广州地铁环控系统设计方案研究

合集下载

BAS系统及其在地铁环境控制中的应用

BAS系统及其在地铁环境控制中的应用

BAS系统及其在地铁环境控制中的应用作者:金磊来源:《城市建设理论研究》2013年第11期【摘要】随着祖国现代化的发展,新型城市交通—地下铁道的建设方兴未艾。

本文基于此对BAS系统及其在地铁环境控制中的应用进行了研究。

【关键词】BAS系统地铁环境控制应用Abstract: With the development of the modernization of the motherland, the new urban traffic - construction of the underground railroad. In this paper, based on this BAS system and its application in the subway environment control were studied.窗体顶端Key words:BAS system ;The subway environmental control ;application中图分类号:U231+.3 文献标识码:A 文章编号:地铁具有高速、安全、准时和载客量大的特点,是现代城市解决交通拥塞最有效的手段。

地铁车站及沿线分布着众多各类机电设备,他们为地铁的安全运营和营造舒适的乘车环境提供了保证。

但由于机电设备种类和数量众多,分布广,控制要求复杂,加之地下环境恶劣,因此需要用BAS监控系统,采用现代计算机控制和网络技术对地铁车站的隧道通风系统、空调通风系统、空调水系统、车站给排水系统、车站照明系统、电扶梯系统和车站导向标志系统等机电设备进行自系统动化管理和控制,通过优化控制实现地铁的安全高效运行。

下面以广州地铁一号线对车站设备监控( BAS)系统为例进行研究。

概况介绍广州地铁1 号线共有14个地下车站、2个地面车站和一座地铁控制中心(OCC )大楼,全长1 8. 6k m,采用了集散控制系统(DCS)对地铁全线环控设备及其他车站机电设备进行集中监控,由于引进了楼宇控制概念, 地铁车站设备监控系统亦被称为BAS(Build in gAutoma tion System )系统。

广州地铁一号线公园前站环控设计

广州地铁一号线公园前站环控设计
在发生火灾事故时,提供迅速有效的排烟手段,给乘客和消防人员提供足够的新鲜空气,并形成一定的迎面风速,引导乘客安全迅速地撤离。
3、地铁环控系统设计特点
3.1车站空调负荷受外界气象影响小
根据有关资料,地铁车站空调负荷主要由以下几方面组成:列车本身发热及列车空调冷凝器散热约占74%,车站照明、广告灯箱的灯光负荷约占6%,自动扶梯、售票机、检票机等动力负荷约占5%,乘客散热约占15%.由此可见,地铁车站的主要热源来自列车本身,受外界气象条件影响较小。
公园前站位于广州市文化、商业、金融、贸易中心的中山五路地段,是广州市轨道路网规划中一、二号线的立交换乘车站,该站创造性地采用一岛两侧的站台形式,是东南亚目前最大的地铁换乘站。
2、地铁环控系统主要功能
地铁环控系统是通过对影响环境的空气温度、湿度、空气流速和空气品质等主要因素的控制来创造一个适于地铁设备正常运转、人员安全舒适的人工环境:在列车正常运行时,排除余热余湿,提供人员所需的新风量,为乘客和工作人员提供一个适宜的人工环境,满足站内各种设备正常运转所需的温、湿度要求;列车阻塞在区间隧道时,向阻塞区间提供一定的通风量,保证列车空调等设备正常工作,维持车厢内乘客在短时间内能接受的环境条件;
广州地铁一号线公园前站环控设计
1、概述
广州地铁一号线主要为东西走向,大部分穿过老城区,全长18.48公里,南起西朗站,东至广州东站,共设14个地下站和两个地面站。投资总概算为127.15亿元人民币,主要设备从德国、英国、日本、美国等国家引进,整个系统达到80年代末、90年代初国际先进水平,设计最高车速为80公里/小时,平均运行速度为35公里/小时,最小发车间隔2分数的确定不同于民用建筑

地铁环控系统的设计探讨

地铁环控系统的设计探讨
中 图 分 类 号 T 0 UB 5 文献标识码 B
Dic s i sgn ofSu s u son on De i bwa y Env r nm e tCon r yse io n t olS t m Li uGuia ln
( u n z o stt o a w yT cn lg, u n zo , 4 0) G ag h uI tue f i a eh oo y G ag h u 5 3 ni R l 1 0
第2 第 1 6卷 期 21 0 2年 2月
制 冷 与 空 调
Re rg r t n a dAi n i o ig fi e a i n r o Co d t n n i
、 12 硒 .6 No. 1
F b 2 1 -6 3 e . 0 23 ~ 9
文 章编 号 : 17 .6 2 ( 0 2 1 3 .4 6 16 1 2 1 )0 . 60 0
并增大 了空调负荷 ; 而太 小的温差又不 能为 乘客提 供 舒适 的乘车环 境 ,失去 了环境控 制的本来意义 。
普通 建筑 空 调房 间室 内热 环境 评价 标准 , 采用
P O F n e 在稳态 环境下 建立的反 映人 体热舒适 的 a gr
P MV和 P D指标 , P 以及 美 国提 出的新的有效温 度 , 作 为检 查实 际 内部热环 境 空调 效果 的依据 。 是乘 但 客在 乘坐 地铁 过程 中, 客本 身 与周 围 的环 境 的运 乘
传热 形成冷 负荷 、人体 散热湿 形成 的冷 负荷 、灯光 照 明散热形成 的冷 负荷 、设备散热 形成 的冷 负荷 【。 5 J 地铁 环境 空 调负荷 与 普通地 面 建筑 不 同 , 地铁
列车 运 行 时消 耗 的 能 量最 终 都 以热 的形 式 分 布 在 地铁 环境 中, 为 影响地 铁环 境 的动 态负荷 。 外 , 成 另 地 铁 处于 地下 ,不受 太 阳辐 射 的影 响 ,除 了计算 冷 负荷 时必 须考 虑室 外新 风 的影响 之外 , 在计算 地 铁

地铁环控系统设计探讨

地铁环控系统设计探讨

2 6个风亭的设计
2 1 风亭设置情况概述 .
按照 8风亭 方 案 通风 的 综合
图 1 通 风空 调系统
N- 2 区间 3 l N 车站 3 N 车站 4
分析 , 得出车站进站端的 1 风亭及其 活塞通
风道可 以取消 的结论 , 以使 车站 的风亭数 可
量由8 个减为 6个 。图 4为 6风亭设计方案
图: 风 例 口 亭圈 风 【 调 组 一 电 风 — 流 向 机0 空 机 动 阀 —风 方
注 :1 ( )车站两端分称 A端和 B端 , 编号 中用 A、 B以 区分所在 位置的不同; 2 ( )隧道风 亭
进 站端 为 1 出站 端 为 2 车 站通 风 空 调 进 风 亭 为 3 排 风 亭 为 4 ; 3 活塞 通 风 阀编 号 、 , 、 () 为 D。 、 2 , 道 通 风 机 为 T F。 1 A … ;4 与文 字 表 述 无 关 的 设 施 未 编 号 。 A1B … 隧 V A 、2 ()
1 一 烟 } 排风
卅 I


l t



排 一 I 烟 { 风

, ;
可 以看 出 : 在车站进站端的 1 风亭 及其活塞通风道 内, 种气 流方 向 两
相反 , 互相抵消 , 通风量 减小 ; 车 在
- 过 4 戚2 I - - D D 活 B 塞 翟 . 1 B - 通 w 风
图 2 右线隧道风流分解图
1 3 隧道通风气流的综合分析 .
在正 常运行时 , 隧道 ( 括 区间隧道 和站 内隧道 ) 包
通风是 由列车运行 的活塞通风与 T F风机 的机械通风 E 共同完成的。T F风机 的机械通 风可 以被 认为是一 稳 E 定流 , 列车运行所产生的活塞通风则 是一 动态的非 稳定

地铁环控系统(BAS)节能优化设计分析

地铁环控系统(BAS)节能优化设计分析

时,车站的送风机以及排风机会启动作业。在外界温度在9摄氏 度以下的时候,就会开启冬季模式,关闭动风机以及排风机, 而开启出入口对车站进行通风换气。在这样的控制模式之下, 建立起的BAS系统能耗如下图1所示。
通过数据的实际分析中可以看出,对于当前的地铁来说, 最为有效的节能优化方式就是风机变频调速技术的使用。这样 的技术具有较大的技术优势,能够实现对风量的精准调节,同 时还不会因为风量的调节导致运行效率的下降,进而保障了地 铁运行的经济效益。
TECHNOLOGY AND INFORMATION
信息化技术应用
地铁环控系统(BAS)节能优化设计分析
崔海全 西安和利时系统工程有限公司 陕西 西安 710077
Hale Waihona Puke 摘 要 在现代化的城市发展建设当中,地铁是重要的交通工具,能够为出行提供便利性,也是当今城市的重要基 础设施。为了更好地提升地铁系统的效率,需要重视起地铁内的节能降耗问题,从而实现功能的最优化,本文基于 地铁环控系统的节能优化角度进行分析,从而提出优化方案的具体设计。 关键词 地铁环控系统;BAS;节能优化
前言 地铁环控系统在轨道交通系统中是耗电大户,为满足乘车
体验,耗电设备也逐渐增多,因此在地铁环控系统内进行节能优 化已经成为必不可少的举措。同时伴随着控制工程以及机电一体 化建设的落实,使得在地铁环控系统当中进行节能技术的使用成 为可能,因此可以实现降低成本提升地铁经济效益的效果。
1 进行地铁节能的重要价值 在城市轨道交通的环控系统当中,包含了各类的风机以
2 地铁环控系统(BAS)节能优化设计 2.1 控制中心级BAS系统功能 ①首先建立起的BAS系统需要可以对全线各站的设备状
态进行显示,并且能够随时发出所需要的控制指令。②系统需 要对地铁全站的BAS系统设备的运行状态进行检测,从而将每 个站的系统进行串联。③需要系统能够针对地铁运营的具体情 况,对全站进行通风模式的指令下达。

地铁环控系统配电设计

地铁环控系统配电设计

浅析地铁环控系统配电设计摘要:本文从地铁车站低压配电设计出发,着重阐述了环控系统不同负荷级别设备的配电设计方案,并根据笔者所积累的地铁项目设计经验,对环控系统配电方案进行了比较分析。

关键词:低压配电;环控系统;单母线分段;双电源自动切换1 前言在地铁设计中,低压配电专业主要为综合监控系统、通信系统、信号系统、屏蔽门系统、火灾自动报警系统、环境与设备监控系统、通风空调系统(环控系统)、给排水系统、自动扶梯与电梯等配电,其中,环控系统负荷在地铁车站总负荷中占很大比重,本文将着重阐述在地铁车站低压配电中环控系统的配电设计。

2 环控系统概述环控系统主要包括隧道通风系统(含防排烟系统)、车站大系统(含防排烟系统)、车站小系统(含防排烟系统)和空调水系统。

隧道通风系统主要为区间隧道和车站隧道服务,车站大系统为车站公共区服务,车站小系统为车站设备管理用房服务,空调水系统为给车站提供冷源。

3 环控系统负荷级别划分环控系统按其不同的用途和重要性分为一级负荷、二级负荷、三级负荷:1、在发生火灾(只考虑一处发生火灾)和事故时,仍继续运行的设备,如:隧道风机、射流风机、大系统排烟风机、小系统排烟风机及相应的补风机等为一级负荷;2、除一类负荷外的其他风机、柜式空调器、备用空调系统、与风机空调机组非联动的电动风阀、与火灾和事故通风无关的电动风阀等为二级负荷;3、除一、二类负荷外的其他通风空调系统设备,包括:冷水机组、冷冻水泵、冷却水泵、冷却塔、水处理设备、电动蝶阀、电动二通阀等为三级负荷。

4 环控电控室位置选择标准车站一般在车站两端各设一个环控电控室,非标准车站根据车站实际情况,可考虑只设一个大环控电控室,或设若干个环控电控室。

在和土建专业进行配合时,笔者认为环控电控室的位置选取需考虑以下几点:1.环控电控室的位置应尽量靠近环控机房;2.同端的环控电控室和0.4kv低压开关柜室之间尽量避免有泵房、洗手间;3.环控电控室和0.4kv低压开关柜室之间的电缆或封闭式密集母线槽敷设路径,以及环控柜运输路径,要保证畅通;4.环控电控室应避免设置在洗手间、泵房或扶梯基坑下方,以免存在漏水漏油等安全隐患;5.环控电控室中部应避免有结构柱,如四周有结构柱时,要按照结构柱的内侧边沿考虑柜子摆放空间;6.环控柜数量根据车站实际负荷以及车站低压配电与照明技术要求来定,并预留一两个柜位,柜子排列按照《10kv及以下变电所设计规范》gb 50053-94来考虑。

《地铁起(终)点区间通风系统设计分析》

《地铁起(终)点区间通风系统设计分析》

《地铁起(终)点区间通风系统设计分析》1 引言随着我国经济的不断增长,人民生活水平显著提高,城市化建设快速发展。

各大城市的道路交通拥堵问题随之产生,不仅影响了人们生活,大量排放的汽车尾气更是严重损害了人们健康。

轨道交通系统作为解决城市交通问题的战略选择,对改善城市交通结构,缓解日趋严重的交通矛盾,保障城市经济社会的可持续发展具有非常重要的现实作用和深远影响。

地铁的起(终)点区间不同于地铁车站及标准区间,往往具有停车线、出入场线等功能,结构形式复杂、断面面积较大,受配线形式的影响区间长度也经常超过一列车长,火灾扑救和人员疏散都有一定难度。

起(终)点区间通风排烟系统无论在设计阶段,还是线路实际运营阶段,都是地铁环控系统的重要组成部分,是地铁环控系统设计无法忽视的重要问题。

2区间通风排烟系统设计方案受土建条件和线路配置影响,设计方案不尽相同,但总体可分为纵向通风和横向通风两大类。

两种通风形式各自的特点如下:1.纵向通风纵向通风排烟方式是一种最简单的通风排烟方式。

利用安装在区间隧道内顶部安装或侧式安装的射流风机对隧道内空气本身进行加压,以隧道自身为排烟通道,使其在隧道空间内进行轴向流动。

同时结合区间两端的地铁站内的大型通风排烟风机,实现一端抽风一端送风的单向气流组织,抑制火灾烟气向火源上游发生回流蔓延,为人员的安全疏散和灭火救援提供一个无烟的环境。

纵向通风的最显著优势就是简单高效,仅需要设置足够的射流风机来满足规范要求的纵向风速。

但当列车中部着火时,无论从隧道哪一侧送风,都会使下游人员置于高温有毒烟气之中,不利于排烟的下风方向的人员逃生疏散。

同时在进行复杂配线区间设计时,受结构大断面的影响,往往需要在区间内部设置隔墙,否则难以满足风速要求。

2.横向通风横向通风是在隧道顶部设置排风道(多为土建风道)和排风口,风道与风机相连接,排风或排烟工况下通过排烟口直接抽吸区间内气体,排至室外环境。

当隧道内发生火灾的时候,由于高温烟气本身具有向上蔓延的趋势,设置合理的顶部排烟口能够将烟气大量吸入,不会蔓延至乘客所处的区域,具有较高的安全性。

广州地铁三号线调度监控大屏方案

广州地铁三号线调度监控大屏方案

广州地铁三号线调度监控大屏方案一直很好奇像广州目前较先进的地铁,其调度室会是怎样一个情景?会不会有投影机呢?还是用投影墙?负荷如此重的地铁线要求监控系统肯定要很有质量保证,什么样的产品又能胜任呢?相信很多朋友跟笔者一样有着同样的好奇,下面就带大家走进广州番禺地铁三号线的控制中心。

广州地铁三号线现场实拍图大屏上,气势恢宏满目璀璨的“地下长城”广州番禺地铁三号线尽收眼底,VTRON公司大屏幕数字显示拼接墙系统,担当起每分每秒地侦测这条“地下长城”运行状况的艰巨任务。

在广州番禺地铁三号线的控制中心(OCC)集中完成对主控系统、监控网络体系的各类计算机、网络、视频信号的集中显示。

实现对地铁运行的行车调度SIG系统、电力调度SCADA 系统、环境监控设备监控EMCS系统、火灾报警FAS系统、自动售票检票AFC系统和视频监控CCTV系统等六大运行系统的实时监控。

包含了世界流行的所有轨道交通应用的主流系统,在近期整个大屏幕全部用以显示地铁三号线监控调度,远期将增加显示机场线、地铁七号线,达到高集成度、多信息量的监控任务。

一、大屏幕数字拼接显示系统综合概况三号线大屏幕数字显示拼接墙系统的综合监控能力,提高地铁运营的安全性和可靠性。

显示系统全部由VTRON公司提供,系统主要包括Visionpro显示拼接墙体、Digicom多屏处理器及显示墙应用管理系统(VWAS)。

大屏幕显示墙体由72块显示单元(单屏对角尺寸为60英寸),呈24(行)X 3(列)排列,按3度弧形进行拼接。

投影墙的总面积为29.28m(宽)( 2.745m(高)=80.3736m2。

整屏分辨率为(1024(24)((768(3) = 24576(2304)。

分为三个显示区域,分别为:三号线主控系统(MCS)、行车信号系统(SIG)及闭路电视系统(CCTV)的信息。

二、大屏幕数字拼接墙对地铁主控系统(MCS)的监控概况:广州地铁三号线主控系统(MCS)由中央主控系统、车站主控系统、车辆段主控系统、控制中心大楼主控系统等组成。

广州地铁一号线环境控制系统

广州地铁一号线环境控制系统

广州地铁一号线环境控制系统
夏少丹;韩瑶
【期刊名称】《地铁与轻轨》
【年(卷),期】1999(000)004
【摘要】一、概述广州地铁一号线,从西朗至广州东站,全长18.47公里,共设16
个车站,其中2个地面站,14个地下站,1个车辆段。

地下车站大部分设站厅、站台
两层,车站形式除花地湾和坑口站为侧式站台外,其余均为岛式站台(公园前站为一号、二号线换乘站,规模较大,由一个岛式站台和两个侧式站台组成)。

广州地铁以“准确、快捷、舒适、安全”承诺并兑现于广大市民,其中舒适、安全正是环境控制系统的
任务和宗旨。

在集中快速运输系统中。

【总页数】5页(P31-35)
【作者】夏少丹;韩瑶
【作者单位】广州地铁总公司;广州地铁总公司
【正文语种】中文
【中图分类】U231
【相关文献】
1.广州地铁一号线接触网柔改刚工程关键技术探讨 [J], 赵经东
2.广州地铁一号线信号系统改造工程风险分析 [J], 袁雪源
3.广州地铁一号线电压传感器故障高发原因分析 [J], 韩雨馨
4.广州地铁一号线门禁系统存储模块技术改造研究 [J], 梁国林
5.广州地铁一号线洗车机智能化改造 [J], 范宽
因版权原因,仅展示原文概要,查看原文内容请购买。

地铁环境与设备监控系统分析

地铁环境与设备监控系统分析

地铁环境与设备监控系统分析摘要:在地铁环境与设备监控系统中,需结合地铁的实际情况,运用正确的方法进行选择,才能够确保地铁的安全稳定运行,促进我国社会经济的长远发展。

因此,本文对地铁环境与设备监控系统方案进行了具体的分析和研究。

关键词:地铁环境;设备监控;系统方案1、引言近几年,地铁建设得到了大力推广,除了北京、上海、广州等一线城市外,我国很多二线城市也相继开始修建地铁。

环境与设备监控系统(BAS)是地铁运营中应用时间比较短的系统之一,国内最早建设的地铁环境与设备监控系统到现在只有十年左右。

它的主要功能是对隧道通风系统设备、车站通风空调大系统、通风空调小系统、空调水系统设备、给排水设备、自动扶梯、电梯、乘客导向系统、照明系统、事故电源、区间给排水等进行全面的运行管理与控制,并在灾害发生时能够及时迅速地进入防灾运行模式,保证人员的生命安全和减少财产损失,改善地铁环境的舒适度,提高地铁自动化运行的水平,起到安全、可靠、节能的作用。

2、系统方案2.1全线系统构成环境与设备监控系统是由综合监控系统组建的全线监控系统,采用分层分布式系统结构,包括中央级、车站级和现场级3层,具有较强的独立性,既可以脱离综合监控系统(ISCS)独自实现车站BAS的主要监控功能,又可以在ISCS的统一调度和协调下实现车站之间的联动功能。

中央级:BAS 的中央级主要是控制中心 (OCC) 的调度工作站,由综合监控系统实现。

车站级:包括车站级综合监控功能和车BAS监控功能,正常情况下,车站级综合监控功能由综合监控系统完成。

车站BAS监控功能以车站BAS维护终端、BAS监控工作站、32位PLC控制器为平台实现。

现场级:位于车站各监控点或数据采集点,包括传感器、执行器、远程I/O模块、接口模块等。

BAS 网络采用分层分布式现场总线结构,由PLC 控制设备、现场传感器、维护终端等组成。

监控的对象包括各个车站的区间隧道通风系统、公共区通风空调系统、车站设备管理用房区通风空调系统、空调水系统给排水系统、电扶梯系统、低压动力照明系统等设备。

浅谈地铁区间环控模式及其联动的方法

浅谈地铁区间环控模式及其联动的方法

毪i 塑、j 竺凰浅谈地铁区问环控模式及其联动的方法肖然(广州市地下铁道总公司运营事业总部,广东广州510000)睛要】本文主要介绍地锹列车在区间发生火灾情况时,气流组织的原则,以及区间环控火灾模式新的拙行方式的探对。

饫键词】列车;区间;火灾;环控模式;联动地铁作为重要的城市交通工具,其具有载客量大、舒适、安全、准点的特点。

但是由于大部分地铁线路都在地下,列车在行进过程中,如发生故障、火灾,在区间停车,就必须在前后的车站执行相应的环控模式,方便乘客逃生。

本文将从气流组织的原则和环控模式联动执行的方式两方面介绍列车在区间发生火灾时联动区间环控模式的方法。

1区间环控模式介绍区间环控模式是指用于区间隧道通风的设备运行的控制模式。

一般而言,区间环控模式分为正常、阻塞、火灾三种模式。

本文着重介绍列车火灾时的气流组织情况。

在列车在区间发生火灾时,地铁设计规范1要求通风系统要具有防灾排烟、i 捌能。

考虑到列车着火点、中间风饥房、疏散通道对乘客疏散的影响,在地铁设计时就定义了列车区间火灾的七种情况,并制定了相应的气流组织方式,具体见下表表l 列车火灾停留在区间的气流组织方式表气流组织区列车着火着火列车停留f 凇于乘客气流组织方向(以域内的列车点疏散区域佶车站和联络通列车行车方向为正)头部任一位置正尾部任—位置反不明不明正中间前正中间由正中间后反2任—位置1}馏正此处,我们将列车的行车方向定义为前,反之为后。

1.1表中的气流组织区域指的是两套相邻的具有与外界连通的风道和通风设备的系统之间的隧道,具体如下:1)一个车站同一侧的头尾两端的隧道通风系统之间的隧道;2)无中间风井的两个车站,前一个车站的尾端隧道通风系统与后一个车站头端隧道通风系统之间的隧道;3)中间风井和前方车站的尾端隧道通风系统之间的隧道;4)中间风井与后方车站的头端隧道通风系统之间的隧道:5)两个中间风井之间的隧道;12表中的乘客疏散区域指的是两个能够提供乘客疏散功能的地点之间的隧道,具体如下:1)无疏散通道的两个车站,前方车站尾端站台和后方车站头端站台之间的隧道;2)疏散通道和前方车站尾端站台之间的隧道:3)疏散通道和后方车站头端站台之间的隧道;4)两个疏散通道之间的隧道。

广州地铁环控系统设计方案研究(二)

广州地铁环控系统设计方案研究(二)

广州地铁环控系统设计方案研究(二)内容介绍作者:admin关键词:车站通风空调,隧道通风,合用设计,风亭摘要:如何解决地面风亭设置困难是当前地铁设计中需要深入研究的课题,减少风亭设置数量是解决这一问题的有效途径之一,本文结合广州地铁环控系统设计,为使地面风亭数量减少,提出了风道风亭合用设计的一些想法,可供广州地铁和其它城市新的地铁环控系统设计时参考。

关键词:车站通风空调隧道通风合用设计风亭前言在建筑物林立的城市闹市区修建地铁,设置地面风亭是一项十分困难的事情,地面风亭数量越多,设置难度越大,为了避免风亭风口之间的相互影响,地铁规范规定各风口之间的间距应大于5m。

车站一端设置4个风亭时,4个风口如果在立面上错开,则风亭成为一个庞然大物,影响城市景观,4个风口如果在平面上错开时,占地面积很大,地方难找且协调工作十分艰巨。

目前国内地铁传统的设计是车站一端设置4个风亭,车站两端共设置8个地面风亭,工程量巨大。

能否将风亭数量减少一些,应是设计者研究课题之一。

广州地铁1号线采用开/闭式系统,在其前期设计阶段,设置的地面风亭每个车站为8个,为了解决多个风亭设置的困难,当时作为环控设计负责人的本人,对其进行了分析与研究,提出了将每站8个风亭数量减少的设想,并经过艰巨努力,使每站按6个风亭付诸工程实施,为广州地铁节省了一笔十分可观的工程投资。

风亭数量可以减少的原因,作者已在《广州地铁1号线环控设计总结》(收入《回顾与思考》一书第九章—环境控制系统)中进行了介绍,这里不再说明。

遗憾的是这一设计进步,没有得到业内人士的认可,致使在其后采用开/闭式系统的上海地铁2号线和南京地铁1、2号线仍然按照每站8个地面风亭进行设计施工,为此作者感到十分可惜。

广州地铁2~5号线采用了屏蔽门系统,2、3号线每个地铁车站均设置了8个地面风亭,4、5号线则是部分车站按照8个地面风亭设计,部分车站按6个地面风亭设计。

8个地面风亭设计方案就是作者第一篇文章(简称“文章1”)中介绍的A型设计方案, 6个地面风亭设计方案就是文章1中的B型方案。

基于城市空间中的地铁“四小件”的设计方案

基于城市空间中的地铁“四小件”的设计方案

0 引言随着我国城镇化水平提高,城市的快速发展,城市轨道交通以其高效、节能、节省空间等优点成为现代城市重要的公共交通工具。

轨道交通作为城市基础设施的快速建设,产生了大量的地铁车站地面“四小件”,对城市的公共空间、建筑外部的空间布局产生较大影响。

在以功能为主的现代城市空间中如何解决地铁车站地面空间建设的难题,是文章研究重点。

尹沁雪[1]通过规范阅读、文献研究总结归纳四小件相关的设计规范、功能性要求、常见设计形式等,其次通过实地踏勘调研地铁四小件与城市空间的关系进行分析。

赵密等[2]以北京市城六区地铁系统为例进行抗震连通可靠性分析。

李想[3]以地铁站点为核心,围绕站点周边开发程度、交通系统、城市设计及地铁网络结构特征这四个维度构建地铁站点建成环境指标体系。

本文将以福州滨海快线三叉街站为例,对出入口、风亭、冷却塔等的布置形式及整合设计进行分析,为后车站四小件在城市空间中的设计提供了方法及借鉴。

1 地面四小件定义地铁四小件是地铁出入口、无障碍电梯、风亭、冷却塔四类附属建筑,一般特指四类设施在地上的组成部分。

地铁四小件是地铁站设计系统的重要组成部分,是地铁地下站与地面连接的唯一通道,出入口和无障碍电梯作为地上地下空间转换的垂直交通,是乘客进出站点的必要节点,也是地铁正常运营的基础;风亭和冷却塔是地铁通风空调环控系统和空调制冷系统的组成部分,决定了地铁地下站体空间及车辆内部能否实现良好的通风换气、维持适宜的体感温度,是地铁正常运行的必要设施。

1.1 出入口地铁站点出入口一般要根据周边建筑客流预测数据、市民乘坐习惯及进出站的便捷程度来设置。

在人口高密度的商业及住宅区域,为了更方便乘客的进出,出入口的数量及位置等都需要根据周边用地类型、建筑功能、道路等级等综合布置,以此来提高轨道交通利用率及出入的便携性。

常见的地铁出入口从功能上可以划分为:地铁设备区的安全出入口及公共区出入口;从建筑形式上可以分为:有盖出入口、敞口出入口、合建出入口。

地铁环境与设备监控系统设计探讨

地铁环境与设备监控系统设计探讨

地铁环境与设备监控系统设计探讨作者:刘岩来源:《城市建设理论研究》2014年第01期摘要:地铁的建设是城市现代化的重要标志。

为确保地铁各个系统的安全可靠运行,设置环境与设备监控系统(BAS)非常重要。

本文就地铁环境与设备监控系统的设计进行了全面阐述。

关键词:地铁环境与设备监控系统中图分类号:TB482.2文献标识码:A地铁监控系统是现代地铁设计与建设的重要组成部分,是保障地铁行车安全、站内环境安全以及灾害事故预防的关键。

通过地铁监控系统的科学设计与实施能够有效的预防各项群体事故的发生,保障站内与车内人员的安全。

机电设备监控系统即地铁规范中的环境与设备监控系统(BAS)是将计算机及其网络技术相结合的机电设备自动化控制系统,该系统的控制对象主要有通风空调设备、给排水设备、正常照明设备、火灾自动报警系统、漏水报警系统等子系统设备。

一、地铁环境与设备监控系统的概述地铁中的BAS系统组建主要存在两大方式,一种是在各车站中形成相对独立的系统,通过维修工作站、现场触摸屏、PLC控制器等实现对环境和机电设备的监控(上海等);另一种是与综合监控系统集成,在综合监控系统的协调下完成其功能(广州、深圳、港铁等)。

随着综合监控集成技术的不断发展和成熟,第二种方式被越来越多的新建线路所采用。

BAS系统对通风空调、给排水、电扶梯、低压配电与动力照明等各子系统的车站设备进行全面、有效的监控和管理。

BAS系统通过手动、自动或就地等方式控制设备的启停,实时监控设备运行状态、环境参数,采集、处理并记录有关信息,调控车站的环境舒适度,并通过时间表进行节能管理,以确保设备处于安全、可靠、节能、高效的运行状态,从而为乘客提供舒适的乘车环境。

另外BAS系统还能在列车发生异常情况下(如火灾或列车阻塞事故),通过模式表控制车站设备进入相应的防灾模式,协调车站设备的运行,充分发挥各种设备应有的作用,保证乘客的安全和设备的正常运行。

二、地铁环境与设备监控系统的特点地铁是一类特殊的建筑,是由多个车站通过隧道连接成的一个整体。

地铁环控系统的特点以及解决方案

地铁环控系统的特点以及解决方案

地铁环控系统的特点以及解决方案作者:杨惠王培文来源:《城市建设理论研究》2014年第07期摘要:地铁作为当前现代城市交通之中高速、快捷以及便利的代表,应该注重地铁环控系统的特点以及相关的解决方案,实现对其功能上的最大程度发挥,具有十分重要的现实意义。

关键词:地铁环控;特点;解决方案中图分类号:U231文献标识码: A引言我国正处于大规模城市化发展的时期,全国各大城市的交通状况一直非常紧张,交通不畅严重影响着人们的生活、制约着经济的发展。

改善城市公共交通状况已经成为各大中城市政府相当急迫的要求和共识。

随着近年来轨道交通的快速发展,北京、上海、广州、深圳、天津、南京等各大城市都修建或正在实施各自的快速轨道交通路网的骨干线路。

地铁具有高效、快捷、安全和污染小的特点,避免了地面道路扩容困难的矛盾,有效地缓解了城市交通难的问题。

因此地铁在世界各大城市得到广泛应用,已经成为承担城市大运量公共交通系统的首选。

1、地铁环控系统的主要特点地铁是一个较为特殊的建筑系统,具有面积大、空间广、区域应用的功能比较复杂、区域间无隔断、人员流动性大等特征,并且不同的建筑功能区域负荷通常都会处于一种较快的相对变化状态之中。

这样的环境特性就会使得地铁的空调通风系统在实际的运行之中通常会出现诸多的问题,比如局部负荷突变、负荷跨区域变化、区段实际使用功能变更、存在调节的空间死角等。

地铁环控系统的监控对象通常是时变和非线性的,但其负荷的变化具有随机性或统计学上的特性。

所以,环控系统不能仅采用建立模型辨识的方法,而要在此基础上使用人工智能神经网络控制器,对地铁空间多输入、多输出的非线性之时变系统做出控制。

2、地铁环控系统的主要组成部分2.1中央级环控系统中央级环控系统通常是由控制中心局域网来组成的,为了保证系统的安全性和可靠性,中心局域网使用双以太网冗余的结构,中心局域网通过路由器或其他接入设备与通信主干连接。

中央环控系统主要是有下列设备来组成的:(1)监控工作站:选用两台互为备份的监控主机,完成调度人员的日常控制、监视以及调度管理的工作。

广州地铁一、二、八号线控制中心大屏幕显示系统研究与应用

广州地铁一、二、八号线控制中心大屏幕显示系统研究与应用

广州地铁一、二、八号线控制中心大屏幕显示系统研究与应用作者:户磊来源:《中国新通信》 2018年第9期【摘要】广州地铁公园前OCC 控制中心担负着一、二、八号线的行车组织和运营管理,控制中心的大屏幕显示系统作为调度信息显示的主要设备,用于实现对行车、电力、环控、CCTV 监控、视频图像等运营组织信息的实时显示,为各专业调度做出正确及时的调度决策提供有效的支持。

鉴于其重要性,需要保障大屏幕显示系统长期稳定运行,满足一、二、八号线行调、电调、环调的使用需求。

【关键词】大屏幕显示系统控制中心一、二、八号线显示单元一、引言广州地铁一、二、八号线大屏幕显示系统设备安装在公园前控制中心调度控制室,大屏幕显示系统由一、二、八号线信号系统、环控系统、电力监控系统、 CCTV 监控系统、清分客流系统和不间断电源系统组成,包括123 个背投显示屏幕、9 套DIGICOM 服务器、10 套ARK 服务器、1 套控制PC 服务器、2 套UPS 不间断电源系统、相关软件及电缆等设备,为一、二、八号线的信号系统、环控系统、电力监控系统、CCTV 监控系统、清分客流系统提供实时图像信息监控。

大屏幕显示系统规模为3(行)X 41(列)共123 个显示单元组成的投影墙,每个显示单元对角线为50 英寸的DLP 显示屏,投影墙显示系统连接各专业服务器获取显示用户的相关信息,实现对图像和视频信息的综合显示,包括一、二、八号线轨道状态信息、各站点视频信号、行车状态信息、电力监控信息、信号系统信息等,形成一套功能完善的显示管理控制系统。

二、系统原理. 1 系2 统结构大屏幕系统的123 个显示单元组成的投影墙为各接入系统提供统一信息的显示,投影墙由投影显示单元、投影单元底座及支架构成。

投影显示单元由投影机箱、投影幕、投影机、灯泡、接口处理板、调整装置等组成一个有机的整体。

投影显示单元底座用于放置投影显示,固定在防静电地板的支架上。

大屏幕显示系统配置控制系统和电源系统,即三条线路信号、电力、环控专业共9 套DIGICOM 服务器、10套ARK 服务器、1 套控制PC 服务器、2 套UPS 不间断电源系统、相关软件及电缆等设备。

广州地铁5号线环境与设备监控系统的调试.

广州地铁5号线环境与设备监控系统的调试.

技术装备67现代城市轨道交通6/2009MODERN URBAN TRANSIT1系统概况广州地铁5号线首期工程共设23座车站、3个集中冷站、1座区域控制中心大楼及1座车辆段。

环境与设备监控系统(以下简称BAS由在车站环控电控室的B A S 系统设备、车站控制室的BAS 系统设备、集中冷站控制室的BAS 系统设备、控制中心大楼内的BAS 系统设备、车辆段综合楼内的BAS 系统设备及现场BAS 系统设备等组成(图1。

1.1车站级BAS 系统组成车站分为地下及高架车站。

高架站由于车站规模相对较小,车站B A S 系统简单,只设一组冗余的PLC,通过现场总线和R I/O(远程输入/输出与被控设备相连,监控通风空调小系统、照明、导向照明、自动扶梯及电梯、给排水系统等,与综合监控系统、火灾报警系统(F A S、低压配电系统、冷水机组等系统设有通信接口。

地下车站级BAS 系统设备由车站BAS 总线网络、冗余控制器、BAS 一体化维修工作站等构成。

在车站控制室设有综合后备盘(IBP,作为隧道通风系统、车站大系统、小系统在火灾模式或列车阻塞模式、冷站区间爆管模式、冷站火灾模式情况下设备运行控制的紧急后备控制盘。

在靠近车控室一端的环控电控室设一组冗余的B A S 主控制器和BAS 一体化维修工作站,B A S 主控制器经双以太网与车站综合监控系统冗余交换机相连,BAS 冗余主控制器通过RS485总线与FAS 相连、通过冗余总线与IBP 盘中R I/O 相连、BAS 主控制器通过Controlnet 冗余总线与车站另一端的冗余的B A S 从控制器相连。

1.2就地级BAS 系统组成就地级设备包括就地控制柜(箱和传感器等,就地设备主要设置在环控电控室、照明配电室、环控机房、扶梯配电房等位置。

各类传感器由现场控制电缆连接至就地控制箱,就地控制柜、控制箱通过Controlnet滕君祥:广州轨道交通建设监理有限公司,工程师,广州510010广州地铁5号线环境与设备监控系统的调试滕君祥摘要:介绍广州地铁5号线环境与设备监控系统的结构组成以及系统调试。

广州地铁一号线环控电控柜大修方案

广州地铁一号线环控电控柜大修方案

r e c o m me n de d a n d t h e s y s t e m s c h e me o f t y p i e a l l o o p o f e nv i r o n me n t a l — c o n t r o l c a bi n e t a r e p r e s e n t e d . Ke y wo r ds Gu a n g z h o u Me t r o Li n e 1 En v i r o n me n t a l — c o n t r o l e l e c t ic r c o n t r o l c a b i n e t
GUO Li( G u a n g z h o u Me t r o De s i g n& Re s e a r c h I n s t i t u t e C o . ,L t d . ,Gu a n g z h o u 5 1 0 0 1 0 ,C h i n a )
Ab s t r a c t T h e o p e r a t i o n,pr o b l e ms ,t r a n s f o r ma t i o n
对 广 州 地 铁 一 号 线 环 控 电控 柜 进 行 大 造 范 围
广 州 地铁 一号 线 工程 全 长 1 8 . 4 8 k m,设 1 6个
车站 ( 其 中地 面 车 站 2座 , 地 下 车 站 1 4座 ) ,1 个

号 线 环 控 电 控 柜 改 造 范 围 为 : 西 朗 站 A、B
关 键 词 广 州 地 铁 一 号 线 环 控 电控 柜 大 修
方 案 临 时 供 电
中 图分 类 号 :T U 2 4 8 . 2 文 献标 识 码 :A
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

地铁环控系统设计方案研究(二)前言在建筑物林立的城市闹市区修建地铁,设置地面风亭是一项十分困难的事情,地面风亭数量越多,设置难度越大,为了避免风亭风口之间的相互影响,地铁规规定各风口之间的间距应大于5m。

车站一端设置4个风亭时,4个风口如果在立面上错开,则风亭成为一个庞然大物,影响城市景观,4个风口如果在平面上错开时,占地面积很大,地方难找且协调工作十分艰巨。

目前国地铁传统的设计是车站一端设置4个风亭,车站两端共设置8个地面风亭,工程量巨大。

能否将风亭数量减少一些,应是设计者研究课题之一。

地铁1号线采用开/闭式系统,在其前期设计阶段,设置的地面风亭每个车站为8个,为了解决多个风亭设置的困难,当时作为环控设计负责人的本人,对其进行了分析与研究,提出了将每站8个风亭数量减少的设想,并经过艰巨努力,使每站按6个风亭付诸工程实施,为地铁节省了一笔十分可观的工程投资。

风亭数量可以减少的原因,作者已在《地铁1号线环控设计总结》(收入《回顾与思考》一书第九章—环境控制系统)中进行了介绍,这里不再说明。

遗憾的是这一设计进步,没有得到业人士的认可,致使在其后采用开/闭式系统的地铁2号线和地铁1、2号线仍然按照每站8个地面风亭进行设计施工,为此作者感到十分可惜。

地铁2~5号线采用了屏蔽门系统,2、3号线每个地铁车站均设置了8个地面风亭,4、5号线则是部分车站按照8个地面风亭设计,部分车站按6个地面风亭设计。

8个地面风亭设计方案就是作者第一篇文章(简称“文章1”)中介绍的A型设计方案,6个地面风亭设计方案就是文章1中的B 型方案。

本文除了对开/闭式系统和屏蔽门系统各站均可以按照6个地面风亭进行设计加以肯定外,还将进一步探讨能能否使各站风亭减少至4个或更少的可能性,以便最大限度减少地铁风道风亭土建工程量和工程投资。

一、A型方案设计情况的讨论1、A型方案8个风亭设置情况概述将车站大系统划入文章1中的A型设计方案系统图后,则成为本文所示的系统图1,因此A型设计方案就是8个风亭的方案,既车站每一端有2个隧道风亭、1个进(送)风亭及1个排(出)风亭,计4个,车站两端合计共8个风亭。

它的设计基本情况是:(1)对车站通风空调系统设计了送风系统和回排风系统,其中送风系统由进风亭、进风道(井)、组合式空调机(AHU)等组成,回排风系统由回排风机(RAF)、排风亭(包含排风道(井),以下风亭均包含了风道(井))等组成;(2)对区间隧道在车站两端分别为左、右线设置了各1个活塞通风系统及机械通风系统,活塞通风系统由活塞通风道、活塞通风阀、活塞通风亭等组成,机械通风系统由TVF风机、机械通风亭等组成,显然活塞通风亭与机械通风亭共同合用一个风亭,故称为隧道风亭,活塞通风与机械通风系统紧密相连,通常称其为区间隧道通风系统;(3)对站隧道设计了单一的排风(排热)系统,该系统由车顶和站台下均匀排风(OTE和UPE)道、TEF风机、排风亭等组成。

图示表明排热系统的风亭与车站排系统的风亭共同合用一个风亭,由此可见“合用设计”已经存在,并不是新概念,本文只是给以明确,并按照“合用设计”这一概念进一步探讨风亭设计数量减少的可能性。

为了进行文字表述,图1中的编号不同于各条地铁线路设计,其编号规定详见图1中的说明。

2、A型方案隧道通风气流的基本分析隧道通风系统由活塞通风与机械通风组成,图2对A型方案的右线隧道活塞通风与机械通风气流进行了分解。

图中(1)是没有机械通风,仅列车在区间隧道运行时所产生的活塞风风流状况,列车前方为正压,因此,列车前方的风亭均为排(出)风,列车后方为负压,其后方风亭均为进风,图中用风流箭头的多少来表示各风亭和各通风段的相对风量大小,列车前后用3个风流箭头表示的隧道段风量最大,其它用2个箭头表示的风亭和隧道段的风量并不完全相等,而只是表示它比用1个箭头表示的风量大而已。

图中(2)是车站两端区间隧道没有列车运行,仅站隧道排热系统的TEF风机运转时的风流状况,同上图一样,图中用风流箭头的多少来表示各风亭和各通风段的风量大小。

由图可知:(1)列车在区间隧道运行时所形成的活塞风流,在没有其它风流影响时,对各车站进站端的1#风亭而言,以排(出)风为主,对各车站出站端的2#风亭而言,以进风为主;(2)在没有列车活塞风影响时,车站两端的1#与2#风亭均是TEF风机进行机械排风时的进风通路。

3、A型方案隧道通风气流的综合分析正常运行时隧道(包括区间隧道和站隧道)通风是由列车运行的活塞通风与TEF风机机械通风共同组成的。

TEF风机机械通风可以认为是一稳定流,列车运行所产生的活塞通风则是一动态的非稳定流,两者的组合仍为动态非稳定流,其计算比较复杂,一般需要借助电脑程序进行。

但个人认为,定性分析和静态分析是程序计算的基础之一,作为工程应用,进行静态的定性分析乃是我们进行设计问题研究的重要方法之一,同时也是我们检查程序计算结果的重要手段之一。

为此,本文进行了图3所示的静态的定性分析。

为了进行气流分析与叠加,我们对图2气流作以下简化设定:略去较小风量影响,仅对中等风量和较大风量进行分析,且均用单一风流箭头表示。

为此对一个车站两端风亭而言,对应于图2-(1)可以形成图3-(1)所示的气流图,对应于图2-(2)可以形成图3-(2)所示的气流图。

将图3中的(1)图与(2)图叠加则形成(3)图,由图3-(3)可以看出:(1)车站进站端的1#风亭及其活塞通风道,两种气流方向相反,互相抵消通风量减小;(2)车站出站端2#风亭及其活塞通风道,两种气流方向相同,互相加强通风量增大。

4、A型方案隧道通风综合分析小结通过以上综合分析我们可以认为A型方案设置在车站进站端的1#风亭及其活塞通风道的对外通风作用十分有限,可以取消,设置在车站出站端的2#风亭及其活塞通风道的通风作用明显,需要加强。

三、B型方案设计情况的讨论1、B型方案6个风亭设置情况概述按照A型方案通风综合分析车站进站端的1#风亭及其活塞通风道可以取消的结论,可以使车站的风亭数量由8个减少为6个。

将车站大系统画入文章1中的B型设计方案系统图后,则成为本文所示的系统图4,该图示即为地铁4、5号线一些车站所采用,并被作者在文章1中称为的B型设计方案。

B型方案为车站每端有1个出站端的隧道通风亭(2#)和车站通风空调进风亭(3#)及排风亭(4#),计为3个风亭。

其实取消车站进站端的1#风亭及其活塞通风道后的隧道通风系统可以按照文章1的建议方案1或建议方案2设计,本文为了两篇文章的衔接和避免不必要的误解继续沿用文章1的B型方案系统设计图来进行表述。

2、B型方案隧道通风气流的综合分析上面所介绍的B型方案及文章1中的建议方案1、2都是基于可以取消进站端的1#风亭及其活塞通风道这一分析结论(4、5号所出现的B型方案是否也基于这一分析结论尚不清楚,而本人是基于这一分析结论才赞同B型方案的),从风亭数量上讲建议方案1、2也属于B型方案系列。

B型方案取消进站端隧道通风亭后,每个车站的站隧道与进站端的区间隧道形成了同一通风区段,对其通风情况本文进行了图5所示的静态的定性的分解分析。

为了文字表述方便,图5中的编号与文章前后的图形编号不同,即将进站端的区间隧道、出站端的隧道风亭及TEF风机等编号与车站用同一序号表示,名称及编号后的括号是其缩写。

对图5中的各分图具体说明如下:A图是各相邻区间隧道均无列车运行,各相邻车站均有列车(或均无列车)停站时的通风情况,通风气流从本站出站端隧道风亭进入地铁,然后由本站TEF排风系统排出地面,显然这时各出站端的风亭进风量等于各站TEF的排风量,可用以下等式表示,即Q3F进=Q3T 排、Q4F进=Q4T排、Q5F进=Q5T排、…….;B图是各相邻区间隧道均有列车运行且运行情况相同,而各车站均无列车(或均有列车)停站时的通风情况,此时的通风则由TEF机械排风和列车运行所产生的活塞通风组成,各区段的通风是新风从列车后方的风亭进入,途径运行区间,然后由前方的TEF排出地面,列车后方风亭的进风量QF应等于运行区间的活塞通风量QQ,且等于列车前方车站TEF排风量QT,即Q3F进=Q4Q=Q4T排、Q4F进=Q5Q=Q5T排、Q5F进=Q6Q=Q6T排、…….;C1图是1列车在区间运行其前后区段均无列车时的通风情况,气流从3F进入,途径4 Q进入4C,进入4C时会有三种情况:(Ⅰ)如果Q4Q=Q4T排时,则4F和5Q均没有气流;(Ⅱ)如果Q4Q<Q4T排时,则4F处于进风状况;(Ⅲ)如果Q4Q>Q4T时,则如C1图风流箭头所示,4T排出部分风量剩余风量到达出站端4F接口处按三通管路进行风量分配,此时,4F处于排风状况排出部分风量,部分风量则进入5Q和5C,进入5C后仍然会有三种情况出现;(1)如果Q5Q=Q5T时,则5F和6Q均没有气流;(2)如果Q5Q<Q5T时,则5F有气流进入;(3)如果Q5Q>Q5T时,则5T排出一部分风量后剩余风量到达出站端5F接口处按三通进行风量分配,部分由5F排出,部分进入6Q和6C……..,因为Q3F进=Q排4T排+Q4F 排+Q5Q,Q5Q=Q5T排+Q5F排+Q6Q,所以,Q3F进>>Q4F排>>Q5F排;C2图情况与C1图雷同,只是列车前进了一个区间,4号风亭可由C1图可能存在的第(Ⅲ)种排风情况变成了进风情况,这种随着列车运行位置的不同,对1个风亭而言有时进风有时排风的情况,就是人们常说的活塞通风,本文将其称为对外活塞通风,并将上述列车运行区间的活塞通风称为对活塞通风。

对活塞通风的风向为单向风流,风向与行车方向始终一致;对外活塞通风的风向则可能为双向,为时进时出,如果活塞通风道长度较长,可能会出现地铁的热空气还没有排出风亭(或排出量很小)时又处于进风状况使其又返回入地铁而没有达到对外活塞通风的目的,为此各条地铁线路都对活塞通风道的长度进行了限制,同时为了达到较好的对外活塞通风效果还对活塞通道的过风面积大小设计有所规定。

D图是1列车在区间运行其前后区段车站均有列车停站时的通风情况,通风情况与C1图接近只是各通风区段的风量大小有所变化。

需要指出的是D图与C1、C2图一样没有显示(Ⅰ)、(Ⅱ)Q4Q≤Q4T排时的情况,而只显示了(Ⅲ)Q4Q>Q4T时的情况。

上面所说的列车在区间隧道运行的对活塞通风量大小取决于隧道面积、列车正面积、列车长度、隧道通风管路阻力系统、及列车运行速度等,这些参数除列车速度为变量外,其余则是常量。

因此地铁各种边界条件确定后对活塞通风量大小主要决于列车运行速度,列车从一个车站运行到下一个车站,一般经历三个运行阶段:启动加速运行、高速惰性运行、制动减速运行。

加速运行时隧道活塞通风量由小逐渐加大,惰性运行时隧道活塞通风量最大,减速运行时隧道活塞通风量由大逐渐减小,列车停站后活塞风速尚有一个衰减过程。

相关文档
最新文档