点坐标为()0,0x ,且013,101x p k <≤=+,则p 的取值范围是( )A .6121p -<≤-B .6121p -≤<-C .5919p -<≤-D .5919p -≤<- 4.一次函数1y ax b 与2y cx d =+的图象如图所示,下列结论:①当0x >时10y >,20y >;①函数y ax d =+的图象不经过第一象限;①3d b a c --=;①d a b c <++.其中正确的个数是( )6.直线()0y kx b k =+≠的图象如图所示, 由图象可知当10y -<<时x 的取值范围是( )1798.一次函数1y ax b 与2y cx d =+的图象如图所示,下列说法:①对于函数1y ax b 来说,y 随x 的增大而减小;①函数y ax d =+的图象不经过第一象限;①不等式ax b cx d +>+的解集是3x >;①()23a b a c -=-.其中正确的有( )A .①①B .①①①C .①①①D .①①二、填空题9.如图,一次函数1y x b =+的图象与一次函数21y kx =-的图象相交于点P ,则关于x 的不等式(1)10k x b ---<的解集为 .10.一次函数y kx b =+(k ,b 为常数且0k ≠),若函数经过点()2,0-和()0,1,则关于x 的不等式1kx b +>的解集为11.如图,一次函数()0y kx b k =+>的图象过点()1,0-,则不等式()20k x b -+<的解集是 .1ax b与2y=1ax b来说,的增大而增大;①函数的解集是x≥)4b其中正确的是三、解答题 17.若直线21y x =--与直线于3y x m =+相交于第三象限内一点,求m 得取值范围.18.如图,已知函数12y x b =+和23y ax =-的图象交于点()2,5P --,这两个函数的图象与x 轴分别交于点A 、B .(1)=a ______,b = ______;(2)求ABP 的面积;(3)根据图象,不等式23x b ax +<-的解集为 _______.19.根据一次函数y kx b =+的图象,写出下列问题的答案:(1)关于x 的方程0kx b +=的解是 ; (2)关于x 的方程3kx b +=-的解是 ;(3)当0x ≥时y 的取值范围是 .20.如图,直线()1111:0l y k x k =≠与直线()2222:0l y k x b k =+≠交于点()2,3C -,直线2l 与x 轴、y 轴分别交于点A ()0,4B .(1)求1k 和2k ,b 的值;(2)直接写出不等式组210k x b k x +≥≥的解集:_____________;(3)点P 是直线2l 上一点,且满足2AOP BOC S S =,求点P 的坐标.参考答案:1.B2.A3.C 4.C 5.C 6.A 7.C 8.A 9.1x >- 10.0x > 11.1x < 12.0> 13.2<<1x -- 14.①①① 15.2或3-/3-或2 16.2k >- 17.312m -<<18.(1)1,1-(2)254(3)<2x -19.(1)2x =(2)=1x -(3)2y ≥-20.(1)32- 12 4(2)20x -≤≤(3)()4,2-或()12,2--。
中考数学-一元一次方程专题练习(含答案)
中考数学-一元一次方程专题练习(含答案)一、单选题1.下列方程为一元一次方程的是()A.+y=2B.x+2=3yC.x2=2xD.y+1=22.已知一个多边形的内角和是外角和的4倍,则这个多边形是()A.八边形B.十二边形C.十边形D.九边形3.太平洋服装超市某种服装的标价为120元,元旦期间以九折降价出售,仍获利20%,该服装的进货价为()A.80元B.85元C.90元D.95元4.某商店换季促销,将一件标价为240元的T恤8折售出,仍获利20%,则这件T恤的成本为( )A.144元B.160元C.192元D.200元5.练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好用去14元.如果设水性笔的单价为x元,那么下列所列方程正确的是()A.5(x﹣2)+3x=14B.5(x+2)+3x=14C.5x+3(x+2)=14D.5x+3(x﹣2)=146.下列式子中,是一元一次方程的有()A.x+5=2xB.x2﹣8=x2+7C.5x﹣3D.x﹣y=47.下列运用等式的性质,变形不正确的是()A.若x=y,则x+5=y+5B.若a=b,则ac=bcC.若= ,则a=bD.若x=y,则8.文具店老板以每个96元的价格卖出两个计算器,其中一个赚了20%,另一个亏了20%,则卖这两个计算器总的是()A.不赚不赔B.亏8元C.盈利3元D.亏损3元9.若关于y的方程2m+y=1与3y﹣3=2y﹣1的解相同,则m的值为()A.2B. -C. -2D.010.商场将某种商品按标价的八折出售,仍可获利90元,若这种商品的标价为300元,则该商品的进价为()A.330元B.210元C.180元D.150元11.已知关于x的方程1 + 3(3-4x) = 2(4x-3) ,若4x-3 = a,则a等于()A.-1B.C.D. -12.已知x=2是关于x的方程3x+a=0的一个解,则a的值是( )A.– 6B.–3C.– 4D.–513.小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm,则据题意列出的方程是()A.+=-B.-=+C.-=-D.+10=-514.x=1是方程3x—m+1=0的解,则m的值是()A.-4B.4C.2D.-215.方程3x+6=0的解的相反数是()A.2B.-2C.3D.-3二、填空题16.若a3﹣2n b2与5a3n﹣2b2是同类项,则n=________.17.若是关于的方程的解,则________;18.某商品货物进价是1000元,售价是1500元,由于销售情况不好,商店决定降价出售,保证利润为5%,则该店应降价________元出售.19.某公司承担了制作600个道路交通指引标志的任务,在实际操作时比原计划平均每天多制作了10个,因此提前了5天完成任务,如果设原计划x天完成,那么根据题意,可以列出的方程是:________.20.已知方程(a﹣2)x|a|﹣1+4=0是关于x的一元一次方程.则a的值为________三、解答题21.已知:如图,BD平分∠ABC,BE分∠ABC为2:5两部分,∠DBE=24°,求∠ABC的度数.22.世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.23.毕业在即,九年级(一)班为纪念师生情谊,班委决定花800元班费买两种不同单价的留念册,分别给50位同学和10位任课老师每人一本留做纪念.其中送给老师的留念册的单价比给同学的单价多8元.请问这两种不同留念册的单价分别为多少元?四、计算题24.解方程(1)2(x+8)=3(x﹣1)(2)4x+3(2x﹣3)=12﹣(x+4)(3)x﹣6= x(4)3x+ =3﹣.25.解方程:(1)0.5x+0.6=6﹣1.3x26.(2)1+=.答案解析部分一、单选题1.下列方程为一元一次方程的是()A.+y=2B.x+2=3yC.x2=2xD.y+1=2【答案】D【考点】一元一次方程的定义【解析】【解答】A.分母中含有字母,是分式方程,A不符合题意;B.方程中含有两个未知数,是二元一次方程,B不符合题意;C.方程中未知数的最高次数为2,是一元二次方程,C不符合题意;D.方程中含有一个未知数,且未知数的最高次数为1,是一元一次方程,D符合题意;故答案为:D.【分析】根据一元一次方程定义:指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。
【数学中考一轮复习】一次方程(组) (含答案)
第三章 方程(组)与不等式(组)3.1 一次方程(组)考点突破考点一 一元一次方程及其解法 典例1 解方程:131223=+--x x . 思路导引方程两边每一项都要乘各分母的最小公倍数6,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上.规律总结解一元一次方程的一般步骤是:①去分母;②去括号;③移项;④合并同类项;⑤系数化1.注意:在去分母时,应该将分子用括号括上.切勿漏乘不含有分母的项. 跟踪训练11.一元一次方程2x +1=3的解是x =___________.2.解方程:312122-+=--x x x .3.以下是圆圆解方程13321=--+x x 的解答过程. 解:去分母,得3(x +1)-2(x-3)=1. 去括号,得3x +1-2x +3=1. 移项,合并同类项,得x =-3.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.考点二 一元一次方程的应用典例2为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?思路导引设甲工程队每天掘进x米,则乙工程队每天掘进x-2米.根据“甲工程队独立工作2天的工作量+甲乙合作1天的工作量=26米”列出方程,然后求工作时间.规律总结本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键. 跟踪训练21.由于换季,商场准备对某商品打折出售,如果按原售价的七五折出售,将亏损25元,而按原售价的九折出售,将盈利20元,则该商品的原售价为()A.230元B.250元C.270元D.300元2.暑假期间,亮视眼镜店开展学生配镜优惠活动,某款式眼镜的广告如图所示,请你为广告牌填上原价.原价:___________元.3.课外活动中一些学生分组参加活动,原来每组6人,后来重新编组,每组8人,这样就比原来减少2组,问这些学生共有多少人?考点三二元一次方程组的解法典例3 解二元一次方程组:⎩⎨⎧=+=+.93822y x y x ,思路导引方程组利用加减消元法或代入消元法求出解即可.规律总结此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 跟踪训练3解方程组⎩⎨⎧7.=y +3x ,1=y -x考点四 二元一次方程组的应用典例4 某村经济合作社决定把22吨竹笋加工后再上市销售,刚开始每天加工3吨,后来在乡村振兴工作队的指导下改进加工方法,每天加工5吨,前后共用6天完成全部加工任务,问该合作社改进加工方法前后各用了多少天? 思路导引设改进加工方法前用了x 天,改进加工方法后用了y 天,根据6天共加工竹笋22吨,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.规律总结本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键. 跟踪训练41.我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x 尺,绳长y 尺,那么可列方程组为( )A.⎩⎨⎧-=+=15.05.4x y x yB.⎩⎨⎧-=+=125.4x y x yC.⎩⎨⎧-=-=15.05.4x y x yD.⎩⎨⎧-=-=125.4x y x y 2.某班有52名学生,其中男生人数是女生人数的2倍少17人,则女生有_________名. 3.一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时.(1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少千米?中考真题1.(2020·重庆)解一元一次方程x x 311)1(21-=+时,去分母正确的是( )A.3(x +1)=1-2xB.2(x +1)=1-3xC.2(x +1)=6-3xD.3(x +1)=6-2x2.(2020·嘉兴)用加减消元法解二元一次方程组⎩⎨⎧②1=y -2x ①,4=3y +x 时,下列方法中无法消元的是( )A.①×2-②B.②×(-3)-①C.①×(-2)+②D.①-②×3 3.(2020·内江)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子去量竿,却比竿子短一托”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺.则符合题意的方程是( ) A.21x =(x-5)-5 B.21x =(x +5)+5 C.2x =(x-5)-5 D.2x =(x +5)+54.(2020·鸡西)若⎩⎨⎧1=b 2=a 是二元一次方程组⎪⎩⎪⎨⎧=-=+2523by ax by ax 的解,则x +2y 的算术平方根为( )A.3B.3,-3C.3D.3,-35.(2020·齐齐哈尔)母亲节来临,小明去花店为妈妈准备节日礼物.已知康乃馨每支2元,百合每支3元小明将30元钱全部用于购买这两种花(两种花都买),小明的购买方案共有( )A.3种B.4种C.5种D.6种6.(2020·绍兴)同型号的甲、乙两辆车加满气体燃料后均可行驶210 km ,它们各自单独行驶并返回的最远距离是105 km.现在它们都从A 地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A 地,而乙车继续行驶,到B 地后再行驶返回A 地.则B 地最远可距离A 地( ) A. 120 km B. 140 km C. 160 km D.180 km7.(2020·株洲)关于x 的方程3x-8=x 的解为x =___________.8.(2020·北京)方程组⎩⎨⎧7=y +3x ,1=y -x 的解为___________.9.(2020·沈阳)二元一次方程组⎩⎨⎧1=y -2x 5,=y +x 的解是__________.10.(2020·南京)已知x ,y 满足方程组⎩⎨⎧,3=y +2x ,1-=3y +x 则x +y 的值为__________.11.(2020·绍兴)若关于x ,y 的二元一次方程组⎩⎨⎧0=A 2=y +x 的解为⎩⎨⎧,1=y ,1=x 则多项式A 可以是______________(写出一个即可).12.(2020·江西)公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10.在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位.根据符号记数的方法,右下图符号表示一个两位数,则这个两位数是____________.13.(2020·常德)今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是__________次.14.(2020·湖北)篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队14场比赛得到23分,则该队胜了_________场.15.(2020·淄博)解方程组:⎪⎪⎩⎪⎪⎨⎧=-=+.22128213y x y x ,16.(2020·广东)已知关于x ,y 的方程组⎩⎨⎧=+-=+431032y x y ax 与⎩⎨⎧=+=-152by x y x ,的解相同.(1)求a ,b 的值;(2)若一个三角形的一条边的长为26,另外两条边的长是关于x 的方程x 2+ax +b =0的解.试判断该三角形的形状,并说明理由.17.(2020·山西)2020年5月份,省城太原开展了“活力太原·乐购晋阳”消费暖心活动,本次活动中的家电消费券单笔交易满600元立减128元(每次只能使用一张).某品牌电饭煲按进价提高50%后标价,若按标价的八折销售,某顾客购买该电饭煲时,使用一张家电消费券后,又付现金568元.求该电饭煲的进价.18.(2020·黄冈)为推广黄冈各县市名优农产品,市政府组织创办了“黄冈地标馆”,一顾客在“黄冈地标馆”发现,如果购买6盒羊角春牌绿茶和4盒九孔牌藕粉,共需960元,如果购买1盒羊角春牌绿茶和3盒九孔牌藕粉共需300元,请问每盒羊角春牌绿茶和每盒九孔牌藕粉分别需要多少元?参考答案考点突破典例1 解:去分母得:3(x—3)—2(2x+1)=6,去括号得:3x-9-4x-2-6,移项得:-x=17,系数化为1得:x=-17.跟踪训练11.12.解:去分母,得:6-3(x-2)=6+2(2x-1),去括号,得:6x-3x+6=6+4x-2,移项,得:63.x-4x-6-6-2,合并同类项,得:-x=-2,系数化为1,得:x-2.3.解:圆圆的解答过程有错误, 正确的解答过程如下:去分母,得3(x +1)-2(x-3)=6. 去括号,得3x +3-2x +6=6. 移项,合并同类项,得x =-3.典例2 解:设甲工程队每天掘进x 米,则乙工程队每天掘进(x-2)米, 由题意,得2x +(x +x-2)=26,解得:x-7. 所以乙工程队每天掘进5米,5726146+-=10(天), 答:甲乙两个工程队还需联合工作10天. 跟踪训练 2 1. D 2. 2003,解:设这些学生共有x 人,根据题意得286=-xx ,解得x =48.答:这些学生共有48人.典例3 解:⎩⎨⎧=+=+,②,①93822y x y x ,法1:②-①×3,得2x =3,解得:23=x ,把23=x 代入①,得y =-1, ∴原方程组的解为⎪⎩⎪⎨⎧-==123y x .法2:由②得:2x +3(2.x-y )=9, 把①代入上式,解得:23=x .把23=x 代入①,得y =-1, ∴原方程组的解为⎪⎩⎪⎨⎧-==123y x .跟踪训练 3解:⎩⎨⎧,②7=y +3x ,①1=y -x①+②得:4x =8,解得:x =2, 把x =2代入①得:y =1,则该方程组的解为⎩⎨⎧1=y 2=x .典例4 解:设改进加工方法前用了x 天,改进加工方法后用了y 天,依题意,得:⎩⎨⎧,22=5y +3x ,6=y +x 解得:⎩⎨⎧ 2.=y ,4=x答:该合作社改进加工方法前用了4天,改进加工方法后用了2天. 跟踪训练4 1.A 2. 233.解:(1)设该轮船在静水中的速度是x 千米/小时,水流速度是y 千米/小时,依题意,得:⎩⎨⎧==,90)y -x )4+6,90)y +6x ((解得:⎩⎨⎧ 3.=y ,12=x答:该轮船在静水中的速度是12千米/小时,水流速度是3千米/小时. (2)设甲、丙两地相距a 千米,则乙、丙两地相距(90-a )千米,依题意,得:31290312--=+a a ,解得:a =4225. 答:甲、丙两地相距4225千米.中考真题1.D2.D3.A4.C5. B6. B7.4 8. ⎩⎨⎧==12y x 9.⎩⎨⎧==32y x 10.1 11,答案不唯一,如x-y12. 25 13.4 14. 915.解:⎪⎪⎩⎪⎪⎨⎧=-=+②,①.22128213y x y x①+②,得:5x-10,解得x=2,把x =2代入①,得:6+21y =8,解得y =4, 所以原方程组的解为⎩⎨⎧==42y x .16.解:(1)由题意列方程组;⎩⎨⎧=-=+24y x y x ,解得⎩⎨⎧==13y x .将x =3,y =1分别代入31032-=+y ax 和x +by =15,解得34-=a ,b =12, ∴34-=a ,b =12.(2)012342=+-x x ,解得322484834=-±=x .这个三角形是等腰直角三角形. 理由如下:∵(23)2+(23)2=(26)2, ∴该三角形是等腰直角三角形. 17.解:设该电饭煲的进价为x 元.根据题意,得(1+50%)x ·80%-128=568.解得 =580. 答:该电饭煲的进价为580元.18.解:设每盒羊角春牌绿茶需要 元,每盒九孔牌藕粉需要y 元,依题意,得: ⎩⎨⎧,300=3y +x ,960=4y +6x 解得:⎩⎨⎧60.=y ,120=x答:每盒羊角春牌绿茶需要120元,每盒九孔牌藕粉需要60元.。
2023年河北省中考数学一轮复习—一元一次方程练习题附答案
2023年河北省中考数学一轮复习—一元一次方程练习题附答案一、单选题1.(2022·河北·中考真题)“曹冲称象”是流传很广的故事,如图.按照他的方法:先将象牵到大船上,并在船侧面标记水位,再将象牵出.然后往船上抬入20块等重的条形石,并在船上留3个搬运工,这时水位恰好到达标记位置.如果再抬入1块同样的条形石,船上只留1个搬运工,水位也恰好到达标记位置.已知搬运工体重均为120斤,设每块条形石的重量是x 斤,则正确的是()A .依题意3120120x ⨯=-B .依题意()203120201120x x +⨯=++C .该象的重量是5040斤D .每块条形石的重量是260斤2.(2022·河北廊坊·一模)已知23a b =,且0a ≠,则ab=()A .32B .23C .32-D .23-3.(2022·河北保定·二模)解方程221123x x --=-,嘉琪写出了以下过程:①去分母,得3(2)62(21)x x -=--;②去括号,得36642x x -=--;③移项、合并同类项,得710x =;④系数化为1,得107x =,开始出错的一步是()A .①B .②C .③D .④4.(2022·河北保定·一模)小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张.设所用的1元纸币为x 张,根据题意,下面所列方程正确的是()A .5(12)48x x +-=B .5(12)48x x +-=C .12(5)48x x +-=D .5(12)48x x +-=5.(2022·河北秦皇岛·一模)一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是()A .(1+50%)x ×80%=x -28B .(1+50%)x ×80%=x +28C .(1+50%x )×80%=x -28D .(1+50%x )×80%=x +286.(2022·河北唐山·二模)长江比黄河长836km ,黄河长度的6倍比长江长度的5倍多1284km ,设长江长度为km x ,则下列方程中正确的是()A .56(836)1284x x --=B .65(836)1284x x -+=C .6(836)51284x x +-=D .6(836)51284x x --=7.(2021·河北保定·一模)我国古代《孙子算经》记载“多人共车”问题:“今有三人共车,二车空;二人共车,九人步,问人与车各几何?”意思是说“每三人共乘一辆车,最终剩余2辆车;每2人共乘一辆车,最终有9人无车可乘,问人和车的数量各是多少?”下面四个同学的思考正确的是()小聪:设共有x 人,根据题意得:9232x x --=;小明:设共有x 人,根据题意得:9+232x x -=小玲:设共有车y 辆,根据题意得:3(y ﹣2)=2y +9小丽:设共有车y 辆,根据题意得:3(y +2)=2y +9A .小聪、小丽B .小聪、小明C .小明、小玲D .小明、小丽8.(2021·河北唐山·三模)已知21m ⨯=,则m 表示数()A .12B .12-C .2D .-29.(2021·河北秦皇岛·一模)下列变形中,一定正确的是()A .若a b =,那么a c b c +=-B .若35x -=,则35x =-C .若a b =,那么a bc c=D .若113x -=,则3x =-二、填空题10.(2022·河北唐山·一模)某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形地砖为连续排列.当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2);当正方形地砖有2块时,等腰直角三角形地砖有8块(如图3),以此类推.(2)现有2021块等腰直角三角形地砖,若按此规律再建一条人行道,要求等腰直角三角形地砖剩余最少,则需要正方形地砖______块.11.(2022·河北沧州·一模)已知关于x 的方程21132--=-x x a的解为10x =-,则a 的值为______;嘉琪在解该方程去分母时等式右边的-1忘记乘6,则嘉琪解得方程的解为x =______.12.(2021·河北唐山·一模)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.则前4个台阶上数的和是________;第5个台阶上的数x =_________;从下到上前35个台阶上数的和=_____________.三、解答题13.(2022·河北保定·二模)已知两个整式2A x x =+,B =■x +1,其中系数■被污染.(1)若■是2,化简A -B ;(2)若x =1时,A -B 的值为2.说明原题中■是几?14.(2022·河北唐山·一模)嘉淇准备完成题目:计算:22713骣÷ç´--÷ç÷ç桫()233¸+-.发现有一个数“”印刷不清楚,(1)他把“”猜成18,请你计算:()2227118333骣ç´--¸+-çç桫;(2)他妈说:“你猜错了,我看到该题标准答案的结果是32-.”通过计算说明原题中“”是几?15.(2022·河北邯郸·三模)老师写出一个整式(ax 2+bx ﹣4)﹣(3x 2+2x )(其中a 、b 为常数,且表示为系数),然后让同学给a 、b 赋予不同的数值进行计算.(1)甲同学给出了一组数据,最后计算的结果为2x 2﹣3x ﹣4.则甲同学给出a 、b 的值分别是a =,b =;(2)乙同学给出了a =2,b =﹣1,请按照乙同学给出的数值化简整式;(3)丙同学给出一组数,计算的最后结果与x 的取值无关,请直接写出丙同学的计算结果.16.(2022·河北保定·一模)已知整式()()2224a ab ab b ---■,其中“■”处的系数被墨水污染了.当2a =-,1b =时,该整式的值为16.(1)则■所表示的数字是多少?(2)小红说该代数式的值是非负数,你认为小红的说法对吗?说明理由.17.(2022·河北承德·一模)某企业有A ,B 两条加工相同原材料的生产线,在一天内,A 生产线共加工a 吨原材料,加工时间为()41a +小时;在一天内,B 生产线共加工b 吨原材料,加工时间为()23b +小时.(1)当1a b ==时,两条生产线的加工时间分别是多少小时?(2)某一天,该企业把5吨原材料分配到A 、B 两条生产线,两条生产线都在一天内完成了加工,且加工时间相同,则分配到两条生产线的吨数是多少?18.(2022·河北张家口·一模)现有质量分数分别为8%和13%的两种盐水.常温下,从这两种盐水中各取一部分,混合制成另一种盐水.a b,求混合制成盐水的质量分数(用含a,b的式子表示);(1)若从8%和13%的两种盐水中分别取kg,kg(2)要混合制成20kg质量分数为10%的盐水,需要取用8%和13%的两种盐水各多少千克?19.(2021·河北唐山·二模)已知“□-7=△+3”,其中□和△分别表示一个实数.(1)若□表示的数是3,求△表示的数;(2)若□和△表示的数互为相反数,求□和△分别表示的数;(3)当□和△分别取不同的值时,在□与△的+,-,×,÷,四种运算中,哪种运算的结果一定不会发生变化,请说明理由.20.(2021·河北保定·一模)老师在黑板上写下了下图所示的等式,让同学自己出题,并作出答案.7+▢﹣5×〇=38请你解答下列两个同学所提出的问题.(1)甲同学提出的问题:当〇代表﹣2时,求▢所代表的有理数;(2)乙同学提出的问题:若▢和〇所代表的有理数互为相反数,求〇所代表的有理数.21.(2021·河北承德·二模)小明在解一道有理数混合运算时,一个有理数m 被污染了.计算:()3312m ÷+⨯-.(1)若2m =,计算:()33212÷+⨯-;(2)若()33132m ÷+⨯-=,求m 的值;(3)若要使()3312m ÷+⨯-的结果为最小正整数,求m 值.22.(2021·河北唐山·一模)(1)化简求值:()()2232543m m m m -++--+,其中2m =-.(2)老师出了一道整式计算题化简求值题:()()22592x ax -++,其中的字母a 为常数;小明计算后说这个题的最后结果与x 的取值无关,请你通过计算找到a 的值.23.(2021·河北石家庄·二模)幻方是一个古老的数学问题,我国古代的《洛书》中记载了最早的三阶幻方——九宫图.如图所示的幻方中,每一横行、每一竖列以及两条对角线上的数字之和都相等.(1)请求出中间行三个数字的和;(2)九宫图中m ,n 的值分别是多少?24.(2021·河北保定·一模)已知有理数﹣3和5.(1)计算:35 2--;(2)若添一个有理数n,使得这三个数中最大的数与最小的数的差为11,求n的值.25.(2021·河北唐山·一模)解密数学魔术:魔术师请观众心想一个数a,然后将这个数按以下步骤操作:魔术师能立刻说出观众想的那个数.(1)如果小明想的数是1-,那么她告诉魔术师的结果应该是______________;(2)如果小明想了一个数计算后,告诉魔术师结果为42,那么魔术师立刻说出小明想的那个数是___________;(3)观众又进行了几次尝试,魔术师都能立刻说出他们想的那个数.请通过计算说明这个魔术的奥妙.参考答案:1.B【解析】利用题意找出等量关系,将等量关系中的量用已知数和未知数的代数式替换即可得出结论.解:根据题意可得方程;()203120201120x x +⨯=++则A 错误,B 正确;解上面的方程得:x =240,故D 错误;∴大象的重量是20×240+3×120=5160(斤)故C 错误,故选:B .本题主要考查一元一次方程的应用,根据题意真确列出方程是解题的关键.2.A【解析】根据等式的性质直接解答即可.解:∵2a=3b ,且a≠0,∴32a b =故选:A .此题考查了等式的性质,熟练掌握比例的性质是解题的关键.3.B【解析】解决此题应先去括号,再移项,移项时要注意符号的变化.在第②步,去括号得36642x x -=--,等式右边去括号时忘记变号,故选B .解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和系数化为1;在移项时要注意符号的变化,此题是形式较简单的一元一次方程.4.A【解析】所用的1元纸币为x 张,那么所用的5元纸币为()12x -张,列出方程即可.设所用的1元纸币为x 张,则所用的5元纸币为()12x -张,列方程:()51248x x +-=.故选:A .本题考查一元一次方程的应用,解题的关键是找到题目中的等量关系列方程.5.B【解析】根据售价的两种表示方法解答,关系式为:标价80%⨯=进价28+,把相关数值代入即可.解:标价为:(150%)x +,八折出售的价格为:(150%)80%x +⨯;∴可列方程为:(150%)80%28x x +⨯=+,故选:B .考查列一元一次方程;根据售价的两种不同方式列出等量关系是解决本题的关键.6.D【解析】依题意得黄河长度为(x -836)km ,根据“黄河长度的6倍比长江长度的5倍多1284km ”列出方程即可.解:设长江长度为km x ,则黄河长度为(x -836)km ,依题意得,6(836)51284x x --=故选:D .此题主要考查了列一元一次方程,解答此题的关键是找出等量关系.7.C 【解析】、分别设人和车的数量为,x y ,根据题意列出方程即可.设共有x 人,车的数量相等,根据题意得:9+232x x -=,设共有车y 辆,人的数量相等,根据题意得:3(y ﹣2)=2y +9,结合选项,小明、小玲的为正确解,符合题意.故选C .本题考查了一元一次方程的应用,理解题意设出未知数,列出方程是解题的关键.8.A【解析】根据等式性质2求解即可.由等式性质2可得:12m =,故选:A .本题考查等式的基本性质,熟记基本性质是解题关键.9.D【解析】根据等式的性质,方程的解法,比的性质判断即可.A.仅当c=0时,a c b c +=-,该选项错误;B.若35x -=,则53x =-,该选项错误;C.若a b =,当c≠0时,那么a bc c=,该选项错误;D.若113x -=,则3x =-,该选项正确;故选D.本题考查等式的性质,解方程,比的性质,关键在于熟悉相关基本性质.10.2;1008.【解析】(1)观察图形1可知:中间的每个正方形都对应了两个等腰直角三角形,即可得出答案;(2)观察图形得出规律2n +4;由于等腰直角三角形地砖块数2n +4是偶数,根据现有2021块等腰直角三角形地砖,剩余最少,可得:2n +4=2020,即可求得答案.解:(1)观察图1可知:中间的每个正方形都对应了两个等腰直角三角形,所以每增加一块正方形地砖,等腰直角三角形地砖就增加2块,故答案为:2;(2)观察图形2可知:中间一个正方形的左上、左边、左下共有3个等腰直角三角形,它右上和右下各对应了一个等腰直角三角形,右边还有1个等腰直角三角形,即6=3+2×1+1=4+2×1,图3和图1中间正方形右上和右下都对应了两个等腰直角三角形,均有图2一样的规律,图3:8=3+2×2+1=4+2×2,∴若一条这样的人行道一共有n (n 为正整数)块正方形地砖,则等腰直角三角形地砖的块数为2n +4块,等腰直角三角形地砖块数2n +4是偶数,∴用2021-1=2020块,再由题意得:2n +4=2020,解得:n =1008,∴等腰直角三角形地砖剩余最少为1块,则需要正方形地砖1008块,故答案为:1008.本题以等腰直角三角形和正方形的拼图为背景,关键是考查规律性问题的解决方法,探究规律要认真观察、仔细思考,善用联想来解决这类问题.11.2-5【解析】把x =-10代入方程21132--=-x x a求出a 的值;再根据嘉琪的方法求出x 的值即可.解:把x =-10代入方程21132--=-x x a ,得:2(10)1101a⨯----=-解得,a =2当a =2时,方程为212132x x --=-根据嘉琪的方法得:2(21)3(2)1x x -=--解得,5x =-故答案为:2;-5本题主要考查了一元一次方程的解和解一元一次方程,熟练掌握解方程的步骤是解答本题的关键.12.3-518【解析】将前4个数字相加可得前4个台阶上数的和;根据“相邻四个台阶上数的和都相等”列出方程求解可得第5个台阶上的数;根据“台阶上的数字是每4个一循环”求解可得从下到上前35个台阶上数的和.解:由题意得前4个台阶上数的和是−5−2+1+9=3;∵任意相邻四个台阶上数的和都相等,∴−2+1+9+x =3,解得:x =−5,则第5个台阶上的数x 是−5;由题意知,台阶上的数字是每4个一循环,∵35÷4=8…3,∴8×3−6=18.∴从下到上前35个台阶上数的和为18.故答案为:3,−5,18.本题主要考查了数字类变化问题,理解题意,根据已知得出数字变化的规律是解题的关键.13.(1)21x x --(2)-1【解析】(1)先将污染的系数代入2,再去括号、合并同类项即可;(2)设所求系数为m ,先计算出A -B ,再将x =1代入,得到关于m 的方程,求解即可.(1)解:由题意知,A -B =()221x x x +-+=221x x x +--=21x x --(2)解:设所求系数为m ,A -B =()21x x mx +-+=21x x mx +--,当x =1时,A -B =2,∴211112m +-⨯-=,解得:m =-1,即原题中■是-1.本题考查了整式的加减,解一元一次方程的解法,属于基础题型.解题关键是掌握解题顺序,注意事项为:括号前为负号时,去括号后括号内的项要变号.14.(1)-42;(2)-12【解析】(1)先算乘方,再算乘除,最后算加减,然后得到结果;(2)设“”是x ,将x 看做常数,去括号、合并同类项后根据结果为常数知二次项系数为0,据此得出x的值.解:(1)()2227118333骣÷ç´--¸+-÷ç÷ç桫952763骣÷ç=´--+÷ç÷ç桫4569=--+42=-.(2)设为x ,依题意得,()22127133233x 骣÷ç´--+-=-÷ç÷ç桫.解之得,12x =-.本题主要考查有理数的加减和解一元一次方程,熟悉相关解法是解题的关键.15.(1)5,﹣1;(2)﹣x 2﹣3x ﹣4;(3)-4【解析】(1)整式进行整理后,利用等式的性质列方程求解即可;(2)把2a =,1b =-代入求解即可;(3)计算的最后结果与x 的取值无关,则含x 项的系数为0,据此求解即可.解:(ax 2+bx ﹣4)﹣(3x 2+2x ),=ax 2+bx ﹣4﹣3x 2﹣2x ,=(a ﹣3)x 2+(b ﹣2)x ﹣4;(1)∵甲计算的结果为2x 2﹣3x ﹣4,∴a ﹣3=2,b ﹣2=﹣3.∴a =5,b =﹣1.故答案为:5,﹣1;(2)乙同学给出了a =2,b =﹣1,∴计算结果为(2﹣3)x 2+(﹣1﹣2)x ﹣4,=﹣x 2﹣3x ﹣4.(3)∵丙同学计算的最后结果与x 的取值无关,∴a ﹣3=0,b ﹣2=0.∴a =3,b =2.当a =3,b =2时,丙同学的计算结果﹣4.本题考查了整式的加减运算,解一元一次方程,熟练掌握运算法则是解题的关键.16.(1)■所表示的数字是2;(2)小红的说法是正确的,理由见解析.【解析】(1)直接把2a =-,1b =代入代数式其值等于16,解关于■方程即可;(2)把(1)求得的■的结果代入代数式整理即可求解.(1)(1)将2a =-,1b =代入()()2224a ab ab b ---■,可得44((2)4)16+-⨯--=■,解得2=■;(2)(2)由(1)求得的结果可得该整式为,()()2222222444(2)0a ab ab b a ab b a b ---=-=-≥+,故小红的说法是正确的.本题考查了代数式的化简求值及解一元一次方程、完全平方公式等,求得■的值是解题的关键.17.(1)A 生产线的加工时间为5小时,B 生产线的加工时间为5小时(2)分配到A 生产线的吨数为2吨,分配到B 生产线的吨数为3吨【解析】(1)把1a b ==分别代入()41a +,()23b +,即可求解;(2)然后设分配到A 生产线的吨数为x 吨,则分配到B 生产线的吨数为()5x -吨,可得A 生产线的加工时间为()41x +小时,B 生产线的加工时间为()132x -小时,根据题意.列出方程,即可求解.(1)解:当1a b ==时,A 生产线的加工时间为:4115⨯+=(小时),B 生产线的加工时间为:2135⨯+=(小时),答:A 生产线的加工时间为5小时,B 生产线的加工时间为5小时;(2)解:设分配到A 生产线的吨数为x 吨,则分配到B 生产线的吨数为()5x -吨,∵A 生产线共加工a 吨原材料,加工时间为()41a +小时;在一天内,B 生产线共加工b 吨原材料,加工时间为()23b +小时,∴A 生产线的加工时间为()41x +小时,B 生产线的加工时间为()()253132x x -+=-小时,根据题意得:41132x x +=-,解得∶2x =,∴53x -=,答:分配到A 生产线的吨数为2吨,分配到B 生产线的吨数为3吨.本题主要考查了求代数式的值,一元一次方程的应用,明确题意,准确得到数量关系是解题的关键.18.(1)8%13%a b a b ++(或813100100a b a b++)(2)需要取用8%和13%的两种盐水分别为12kg ,8kg【解析】(1)理解质量分数的概念,利用8%和13%的两种盐水中分别取kg,kg a b 所含盐的总质量除以取出来的总质量即可;(2)设取用8%的盐水kg x ,根据盐的质量相等建立等式求解即可.(1)解:混合制成盐水的质量分数为8%13%a b a b ++(或813100100a b a b++).(2)解:设取用8%的盐水kg x .根据题意,得8%(20)13%2010%x x ⋅+-⋅=⨯,解得12x =.∴208x -=.答:需要取用8%和13%的两种盐水分别为12kg ,8kg .本题考查了列代数式,一元一次方程的应用,解题的关键是掌握弄清相关数量的基本关系建立等式进行求解.19.(1)-7;(2)□=5,△=-5;(3)减法,见解析【解析】(1)把□表示的数3代入,求△即可;(2)因为□和△表示的数互为相反数,所以-□=△,代入求出□即可;(3)根据□-7=△+3,移项可得□-△=3+7=10,即可得出结论.解:3-7=△+3△=-7(2)当□和△表示的数互为相反数-□=△□-7=-□+3∴□=5△=-5(3)∵□-7=△+3∴□-△=3+7=10∴减法运算的结果一定不会发生变化.本题考查了相反数:只有符号不同的两个数叫做互为相反数.也考查了方程思想.20.(1)甲同学提出的问题中▢所代表的有理数为21;(2)乙同学提出的问题:〇所代表的有理数为316-.【解析】(1)当〇代表﹣2时,求▢所代表的有理数设为x ,根据题意列出方程,求出方程的解即可;(2)当▢和〇所代表的有理数互为相反数时,分别设为a ,-a ,根据题意列出方程,求出方程的解即可.解:(1)当〇代表﹣2时,▢所代表的有理数为x ,根据题意得:7+1038x +=,解得:21x =,则甲提出的问题:▢所代表的有理数为21;(2)当▢和〇所代表的有理数互为相反数时,分别设为a ,-a ,根据题意得:7+538a a +=,解得:316a =,则乙提出的问题:〇所代表的有理数为316-.本题主要考查有理数的混合运算,以及解一元一次方程,熟练掌握一元一次方程的解法是解决本题的关键.21.(1)0;(2)1m =-;(3)1m =.【解析】(1)先算乘除,再计算加法,即可求解;(2)解出一元一次方程,即可求解;(3)根据最小的正整数为1,可列出关于m 的方程,即可求解.解:(1)原式()232103=⨯+⨯-=;(2)∵()33132m ÷+⨯-=,∴解得:1m =-;(3)()33122m m ÷+⨯-=-,∵最小的正整数为1,即21m -=,解得:1m =.本题主要考查了有理数的混合运算,解一元一次方程,熟练掌握有理数的混合运算法则,解一元一次方程的基本步骤是解题的关键.22.(1)2437m m --+,-3;(2)5a =-.【解析】(1)先去括号,再合并同类项,最后把2m =-代入即可求解.(2)先计算()()22592x ax -++()257a x =+-,根据最后结果与x 的取值无关,得到50a +=,即可求出5a =-.解:(1)原式()()2232543m m m m =-++--+2232543m m m m =-++-+-2437m m =--+,当2m =-时,原式=()()24232716673-⨯--⨯-+=-++=-;(2)由题意得()()()2222259259257x ax x ax a x -++=-++=+-,因为小明说这个题的最后结果与x 的取值无关,所以计算结果没有x 项,即50a +=,所以5a =-.本题考查了整式的加减,一元一次方程的解法等知识,熟练掌握整式的加减是解题的关键.23.(1)3;(2)1m =-,3n =【解析】(1)根据题意把表格中间三个数相加即可;(2)根据每一横行、每一竖列以及对角线上的数字之和都为定值,列出方程运算求解即可.解:(1)7193-++=(2)由(1)可知:每一横行、每一竖列以及对角线上的数字之和都等于3,∴593m -++=,13n m ++=,∴1m =-,3n =.本题主要考查了一元一次方程的数字运用,仔细阅读题意列出方程是解题的关键.24.(1)-4;(2)n 的值为8或-6.【解析】(1)根据有理数的运算法则及运算顺序计算即可;(2)分当n 为最大数和n 为最小数两种情况求解即可.(1)358422---==-;(2)当n为最大数时,n-(-3)=11,解得n=8;当n为最小数时,5-n=11,解得n=-6.综上,n的值为8或-6.本题考查了有理数的运算,解决第(2)题时要注意有两种情况,不要漏解.25.(1)1;(2)40;(3)见解析【解析】(1)利用已知条件,这个数按步骤操作,直接代入即可;(2)假设这个数,根据运算步骤,求出结果等于42,得出一元一次方程,即可求出;(3)结合(2)中方程,关键是发现运算步骤的规律.解:(1)(﹣1×2﹣4)÷2+4=1;故答案为:1;(2)设这个数为x,(2x﹣4)÷2+4=42;解得:x=40,故答案为:40;(3)设观众想的数为a.则根据题意得:2442 2a a-+=+.因此,魔术师只要将最终结果减去2,就能得到观众想的数了.此题主要考查了数的运算,以及运算步骤的规律性,题目比较新颖.。
2021全国中考真题:方程与不等式(一元一次方程答案版)
2021全国中考真题分类汇编(方程与不等式)----一次方程(组)一、选择题1.(2021·安徽省)设a ,b ,c 为互不相等的实数,且4155b ac =+,则下列结论正确的是()A.a b c>> B.c b a>> C.4()a b b c -=- D.5()a c ab -=-【答案】D 【解析】【分析】举反例可判断A 和B ,将式子整理可判断C 和D .【详解】解:A .当5a =,10c =,41655b ac =+=时,c b a >>,故A 错误;B .当10a =,5c =,41955b ac =+=时,a b c >>,故B 错误;C .4()a b b c -=-整理可得1455b ac =-,故C 错误;D .5()a c a b -=-整理可得4155b ac =+,故D 正确;故选:D .2.(2021•甘肃省定西市)我国古代数学著作《孙子算经》有“多人共车”问题:“今有三人共车,二车空;二人共车,九人步.问:人与车各几何?”其大意如下:有若干人要坐车,如果每3人坐一辆车,那么有2辆空车;如果每2人坐一辆车,那么有9人需要步行,问人与车各多少?设共有x 人,y 辆车,则可列方程组为()A .B .C .D .【分析】设共有x 人,y 辆车,根据“如果每3人坐一辆车,那么有2辆空车;如果每2人坐一辆车,那么有9人需要步行”,即可得出关于x ,y 的二元一次方程组,此题得解.【解答】解:设共有x 人,y 辆车,依题意得:.故选:C .3.(2021•湖北省武汉市)我国古代数学名著《九章算术》中记载“今有共买物,人出八,盈三,不足四.问人数、物价各几何?”意思是:现有几个人共买一件物品,每人出8钱;每人出7钱,还差4钱.问人数,物价是y 钱,则下列方程正确的是()A .8(x ﹣3)=7(x +4)B .8x +3=7x ﹣4C .=D .=【分析】根据人数=总钱数÷每人所出钱数,得出等式即可.【解答】解:设物价是y 钱,根据题意可得:=.故选:D .4.(2021•株洲市)方程122x-=的解是()A.2x =B.3x = C.5x = D.6x =【答案】D5.(2021•四川省成都市)《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的,那么乙也共有钱50.问:甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为x ,y ,则可列方程组为()A .B .C .D .【分析】设甲需持钱x ,乙持钱y ,根据题意可得,甲的钱+乙的钱的一半=50,乙的钱+甲所有钱的=50,据此列方程组可得.【解答】解:设甲需持钱x ,乙持钱y ,根据题意,得:,故选:A6(2021•四川省南充市)端午节买粽子,每个肉粽比素粽多1元,购买10个肉粽和5个素粽共用去70元,设每个肉粽x 元,则可列方程为()A .10x +5(x ﹣1)=70B .10x +5(x +1)=70C .10(x ﹣1)+5x =70D .10(x +1)+5x =70【分析】设每个肉粽x 元,则每个素粽(x ﹣1)元,根据总价=单价×数量,结合购买10个肉粽和5个素粽共用去70元,即可得出关于x 的一元一次方程,此题得解.【解答】解:设每个肉粽x 元,则每个素粽(x ﹣1)元,依题意得:10x +5(x ﹣1)=70.故选:A .7.(2021•天津市)方程组234x y x y +=⎧⎨+=⎩的解是()A.02x y =⎧⎨=⎩ B.11x y =⎧⎨=⎩C.22x y =⎧⎨=-⎩ D.33x y =⎧⎨=-⎩【答案】B 【解析】【分析】直接利用加减消元法解该二元一次方程组即可.【详解】234x y x y +=⎧⎨+=⎩①②,②-①得:32x y x y +--=,即22x =,∴1x =.将1x =代入①得:12y +=,∴1y =.故原二元一次方程组的解为11x y =⎧⎨=⎩.故选B .8.(2021•新疆)某校举行篮球赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分.八年级一班在16场比赛中得26分.设该班胜x 场,负y 场,则根据题意,下列方程组中正确的是()A.26216x yx y+=⎧⎨+=⎩B.26216x yx y+=⎧⎨+=⎩C.16226x yx y+=⎧⎨+=⎩D.16226x yx y+=⎧⎨+=⎩【答案】D9.(2021•浙江省杭州)某景点今年四月接待游客25万人次,五月接待游客60.5万人次.设该景点今年四月到五月接待游客人次的增长率为x(x>0),则()A.60.5(1﹣x)=25B.25(1﹣x)=60.5C.60.5(1+x)=25D.25(1+x)=60.5【分析】依题意可知四月份接待游客25万,则五月份接待游客人次为:25(1+x),进而得出答案.【解答】解:设该景点今年四月到五月接待游客人次的增长率为x(x>0),则25(1+x)=60.8.故选:D.10.(2021•浙江省温州市).解方程﹣2(2x+1)=x,以下去括号正确的是()A.﹣4x+1=﹣x B.﹣4x+2=﹣x C.﹣4x﹣1=x D.﹣4x﹣2=x 【分析】可以根据乘法分配律先将2乘进去,再去括号.【解答】解:根据乘法分配律得:﹣(4x+2)=x,去括号得:﹣3x﹣2=x,故选:D.11.(2021•江苏省无锡市)方程组的解是()A.B.C.D.【分析】将两个方程相加,可消去y,得到x的一元一次方程,从而解得x=4,再将x =4代入①解出y的值,即得答案.【解答】解:,①+②得:2x=8,∴x=4,把x=4代入①得:4+y=5,∴y=1,∴方程组的解为.故选:C.12.(2021•黑龙江省龙东地区)为迎接2022年北京冬奥会,某校开展了以迎冬奥为主题的演讲活动,计划拿出180元钱全部用于购买甲、乙两种奖品(两种奖品都购买),奖励表现突出的学生,已知甲种奖品每件15元,乙种奖品每件10元,则购买方案有()A.5种B.6种C.7种D.8种【答案】A【解析】【分析】设购买甲种奖品为x件,乙种奖品为y件,由题意可得15x+10y=180,进而求解即可.【详解】解:设购买甲种奖品为x件,乙种奖品为y件,由题意可得:15x+10y=180,3∴y=18-x,2∵x>0,y>0,且x、y都为正整数,∴当x=2时,则y=15;当x=4时,则y=12;当x=6时,则y=9;当x=8时,则y=6;当x=10时,则y=3;∴购买方案有5种;故选A.13.(2021•齐齐哈尔市)周末,小明的妈妈让他到药店购买口罩和消精湿巾,已知口罩每包3元,酒精湿巾每包2元,共用了30元钱(两种物品都买),小明的购买方案共有()A.3种B.4种C.5种D.6种【答案】B 【解析】【分析】设购买口罩x 包,酒精湿巾y 包,根据总价=单价⨯数量,即可列出关于,x y 的二元一次方程,结合,x y 均为正整数,即可得出购买方案的个数.【详解】解:设购买口罩x 包,酒精湿巾y 包,依据题意得:3230x y +=2103x y ∴=-,x y 均为正整数,83x y =⎧∴⎨=⎩或66x y =⎧⎨=⎩或49x y =⎧⎨=⎩或212x y =⎧⎨=⎩∴小明共有4种购买方案.故选:B .二.填空题1.(2021•江苏省扬州)扬州雕版印刷技艺历史悠久,元代数学家朱世杰的《算学启蒙》一书曾刻于扬州,该书是中国较早的数学著作之一,书中记载一道问题:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天追上慢马?答:快马_______天追上慢马.【答案】20【解析】【分析】设良马行x 日追上驽马,根据路程=速度×时间结合两马的路程相等,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设快马行x 天追上慢马,则此时慢马行了(x +12)日,依题意,得:240x =150(x +12),解得:x =20,∴快马20天追上慢马,故答案为:20.2.(2021•山东省泰安市)《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”其大意是:“今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也为50.问甲、乙各有多少钱?”设甲的钱数为x,乙的钱数为y,根据题意,可列方程组为.【分析】根据乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也为50和题目中所设的未知数,可以列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故答案为:.3.(2021•陕西省).幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,则图中a的值为﹣2.【分析】根据各行的三个数字之和相等,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:依题意得:﹣1﹣6+3=0+a﹣4,解得:a=﹣7.故答案为:﹣2.⎧x+2y=2-_________4.(2021•广东省)二元一次方程组⎨的解为.⎩2x+y=2【答案】22x y =⎧⎨=-⎩【解析】2222x y x y +=-⎧⎨+=⎩①②,①+②可得0x y +=③,①-③得,2y =-,把2y =-代入③得2x =因此22x y =⎧⎨=-⎩,考查二元一次方程组的解法5.(2021•四川省凉山州)已知13x y =⎧⎨=⎩是方程2ax y +=的解,则a 的值为______________.【答案】-1【解析】【分析】根据方程解的定义,将x =1,y =3代入方程2ax y +=,即可求得a 的值.【详解】解:根据题意,将x =1,y =3代入方程2ax y +=,得:32a +=,解得:a =-1,故答案为:-1.6.(2021•浙江省嘉兴市)已知二元一次方程x +3y =14,请写出该方程的一组整数解(答案不唯一).【分析】把y 看做已知数求出x ,确定出整数解即可.【解答】解:x +3y =14,x =14﹣3y ,当y =1时,y =11,则方程的一组整数解为.故答案为:(答案不唯一).7.(2021•浙江省金华市)已知是方程3x +2y =10的一个解,则m 的值是2.【分析】把方程组的解代入到方程中,得到关于m 的一元一次方程,解方程即可.【解答】解:把代入方程得:3×2+2m=10,∴m=2,故答案为:2.8.(2021•浙江省绍兴市)我国明代数学读本《算法统宗》有一道题,其题意为:客人一起分银子,若每人7两;若每人9两,则差8两.银子共有46两.【分析】通过设两个未知数,可以列出银子总数相等的二元一次方程组,本题得以解决.【解答】解:设有x人,银子y两,由题意得:,解得,故答案为46.9.(2021•重庆市B)方程2(x﹣3)=6的解是x=6.【分析】按照去括号,移项,合并同类项的步骤解方程即可.【解答】解:方程两边同除以2得:x﹣3=3.移项,合并同类项得:x=6.故答案为:x=6.【点评】本题主要考查了解一元一次方程.解一元一次方程常见的过程有去分母,去括号、移项、合并同类项,系数化为1等.10.(2021•重庆市A)若关于x的方程442x a-+=的解是2x=,则a的值为__________.【答案】3【解析】【分析】将x=2代入已知方程列出关于a的方程,通过解该方程来求a的值即可.【详解】解:根据题意,知4-2+a=4,2解得a=3.故答案是:3.11.(2021•湖北省江汉油田)我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为_______尺.(其大意为:现有一根竿和一条绳索,如果用绳索去量竿,绳索比竿长5尺;如果将绳索对折后再去量竿,就比竿短5尺,则绳索长几尺.)【答案】20【解析】【分析】设绳索长x 尺,根据两种量竿的方法建立方程,解方程即可得.【详解】解:设绳索长x 尺,由题意得:552xx -=+,解得20x =,即绳索长20尺,故答案为:20.三、解答题1.(2021•四川省广元市)解方程:31423x x --+=.【答案】7x =【解析】【分析】根据整式方程的计算过程,去分母、去括号、移项、合并同类项、系数化为1,就可以得到结果.【详解】解:去分母得:()()332124x x -+-=,去括号得:392224x x -+-=,移项并合并同类项得:535x =,系数化为1得:7x =,故答案为:7x =.2.(2021•浙江省台州)解方程组:241x y x y +=⎧⎨-=-⎩【答案】12x y =⎧⎨=⎩.【解析】【分析】观察方程组中同一未知数的系数特点:x 的系数存在倍数关系,而y 的系数互为相反数,因此将两方程相加,消去y 求出x ,再求出y 的值,可得到方程组的解.【详解】解:①+②得:3x =3,即x =1,把x =1代入①得:y =2,则方程组的解为12x y =⎧⎨=⎩.3.(2021•四川省眉山市)解方程组:.【分析】方程组整理后,利用加减消元法求出解即可.【解答】解:方程组整理得:,①×15+②×2得:49x =﹣294,解得:x =﹣6,把x =﹣6代入②得:y =1,则方程组的解为4.(2021•呼和浩特市)解方程组1.5(2010)150001.2(110120)97200x y x y +=⎧⎨+=⎩解:1.5(2010)150001.2(110120)97200x y x y +=⎧⎨+=⎩,化简得210001112810x y x y +=⎧⎨+=⎩①②①×12-②得:133900x =解得300x =把300x =代入①得:400y =∴方程组的解为:300400x y =⎧⎨=⎩5.(2021•江苏省扬州)已知方程组271x y x y +=⎧⎨=-⎩的解也是关于x 、y 的方程4ax y +=的一个解,求a 的值.1【答案】a =2【解析】【分析】求出方程组的解得到x 与y 的值,代入方程计算即可求出a 的值.【详解】解:方程组271x y x y +=⎧⎨=-⎩①②,把②代入①得:()217y y -+=,解得:3y =,代入①中,解得:2x =,把2x =,3y =代入方程4ax y +=得,234a +=,解得:12a =.6.(2021·安徽省)某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形地砖为连续排列.[观察思考]当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2);当正方形地砖有2块时,等腰直角三角形地砖有8块(如图3);以此类推,[规律总结](1)若人行道上每增加1块正方形地砖,则等腰直角三角形地砖增加块;(2)若一条这样的人行道一共有n (n 为正整数)块正方形地砖,则等腰直角三角形地砖的块数为(用含n 的代数式表示).[问题解决](3)现有2021块等腰直角三角形地砖,若按此规律再建一条人行道,要求等腰直角三角形地砖剩余最少,则需要正方形地砖多少块?【答案】(1)2;(2)2n +4;(3)1008块【解析】【分析】(1)由图观察即可;(2)由每增加一块正方形地砖,即增加2块等腰直角三角形地砖,再结合题干中的条件正方形地砖只有1块时,等腰直角三角形地砖有6块,递推即可;(3)利用上一小题得到的公式建立方程,即可得到等腰直角三角形地砖剩余最少时需要正方形地砖的数量.【详解】解:(1)由图可知,每增加一块正方形地砖,即增加2块等腰直角三角形地砖;故答案为:2;(2)由(1)可知,每增加一块正方形地砖,即增加2块等腰直角三角形地砖;当正方形地砖只有1块时,等腰直角三角形地砖有6块,即2+4;所以当地砖有n 块时,等腰直角三角形地砖有(24n +)块;故答案为:24n +;(3)令242021n +=则1008.5n =当1008n =时,242020n +=此时,剩下一块等腰直角三角形地砖∴需要正方形地砖1008块.7.(2021•湖南省邵阳市)为庆祝中国共产党成立100周年,某校计划举行“学党史•感党恩”知识竞答活动,并计划购置篮球、钢笔、笔记本作为奖品.采购员刘老师在某文体用品店购买了做为奖品的三种物品,回到学校后发现发票被弄花了,有几个数据变得不清楚,如图.请根据图所示的发票中的信息,帮助刘老师复原弄花的数据,即分别求出购置钢笔、笔记本的数量及对应的金额.【分析】设钢笔购买了x 支,笔记本购买了y 本,篮球个数+钢笔支数+笔记本本数=56,篮球总价+钢笔总价+笔记本总价=1000,利用这两个相等关系列出二元一次方程组,解出即得钢笔和笔记本的数量,乘以各自单价即得各自总价.【解答】解:设钢笔购买了x 支,笔记本购买了y 本.由题意得:,解得:,∴15×15=225(元),35×5=175(元),答:钢笔购买了15支共225元,笔记本购买了35本共175元.8.(2021•陕西省)一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等.求这种服装每件的标价.【分析】设这种服装每件的标价是x 元,根据“这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等”从而得出等式方程,解方程即可求解;【解答】解:设这种服装每件的标价是x 元,根据题意得,10×0.8x =11(x ﹣30),解得x =110,答:这种服装每件的标价为110元.9.(2021•广西贺州市)为了提倡节约用水,某市制定了两种收费方式:当每户每月用水量不超过312m 时,按一级单价收费;当每户每月用水量超过312m 时,超过部分按二级单价收费.已知李阿姨家五月份用水量为310m ,缴纳水费32元.七月份因孩子放假在家,用水量为314m ,缴纳水费51.4元.(1)问该市一级水费,二级大费的单价分别是多少?(2)某户某月缴纳水费为64.4元时,用水量为多少?【答案】(1)一级水费的单价为3.2元/3m ,二级水费的单价为6.5元/3m ;(2)316m 【解析】【分析】(1)设该市一级水费的单价为x 元/3m ,二级水费的单价为y 元/3m ,根据题意,列出二元一次方程组,即可求解;(2)先判断水量超过312m ,设用水量为3m a ,列出方程,即可求解.【详解】(1)设该市一级水费的单价为x 元/3m ,二级水费的单价为y 元/3m ,依题意得()103212141251.4x x y =⎧⎨--=⎩,解得 3.26.5x y =⎧⎨=⎩,答:该市一级水费的单价为3.2元/3m ,二级水费的单价为6.5元/3m .(2)当水费为64.4元,则用水量超过312m ,设用水量为3m a ,得,()12 3.212 6.564.4a ⨯+-⨯=,解得:16a =.答:当缴纳水费为64.4元时,用水量为316m .。
初中数学中考复习专题:一元一次方程练习题1(含答案)
一元一次方程测试题一、填一填!1、若3x+6=17,移项得_____, x=____。
2、代数式5m +14与5(m -14)的值互为相反数,则m 的值等于______。
3、如果x=5是方程ax+5=10-4a 的解,那么a=______4、在解方程123123x x -+-=时,去分母得 。
5、若(a -1)x |a|+3=-6是关于x 的一元一次方程,则a =__;x =___。
6、当x=___时,单项式5a2x+1b 2 与8a x+3b 2是同类项。
7、方程5x 4x 123-+-=,去分母可变形为______。
8、如果2a+4=a -3,那么代数式2a+1的值是________。
9、从1999年11月1日起,全国储蓄存款需征收利息税,利息税的税率是20%,张老师于2003年5月1日在银行存入人民币4万元,定期一年,年利率为1.98%,存款到期后,张老师净得本息和共计______元。
10、当x 的值为-3时,代数式-3x 2+ a x -7的值是-25,则当x =-1时,这个代数式的值为 。
11、若()022=-+-y y x ,则x+y=___________ 12、某学校为保护环境,绿化家园,每年组织学生参加植树活动,去年植树x 棵,今年比去年增加20%,则今年植树___________棵.二、慧眼识真!1. 1、下列各题中正确的是( )A. 由347-=x x 移项得347=-x xB. 由231312-+=-x x 去分母得)3(31)12(2-+=-x x C. 由1)3(3)12(2=---x x 去括号得19324=---x xD. 由7)1(2+=+x x 移项、合并同类项得x =52、方程2-2x 4x 7312--=-去分母得___。
A 、2-2(2x -4)=-(x -7) B 、12-2(2x -4)=-x -7C 、24-4(2x -4)=-(x -7)D 、12-4x +4=-x +73、一批宿舍,若每间住1人,则有10人无法安排;若每间住3人,则有10间无人住。
2023年中考一轮复习—计算题专题(含答案)
中考数学一轮复习--解答题计算题专题一、一元一次方程(形如ax+b=0,a ≠0)一般的解题步骤:1、有括号的时候,先去括号。
2、有分式的时候,去分母(不等号两边同乘分母最小公倍数)3、移项,即单项式由等号左边移至等号右边,或由等号右边移至等号左边。
(注意:移项要变号,即+变-,-变+)4、合并同类项(加减运算中适用,所谓同类项是底数相同且底数相应的指数也相同的单项式。
),合并法则:底数与指数不变,系数相加减,如:a ²b-5a ²b=(1-4)a ²b=-3a ²b5、未知数系数化为1。
具体方法:方程两边同除以未知数的系数(系数要带符号)。
例题如下:例1:5x ﹣2(3﹣2x )=﹣3解:5x-6+4x=-3………………去括号(乘法分配率)5x+4x=-3+6………………移项(变号)9x=3……………………合并同类项9x 9 = 39…………………系数化为1 X = 13例2:5x+2(3x ﹣7)=9﹣4(2+x )解:5x+6x-14=9-8-4x …………去括号(乘法分配率)5x+6x+4x=9-8+14…………移项(变号) 15x=15…………………合并同类项15x 15=1515………………系数化为1 X=1二、一元一次不等式组(由两个及两个以上的一元一次不等式组成)1、不等式的一般解题步骤:①有括号的时候,先去括号。
②有分式的时候,去分母(不等号两边同乘分母最小公倍数)③移项,即单项式由不等号左边移至不等号右边,或由不等号右边移至不等号左边。
(注意:移项要变号,即+变-,-变+)④合并同类项(加减运算中适用,所谓同类项是底数相同且底数相应的指数也相同的单项式。
),合并法则:底数与指数不变,系数相加减,如:a²b-5a ²b=(1-4)a²b=-3a²b⑤未知数系数化为1。
具体方法:不等号两边同除以未知数的系数(系数要带符号),需特别注意:如果不等号两边同除或同乘负数,不等号要变号,如:-x≥1,则-x/-1≤1/-1,得:x≤-12、不等式组的解题步骤:①将不等式组中的每一个不等式单独求解。
中考数学复习 一次方程与方程组 专题复习练习题含答案与部分解析
中考数学复习 一次方程与方程组 专题复习练习1. 设x ,y ,c 是实数,( )A .若x =y ,则x +c =y -cB .若x =y ,则xc =ycC .若x =y ,则x c =y cD .若x 2c =y3c ,则2x =3y2. 若关于x 的一元一次方程x -m +2=0的解是负数,则m 的取值范围是( ) A .m ≥2 B .m >2 C .m <2 D .m ≤23. 二元一次方程组⎩⎪⎨⎪⎧x +y =6,x -3y =-2的解是( )A .⎩⎪⎨⎪⎧x =5,y =1 B .⎩⎪⎨⎪⎧x =4,y =2 C .⎩⎪⎨⎪⎧x =-5,y =-1 D .⎩⎪⎨⎪⎧x =-4,y =-2 4. 若二元一次方程组⎩⎪⎨⎪⎧x +y =3,3x -5y =4的解为⎩⎪⎨⎪⎧x =a ,y =b ,则a -b =( )A .1B .3C .-14D .745. 利用加减消元法解方程组⎩⎪⎨⎪⎧2x +5y =-10,①5x -3y =6, ②下列做法正确的是( )A .要消去y ,可以将①×5+②×2B .要消去x ,可以将①×3+②×(-5)C .要消去y ,可以将①×5+②×3D .要消去x ,可以将①×(-5)+②×26. 若代数式4x -5与2x -12的值相等,则x 的值是( )A .1B .32C .23D .27. 春节前夕,某服装专卖店按标价打折销售.小明去该专卖店买了两件衣服,第一件打七折,第二件打五折,共计260元,付款后,收银员发现结算时不小心把两件衣服的标价计算反了,又找给小明40元,则这两件衣服的原标价各是( ) A .100元、300元 B .100元、200元 C .200元、300元 D .150元、200元8. 某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分.已知圆圆这次竞赛得了60分,设圆圆答对了x 道题,答错了y 道题,则( )A .x -y =20B .x +y =20C .5x -2y =60D .5x +2y =60 9. 学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组( )A .⎩⎪⎨⎪⎧x +y =10,49x +37y =466B .⎩⎪⎨⎪⎧x +y =10,37x +49y =466C .⎩⎪⎨⎪⎧x +y =466,49x +37y =10 D .⎩⎪⎨⎪⎧x +y =466,37x +49y =10 10. 甲、乙两名运动员在长为100 m 的直道AB(A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点……若甲跑步的速度为5 m/s ,乙跑步的速度为4 m/s ,则起跑后100 s 内,两人相遇的次数为( ) A .5 B .4 C .3 D .211. 已知x ,y 满足方程组⎩⎪⎨⎪⎧x -2y =5,x +2y =-3,则x 2-4y 2的值为 .12. 王大爷用280元买了甲、乙两种药材,甲种药材每千克20元,乙种药材每千克60元,且甲种药材比乙种药材多买了2kg ,则甲种药材买了 kg.13. 书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元,一律按原价打九折; ③一次性购书超过200元,一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是 元.14. 解方程组:⎩⎪⎨⎪⎧3x -2y =-1,①x +3y =7. ②15. 解方程组:⎩⎪⎨⎪⎧2x +y =4,x -y =-1.16. 用消元法解方程组⎩⎪⎨⎪⎧x -3y =5, ①4x -3y =2 ②时,两名同学的解法如下:解法一:由①-②,得3x =3. 解法二:由②,得3x +(x -3y)=2.③(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处画“ ╳ ”; (2)请选择一种你喜欢的方法,完成解答.17. 已知关于x ,y 的方程组⎩⎪⎨⎪⎧x -2y =m , ①2x +3y =2m +4 ②的解满足不等式组⎩⎪⎨⎪⎧3x +y≤0,x +5y >0.求满足条件的m 的整数值.18. 已知关于x ,y 的方程组⎩⎪⎨⎪⎧mx +ny =7,2mx -3ny =4的解为⎩⎪⎨⎪⎧x =1,y =2,求m ,n 的值.19. 随着“互联网+”时代的到来,一种新型打车方式受到大众的欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x 元/千米计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如下表:(1)求x,y的值;(2)如果小华也用该打车方式,打车行驶了11千米,用了14分钟,那么小华的打车总费用为多少?20. 目前节能灯在城市已基本普及,为响应号召,某商场计划用3 800元购进甲、乙两种节能灯共120盏,这两种节能灯的进价、售价如下表:(1)甲、乙两种节能灯各购进多少盏?(2)全部售完120盏节能灯后,该商场获利多少元?答案与解析: 1. B 2. C 3. B4. D 解析: 把方程组的解代入方程组中得到关于a ,b 的二元一次方程组,解方程组求出a ,b 的值,即得所求代数式的值.把⎩⎪⎨⎪⎧x =a ,y =b代入二元一次方程组,得⎩⎪⎨⎪⎧a +b =3,3a -5b =4,解得⎩⎪⎨⎪⎧a =198,b =58,a -b =198-58=74.故选D .5. D6. B7. A 解析:设这两件衣服的原标价各是x 元、y 元.则可列方程组⎩⎪⎨⎪⎧0.7x +0.5y =260,0.5x +0.7y =260-40,解得⎩⎪⎨⎪⎧x =300,y =100,∴这两件衣服的原标价各是300元、100元.故选A . 8. C 9. A10. B 解析:设两人相遇的次数为x.依题意,得100×25+4x =100,解得x =4.5,∵x 为整数,∴x 取4.故选B . 11. -15解析:⎩⎪⎨⎪⎧x -2y =5, ①x +2y =-3, ②①×②,得(x -2y)(x +2y)=x 2-4y 2=-15.12. 5 解析:设甲种药材买了x kg ,则乙种药材买了(x -2)kg.依题意,得20x +60(x -2)=280,解得x =5.∴甲种药材买了5 kg. 13. 248元或296元解析;设第一次购书的原价为x 元,则第二次购书的原价为3x 元.依题意,得①当0<x≤1003时,x +3x =229.4, 解得x =57.35(舍去);②当1003<x≤2003时,x +910×3x=229.4,解得x =62,此时两次购书原价总和为4x =4×62=248;③当2003<x≤100时,x +710×3x=229.4,解得x =74, 此时两次购书原价总和为4x =4×74=296;④当100<x ≤200时,910x +710×3x=229.4,解得x≈76.47(舍去);⑤当x>200时,710x +710×3x=229.4,解得x≈81.93(舍去).综上可知,小丽这两次购书原价的总和是248元或296元.14. 解:⎩⎪⎨⎪⎧3x -2y =-1,①x +3y =7, ②由②,得x =7-3y.将x =7-3y 代入①,得3(7-3y)-2y =-1,解得y =2.将y =2代入x =7-3y ,得x =1.∴方程组的解为⎩⎪⎨⎪⎧x =1,y =2. 15. 解:⎩⎪⎨⎪⎧2x +y =4, ①x -y =-1, ②①+②,得3x =3,解得x =1.将x =1代入②,得1-y =-1,解得y =2.∴方程组的解为⎩⎪⎨⎪⎧x =1,y =2.16. 解:(1)解法一中的计算有误(标记略).(2)由①-②,得-3x =3,解得x =-1.把x =-1代入①,得-1-3y =5,解得y =-2,∴原方程组的解是⎩⎪⎨⎪⎧x =-1,y =-2.把①代入③,得3x +5=2.17. 解:①+②,得3x +y =3m +4.③ ②-①,得x +5y =m +4.④∵关于x ,y 的方程组⎩⎪⎨⎪⎧x -2y =m , ①2x +3y =2m +4 ②的解满足不等式组⎩⎪⎨⎪⎧3x +y≤0,x +5y >0,∴将③④代入不等式组,得⎩⎪⎨⎪⎧3m +4≤0,m +4>0,解得-4<m≤-43.∴满足条件的m 的整数值为-3,-2.18. 解:把⎩⎪⎨⎪⎧x =1,y =2代入原方程组,得⎩⎪⎨⎪⎧m +2n =7, ①2m -6n =4,②由①,得m =7-2n.③把③代入②,得2(7-2n)-6n =4, 解得n =1.把n =1代入③,得m =5. ∴m ,n 的值分别为5,1.19. 解:(1)根据题意,得⎩⎪⎨⎪⎧8x +8y =12,10x +12y =16,解得⎩⎪⎨⎪⎧x =1,y =12.(2)11×1+14×12=18(元).答:小华的打车总费用是18元.20. 解:(1)设购进甲种节能灯x 盏,乙种节能灯y 盏.由题意,得⎩⎪⎨⎪⎧25x +45y =3 800,x +y =120,解得⎩⎪⎨⎪⎧x =80,y =40.答:购进甲种节能灯80盏,乙种节能灯40盏.(2)根据题意,得80×(30-25)+40×(60-45)=1 000(元).答:全部售完120盏节能灯后,该商场获利1 000元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次方程(组)【基础知识回顾】一、等式的概念及性质:1、等式:用“=”连接表示关系的式子叫做等式2、等式的性质:①、性质1:等式两边都加(减)所得结果仍是等式,即:若a=b,那么a±c=②、性质2:等式两边都乘以或除以(除数不为0)所得结果仍是等式即:若a=b,那么a c= ,若a=b(c≠o)那么ac=【名师提醒:①用等式性质进行等式变形,必须注意“都”,不能漏项②等式两边都除以一个数或式时必须保证它的值】二、方程的有关概念:1、含有未知数的叫做方程2、使方程左右两边相等的的值,叫做方程的组3、叫做解方程4、一个方程两边都是关于未知数的,这样的方程叫做整式方程三、一元一次方程:1、定义:只含有一个未知数,并且未知数的次数都是的方程叫做一元一次方程,一元一次方程一般可以化成的形式。
2、解一元一次方程的一般步骤:1。
2。
3。
4。
5。
【名师提醒:1、一元一次方程的解法的各个步骤的依据分别是等式的性质和合并同类法则,要注意灵活准确运用;2、特别提醒:去分母时应注意不要漏乘项,移项时要注意。
】四、二元一次方程组及解法:1、二元一次方程的一般形式:ax+by+c=0是常数,a≠0,b≠0);2、由几个含有相同未知数的 合在一起,叫做二元一次方程组;3、 二元一次方程组中两个方程的 叫做二元一次方程组的解;4、 解二元一次方程组的基本思路是: ;5、 二元一次方程组的解法:① 消元法 ② 消元法【名师提醒:1、一个二元一次方程的解有组,我们通常在实际应用中要求其正整数解2、二元一次方程组的解应写成五、列方程(组)解应用题:一般步骤:1、审:弄清题意,分清题目中的已知量和未知量2、设:直接或间接设未知数3、列:根据题意寻找等量关系列方程(组)4、解:解这个方程(组),求出未知数的值5、验:检验方程(组)的解是否符合题意6:答:写出答案(包括单位名称)【名师提醒:1、列方程(组)解应用题的关键是: 2、几个常用的等量关系:①x=a y=b的形式路程= × ②工作效率= 】【重点考点例析】考点一:二元一次方程组的解法对应训练1.(2016•湘西州)解方程组:213211x yx y+=⎧⎨-=⎩①②..考点二:一(二)元一次方程的应用例2 (2016•齐齐哈尔)假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案()A.5种B.4种C.3种D.2种故选:C.例3 (2016•张家界)为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为元/吨,超过月用水标准量部分的水价为元/吨.该市小明家5月份用水12吨,交水费20元.请问:该市规定的每户月用水标准量是多少吨?对应训练2.(2016•黄石)四川雅安地震期间,为了紧急安置60名地震灾民,需要搭建可容纳6人或4人的帐篷,若所搭建的帐篷恰好(既不多也不少)能容纳这60名灾民,则不同的搭建方案有()A.1种B.11种C.6种D.9种2.C3.(2016•永州)中国现行的个人所得税法自2011年9月1日起施行,其中规定个人所得税纳税办法如下:一.以个人每月工资收入额减去3500元后的余额作为其每月应纳税所得额;二.个人所得税纳税税率如下表所示:(1)若甲、乙两人的每月工资收入额分别为4000元和6000元,请分别求出甲、乙两人的每月应缴纳的个人所得税;(2)若丙每月缴纳的个人所得税为95元,则丙每月的工资收入额应为多少?考点三:一元一次方程组的应用例4 (2016•宜宾)2013年4月20日,我省芦山县发生级强烈地震,造成大量的房屋损毁,急需大量帐篷.某企业接到任务,须在规定时间内生产一批帐篷.如果按原来的生产速度,每天生产120顶帐篷,那么在规定时间内只能完成任务的90%.为按时完成任务,该企业所有人员都支援到生产第一线,这样,每天能生产160顶帐篷,刚好提前一天完成任务.问规定时间是多少天?生产任务是多少顶帐篷?思路分析:设规定时间为x 天,生产任务是y 顶帐篷,根据不提速在规定时间内只能完成任务的90%,即提速后刚好提前一天完成任务,可得出方程组,解出即可.解:设规定时间为x 天,生产任务是y 顶帐篷,由题意得,12090%160(1)x y x y =⎧⎨-=⎩,解得:6800x y =⎧⎨=⎩. 答:规定时间是6天,生产任务是800顶帐篷.例5 (2016•嘉兴)某镇水库的可用水量为12000立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?(2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?思路分析:(1)设年降水量为x 万立方米,每人每年平均用水量为y 立方米,根据储水量+降水量=总用水量建立方程求出其解就可以了;(2)设该城镇居民年平均用水量为z 立方米才能实现目标,同样由储水量+25年降水量=25年20万人的用水量为等量关系建立方程求出其解即可.解:(1)设年降水量为x 万立方米,每人每年平均用水量为y 立方米,由他提议,得 1200020162012000152015x y x y +=⨯⎧⎨+=⨯⎩,解得:20050x y =⎧⎨=⎩。
答:年降水量为200万立方米,每人年平均用水量为50立方米.(2)设该城镇居民年平均用水量为z 立方米才能实现目标,由题意,得12000+25×200=20×25z,解得:z=34则50-34=16(立方米).答:该城镇居民人均每年需要节约16立方米的水才能实现目标.点评:本题是一道生活实际问题,考查了列二元一次方程组解实际问题的运用,列一元一次方程解实际问题的运用,解答时根据储水量+降水量=总用水量建立方程是关键. 对应训练4.(2016•苏州)苏州某旅行社组织甲乙两个旅游团分别到西安、北京旅行,已知这两旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人.问甲、乙两个旅游团个有多少人?4.解:设甲、乙两个旅游团个有x 人、y 人,由题意得:2555x y x y =-⎧⎨+=⎩,解得3520x y =⎧⎨=⎩。
答:甲、乙两个旅游团个有35人、20人.5.(2016•长沙)为方便市民出行,减轻城市中心交通压力,长沙市正在修建贯穿星城南北、东西的地铁1、2号线.已知修建地铁1号线24千米和2号线22千米共需投资265亿元;若1号线每千米的平均造价比2号线每千米的平均造价多亿元.(1)求1号线,2号线每千米的平均造价分别是多少亿元?(2)除1、2号线外,长沙市政府规划到2018年还要再建千米的地铁线网.据预算,这千米地铁线网每千米的平均造价是1号线每千米的平均造价的倍,则还需投资多少亿元?A.等式的性质1 B.等式的性质2C.分式的基本性质D.不等式的性质12.(2016•淄博)把一根长100cm的木棍锯成两段,使其中一段的长比另一段的2倍少5cm,则锯出的木棍的长不可能为()A.70cm B.65cm C.35cm D.35cm或65cm 3.(2016•济宁)服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多()A.60元B.80元C.120元D.180元4.(2016•潍坊)为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地抽查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是%,在不吸烟者中患肺癌的比例是%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,下面列出的方程组正确的是()A.222.5%0.5%10000x yx y-=⎧⎨⨯+⨯=⎩B.22100002.5%0.5%x yx y-=⎧⎪⎨+=⎪⎩C.100002.5%0.5%10000x yx y+=⎧⎨⨯-⨯=⎩D.10000100002.5%0.5%x yx y+=⎧⎪⎨-=⎪⎩5.(2016•济宁)在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层6.(2016•淄博)解方程组23322x y x y -=⎧⎨+=-⎩①②.7.(2016•聊城)夏季来临,天气逐渐炎热起来,某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶的价格下调了5%,已知调价前买这两种饮料个一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费元,问这两种饮料在调价前每瓶各多少元?8.(2016•临沂)为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A ,B 两种型号的学习用品共1000件,已知A 型学习用品的单价为20元,B 型学习用品的单价为30元.(1)若购买这批学习用品用了26000元,则购买A ,B 两种学习用品各多少件?(2)若购买这批学习用品的钱不超过28000元,则最多购买B 型学习用品多少件?【备考真题过关】一、选择题1.(2013•株洲)一元一次方程2x=4的解是( )A .x=1B .x=2C .x=3D .x=42.(2013•凉山州)已知方程组2535xy x y +=⎧⎨+=⎩,则x+y 的值为( ) A .-1B .0C .2D .3A.0 B.-1 C.1 D.5A.23xy=-⎧⎨=⎩B.23xy=⎧⎨=-⎩C.23xy=-⎧⎨=-⎩D.23xy=⎧⎨=⎩5.(2016•太原)王先生到银行存了一笔三年期的定期存款,年利率是%.若到期后取出得到本息(本金+利息)33825元.设王先生存入的本金为x元,则下面所列方程正确的是()A.x+3×%x=33825B.x+%x=33825C.3×%x=33825D.3(x+)=338256.(2016•宁夏)雅安地震后,灾区急需帐篷.某企业急灾区之所急,准备捐助甲、乙两种型号的帐篷共1500顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置8000人.设该企业捐助甲种帐篷x顶、乙种帐篷y顶,那么下面列出的方程组中正确的是()A.4150048000x yx y+=⎧⎨+=⎩B.4150068000x yx y+=⎧⎨+=⎩C.1500468000x yx y+=⎧⎨+=⎩D.1500 648000 x yx y+=⎧⎨+=⎩7.(2016•随州)我市围绕“科学节粮减损,保障食品安全”,积极推广农户使用“彩钢小粮仓”.每套小粮仓的定价是350元,为了鼓励农户使用,中央、省、市财政给予补贴,补贴部分是农户实际出资的三倍还多30元,则购买一套小货仓农户实际出资是()A.80元B.95元C.135元D.270元8.(2016•黑龙江)今年校团委举办了“中国梦,我的梦”歌咏比赛,张老师为鼓励同学们,带了50元钱取购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本7元,乙种笔记本每本5元,每种笔记本至少买3本,则张老师购买笔记本的方案共有()A.3种B.4种C.5种D.6种9.(2016•南宁)陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18 C.16 D.15A.①②B.②③C.②③④D.①③④二、填空题12.(2013•泉州)方程组31x yx y+=⎧⎨-=⎩的解是.13.(2016•鞍山)若方程组7353x yx y+=⎧⎨-=-⎩,则3(x+y)-(3x-5y)的值是.14.(2016•湘潭)湖园中学学生志愿服务小组在“三月学雷锋”活动中,购买了一批牛奶到敬老院慰问老人,如果送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,则正好送完.设敬老院有x位老人,依题意可列方程为.15.(2016•江西)某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x人,到瑞金的人数为y人,请列出满足题意的方程组.16.(2016•深圳)某商场将一款空调按标价的八折出售,仍可获利10%,若该空调的进价为2000元,则标价元.17.(2016•绥化)某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8三、解答题20.(2016•广东)解方程组128 x yx y=+⎧⎨+=⎩.21.(2016•梅州)解方程组251x yx y+=⎧⎨-=⎩.,22.(2016•邵阳)解方程组:312236x yx y+=⎧⎨-=⎩①②.23.(2016•扬州)已知关于x、y的方程组52111823128x y ax y a+=+⎧⎨-=-⎩①②的解满足x>0,y>0,求实数a的取值范围.24.(2016•曲靖)某种仪器由1种A部件和1个B部件配套构成.每个工人每天可以加工A 部件1000个或者加工B部件600个,现有工人16名,应怎样安排人力,才能使每天生产的A部件和B部件配套?25.(2016•凉山州)根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高 cm,放入一个大球水面升高 cm;27.(2016•湖州)为激励教师爱岗敬业,某市开展了“我最喜爱的老师”评选活动.某中学确定如下评选方案:有学生和教师代表对4名候选教师进行投票,每票选1名候选教师,每位候选教师得到的教师票数的5倍与学生票数的和作为该教师的总票数.以下是根据学生和教师代表投票结果绘制的统计表和条形统计图(不完整).学生投票结果统计表(1)若共有25位教师代表参加投票,则李老师得到的教师票数是多少?请补全条形统计图.(画在答案卷相对应的图上)(2)王老师与李老师得到的学生总票数是500,且王老师得到的学生票数是李老师得到的学生票数的3倍多20票,求王老师与李老师得到的学生票数分别是多少?(3)在(1)、(2)的条件下,若总得票数较高的2名教师推选到市参评,你认为推选到市里的是两位老师?为什么?27.解:(1)李老师得到的教师票数是:25-(7+6+8)=4,如图所示:(2)设王老师与李老师得到的学生票数分别是x和y,由题意得出:500320 x yx y+=⎧⎨=+⎩,解得:380120 xy=⎧⎨=⎩,答:王老师与李老师得到的学生票数分别是380和120;(3)总得票数情况如下:王老师:380+5×7=415,赵老师:200+5×6=230,李老师:120+5×4=140,陈老师:300+5×8=340,推选到市里的是王老师和陈老师.。