常见钢焊接性
材料焊接性之不锈钢及耐热钢的焊接
材料焊接性之不锈钢及耐热钢的焊接引言焊接是一种常用的金属连接方法,可以将不同材料的金属零件连接在一起。
然而,不同材料的焊接性能存在差异,需要针对不同材料选择合适的焊接方法和技术参数。
本文将重点讨论不锈钢及耐热钢的焊接性能及相关注意事项。
不锈钢焊接性不锈钢是一种耐腐蚀性能较好的材料,在很多领域得到广泛应用,如航空航天、化工、食品加工等。
然而,不锈钢的焊接性能相对较差,主要表现在以下几个方面:1.焊接变形:不锈钢在焊接过程中容易产生变形,特别是薄板的不锈钢更容易变形。
这主要是由于不锈钢的热导率较低,焊接过程中热量会聚集在焊缝附近,导致局部温度升高,引起膨胀和变形。
2.易开裂:不锈钢焊接容易产生热裂纹和冷裂纹。
热裂纹主要是因为不锈钢含有较高的含碳量,并且在焊接过程中产生的晶界液滴容易凝固形成裂纹。
冷裂纹则是由于焊接过程中残余应力引起的。
3.易产生气孔:不锈钢焊接还容易产生气孔,主要是由于不锈钢表面有一层氧化膜,焊接时难以完全消除,氧化膜中的气体会被封闭在焊缝中形成气孔。
为了克服不锈钢焊接的问题,我们可以采取以下几个措施:•合理选择焊接方法:根据不同情况选择合适的焊接方法,如手工弧焊、TIG焊、MIG/MAG焊等。
不锈钢薄板焊接可以选择TIG焊,对于厚板可以选择手工弧焊或MIG/MAG焊。
•控制焊接变形:采取适当的预热和后续处理方法,减少焊接变形。
可以通过加热、加压、采用夹具等方式控制焊接变形。
•选择合适的焊接材料:选择合适的焊丝和焊剂,以提高焊接质量和性能。
推荐使用低碳或超低碳不锈钢焊丝,同时选用适合不锈钢的焊剂。
•控制焊接参数:合理控制焊接电流、电压、焊接速度等参数,以避免产生过大的热量和过多的焊接变形。
耐热钢焊接性耐热钢是一种能够在高温环境下保持稳定性能的材料,常用于石油化工、电力、制造等领域。
耐热钢的焊接性能相对较好,但仍存在以下一些问题:1.易烧穿:耐热钢的烧穿性较强,容易在焊接过程中烧穿母材,特别是对于板材焊接来说。
q235与q345焊接的焊缝强度
q235与q345焊接的焊缝强度焊接是一种常见的连接方法,广泛应用于各行各业中。
其中,焊接钢材是焊接中的一种常见情况。
q235和q345是两种常见的钢材,那么在焊接q235和q345时,焊缝强度如何呢?需要了解q235和q345的基本情况。
q235是一种碳素结构钢,其化学成分为C、Si、Mn、S、P等元素,其中碳含量较低,通常不超过0.22%。
而q345是一种低合金高强度结构钢,其化学成分为C、Si、Mn、S、P、V、Nb、Ti等元素,其中碳含量小于0.20%。
由于q345含有更多的合金元素,因此具有更高的强度和更好的韧性,适用于更高的负荷和更严苛的环境。
在焊接q235和q345时,需要注意以下几点:1.选择适当的焊接方法。
对于q235和q345的焊接,最常用的方法是电弧焊。
如果需要更高的焊接质量和可靠性,则可以选择气体保护焊、等离子焊或激光焊等高端技术。
2.选择合适的焊接材料。
焊接材料应与基材相似,通常选择相同或相似的钢材作为焊接材料。
在焊接q235和q345时,通常使用q235或q345钢材作为焊接材料。
3.控制焊接参数。
焊接参数包括焊接电流、电压、焊接速度、焊接角度等,这些参数需要严格控制,以确保焊接质量和焊缝强度。
一般来说,焊接电流越大,焊缝强度越高,但过大的电流会导致焊缝变形和裂纹。
因此需要根据实际情况选择合适的焊接参数。
4.进行适当的后处理。
焊接完成后,需要进行适当的后处理,包括去除焊渣、打磨、除锈、喷漆等。
这些处理可以有效提高焊接质量和焊缝强度。
总的来说,焊接q235和q345的焊缝强度取决于多种因素,包括焊接方法、焊接材料、焊接参数和后处理等。
如果控制得当,焊接质量可以达到很高水平,焊缝强度也会相应提高。
因此,在进行焊接时,需要根据实际情况选择合适的方法和参数,以确保焊接质量和焊缝强度。
详解典型焊接材料的焊接性
详解典型焊接材料的焊接性典型焊接材料的焊接性是指在焊接过程中所表现出的特性和性能。
焊接性是影响焊接工艺和焊缝质量的重要因素之一、下面将详细介绍常见焊接材料(包括金属和非金属材料)的焊接性。
1.钢材焊接性:钢材是最常见的金属材料之一,具有广泛的应用领域。
钢材的焊接性取决于其成分、钢种和热处理状态。
一般来说,碳含量低的低碳钢和碳含量高的高碳钢都具有良好的焊接性。
焊接低碳钢时,焊接热影响区域(HAZ)容易发生退火,引起冷脆性的问题,需要采取适当的措施进行预热和后热处理。
高碳钢焊接时容易出现冷裂纹和热裂纹,需要选择适合的焊接材料和控制焊接参数。
2.铝合金焊接性:铝合金是一种轻质、高强度的金属材料,广泛用于航空、汽车和建筑等领域。
铝合金的焊接性取决于合金化元素、成分和热处理状态。
一般来说,一些铝合金易于焊接,如铝镁合金和铝锂合金,而一些铝合金焊接性较差,如硬化铝合金。
焊接铝合金时,容易发生氧化和热裂纹等问题,需要采取保护气体和合适的焊接工艺参数。
3.不锈钢焊接性:不锈钢是一种抗腐蚀性能良好的金属材料,被广泛用于食品加工、化工和医疗器械等领域。
不锈钢的焊接性受到合金元素、成分和热处理状态的影响。
普通奥氏体不锈钢(如304和316等)焊接性较好,而马氏体不锈钢焊接性较差。
焊接不锈钢时,易发生气孔和焊接晶间腐蚀等问题,需要控制焊接参数和采用适当的焊接试剂。
4.铜及铜合金焊接性:铜和铜合金是常见的导电材料,被广泛应用于电气、电子和管道等行业。
铜及铜合金的焊接性好,容易焊接。
焊接铜合金时,一般采用气焊、电弧焊或电阻焊等方法。
需要注意的是,铜及铜合金焊接时易发生氧化和高温脆性等问题,需要采取保护措施。
5.非金属材料的焊接性:非金属材料如塑料、陶瓷和橡胶等也可以进行焊接。
其中,塑料焊接性好,常用的焊接方法有热板焊接、高频焊接和超声波焊接等。
陶瓷和橡胶等材料的焊接性较差,难以进行常规焊接,常采用粘接、烧结和激光焊接等特殊方法。
常见的钢焊接有哪些
常见的钢焊接有哪些?一、手工电弧焊选择手工电弧焊焊条型号,首先应按与主体金属强度相适应的原则确定焊条系列,即两者强度应相等。
当不同强度的钢材连接时,采用与低强度钢材相适应的焊条系列,即可满足强度等方面的要求并且较经济。
通常当钢材为Q235A•F时采用E4303.型;即可满足要求。
这两种焊条药皮均属钛钙型,施焊易于掌握,其熔渣流动性好、脱渣容易,且电弧稳定、熔深适中、飞溅少、焊波整齐,适用于全位置焊接,焊接电源为交流或直流正、反接。
对重级工作制吊车梁、吊车桁架或类似结构,通常当钢材为Q235B、Q235C或Q235D时采用E4315或E4316型;以上三类焊条药皮均属低氢型,适用于全位置焊接,焊接电源宜直流反接。
低氢型焊条可降低焊缝中氢的含量,以避免产生冷裂纹,故焊缝金属的韧性好,其脆性转变温度接近于镇静钢。
二、自动埋弧焊自动埋弧焊由于电弧热量集中,故熔深大、焊缝质量均匀、内部缺陷少、塑性和冲击韧性都好,因而优于手工焊。
半自动埋弧焊的质量介于自动埋弧焊和手工焊之间。
另外,自动或半自动埋弧焊的焊接速度快、生产效率高、成本低、劳动条件好。
然而,它们的应用也受到其自身条件的限制,由于焊机须沿着顺焊缝的导轨移动,故要有一定的操作条件。
因此,自动或半自动埋弧焊特别适用于梁、柱、板等的大批量拼装、制作焊缝。
三、CO2气体保护焊CO2气体保护焊是用喷枪喷出CO2气体作为电弧的保护介质,使熔化金属与空气隔绝,以保持焊接过程稳定。
由于焊接时没有焊剂产生的熔渣,故便于观察焊缝的成型过程,但操作时须在室内避风处,在工地则须搭设防风棚。
气体保护焊电弧加热集中、焊接速度快、熔深大,故焊缝强度比手工焊的高,且塑性和抗腐性好,适合厚钢板或特厚钢板(t>100mm)的焊接。
CO2气体保护焊采用的焊丝为高锰型,即Q235钢采用H08Mn2Si(焊08锰2硅);16Mn钢和15MnV钢采用H08Mn2Si 或H10Mn2(焊10锰2)。
各种材料的焊接性能
各种材料的焊接性能焊接是一种将两个或多个材料连接在一起的工艺,通过加热、加压和加入填充材料,使其在接头处产生强固的连接。
不同材料的焊接性能取决于其化学成分、结构和热处理状态等因素。
下面将就几种常见材料的焊接性能进行介绍。
1.钢材焊接性能:钢材是最常用的焊接材料之一,它具有良好的焊接性能。
一般来说,低合金钢和不锈钢等易焊接的钢材,焊接时一般使用通用电弧焊、气体保护焊和电子束焊等方法。
高强度钢、高合金钢等焊接性能较差的钢材则需要采用专用的焊接工艺,如预热、后热处理和控制焊接变形等。
2.铝材焊接性能:铝材具有良好的导热性和导电性,但其氧化膜易与空气中的氧气发生反应,影响焊接质量。
因此,对于铝材焊接,一般需要采用气体保护焊、TIG焊和激光焊等方法。
同时,由于铝合金的热导率较高,所以焊接时需要更高功率的焊接设备。
3.铜材焊接性能:铜材的导热性和导电性良好,在焊接时容易产生较高的焊接温度,进而导致铜材迅速散热,难以形成良好的焊接池。
因此,铜材的常见焊接方法主要有气体保护焊、TIG焊和电弧焊等。
4.镁合金焊接性能:镁合金具有轻量化和高强度等优点,但其善热导性和易氧化的特性使其在焊接过程中面临一定的挑战。
常见的镁合金焊接方法有TIG焊、气体保护焊和电弧焊等。
此外,由于镁合金容易产生热裂纹,焊接过程中需要注意控制焊接温度和热输入。
5.硬质合金焊接性能:硬质合金是一种复合材料,其焊接性能受到合金成分、颗粒尺寸和焊接工艺的影响。
一般来说,硬质合金的焊接方法有等离子焊、电子束焊和惰性气体焊等,其中等离子焊和电子束焊具有较高的能量密度,适合高硬度和高熔点的硬质合金。
综上所述,不同材料的焊接性能受到多个因素的影响,包括化学成分、结构和热处理状态等。
在选择焊接方法时,需要根据材料的特性和要求,合理选择合适的焊接工艺,以保证焊接接头的质量和性能。
40cr钢的焊接性并编写焊接工艺流程
40cr钢的焊接性并编写焊接工艺流程下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!40Cr钢的焊接性及焊接工艺流程1. 简介40Cr钢是一种常用的结构钢,在机械制造领域广泛应用。
Q235钢的焊接性分析及焊接工艺评定
兰州工业学院毕业设计(论文)题目Q235钢的焊接性分析及焊接工艺评定系别材料工程学院专业焊接技术及自动化班级焊接11-2姓名学号指导教师(职称)日期2014年3月目录摘要 (1)Abstract (2)第一章绪论 (3)1.1 碳钢简述 (3)1.2 Q235钢的化学成分分析 (4)1.3 Q235的机械性能 (4)1.4 本次设计实验技术路线图 (5)第二章Q235钢板的焊接 (6)2.1 板材厚度的选择 (6)2.2 焊接材料的选择 (6)2.3 焊接方法和焊接设备的选定 (6)2.4 焊焊前准备 (7)2.4.1 焊接接头形式及坡口准备 (7)2.4.2 工件共建表面的清理 (7)2.5 焊接工艺参数的制定 (8)2.5.1 焊条直径 (8)2.5.2 焊接电流 (8)2.5.3 焊接电压 (9)2.5.4 焊接层数 (9)2.6 焊接及焊后热处理 (10)2.6.1 防止裂纹的产生 (10)2.6.2 结晶裂纹的产生原因 (11)2.6.3 冷裂纹的防止措施 (12)2.6.4 严格控制氢的来源 (12)2.7 焊后热处理 (13)2.8 焊接时应注意的要点 (13)第三章Q235金属试样的制备 (15)3.1 取样 (15)3.2 粗磨 (15)3.3 细磨 (16)3.3.1 手工磨 (16)3.3.2 机械磨 (17)3.4 抛光 (17)3.5 浸蚀 (19)第四章试样组织观察及分析 (20)4.1 焊接接头组织 (20)4.2 试样的观察 (20)4.3 试样的分析 (21)结论 (25)参考文献 (26)致谢 (27)外文文献及译文 28兰州工业学院毕业设计(论文)任务书材料工程系2014届焊接技术及自动化专业毕业设计(论文)任务书摘要Q235低碳钢在现代工业上应用十分广泛,本文主要针对Q235低碳钢板材的焊接工艺进行设计,通过经济和操作性两个方面的考虑,选用手工电弧焊进行焊接,焊接后变形小,缺陷少,焊接质量良好,当然最重要的是焊接工艺参数设计正确。
钢材的可焊性
在焊后进行热处理以消除应力
三、可焊性为较差时
1.合金元素含量(评定可焊性的概略指标,%):<1-3
2.含碳量(评定可焊性的概略指标,%):<0.3-0.4
3.常用钢号:
30CrMo 35CrMo 35CrMoVA 25Cr2MoVA 40CrNiMoA 30CrMnSi 30Mn2 40Mn2 40Cr
或低温条件下(-40℃)工作的重要焊接结构
二、可焊性为一般时
1.合金元素含量(评定可焊性的概略指标,%):<3
2.含碳量(评定可焊性的概略指标,%):<0.3
3.常用钢号:
12CrMo 15CrMo 20Cr1MoV 12Cr1MoV 30Cr 20CrV20CrMnSi 20CrNiMo
4.特点:
不锈钢
一.可焊性为良好时
1.合金元素含量(评定可焊性的概略指标,%):>3
2.含碳量(评定可焊性的概略指标,%):<0.18
3.常用钢号:
0Cr13 0Cr18Ni9 1Cr18Ni9 2Cr18Ni9 0Cr17Ti0Cr18Ni9Ti 1Cr18Ni9Ti 0Cr18Ni12Mo2Ti
1Cr18Ni12Mo2Ti 0Cr18Ni12Mo3Ti 1Cr18Ni12Mo3Ti
4.特点:
在普通条件下可焊接,环境温度低于(-5℃)时需预热.板厚大于20mm,结构刚度大时,需预热并在焊后进行消除应
力热处理
沸腾钢是在不完全脱氧情况下获得,含氧量较高,硫磷等杂质分布不均匀,时效敏感性及冷脆倾向大,焊接时热裂
倾向大,一般不宜于承受动载或严寒下(-20℃)工作的重要焊接结构.镇静钢的杂质分布很均匀,含氧量承受动载
钢材的可焊性
钢材的可焊性一、低碳钢可焊性为良好时1.合金元素含量(评定可焊性的概略指标,%):02.含碳量(评定可焊性的概略指标,%):<0.253.常用钢号: Q195 Q215 Q235 Q245Q345 ZG200-400 ZG230-450 08 10 15 20 15Mn 20Mn4.特点:在普通条件下可焊接,环境温度低于(-5℃)时需预热.板厚大于20mm,结构刚度大时,需预热并在焊后进行消除应力热处理沸腾钢是在不完全脱氧情况下获得,含氧量较高,硫磷等杂质分布不均匀,时效敏感性及冷脆倾向大,焊接时热裂倾向大,一般不宜于承受动载或严寒下(-20℃)工作的重要焊接结构.镇静钢的杂质分布很均匀,含氧量承受动载或低温条件下(-40℃)工作的重要焊接结构二、低合金钢(一). 可焊性为良好时1.合金元素含量(评定可焊性的概略指标,%):1-32.含碳量(评定可焊性的概略指标,%):<0.203.常用钢号:09MnV 09MnNb 12Mn 18Nb 09MnCuPTi 10MnSiCu 12MnV 12MnPRE 1 4MnNb 16Mn 16MnRE 10MnPNbRE 15MnV 15MnTi 16MnNb 14MnVTiRE 15 MnVN 4.特点:在普通条件下可焊接,环境温度低于(-5℃)时需预热.板厚大于20mm,结构刚度大时,需预热并在焊后进行消除应力热处理沸腾钢是在不完全脱氧情况下获得,含氧量较高,硫磷等杂质分布不均匀,时效敏感性及冷脆倾向大,焊接时热裂倾向大,一般不宜于承受动载或严寒下(-20℃)工作的重要焊接结构.镇静钢的杂质分布很均匀,含氧量承受动载或低温条件下(-40℃)工作的重要焊接结构(二)、可焊性为一般时1.合金元素含量(评定可焊性的概略指标,%):<32.含碳量(评定可焊性的概略指标,%):<0.33.常用钢号:12CrMo 15CrMo 20Cr1MoV 12Cr1MoV 12Cr2Mo1VR 30Cr 20CrV20CrMnSi 20CrNiMo4.特点:形成冷裂倾向小,采用适当的焊接规范,可以得到满意的结果.在结构复杂或零件较厚时,必须预热150℃以上,并在焊后进行热处理以消除应力(三)、可焊性为较差时1.合金元素含量(评定可焊性的概略指标,%):<1-32.含碳量(评定可焊性的概略指标,%):<0.3-0.43.常用钢号:30CrMo 35CrMo 35CrMoVA 25Cr2MoVA 40CrNiMoA 30CrMnSi 3 0Mn2 40Mn2 40Cr4.特点一般情况下,有形成裂纹的倾向.焊前应预热,焊后应消除应力热处理(四)、可焊性为不好1.合金元素含量(评定可焊性的概略指标,%):1-32.含碳量(评定可焊性的概略指标,%):<0.43.常用钢号:45Mn2 50Mn2 50Cr 38CrSi 38CrMoAlA4.特点:极易形成裂纹,在采用预热条件下能焊接,焊后须消除应力热处理三、不锈钢(一)可焊性为良好时1.合金元素含量(评定可焊性的概略指标,%): >32.含碳量(评定可焊性的概略指标,%):<0.183.常用钢号:0Cr13 0Cr18Ni9 (S30408) 1Cr18Ni9(S30403)2Cr18Ni9 0Cr17Ti 0Cr18Ni9Ti1Cr18Ni9Ti0Cr18Ni12Mo2Ti 1Cr18Ni12Mo2Ti 0Cr18Ni12Mo3Ti 1Cr18Ni12Mo3Ti 4.特点:在普通条件下可焊接,环境温度低于(-5℃)时需预热.板厚大于20mm,结构刚度大时,需预热并在焊后进行消除应力热处理沸腾钢是在不完全脱氧情况下获得,含氧量较高,硫磷等杂质分布不均匀,时效敏感性及冷脆倾向大,焊接时热裂倾向大,一般不宜于承受动载或严寒下(-20℃)工作的重要焊接结构.镇静钢的杂质分布很均匀,含氧量承受动载或低温条件下(-40℃)工作的重要焊接结构(二)、可焊性为一般时1.合金元素含量(评定可焊性的概略指标,%):13-252.含碳量(评定可焊性的概略指标,%):≤0.183.常用钢号:1Cr13 Cr25Ti3.特点:形成冷裂倾向小,采用适当的焊接规范,可以得到满意的结果.在结构复杂或零件较厚时,必须预热150℃以上,并在焊后进行热处理以消除应力(三)、可焊性为较差时1.合金元素含量(评定可焊性的概略指标,%):132.含碳量(评定可焊性的概略指标,%):0.23.常用钢号:2Cr134.特点一般情况下,有形成裂纹的倾向.焊前应预热,焊后应消除应力热处理(四).可焊性为不好1.合金元素含量(评定可焊性的概略指标,%):132.含碳量(评定可焊性的概略指标,%):0.3-0.43.常用钢号:3Cr13 4Cr134.特点:极易形成裂纹,在采用预热条件下能焊接,焊后须消除应力热处理四、中碳钢(一)、可焊性为一般时1.合金元素含量(评定可焊性的概略指标,%):<12.含碳量(评定可焊性的概略指标,%):<0.25-0.353.常用钢号:Q275 30 30Mn ZG270-5004.特点:形成冷裂倾向小,采用适当的焊接规范,可以得到满意的结果.在结构复杂或零件较厚时,必须预热150℃以上,并在焊后进行热处理以消除应力(二)、可焊性为较差时1.合金元素含量(评定可焊性的概略指标,%):<12.含碳量(评定可焊性的概略指标,%):<0.35-0.453.常用钢号:35 40 45 45Mn4.特点一般情况下,有形成裂纹的倾向.焊前应预热,焊后应消除应力热处理五、高碳钢可焊性为不好1.合金元素含量(评定可焊性的概略指标,%):<12.含碳量(评定可焊性的概略指标,%):<0.453.常用钢号: 50 55 60 65 70 75 80 85 50Mn 60Mn4.特点:极易形成裂纹,在采用预热条件下能焊接,焊后须消除应力热处理。
各种金属材料的焊接特点及其热处理工艺
各种金属材料的焊接特点及其热处理工艺焊接是一种将两个或多个金属材料通过熔化或变形并在熔融金属之间形成接头的加工方式。
在焊接过程中,金属材料经历了高温和冷却的过程,从而影响了焊接接头的性能和组织结构。
不同金属材料具有不同的焊接特点和热处理工艺。
下面将分别介绍常见金属材料的焊接特点及其热处理工艺。
1.钢材焊接特点及热处理工艺:钢材是最常见的金属材料之一,具有良好的可焊性。
其焊接特点如下:(1)钢材容易氧化,焊接时需要保护气体或保护剂以防止氧化。
(2)焊接速度快,热影响区较小,易形变。
(3)钢材焊接后易产生残余应力和变形。
钢材的热处理工艺包括退火、正火和淬火等。
退火可以减轻焊接残余应力,正火可提高焊接接头的硬度和强度,淬火可增加焊接接头的硬度。
2.铝材焊接特点及热处理工艺:铝材具有良好的导热性和导电性,但其可焊性较差。
其焊接特点如下:(1)容易产生氧化膜,焊接前需要对焊缝进行预处理。
(2)焊接速度快,热影响区较小。
(3)铝材焊接后容易产生变形。
铝材的热处理工艺主要包括固溶处理和时效处理。
固溶处理可使铝材中的合金元素均匀溶解,时效处理可提高焊接接头的硬度和强度。
3.铜材焊接特点及热处理工艺:铜材具有良好的导热性和导电性,但其可焊性较差。
其焊接特点如下:(1)容易产生氧化膜,焊接前需要对焊缝进行预处理。
(2)焊接速度较慢,热影响区较大。
(3)铜材焊接后容易产生变形和裂纹。
铜材的热处理工艺主要包括退火和时效处理。
退火可减轻焊接接头的残余应力,时效处理可提高焊接接头的硬度和强度。
4.镁合金焊接特点及热处理工艺:镁合金具有轻质高强度的特点,但其可焊性较差。
其焊接特点如下:(1)容易产生氧化膜,焊接前需要对焊缝进行预处理。
(2)焊接速度快,热影响区较小。
(3)焊接时易燃,需要采取安全措施。
镁合金的热处理工艺主要包括固溶处理和时效处理。
固溶处理可提高镁合金的强度和耐腐蚀性,时效处理可进一步提高焊接接头的硬度和强度。
合金结构钢的焊接性
合金结构钢的焊接性一、热轧及正火钢的焊接性典型的热轧钢有:09MnV、16Mn、14MnNb、15MnV等,正火钢如:15MnTi、18MnMoNb、BHW-35/15MnVN等。
热轧及正火钢这类低合金钢,由于含碳量低,锰、硅含量又少,因而碳当量C eq较低,通常情况下不会因焊接而引起严重硬化组织或淬火组织。
该种钢的塑性和冲击韧性优良,焊成的接头塑性和冲击韧性也良好。
焊接时一般不需预热、层间保温和后热,焊后也不必采用热处理改善组织。
可以说,整个焊接过程中不需特殊的工艺措施,其焊接性优良。
不过,随着板材厚度及结构刚度的增大,其焊接性也逐渐变差。
1. 焊接裂纹(1)热裂纹热裂纹一般情况下发生在焊缝凝固过程中,由于S、P等杂质在焊缝中形成低熔点共晶物质。
这些低熔点共晶物质以液态薄膜形式存在于晶界,当焊缝凝固时体积收缩产生拉应力。
如果这种接应力产生的拉伸应变超过焊缝金属所能承受的临界值,便发生开裂形成热裂纹。
由金属凝固理论可知,焊缝中心是最终结晶的部位,其S、P杂质含量最高,因而是热裂纹最常见的产生部位。
热轧及正火钢从总体上讲对热裂纹敏感性不大,但当钢材或焊接材料由于某种原因使得S、P发生偏析时,便有可能在局部富S、P杂质区域诱发产生热裂纹。
(2)冷裂纹冷裂纹是在焊后冷至较低温度下形成的,有的甚至是在服役过程中形成的,因此也称为延迟裂纹。
热轧钢的含碳量虽然并不高,但含有少量的合金元素。
因此这类钢的淬硬倾向必然要比低碳钢大一些,而且随着钢材强度级别的提高,合金元素的增加,其淬硬倾向也在逐渐增大。
正火钢的强度级别较热轧钢更高,其合金元素含量也相应更多一些,因此与低碳钢相比,其焊接性的差别就更大。
冷裂敏感性一般随强度的提高而增大。
如强度级别在600MPa级的18MnMoNb,其淬硬性明显大于500MPa级15MnVN,因此18MnMoNb钢对冷裂纹的敏感程度大于15MnVN。
正因如此,18MnMoNb焊接时一般须在工艺上采取措施,如预热、焊后缓冷才能有效地防止冷裂纹的产生。
304不锈钢的焊接性
304不锈钢的焊接性简介304不锈钢是最常用的不锈钢之一,具有良好的耐腐蚀性和机械性能。
在工业领域中广泛应用,包括制造化学设备、食品加工设备、医疗器械等。
然而,对于不锈钢来说,焊接是一个重要的工艺,而其焊接性能直接影响到最终产品的质量和使用寿命。
因此,了解304不锈钢的焊接性能是至关重要的。
304不锈钢的组成304不锈钢是奥氏体不锈钢,主要由以下元素组成:•铬(Cr):使不锈钢具有耐腐蚀性;•镍(Ni):增加不锈钢的延展性和韧性;•锰(Mn):提高不锈钢的抗倒伏性和抗应力腐蚀性;•碳(C):增加不锈钢的硬度和强度,但会降低不锈钢的耐腐蚀性。
304不锈钢可以通过多种焊接方式进行连接,常见的包括手工电弧焊、MIG/MAG焊接、TIG焊接等。
手工电弧焊手工电弧焊是一种常见的焊接方式,使用直流或交流电弧熔化电极和工件,并通过熔融电极产生的热量来熔化基材,形成焊缝。
手工电弧焊适用于较小的焊接工作,对焊工的技术要求较高。
MIG/MAG焊接MIG/MAG焊接是一种半自动或自动化的焊接过程,使用惰性气体(MIG)或活性气体(MAG)来保护焊缝区域,防止其与空气中的氧发生反应。
该焊接方式适用于大量生产的焊接过程。
TIG焊接TIG焊接是一种常用的焊接方式,通过高温电弧和无缺陷的钨电极来熔化基材并实现焊接。
TIG焊接适用于对焊缝质量要求高的场景,如要求焊缝无气孔或夹杂物的情况。
304不锈钢的焊接性能受到多种因素影响,如焊接材料、焊接工艺、焊接环境等。
以下是焊接性能的几个关键指标:抗晶间腐蚀性焊接前后304不锈钢的抗晶间腐蚀性是评价焊接质量的重要指标之一。
焊接热影响区域(HAZ)易受热影响,可能导致晶间腐蚀。
降低焊接过程中的热输入可以减少晶间腐蚀的风险。
焊接接头强度焊接接头的强度是另一个重要的焊接性能指标。
焊接过程中的温度和冷却速率将对接头的强度产生影响。
适当的焊接工艺参数和合金配比可以提高接头的强度。
成形性焊接过程中的形变和残余应力可能会对接头造成变形。
常用金属材料的焊接及工艺
常用金属材料的焊接及工艺焊接是将两块金属材料通过熔化或压合的方式连接在一起的工艺。
在工业生产和日常生活中,常见的金属材料有钢、铝、铜和不锈钢等。
这些金属材料有各自的特点和要求,因此焊接的工艺也有所不同。
1.钢的焊接及工艺:钢是一种常见的金属材料,广泛应用于各个工业领域。
钢的焊接可以采用以下几种常见的工艺:-电弧焊:电弧焊是一种常见的钢材焊接方法。
它通过电弧的热能来熔化金属材料,并使用焊条或电极将材料连接在一起。
-气体保护焊:气体保护焊可以使用氩气、二氧化碳等气体来保护焊接区域,以防止氧气的影响。
这种焊接方法适用于高质量的焊接,如航空航天领域。
-点焊:点焊是一种快速连接薄钢板的焊接方法。
它通过不断的电流瞬间加热来熔化和连接钢板。
2.铝的焊接及工艺:铝是一种轻质金属材料,常用于航空和汽车工业。
由于铝的导热性较好,焊接时需要特殊的工艺:-氩弧焊:氩弧焊是铝材料常用的焊接方法。
在焊接过程中,需要使用高纯度的氩气来保护焊接区域,以防止氧气和水分的影响。
-熔化焊接:熔化焊接是将铝材料加热到熔点,并添加熔化焊丝进行连接的方法。
这种焊接方法适用于厚度较大的铝材料。
3.铜的焊接及工艺:铜是一种导电性和导热性较好的金属材料,在电子和电力行业应用广泛。
铜的焊接可以采用以下几种工艺:-焊锡焊接:焊锡焊接是一种常见的铜材料焊接方法。
它使用焊锡将铜材料连接在一起,通过焊锡的熔化点来实现焊接。
-气焊:气焊是一种高温焊接方法,适用于厚度较大的铜材料。
在焊接过程中,使用氧气和乙炔的混合气体来产生高温火焰,将铜材料加热到熔点并连接在一起。
4.不锈钢的焊接及工艺:不锈钢是一种耐腐蚀性较好的金属材料,常用于食品加工和化工行业。
不锈钢的焊接可以采用以下几种工艺:-TIG焊接:TIG焊接是一种高质量的焊接方法,适用于不锈钢的连接。
在焊接过程中,需要使用惰性气体(如氩气)进行保护,以防止氧气的影响。
-焊锡焊接:焊锡焊接也可以用于不锈钢材料。
碳钢的焊接性
碳钢的焊接性碳素钢的焊接性随含碳量增加而恶化,因为含碳量较高的钢从焊接温度快速冷却下容易被淬硬。
被淬硬的焊缝和热影响区因其塑性下降,在焊接应力容易产生裂纹。
碳素钢被淬硬主要是在马氏体组织形成而引起,马氏体的数量受冷却速度影响,非常快的冷却速度可以产生100%的马氏体,从而可达到最高硬度。
因此,焊接含砚较高的碳素钢时,就应当注意减缓冷却速度,使马氏体的数量减至最少。
焊接的冷却速度受焊接热输入、母材板厚和环境温度的影响。
厚板或在低温条件下焊接,其冷却速度加快;预热或加大焊接线能量,可以降低冷却速度,减少裂纹产生。
碳素钢的碳含量增加到约0.15%以上时,对氢致裂纹尤其敏感。
因此,焊接碳含量高于0.15%的碳素钢时,须注意减少氢的来源。
例如大气中的水分,焊前对待焊部位及附近须清除油污、铁锈等。
手弧焊时宜选用低氢焊条,在其它焊接方法中应制造低氢环境,以减少焊缝周围环境中的氢含量。
焊接碳素钢时产生裂纹的力学原因是结构的拘束力和不均衡的热应力。
即使是不易淬硬的低碳钢,在受拘束力条件下采用了不正确的焊接程序,也会因这些应力过大而产生裂纹。
总之,对碳素钢的焊接,应针对其碳含量不同而采取相应的工艺措施。
当含碳较低时,如低碳钢,应着重注意防止结构拘束应力和不均衡的热应力所引起的裂纹;当含碳量较高时,如高碳钢,除了防止因这些因为应力所引起的裂纹外,还要特别注意防止因淬硬而引起的裂纹。
低碳钢的焊接焊接特点低碳钢的含碳量低(W0.25%),其它合金元素含量较少,故是焊接性最好的钢种。
采用通常的焊接方法后,接头中不会产生淬硬组织或冷裂纹。
只要焊接材料选择适当,便能得到满意的焊接接头。
用电弧焊焊接低碳钢时,为了提高焊缝金属的塑性、韧性、和抗裂性能,通常都是使焊缝金属的碳含量低于母材,依靠提高焊缝中的硅、锰含量和电弧所具有较高的冷却来达到与母材等强度。
因此,焊缝金属会随着冷却速度的增加,其强度会提高,而塑性和韧性会下降。
当厚板单层角焊缝时,焊角尺寸不宜过小;多层焊时,应尽量连续施焊;焊补表面缺陷时,焊缝应具有一定的尺寸,焊缝长度不得过短,必要时应采用100-150℃ 的局部预热。
钢材料焊接方法有哪些
钢材料焊接方法有哪些钢材料焊接方法是指在钢材料加工过程中,将两个或多个钢材料通过熔化和再结晶的方法连接在一起。
钢材料焊接是工业生产中常用的一种技术手段,具有广泛的应用领域。
下面将介绍一些常见的钢材料焊接方法。
1. 电弧焊接电弧焊接是最常见和基本的钢材料焊接方法之一。
它通过使用电弧将钢材料加热到熔化点,并使用电极将两个或多个钢材料连接在一起。
电弧焊接可以分为手工电弧焊接和自动化电弧焊接两种类型。
手工电弧焊接需要人工操作焊枪来完成焊接工作,而自动化电弧焊接则通过机器人或自动焊接设备来完成。
2. 熔化极气体保护焊接熔化极气体保护焊接是一种在焊接过程中使用惰性气体保护焊缝的方法。
焊接时,焊接区域周围被惰性气体包围,以防止焊接区域与空气中的氧气和水分接触。
这种方法可减少氧化和污染,从而提高焊接质量。
3. 钎焊钎焊是一种将填充材料熔化并填充在钢材料表面上的焊接方法。
在钎焊过程中,并无需让钢材料达到熔化点,而只需让填充材料熔化并涂覆在连接表面上。
钎焊可以分为软钎焊和硬钎焊两种类型。
软钎焊适用于较低强度的连接,而硬钎焊适用于提供更高强度连接的应用。
4. 焊接接头设计在进行钢材料焊接时,适当的接头设计非常重要。
常见的焊接接头设计包括对接焊接接头、角焊接接头、T型焊接接头和搭接焊接接头。
接头设计的目的是确保焊接连接的强度和稳定性,以满足使用要求。
5. 摩擦焊接摩擦焊接是一种使用摩擦热产生焊接连接的方法。
在摩擦焊接中,钢材料通过施加一定的压力和旋转运动,产生摩擦热并使材料达到熔化点。
摩擦焊接一般分为线性摩擦焊接和旋转摩擦焊接两种类型。
这种方法可以用于焊接各种形状和厚度的钢材料。
总结:上述是一些常见的钢材料焊接方法的简介。
每种方法都有其特定的适用场景和技术要求。
在选择焊接方法时,需要根据具体的材料、应用需求和工艺条件来进行选择。
通过合理的焊接方法和接头设计,可以确保焊接连接的质量和稳定性,满足不同工程项目和应用场景的要求。
常用钢材的焊接性能及其应用辽宁科技大学材加材控
二、钢结构建筑举例
上海浦东高421米的金茂大厦
鸟巢
1957年建成通车的武汉长江大桥采用碳素钢。
1968年建成通车的南京长江大桥,是我国自行设计制造的 公路、铁路两用桥,主体钢梁采用鞍钢生产的16Mn。
1993年通车九江长江大桥采用鞍钢生产15MnVTi钢。
三、常见钢材焊接性能及应用举例
低碳钢:
中碳 钢 高碳 钢
机器部件和工具
弹簧,模具,钢 轨
常用钢材的可焊性
可焊性 概略指标 (%) 刚号 等 级 合 金 元 素 总 含 量 1 以 下 Q195,Q215,Q235; 08,10,15,25,ZG25;Q345 ,16MnCu,Q390;15MnTi,Q 295,09Mn2Si,20Mn;15Cr ,20Cr,15CrMn;0Cr13,1C r18Ni9,1Cr18Ni9Ti,2Cr 18Ni9,0Cr17Ti,0Cr18Ni 10,0Cr18Ni9Ti,0Cr17Ni 13Mo2Ti,1Cr18Ni10Ti,1 Cr17Ni13Mo2Ti,Cr17Ni1 3Mo3Ti,1Cr17Ni13Mo3Ti 1 ~ 3 Ⅰ ( 良 好 ) 特点
1 以 下 1 ~ 3 3 以 上 1 以 下 1 ~ 3 3 以 上 1 以 下
0.25 ~ 0.35 0.20 ~ 0.30 0.18 ~ 0.25 0.35 ~ 0.45 0.30 ~ 0.40 0.28 ~ 0.38 0.45 以上 0.40 以上 0.38 以上 焊接时很容易形成裂纹,但在采用合理的焊 接规范、项热和好后热处理的条件下,这些 钢也能够焊接 在通常情况下,焊接时有形成裂纹的倾向, 焊前应预热,焊后应热处理,只有有限的焊 接热规范可能获得较好的焊接性能 形成冷裂倾向小,采用合理的焊接热规范可 以得到满意的焊接性能。在焊接复杂结构和 厚板时,必须预热
q235b钢板焊接强度
q235b钢板焊接强度
Q235B钢板是一种常用的结构钢材料,其焊接强度是评估其焊接性能的重要指标之一。
焊接强度不仅关系到焊接接头的可靠性和安全性,还直接影响到整个结构的稳定性和承载能力。
为了确保焊接强度符合要求,首先需要选择适当的焊接方法和工艺。
常见的焊接方法包括手工电弧焊、气体保护焊、埋弧焊等。
根据具体情况选择合适的焊接方法,同时要注意控制焊接电流、电压和焊接速度等参数,以确保焊接接头的质量。
在进行焊接前,需要对焊接接头进行充分的准备工作。
首先要确保焊接接头的表面清洁,去除铁锈、油污等杂质,以提高焊接质量。
同时,还要对焊接接头进行适当的几何形状处理,如倒角、坡口等,以增加焊接接头的强度。
在焊接过程中,操作人员需要严格按照焊接工艺规程进行操作,保证焊接接头的质量。
同时要注意焊接过程中的温度控制,避免过热或过冷造成焊接接头的质量问题。
焊接完成后,还需要进行焊缝的检测和评估。
常用的焊缝检测方法包括目测、射线检测、超声波检测等。
通过对焊缝的检测,可以及时发现潜在的焊接缺陷,以保证焊接接头的质量。
Q235B钢板的焊接强度是影响结构安全和稳定的重要因素,正确选择焊接方法和工艺,加强焊接接头的准备工作,严格控制焊接过程
中的参数和温度,以及进行焊缝的检测和评估,都是确保焊接强度的关键步骤。
只有在各个环节都严格把控,才能保证Q235B钢板焊接接头的质量和强度达到要求。
各种常见钢材的焊接焊条及焊接工艺选用一览表
各种常见钢材的焊接焊条及焊接工艺选用一览表以下是一些常见钢材的焊接焊条及焊接工艺选用的一览表:1. 碳钢(Carbon Steel):-焊接焊条:ER70S-6、E6010、E7018-焊接工艺选用:-熔化极气体保护焊(MIG):适用于焊接较薄的碳钢板和管材-碳弧气保护焊(GMAW):适用于焊接较大厚度的碳钢结构-气体保护电弧焊(GMAW):适用于焊接较大厚度的碳钢结构-矩阵式电弧焊(SMAW):适用于焊接碳钢构件,可以在各种位置进行焊接2. 不锈钢(Stainless Steel):-焊接焊条:ER308L、ER309L、ER316L-焊接工艺选用:-氩弧焊(GTAW):适用于焊接不锈钢板和管材,提供较高的焊缝质量-通用电弧焊(SMAW):适用于焊接不锈钢构件,可以在多种位置进行焊接-碳弧气保护焊(GMAW):适用于焊接较大厚度的不锈钢结构3. 高强度低合金钢(High Strength Low Alloy Steel):-焊接工艺选用:-通用电弧焊(SMAW):适用于焊接高强度低合金钢构件,可以在多种位置进行焊接-高频电弧焊(GMAW):适用于焊接厚度较小的高强度低合金钢结构-熔化极气体保护焊(MIG):适用于焊接较薄的高强度低合金钢板和管材4. 铸铁(Cast Iron):-焊接焊条:ENi-CI、EZNi-CI、EFCNi-A1-焊接工艺选用:-碳弧气保护焊(GMAW):适用于修复和连接铸铁构件,提供较高的焊缝质量-高频电弧焊(GMAW):适用于焊接铸铁构件,提供良好的熔合性和机械性能以上只是一些常见钢材的焊接焊条及焊接工艺的选用一览表,实际选择应根据具体的钢材类型、应用要求和焊接条件进行评估和选择。
焊接操作前需对材料进行处理,并严格遵循相关安全规范和操作规程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.试述低碳钢的焊接性。
由于低碳钢含碳量低,锰、硅含量也少,所以,通常情况下不会因焊接而产生严重硬化组织或淬火组织。
低碳钢焊后的接头塑性和冲击韧度良好,焊接时,一般不需预热、控制层间温度和后热,焊后也不必采用热处理改善组织,整个焊接过程不必采取特殊的工艺措施,焊接性优良。
焊接低碳钢时可采取哪些措施消除应力裂纹?(1)降低消应力退火温度。
(2)控制母材中V、B的含量。
⑶坡口形式将焊件尽量开成U形坡口式进行焊接。
如果是铸件缺陷,铲挖出的坡口外形应圆滑,其目的是减少母材熔入焊缝金属中的比例,以降低焊缝中的含碳量,防止裂纹产生。
⑷焊接工艺参数由于母材熔化到第一层焊缝金属中的比例最高达30%左右,所以第一层焊缝焊接时,应尽量采用小电流、慢焊接速度,以减小母材的熔深。
⑸焊后热处理焊后最好对焊件立即进行消除应力热处理,特别是对于大厚度焊件、高刚性结构件以及严厉条件下(动载荷或冲击载荷)工作的焊件更应如此。
消除应力的回火温度为600~650℃。
若焊后不能进行消除应力热处理,应立即进行后热处理。
4.试述高碳钢的焊接工艺要点。
⑴焊接性当高碳钢的碳的质量分数大于0.60%时,焊后的硬化、裂纹敏感倾向更大,因此焊接性极差,不能用于制造焊接结构。
常用于制造需要更硬度或耐磨的部件和零件,其焊接工作主要是焊补修复。
⑵焊条选用由于高碳钢的抗拉强度大都在675MPa以上,所以常用的焊条型号为E7015、E6015,对构件结构要求不高时可选用E5016、E5015焊条。
此外,亦可采用铬镍奥氏体钢焊条进行焊接。
⑶焊接工艺1)由于高碳钢零件为了获得高硬度和耐磨性,材料本身都需经过热处理,所以焊前应先进行退火,才能进行焊接。
2)焊件焊前应进行预热,预热温度一般为250~350℃以上,焊接过程中必需保持层间温度不低于预热温度。
3)焊后焊件必需保温缓冷,并立即送入炉中在650℃进行消除应力热处理。
5.试述低合金高强钢的焊接性。
强度级别较低的低合金高强钢,如300~400MPa级,由于钢中合金元素含量较少,其焊接性良好,接近于低碳钢。
随着钢中合金元素的增加,强度级别提高,钢的焊接性也逐渐变差,出现的主要问题是:⑴热影响区的淬硬倾向含碳时较少、强度级别较低的钢种,如09Mn2、09Mn2Si、09MnV钢等,淬硬倾向很小。
随着强度级别的提高,淬硬倾向也开始加大,如16Mn、15MnV钢焊接时,快速度冷却会导致在热影响区出现马氏体组织。
⑵冷裂纹低合金高强钢焊接时,热影响区的冷裂纹倾向加大,并且这种冷裂纹往往具有延迟的性质,危害性很大。
例如,材料为18MnMoNb钢壁厚115mm的一大型容器,由于预热温度不够,焊后在热影响区形成大量冷裂纹。
低合金高强钢的定位焊缝很容易开裂,其原因是由于焊缝尺寸小、长度短、冷却速度快,这种开裂属于冷裂纹性质。
⑶热裂纹一般情况下,强度等级为294~392MPa的热轧、正火钢,热裂倾向较小,但在厚壁压力容器的高稀释率焊道(如根部焊道或靠近坡口边缘的多层埋弧焊焊道)中也会出现热裂纹。
电渣焊时,若母材的含碳量偏高并含镍时,电渣焊缝中可能会出现呈八字形分布的热裂纹。
强度等级为800~1176MPa的中碳调质钢(如30CrMnSiA钢),焊接时热裂的敏感性较大。
⑷粗晶区脆化热影响区中被加热至1100℃以上的粗晶区,当焊接线能量过大时,粗晶区的晶粒将迅速长大或出现魏氏组织而使韧性下降,出现脆化段。
6.试述低合金高强钢焊接时的主要工艺措施。
⑴预热预热是防止裂纹的有效措施,并且还有助于改善接头性能。
但预热会恶化劳动条件,使生产工艺复杂化,过高的预热温度还会降低接头韧性。
因此,焊前是否需要预热以及预热温度的确定应根据钢材的成分(碳当量)、板厚、结构形状、刚度大小以及环境温度等决定。
宜用快速多道焊以减轻焊道过热,并通过多层焊的重热作用细化晶粒,多道焊时要控制层间温度不得过高,如焊接06MnNbDR低温用钢时,层间温度不得大于300℃。
低温用钢焊后可进行消除应力热处理,以降低焊接结构的脆断倾向10.试述珠光体耐热钢的焊接工艺。
高温下具有足够的强度和抗氧化性的钢称为耐热钢,以Cr、Mo为主要合金元素的低合金耐热钢,基体组织是珠光体(或珠光体+铁素体)称为珠光体耐热钢,常用钢号有15CrMo、12CrMoV、12Cr2MoWVTiB、14MnMov、18MnMoNb、13MnNiMoNb。
由于珠光体耐热钢中含有一定量的Cr、Mo和其它一些合金元素,所以热影响区会产生硬脆的马氏体组织,低温焊接或焊接刚性较大的结构时,易形成冷裂纹。
因此在焊接时应采取以下几项工艺措施:⑴预热预热是焊接珠光体耐热钢的重要工艺措施。
为了确保焊接质量,不论在定位焊或正式施焊过程中,焊件都应预热并保持为100~150℃用氩弧焊打底和CO2气体保护焊时,可以降低预热温度或不预热。
⑵焊后缓冷焊后应立即用石棉布覆盖焊缝及热影响区,使其缓慢冷却。
⑶焊后热处理焊后应立即进行高温回火,防止产生延迟裂纹、消除应力和改善组织。
焊后热处理温度应避免在350~500℃温度区间内进行,因珠光体耐热钢在该温度区间内有强烈的加火脆性现象。
11.试述低碳调质钢的焊接性。
碳的质量分数不超过0.21%,加入适量的合金元素Si、Mn、Cr、Ni、Mo、Cu,经过奥氏体化-淬火-回火热处理的钢称为低碳调质钢,常用牌号有WCF60、62、HQ70A、B、⑵焊接材料为防止产生冷裂纹,因此必须严格控制焊接材料中的含氢量,要求所使用的焊条必须是低氢型或超低氢型的,焊前应严格按规定进行烘干、贮存。
⑶焊接技术为避免过度损伤热影响区的韧性,应避免使用过大的线能量,因此,不推荐使用大直径的焊条或焊丝。
只要可能,应采用多层小焊道焊缝,最好采用窄焊道,而不采用横向摆动的运条技术。
⑷焊后热处理大多数低碳调质钢的焊接构件都是在焊态下使用,只有在下述条件下才进行焊后热处理。
1)焊后或冷加工后的韧性过低。
2)焊后需进行高精度加工,要求保证结构尺寸的稳定性。
3)焊接结构承受应力腐蚀。
焊后热处理的温度必须低于母材调质处理的回火温度。
13.试述中碳调质钢的焊接性。
碳的质量分数量较高(含碳量0.25%~0.5%),并加入适量的合金元素(Mn 、Si、Cr、Ni、B、Mo、W、V、Ti等)以保证钢的淬透性,再通过调质处理以获得综合性能较好的高强钢称为中碳调质钢,常用牌号有30CrMnSiA、30CrMnSiNi2A、40CrMnSiMoVA、35CrMoA、35CrMoVA、34CrNi13MoA、40CrNiMoA等。
中碳调质钢的屈服点可达到880~1176MPa,但焊接性较差,主要表现在:⑴焊接热影响区的脆化和软化首先,由于中碳调质钢的含碳量高、合金元素多,钢的淬硬倾向大,在热影响区的淬火区会产生大量的马氏体,导致严重脆化。
其次,热影响区被加热到超过调质处理时回火温度的区域,将出现强度、硬度低于母材的软化区。
⑵裂纹倾向严重中碳调质钢的淬硬倾向大,热影响区产生的马氏体组织,增大了焊接接头的冷裂倾向。
此外,中碳调质钢的碳及合金元素含量高,熔池的结晶温度区间大,偏析严重,因而具有较大的热裂纹敏感性。
14.试述中碳调质钢的焊接工艺。
常用的各种熔焊方法,都可以适用于焊接中碳调质钢。
⑴预热及后热除了拘束度小、构造简单的薄壳结构不用预热外,中碳调质钢都应采取焊前预热和后热措施,预热温度约为200~350℃后热温度为300℃左右。
如果焊后不能及时进行调质处理,则必需在焊后及时进行中间热处理,即在等于或高于预热温度下进行保温一段时间的热处理,如低温回火或650~680℃高温回火。
若焊件焊前处于调质状态,其预热温度、层间温度及热处理温度都应比母材淬火后的回火温度低50℃。
进行局部预热时,应在焊缝两侧各100mm范围内均匀加热。
⑵焊接材料为了防止产生热裂纹,要求采用低碳焊丝,焊丝中的碳的质量分数应控制在0.15%以内,最高不超过0.25%,并且控制硫、磷的质量分数应小于0.03%~0.035%。
焊接中碳调质钢焊条的选用,见表16。
表中HTJ-1及HTJ-4焊条涂料只起稳弧作用,焊缝金属的力学性能和抗裂性能较差,只适用于受力小、待焊处可达性不好及要求变形小的30CrMnSiA钢薄板的焊接。
⑶焊接线能量中碳调质钢宜用小线能量焊接,以有利于减少淬火区的高温停留时间,降低奥氏体的晶粒长大,从而降低淬火区的脆化程度。
15.试述耐候钢及耐海水腐蚀用钢的焊接工艺。
铜、磷能显著地降低钢的腐蚀速度,这是耐候钢及耐海水腐蚀用钢的主要合金元素,常用耐候钢及耐海水腐蚀用钢有:16CuCr、12MnCuCr、15MnCuCr、09Mn2Cu、16MnCu、09MnCuPTi、08MnPRE、10MnPNbRE钢等。
铜、磷耐蚀钢对焊接热循环不敏感,焊接热影响区的最高硬度不超过350HV。
虽然钢中含有Cu、P等元素,但其含量均不高,通常铜的质量分数控制在0.2%~0.4%,不会促使产生热裂纹。
含磷钢中碳、磷的质量分数都在0.25%以下,因而钢的冷脆倾向也不大,所以焊接性良好,焊接工艺与强度级别较低(σs为343~392MPa)的普通热轧钢相同。
16.试述不锈钢焊接接头的脆化现象。
不锈钢的焊缝在高温加热一段时间后,出现冲击韧度下降的现象称为脆化。
⑴475℃脆性含有较多铁素体相(超过15%~20%)的双相焊缝金属,经过350~500℃加热后,塑性和韧性会显著降低,即性质脆化。
由于在475℃时脆化速度最快,故称为“475℃脆性”。
铁素体越多,这种脆化越严重。
已产生475℃脆化的焊缝,可以900℃淬火消除。
⑵σ相脆化不锈钢焊接接头在375~875℃范围内长期使用,会产生一种FE-Cr金属间化合物,称为“σ相”。
σ相硬而脆,硬度大于68HRC时,由于σ相析出的结果,焊缝的冲击韧度急剧下降,这种现象称为“σ相脆化”。
通常认为,σ相是由铁素体演变而来,当铁素体的质量分数超过5%时,很快会形成σ相。
因此,对于高温下使用的不锈钢材料,为了防止出现σ相,必须控制铁素体的含量。
为了消除已经生成的σ相,恢复焊接接头的韧性,可以把焊接接头加热到1000~1050℃,然后快速冷却。
σ相在1Cr18Ni9Ti不锈钢的焊缝中一般不会产生。
⑶熔合线脆断不锈钢焊件在高温下长期使用,在沿焊缝熔合线外几个晶粒的地方,会发生脆断现象,此现象称为熔合线脆断。
钢中加入Mo元素能提高钢材抗脆断的能力。
17.试述铁素体不锈钢的焊接工艺。
属于铁素体不锈钢的钢号有0Cr13A1、1Cr17、1Cr28、0Cr17Ti、1Cr25Ti、1Cr17Mo2Ti 等。
铁素体不锈钢焊接工艺如下:⑴焊接性铁素体不锈钢焊接时,由于热影响区晶粒急剧长大、475℃脆性和σ相析出不仅引起接头脆化,而且也使冷裂倾向加大。