回归分析练习题及参考答案
应用回归分析课后习题参考答案
第4章违背根本假设的情况思考及练习参考答案4.1 试举例说明产生异方差的原因。
答:例:截面资料下研究居民家庭的储蓄行为Y i=β0+β1X i+εi其中:Y i表示第i个家庭的储蓄额,X i表示第i个家庭的可支配收入。
由于高收入家庭储蓄额的差异较大,低收入家庭的储蓄额那么更有规律性,差异较小,所以εi的方差呈现单调递增型变化。
例4.2:以某一行业的企业为样本建立企业生产函数模型Y i=A iβ1K iβ2L iβ3eεi被解释变量:产出量Y,解释变量:资本K、劳动L、技术A,那么每个企业所处的外部环境对产出量的影响被包含在随机误差项中。
由于每个企业所处的外部环境对产出量的影响程度不同,造成了随机误差项的异方差性。
这时,随机误差项ε的方差并不随某一个解释变量观测值的变化而呈规律性变化,呈现复杂型。
4.2 异方差带来的后果有哪些?答:回归模型一旦出现异方差性,如果仍采用OLS估计模型参数,会产生以下不良后果:1、参数估计量非有效2、变量的显著性检验失去意义3、回归方程的应用效果极不理想总的来说,当模型出现异方差性时,参数OLS估计值的变异程度增大,从而造成对Y的预测误差变大,降低预测精度,预测功能失效。
4.3 简述用加权最小二乘法消除一元线性回归中异方差性的思想及方法。
答:普通最小二乘估计就是寻找参数的估计值使离差平方和达极小。
其中每个平方项的权数一样,是普通最小二乘回归参数估计方法。
在误差项等方差不相关的条件下,普通最小二乘估计是回归参数的最小方差线性无偏估计。
然而在异方差的条件下,平方和中的每一项的地位是不一样的,误差项的方差大的项,在残差平方和中的取值就偏大,作用就大,因而普通最小二乘估计的回归线就被拉向方差大的项,方差大的项的拟合程度就好,而方差小的项的拟合程度就差。
由OLS 求出的仍然是的无偏估计,但不再是最小方差线性无偏估计。
所以就是:对较大的残差平方赋予较小的权数,对较小的残差平方赋予较大的权数。
第七章回归与相关分析练习及答案
第七章回归与相关分析一、填空题1.现象之间的相关关系按相关的程度分为、和;按相关的形式分为和;按影响因素的多少分为和。
2.两个相关现象之间,当一个现象的数量由小变大,另一个现象的数量,这种相关称为正相关;当一个现象的数量由小变大,另一个现象的数量,这种相关称为负相关。
3.相关系数的取值X围是。
4.完全相关即是关系,其相关系数为。
5.相关系数,用于反映条件下,两变量相关关系的密切程度和方向的统计指标。
6.直线相关系数等于零,说明两变量之间;直线相关系数等1,说明两变量之间;直线相关系数等于—1,说明两变量之间。
7.对现象之间变量的研究,统计是从两个方面进行的,一方面是研究变量之间关系的,这种研究称为相关关系;另一方面是研究关于自变量和因变量之间的变动关系,用数学方程式表达,称为。
8.回归方程y=a+bx中的参数a是,b是。
在统计中估计待定参数的常用方法是。
9. 分析要确定哪个是自变量哪个是因变量,在这点上它与不同。
10.求两个变量之间非线性关系的回归线比较复杂,在许多情况下,非线性回归问题可以通过化成来解决。
11.用来说明回归方程代表性大小的统计分析指标是。
12.判断一条回归直线与样本观测值拟合程度好坏的指标是。
二、单项选择题1.下面的函数关系是( )A销售人员测验成绩与销售额大小的关系 B圆周的长度决定于它的半径C家庭的收入和消费的关系 D数学成绩与统计学成绩的关系2.相关系数r的取值X围( )A -∞<r<+∞B -1≤r≤+1C -1<r<+1D 0≤r≤+13.年劳动生产率z(干元)和工人工资y=10+70x,这意味着年劳动生产率每提高1千元时,工人工资平均( )A增加70元 B减少70元 C增加80元 D减少80元4.若要证明两变量之间线性相关程度是高的,则计算出的相关系数应接近于( )A+1 B 0 C 0.5 D [1]5.回归系数和相关系数的符号是一致的,其符号均可用来判断现象( ) A线性相关还是非线性相关 B正相关还是负相关C完全相关还是不完全相关 D单相关还是复相关6.某校经济管理类的学生学习统计学的时间(x)与考试成绩(y)之间建=a+b x。
回归分析练习试题和参考答案解析
1 下面是7个地区2000年的人均国内生产总值(GDP)和人均消费水平的统计数据:求:(1)人均GDP作自变量,人均消费水平作因变量,绘制散点图,并说明二者之间的关系形态。
(2)计算两个变量之间的线性相关系数,说明两个变量之间的关系强度。
(3)求出估计的回归方程,并解释回归系数的实际意义。
(4)计算判定系数,并解释其意义。
α=)。
(5)检验回归方程线性关系的显著性(0.05(6)如果某地区的人均GDP为5000元,预测其人均消费水平。
(7)求人均GDP为5000元时,人均消费水平95%的置信区间和预测区间。
解:(1)可能存在线性关系。
(2)相关系数:系数a模型非标准化系数标准系数t Sig.相关性B标准误差试用版零阶偏部分1(常量).003人均GDP.309.008.998.000.998.998.998 a. 因变量: 人均消费水平有很强的线性关系。
(3)回归方程:734.6930.309y x=+系数a模型非标准化系数标准系数t Sig.相关性回归系数的含义:人均GDP没增加1元,人均消费增加元。
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。
系数(a)模型非标准化系数标准化系数t显著性B标准误Beta1(常量)人均GDP(元)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(4)模型汇总模型R R 方调整 R 方标准估计的误差1.998a.996.996a. 预测变量: (常量), 人均GDP。
人均GDP对人均消费的影响达到%。
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。
模型摘要模型R R 方调整的 R 方估计的标准差1.998(a)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(5)F检验:Anova b模型平方和df均方F Sig.1回归.6801.680.000a 残差5总计.7146a. 预测变量: (常量), 人均GDP。
(完整版)数学必修三回归分析经典题型(带答案)
数学必修三回归分析经典题型1.一位母亲记录了儿子3~9岁的身高,由此建立的身高与年龄的回归模型为93.7319.7ˆ+=x y用这个模型预测这个孩子10岁时的身高,则正确的叙述是( ) A.身高一定是145.83cm B.身高在145.83cm 以上 C.身高在145.83cm 以下 D.身高在145.83cm 左右 【答案】D【解析】解:把x=10代入可以得到预测值为145.83,由于回归模型是针对3-9岁的孩子的,因此这个仅仅是估计值,只能说左右,不能说在上或者下,没有标准。
选D2.对有线性相关关系的两个变量建立的线性回归方程$y =$a+b $x ,关于回归系数b $,下面叙述正确的是________.①可以小于0;②大于0;③能等于0;④只能小于0. 【答案】①【解析】由b$和r 的公式可知,当r =0时,这两变量不具有线性相关关系,但b 能大于0也能小于0.3.对具有线性相关关系的变量x 、y 有观测数据(x i ,y i )(i =1,2,…,10),它们之间的线性回归方程是$y =3x +20,若101i i x =∑=18,则101i i y =∑=________.【答案】254【解析】由101i i x =∑=18 1.8.因为点在直线$y =3x +2025.4. 所以101i i y =∑=25.4×10=254.4.下表是某厂1~4由散点图可知,用水量其线性回归直线方程是y =-0.7x +a ,则a 等于________. 【答案】5.252.53.5,∵回归直线方程过定点, ∴3.5=-0.7×2.5+a. ∴a =5.25.5.由一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )得到线性回归方程$y =b$x +$a ,那么下列说法正确的是________.①直线$y =b$x +$a 必经过点(x ,y ); ②直线$y =b$x +$a 至少经过点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的一个点; ③直线$y =b$x +$a 的斜率为1221ni ii nii x ynx y xnx==--∑∑;④直线$y =b $x +$a 和各点(x 1,y 1),(x 2,y 2),…,(x n ,y n )的偏差$21()ni i i b a y x =⎡⎤⎣⎦∑$-+是该坐标平面上的直线与这些点的最小偏差.【答案】①③④【解析】回归直线的斜率为b ,故③正确,回归直线不一定经过样本点,但一定经过样本中心,故①正确,②不正确.6.某数学老师身高176 cm ,他爷爷、父亲和儿子的身高分别是173 cm 、170 cm 和182 cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为________cm. 【答案】185【解析】设父亲身高为173176,b$= $a=-b $ 176-1×173=3, ∴$y =x +3,当x =182时,$y =185.7.下表是关于宿州市服装机械厂某设备的使用年限(年)和所需要的维修费用y (万元)的几组统计数据:)请根据上表提供的数据,用最小二乘法求出y 关于的线性回归方程;(2)估计使用年限为10年时,维修费用为多少?【答案】解:(1)0.08 1.23yx =+线性回归方程为 (2)估计使用年限为10年时,维修费用为12.38万元. 【解析】(1)先求然后利用公可求出回归直线y ax b =+方程.(2)把x=10代入回归直线方程可得y 的值,就可得所求的值.解:(1906543222222512=++++=∑=i ixΘ又x y 23.108.0+=∴线性回归方程为 (2)把10=x 代入回归方程得到:38.121023.108.0=⨯+=y∴估计使用年限为10年时,维修费用为12.38万元.。
回归分析练习题及参考答案
1 下面是7个地区2000年的人均国内生产总值(GDP)和人均消费水平的统计数据:地区人均GDP/元人均消费水平/元北京辽宁上海江西河南贵州陕西 224601122634547485154442662454973264490115462396220816082035求:(1)人均GDP作自变量,人均消费水平作因变量,绘制散点图,并说明二者之间的关系形态。
(2)计算两个变量之间的线性相关系数,说明两个变量之间的关系强度。
(3)求出估计的回归方程,并解释回归系数的实际意义。
(4)计算判定系数,并解释其意义。
(5)检验回归方程线性关系的显著性(0.05α=)。
(6)如果某地区的人均GDP为5000元,预测其人均消费水平。
(7)求人均GDP为5000元时,人均消费水平95%的置信区间和预测区间。
解:(1)可能存在线性关系。
(2)相关系数:(3)回归方程:734.6930.309y x=+回归系数的含义:人均GDP没增加1元,人均消费增加0.309元。
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。
系数(a)模型非标准化系数标准化系数t 显著性B 标准误Beta1 (常量)734.693 139.540 5.265 0.003人均GDP(元)0.309 0.008 0.998 36.492 0.000 a. 因变量: 人均消费水平(元)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(4)模型汇总模型R R 方调整 R 方标准估计的误差1 .998a.996 .996 247.303a. 预测变量: (常量), 人均GDP。
人均GDP对人均消费的影响达到99.6%。
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。
回归分析时间序列分析答案
回归分析时间序列分析答案一、单项选择题1、下面的关系中不是相关关系的是(D)A、身高与体重之间的关系B、工资水平与工龄之间的关系C、农作物的单位面积产量与降雨量之间的关系D、圆的面积与半径之间的关系2、具有相关关系的两个变量的特点是(A)A、一个变量的取值不能由另一个变量唯一确定B、一个变量的取值由另一个变量唯一确定C、一个变量的取值增大时另一个变量的取值也一定增大D、一个变量的取值增大时另一个变量的取值肯定变小3、下面的假定中,哪个属于相关分析中的假定(B)A、两个变量之间是非线性关系B、两个变量都是随机变量C、自变量是随机变量,因变量不是随机变量D、一个变量的数值增大,另一个变量的数值也应增大4、如果一个变量的取值完全依赖于另一个变量,各观测点落在一条直线上,则称这两个变量之间为(A)A、完全相关关系B、正线性相关关系C、非线性相关关系D、负线性相关关系5、根据你的判断,下面的相关系数取值哪一个是错误的(C)A、–0.86B、0.78C、1.25D、0x6、某校经济管理类的学生学习统计学的时间()与考试成绩(y)之间建立线性回归方程yx=a+b。
经计算,方程为y=200—0.8x,该方程参数的计算(C)ccA a值是明显不对的B b值是明显不对的C a值和b值都是不对的D a值和b值都是正确的7、在回归分析中,描述因变量y如何依赖于自变量x和误差项ε的方程称为(B)A、回归方程B、回归模型C、估计回归方程D、经验回归方程,,,x,,8、在回归模型y=中,ε反映的是(C)01A、由于x的变化引起的y的线性变化部分B、由于y的变化引起的x的线性变化部分C、除x和y的线性关系之外的随机因素对y的影响D、由于x和y的线性关系对y的影响9、如果两个变量之间存在负相关关系,下列回归方程中哪个肯定有误(B),,A、=25–0.75xB、=–120+0.86x yy,,C、=200–2.5xD、=–34–0.74x yy10、说明回归方程拟合优度的统计量是(C)A、相关系数B、回归系数C、判定系数D、估计标准误差211、判定系数R是说明回归方程拟合度的一个统计量,它的计算公式为(A) SSRSSRSSESSTA、B、C、D、SSTSSESSTSSR12、为了研究居民消费(C)与可支配收入(Y)之间的关系,有人运用回归分析的方法,得到以下方程:在该方程中0.76的含义是(B)LnC,2.36,0.76LnY,A、可支配收入每增加1元,消费支出增加0.76元B、可支配收入每增加1%,消费支出增加0.76%C、可支配收入每增加1元,消费支出增加76%D、可支配收入每增加1%,消费支出增加76%13、年劳动生产率z(千元)和工人工资y=10+70x,这意味着年劳动生产率每提高1千元时,工人工资平均(A)A增加70元B减少70元C增加80元D减少80元14、下列回归方程中哪个肯定有误(A),,A、y=15–0.48x,r=0.65B、y=–15-1.35x,r=-0.81,,C、yy=-25+0.85x,r=0.42D、=120–3.56x,r=-0.96215、若变量x与y之间的相关系数r=0.8,则回归方程的判定系数R为(C)A、0.8B、0.89C、0.64D、0.4016、对具有因果关系的现象进行回归分析时(A)A、只能将原因作为自变量B、只能将结果作为自变量C、二者均可作为自变量D、没有必要区分自变量二、多项选择题1(下列哪些现象之间的关系为相关关系(ACD)A家庭收入与消费支出关系B圆的面积与它的半径关系C广告支出与商品销售额关系D单位产品成本与利润关系E在价格固定情况下,销售量与商品销售额关系2(相关系数表明两个变量之间的(DE)A线性关系B因果关系C变异程度D相关方向E相关的密切程度3、如下的现象属于负相关的有(BCD)。
回归分析练习题及参考答案..讲课讲稿
求:(1)人均GDP 作自变量,人均消费水平作因变量,绘制散点图,并说明二者之间的关系形态。
(2)计算两个变量之间的线性相关系数,说明两个变量之间的关系强度。
(3)求出估计的回归方程,并解释回归系数的实际意义。
(4)计算判定系数,并解释其意义。
(5)检验回归方程线性关系的显著性(0.05α=)。
(6)如果某地区的人均GDP 为5000元,预测其人均消费水平。
(7)求人均GDP 为5000元时,人均消费水平95%的置信区间和预测区间。
解:(1)可能存在线性关系。
(2)相关系数:(3)回归方程:734.6930.309y x=+回归系数的含义:人均GDP没增加1元,人均消费增加0.309元。
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。
系数(a)模型非标准化系数标准化系数t 显著性B 标准误Beta1 (常量)734.693 139.540 5.265 0.003人均GDP(元)0.309 0.008 0.998 36.492 0.000 a. 因变量: 人均消费水平(元)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%人均GDP对人均消费的影响达到99.6%。
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。
模型摘要模型R R 方调整的R 方估计的标准差1 .998(a) 0.996 0.996 247.303a. 预测变量:(常量), 人均GDP(元)。
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(5)F检验:回归系数的检验:t检验注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。
系数(a)模型非标准化系数标准化系数t 显著性B 标准误Beta1 (常量)734.693 139.540 5.265 0.003人均GDP(元)0.309 0.008 0.99836.4920.000a. 因变量: 人均消费水平(元)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(6)某地区的人均GDP为5000元,预测其人均消费水平为734.6930.30950002278.693y=+⨯=(元)。
第11章多重线性回归分析思考与练习参考答案
0.674
5
0.795
0.809
1.734
1.715
0.549
0.654
6
0.787
0.779
1.509
1.474
0.782
0.571
7
0.933
0.880
1.695
1.656
0.737
0.803
8
0.799
0.851
1.740
1.777
0.618
0.682
9
0.945
0.876
1.811
三、计算题
为确定老年妇女进行体育锻炼还是增加营养会减缓骨骼损伤,一名研究者用光子吸收法测量了骨骼中无机物含量,对三根骨头主侧和非主侧记录了测量值,结果见教材表11-20。分别用两种桡骨测量结果作为反应变量对其他骨骼测量结果作多重线性回归分析,提出并拟合适当的回归模型,分析残差。
解:答案提示,需要对自变量进行筛选,而且要考虑是否存在多重共线性,如果存在,应进行适当的处理。
5.如何判断、分析自变量间的交互作用?
答:基于专业背景知识,构造可能的交互作用项,并检验交互作用项是否有统计学意义。
6.多重线性回归模型的基本假定有哪些?如何判断资料是否满足这些假定?如果资料不满足假定条件,常用的处理方法有哪些?
答:多重线性回归的前提条件是线性、独立性、正态性和等方差性,可以借助残差分析等方法判断资料是否满足条件。如果资料不满足前提条件,可以采用变量变换和非线性回归等方法处理。
19
0.856
0.786
1.390
1.324
0.578
0.610
20
0.890
0.950
2.187
第七章回归与相关分析练习及答案
第七章回归与相关分析一、填空题1.现象之间的相关关系按相关的程度分为、和;按相关的形式分为和;按影响因素的多少分为和。
2.两个相关现象之间,当一个现象的数量由小变大,另一个现象的数量,这种相关称为正相关;当一个现象的数量由小变大,另一个现象的数量,这种相关称为负相关。
3.相关系数的取值范围是。
4.完全相关即是关系,其相关系数为。
5.相关系数,用于反映条件下,两变量相关关系的密切程度和方向的统计指标。
6.直线相关系数等于零,说明两变量之间;直线相关系数等1,说明两变量之间;直线相关系数等于—1,说明两变量之间。
7.对现象之间变量的研究,统计是从两个方面进行的,一方面是研究变量之间关系的,这种研究称为相关关系;另一方面是研究关于自变量和因变量之间的变动关系,用数学方程式表达,称为。
8.回归方程y=a+bx中的参数a是,b是。
在统计中估计待定参数的常用方法是。
9. 分析要确定哪个是自变量哪个是因变量,在这点上它与不同。
10.求两个变量之间非线性关系的回归线比较复杂,在许多情况下,非线性回归问题可以通过化成来解决。
11.用来说明回归方程代表性大小的统计分析指标是。
12.判断一条回归直线与样本观测值拟合程度好坏的指标是。
二、单项选择题1.下面的函数关系是( )A销售人员测验成绩与销售额大小的关系 B圆周的长度决定于它的半径C家庭的收入和消费的关系 D数学成绩与统计学成绩的关系2.相关系数r的取值范围( )A -∞<r<+∞B -1≤r≤+1C -1<r<+1D 0≤r≤+13.年劳动生产率z(干元)和工人工资y=10+70x,这意味着年劳动生产率每提高1千元时,工人工资平均( )A增加70元 B减少70元 C增加80元 D减少80元4.若要证明两变量之间线性相关程度是高的,则计算出的相关系数应接近于( )A+1 B 0 C 0.5 D [1]5.回归系数和相关系数的符号是一致的,其符号均可用来判断现象( ) A线性相关还是非线性相关 B正相关还是负相关C完全相关还是不完全相关 D单相关还是复相关6.某校经济管理类的学生学习统计学的时间(x)与考试成绩(y)之间建=a+b x。
相关分析与回归分析练习试卷1(题后含答案及解析)
相关分析与回归分析练习试卷1(题后含答案及解析) 题型有:1. 单选题 2. 多选题单项选择题以下每小题各有四项备选答案,其中只有一项是正确的。
1.根据散点图8-1,可以判断两个变量之间存在( )。
A.正线性相关关系B.负线性相关关系C.非线性关系D.函数关系正确答案:A 涉及知识点:相关分析与回归分析2.假设某品牌的笔记本市场需求只与消费者的收入水平和该笔记本的市场价格水平有关。
则在假定消费者的收入水平不变的条件下,该笔记本的市场需求与其市场价格水平的相关关系就是一种( )。
A.单相关B.复相关C.偏相关D.函数关系正确答案:C解析:在某一现象与多种现象相关的场合,假定其他变量不变,专门考察其中两个变量的相关关系称为偏相关。
在假定消费者的收入水平不变的条件下,该笔记本的市场需求与其市场价格水平的关系就是一种偏相关。
知识模块:相关分析与回归分析3.相关图又称( )。
A.散布表B.折线图C.散点图D.曲线图正确答案:C解析:相关图又称散点图,是指把相关表中的原始对应数值在乎面直角坐标系中用坐标点描绘出来的图形。
知识模块:相关分析与回归分析4.下列相关系数取值中错误的是( )。
A.-0.86B.0.78C.1.25D.0正确答案:C解析:相关系数r的取值介于-1与1之间。
知识模块:相关分析与回归分析5.如果相关系数r=0,则表明两个变量之间( )。
A.相关程度很低B.不存在任何关系C.不存在线性相关关系D.存在非线性相关关系正确答案:C解析:相关系数r是根据样本数据计算的度量两个变量之间线性关系强度的统计量。
如果相关系数r=0,说明两个变量之间不存在线性相关关系。
知识模块:相关分析与回归分析6.当所有观测值都落在回归直线上,则两个变量之间的相关系数为( )。
A.1B.-1C.+1或-1D.大于-1,小于+1正确答案:C解析:当所有观测值都落在回归直线上时,说明两个变量完全线性相关,所以相关系数为+1或-1。
回归分析练习题及参考答案
1 下面是7个地区2000年的人均国内生产总值(GDP)和人均消费水平的统计数据:地区人均GDP/元人均消费水平/元北京辽宁上海江西河南贵州陕西 224601122634547485154442662454973264490115462396220816082035求:(1)人均GDP作自变量,人均消费水平作因变量,绘制散点图,并说明二者之间的关系形态。
(2)计算两个变量之间的线性相关系数,说明两个变量之间的关系强度。
(3)求出估计的回归方程,并解释回归系数的实际意义。
(4)计算判定系数,并解释其意义。
(5)检验回归方程线性关系的显著性(0.05α=)。
(6)如果某地区的人均GDP为5000元,预测其人均消费水平。
(7)求人均GDP为5000元时,人均消费水平95%的置信区间和预测区间。
解:(1)可能存在线性关系。
(2)相关系数:(3)回归方程:734.6930.309y x=+回归系数的含义:人均GDP没增加1元,人均消费增加0.309元。
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。
系数(a)模型非标准化系数标准化系数t 显著性B 标准误Beta1 (常量)734.693 139.540 5.265 0.003人均GDP(元)0.309 0.008 0.998 36.492 0.000 a. 因变量: 人均消费水平(元)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(4)模型汇总模型R R 方调整 R 方标准估计的误差1 .998a.996 .996 247.303a. 预测变量: (常量), 人均GDP。
人均GDP对人均消费的影响达到99.6%。
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。
回归分析习题及答案
回归分析习题及答案回归分析习题及答案回归分析是统计学中一种常用的分析方法,用于研究变量之间的关系。
它可以帮助我们了解变量之间的相关性,并预测未来的趋势。
在本文中,我们将提供一些回归分析的习题及其详细解答,帮助读者更好地理解和应用这一方法。
习题一:某公司想要了解其销售额与广告投入之间的关系。
公司收集了过去12个月的数据,包括每个月的广告投入(单位:万元)和当月的销售额(单位:万元)。
请利用这些数据进行回归分析,并给出相关的统计结果。
解答一:首先,我们需要将数据导入统计软件,比如SPSS或Excel。
然后,我们可以使用线性回归模型来分析销售额与广告投入之间的关系。
在SPSS中,可以选择“回归”分析,将销售额作为因变量,广告投入作为自变量,进行线性回归分析。
回归分析的结果包括回归方程、相关系数、显著性检验等。
回归方程可以用来描述销售额与广告投入之间的关系。
相关系数可以告诉我们这两个变量之间的相关程度,取值范围为-1到1,越接近1表示相关性越强。
显著性检验可以告诉我们回归方程是否显著,即广告投入是否对销售额有显著影响。
习题二:某研究人员想要了解学生的考试成绩与他们的学习时间之间的关系。
研究人员随机选择了100名学生,记录了他们的学习时间(单位:小时)和考试成绩(百分制)。
请利用这些数据进行回归分析,并给出相关的统计结果。
解答二:同样地,我们需要将数据导入统计软件,然后进行回归分析。
这次,我们将考试成绩作为因变量,学习时间作为自变量。
除了之前提到的回归方程、相关系数和显著性检验之外,我们还可以通过回归分析的结果来进行预测。
例如,我们可以利用回归方程来预测一个学生在给定学习时间下的考试成绩。
习题三:某研究人员想要了解一个人的身高与体重之间的关系。
研究人员随机选择了200名成年人,记录了他们的身高(单位:厘米)和体重(单位:千克)。
请利用这些数据进行回归分析,并给出相关的统计结果。
解答三:同样地,我们将数据导入统计软件,然后进行回归分析。
回归分析练习题及参考答案
求:(1)人均GDP 作自变量,人均消费水平作因变量,绘制散点图,并说明二者之间的关系形态。
(2)计算两个变量之间的线性相关系数,说明两个变量之间的关系强度。
(3)求出估计的回归方程,并解释回归系数的实际意义。
(4)计算判定系数,并解释其意义。
(5)检验回归方程线性关系的显著性(0.05α=)。
(6)如果某地区的人均GDP 为5000元,预测其人均消费水平。
(7)求人均GDP 为5000元时,人均消费水平95%的置信区间和预测区间。
解:(1)可能存在线性关系。
(2)相关系数:(3)回归方程:734.6930.309y x=+回归系数的含义:人均GDP没增加1元,人均消费增加0.309元。
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。
系数(a)模型非标准化系数标准化系数t 显著性B 标准误Beta1 (常量)734.693 139.540 5.265 0.003人均GDP(元)0.309 0.008 0.998 36.492 0.000 a. 因变量: 人均消费水平(元)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%人均GDP对人均消费的影响达到99.6%。
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。
模型摘要模型R R 方调整的R 方估计的标准差1 .998(a) 0.996 0.996 247.303a. 预测变量:(常量), 人均GDP(元)。
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(5)F 检验:回归系数的检验:t 检验注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。
系数(a)模型 非标准化系数标准化系数t 显著性B 标准误 Beta1(常量) 734.693 139.540 5.2650.003 人均GDP (元)0.3090.0080.99836.4920.000a. 因变量: 人均消费水平(元)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(6)某地区的人均GDP 为5000元,预测其人均消费水平为 734.6930.30950002278.693y =+⨯=(元)。
回归分析习题答案
回归分析习题答案回归分析习题答案回归分析作为一种常用的统计方法,被广泛应用于各个领域。
它能够帮助研究者理解变量之间的关系,并预测未来的趋势。
在回归分析的学习过程中,习题是不可或缺的一部分,通过解答习题,我们可以更好地掌握回归分析的原理和应用。
本文将回答一些常见的回归分析习题,帮助读者更好地理解回归分析的概念和方法。
1. 问题:某公司想要预测销售额与广告投入之间的关系,他们收集了过去12个月的数据,包括每个月的广告投入和销售额。
请用简单线性回归模型拟合数据,并预测下个月的销售额。
答案:简单线性回归模型可以表示为:销售额= β0 + β1 * 广告投入。
通过最小二乘法估计参数,可以得到回归方程。
使用软件或计算器进行计算,得到β0和β1的估计值。
然后,将下个月的广告投入代入回归方程,即可得到预测的销售额。
2. 问题:某研究人员想要研究学生的考试成绩与学习时间之间的关系。
他们随机选择了100名学生,记录了他们的学习时间和考试成绩。
请用多元线性回归模型拟合数据,并解释模型中的系数。
答案:多元线性回归模型可以表示为:考试成绩= β0 + β1 * 学习时间+ β2 *年级+ ε。
其中,学习时间和年级是自变量,考试成绩是因变量。
通过最小二乘法估计参数,可以得到回归方程。
系数β1表示学习时间对考试成绩的影响,系数β2表示年级对考试成绩的影响。
如果β1和β2的估计值显著不为零,说明学习时间和年级对考试成绩有显著影响。
3. 问题:某研究人员想要研究气温对冰淇淋销量的影响。
他们收集了每天的气温和冰淇淋销量数据,发现两者呈现正相关关系。
请用非线性回归模型拟合数据,并解释模型中的参数。
答案:非线性回归模型可以表示为:冰淇淋销量= β0 + β1 * 气温+ β2 * 气温^2 + ε。
其中,气温是自变量,冰淇淋销量是因变量。
通过最小二乘法估计参数,可以得到回归方程。
系数β1表示气温对冰淇淋销量的线性影响,系数β2表示气温对冰淇淋销量的非线性影响。
回归分析课后习题
课后习题
一、从某一行业中随机抽取12家企业,所得产量与生产费用的数据如下:
(2)计算产量与生产费用之间的线性相关系数,并对相关系数的显著性
进行检验(),并说明二者之间的关系强度。
二、下面是7个地区2000年的人均国内生产总值(GDP)和人均消费水平的统计数据:
(1)绘制散点图,并计算相关系数,说明二者之间的关系。
(2)人均GDP作自变量,人均消费水平作因变量,利用最小二乘法求出估计的回归方程,并解释回归系数的实际意义。
(3)计算判定系数和估计标准误差,并解释其意义。
(4)检验回归方程线性关系的显著性()
(5)如果某地区的人均GDP为5000元,预测其人均消费水平。
(6)求人均GDP为5000元时,人均消费水平95%的置信区间和预测区间。
三、随机抽取10家航空公司,对其最近一年的航班正点率和顾客投诉次数进行调查,所得数据如下:
方程,并解释回归系数的意义。
(2)检验回归系数的显著性()。
(3)如果航班正点率为80%,估计顾客的投诉次数。
回归分析试题答案
诚信应考 考出水平 考出风格浙江大学城市学院2011 — 2012 学年第一学期期末考试卷《 回归分析 》开课单位: 计算分院 ;考试形式:开卷(A4纸一张);考试时间:2011年01月6日; 所需时间: 120 分钟一.计算题(10分。
)1,考虑过原点的线性回归模型1,1,2,...,i i i y x i n βε=+=误差1,...,n εε仍满足基本假定。
求1β的最小二乘估计。
并求出1β 的期望和方差,写出1β的分布。
1221111111121,1,2,...,ˆ()()2()0ˆi i i nni i i i i i ni i i i ni ii nii y x i n Q y yy x Qy x x x yxβεββββ======+==-=-∂=--=∂=∑∑∑∑∑解:第1页共 6 页二. 证明题(本大题共2小题,每小题7分,共14分。
)1,证明:(1)22()1var()[1]i i xxx x e n L σ-=--(2)2211ˆˆ()2n i ii y y n σ==--∑是2σ的无偏估计。
011111122ˆˆˆ()()1()()1var()var[()()]()1var()var((()))()12cov[,(())](1(i i i i i nn i i j j jj j xx ni i i j j j xx ni i j j j xx ni i j j j xxe y y y x x x x y y x x y n L x x e y x x y n L x x y x x y n L x x y x x y n L x n ββσσ======-=----=----=-+--=++---+-=++∑∑∑∑∑解(1):222122222221212211)()1())2()()()11(12()]()1[1]1ˆˆ(2)()(())21ˆ[()]2()111var()[1]2212n i i j j xx xxi i xx xxi xx ni i i ni i i n n i i i i xx x x x x x L n L x x x x n L n L x x n L E E y y n E y y n x x e n n n L n σσσσσ=====----+--=++-+-=--=--=---==----=-∑∑∑∑∑22(11)n σσ--=三.填空题.(每空2分,共46分)1.为了研究家庭收入和家庭消费的关系,通过调查得到数据如下:6.22893,29.12349,43008,97.29,5422=====∑∑∑xy yxy x1)用最小二乘估计求出线性回归方程的参数估计值0ˆβ= 。
回归分析期末试题及答案
回归分析期末试题及答案一、简答题1. 请解释回归分析的基本思想。
回归分析是一种统计学方法,用于研究变量之间的关系。
其基本思想是通过建立一个数学模型来描述一个或多个自变量对因变量的影响,并根据观察数据对模型进行拟合和推断。
2. 请解释简单线性回归和多元线性回归的区别。
简单线性回归是建立在一个自变量和一个因变量之间的基础上的回归模型。
多元线性回归则是在两个或更多个自变量和一个因变量之间建立的回归模型。
3. 请解释残差的含义。
残差是指建立回归模型后,观测值与模型预测值之间的差异。
残差可以用来评估模型的拟合程度,如果残差较大,则说明模型无法很好地解释观察数据的变化。
4. 请解释R平方的含义及其优缺点。
R平方是一个用来衡量回归模型拟合程度的指标,其值介于0和1之间。
R平方越接近1,说明模型对观察数据的拟合越好;而R平方越接近0,则说明模型对观察数据的拟合越差。
R平方的优点是简单直观,易于理解,但其缺点是不适用于比较不同自变量的模型。
5. 请简要说明什么是多重共线性问题。
多重共线性问题指的是在多元线性回归中,自变量之间存在高度相关性的情况。
多重共线性会导致回归系数的估计不准确,难以解释自变量与因变量之间的关系。
二、计算题1. 已知一个简单线性回归模型为:Y = 2 + 3X,回归系数的解释是什么?回归系数3表示自变量X每增加1个单位,因变量Y会增加3个单位。
而常数项2表示当自变量X为0时,因变量Y的取值为2。
2. 使用最小二乘法求解简单线性回归模型的参数估计值。
最小二乘法是一种常用的回归分析方法,用于估计回归模型中的参数值。
以简单线性回归模型Y = β0 + β1X 为例,最小二乘法通过最小化观测值Y与模型预测值之间的平方差来估计β0和β1。
3. 请计算多元线性回归模型的回归系数。
多元线性回归模型可以表示为:Y = β0 + β1X1 + β2X2 + ... + βnXn。
回归系数β1、β2、...、βn可以使用最小二乘法来估计,通过最小化观测值Y与模型预测值之间的平方差来得出。
相关分析与回归分析同步练习试卷2(题后含答案及解析)
相关分析与回归分析同步练习试卷2(题后含答案及解析)题型有:1. 单项选择题 3. 名词解释题 4. 简答题 5. 计算分析题单项选择题每小题1分,在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
多选无分。
1.总体总量指标的点估计值是()A.平均数乘以样本成数B.样本容量乘以样本成数C.样本指标值乘以总体单位数D.样本指标的区间估计值乘以总体单位数正确答案:C 涉及知识点:相关分析与回归分析2.理论上最符合抽样调查随机原则的形式是()A.整群抽样B.类型抽样C.阶段抽样D.简单随机抽样正确答案:D 涉及知识点:相关分析与回归分析3.()是其他抽样方式的基础,也是衡量其他抽样方式抽样效果的标准。
()A.简单随机抽样B.等距抽样C.类型抽样D.整群抽样正确答案:A 涉及知识点:相关分析与回归分析4.为了解职工家庭生活水平状况,决定采用等距抽样进行调查,首先把职工按工资水平的高低进行排队,此种排队方法属于A.按无关标志排队B.按有关标志排队C.按简单标志排队D.按复杂标志排队正确答案:B 涉及知识点:相关分析与回归分析5.产品的单位成本随着劳动生产率的不断提高而下降,此种现象属于()A.完全相关B.不完全相关C.正相关D.负相关正确答案:D 涉及知识点:相关分析与回归分析6.只反映一个自变量和一个因变量韵相关关系是()A.正相关B.负相关C.单相关D.复相关正确答案:C 涉及知识点:相关分析与回归分析7.当相关关系的—个变量变动时,另—变量也相应地发生大致均等的变动,这种相关关系称为()A.线性相关B.非线性相关C.单相关D.完全相关正确答案:A 涉及知识点:相关分析与回归分析8.完全相关关系就是()A.函数关系B.因果关系C.狭义的相关关系D.广义的相关关系正确答案:A 涉及知识点:相关分析与回归分析9.大多数相关关系属于()A.不相关B.完全相关C.不完全相关D.无法判断正确答案:C 涉及知识点:相关分析与回归分析10.制作双变量分组相关表,应将自变量放在()A.横栏B.纵栏C.中间栏D.任意一栏正确答案:A 涉及知识点:相关分析与回归分析11.相关系数的取值范围是()A.-1≤r≤lB.-1≤r≤lC.-1<r<lD.-1≤r<1正确答案:B 涉及知识点:相关分析与回归分析12.两个变量问的相互依存程度越高,则二者之间的相关系数值越接近于()A.1B.-1C.0D.1或-1正确答案:D 涉及知识点:相关分析与回归分析13.两个现象之间相互依存关系程度越弱,则相关系数r()A.越接近于0B.越接近于-1C.越接近于1D.越接近于0.5正确答案:A 涉及知识点:相关分析与回归分析14.在相关分析中,要求相关的两个变量()A.至少有一个是随机变量B.因变量是随机变量C.都不是随机变量D.自变量是随机变量正确答案:A 涉及知识点:相关分析与回归分析名词解释题每小题3分15.一元线性回归模型正确答案:一元线性回归模型又称简单直线回归模型,它是根据两个变量的成对数据,配合直线方程式,再根据自变量的变动值,来推算因变量的估计值的一种统计分析方法。
回归分析练习题(有答案)改
1.1回归分析的基本思想及其初步应用一、选择题1. 某同学由x 与y 之间的一组数据求得两个变量间的线性回归方程为y bx a =+,已知:数据x 的平均值为2,数据y 的平均值为3,则 ( )A .回归直线必过点(2,3)B .回归直线一定不过点(2,3)C .点(2,3)在回归直线上方D .点(2,3)在回归直线下方2. 在一次试验中,测得(x,y)的四组值分别是A(1,2),B(2,3),C(3,4),D(4,5),则Y 与X 之间的回归直线方程为( )A . y x 1=+ B . y x 2=+ C . y 2x 1=+ D. y x 1=-3. 在对两个变量x ,y 进行线性回归分析时,有下列步骤:①对所求出的回归直线方程作出解释; ②收集数据(i x 、i y ),1,2i =,…,n ;③求线性回归方程; ④求未知参数; ⑤根据所搜集的数据绘制散点图如果根据可行性要求能够作出变量,x y 具有线性相关结论,则在下列操作中正确的是( )A .①②⑤③④B .③②④⑤①C .②④③①⑤D .②⑤④③①4. 下列说法中正确的是( )A .任何两个变量都具有相关关系B .人的知识与其年龄具有相关关系C .散点图中的各点是分散的没有规律D .根据散点图求得的回归直线方程都是有意义的5. 给出下列结论:(1)在回归分析中,可用指数系数2R 的值判断模型的拟合效果,2R 越大,模型的拟合效果越好; (2)在回归分析中,可用残差平方和判断模型的拟合效果,残差平方和越大,模型的拟合效果越好;(3)在回归分析中,可用相关系数r 的值判断模型的拟合效果,r 越小,模型的拟合效果越好; (4)在回归分析中,可用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域中,说明这样的模型比较合适.带状区域的宽度越窄,说明模型的拟合精度越高.以上结论中,正确的有( )个. A .1 B .2 C .3 D .4 6. 已知直线回归方程为2 1.5y x =-,则变量x 增加一个单位时( )A.y 平均增加1.5个单位B.y 平均增加2个单位C.y 平均减少1.5个单位D.y 平均减少2个单位7. 一位母亲记录了儿子3~9岁的身高,由此建立的身高与年龄的回归直线方程为ˆ7.1973.93yx =+,据此可以预测这个孩子10岁时的身高,则正确的叙述是( )A .身高一定是145.83cmB .身高超过146.00cmC .身高低于145.00cmD .身高在145.83cm 左右8. 在画两个变量的散点图时,下面哪个叙述是正确的( ) (A)预报变量在x 轴上,解释变量在y 轴上 (B)解释变量在x 轴上,预报变量在y 轴上(C)可以选择两个变量中任意一个变量在x 轴上(D)可以选择两个变量中任意一个变量在y 轴上9. 两个变量y 与x 的回归模型中,通常用2R 来刻画回归的效果,则正确的叙述是( ) A. 2R 越小,残差平方和小 B. 2R 越大,残差平方和大C.2R 于残差平方和无关 D. 2R 越小,残差平方和大 10. 两个变量y 与x 的回归模型中,分别选择了4个不同模型,它们的相关指数2R 如下 ,其中拟合效果最好的模型是( ) A.模型1的相关指数2R 为0.98 B.模型2的相关指数2R 为0.80C.模型3的相关指数2R 为0.50D.模型4的相关指数2R 为0.25 11. 下列结论正确的是( ) ①函数关系是一种确定性关系;②相关关系是一种非确定性关系;③回归分析是对具有函数关系的两个变量进行统计分析的一种方法;④回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法.A.①② B.①②③ C.①②④ D.①②③④12. 已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为()A. 1.234y x=+B. 1.235y x=+C. 1.230.08y x=+D. 0.08 1.23y x=+二、填空题16. 在比较两个模型的拟合效果时,甲、乙两个模型的相关指数2R的值分别约为0.96和0.85,则拟合效果好的模型是.17. 在回归分析中残差的计算公式为.18. 线性回归模型y bx a e=++(a和b为模型的未知参数)中,e称为.19. 若一组观测值(x1,y1)(x2,y2)…(xn,yn)之间满足yi=bxi+a+ei(i=1、2.…n)若ei恒为0,则R2为_____三、解答题20. 调查某市出租车使用年限x和该年支出维修费用y(万元),得到数据如下:(2)由(1)中结论预测第10年所支出的维修用.(121()()()ni iiniix x y ybx xa y bx==⎧-⋅-⎪⎪=⎨-⎪⎪=-⎪⎩∑∑)21. 以下是某地搜集到的新房屋的销售价格y和房屋的面积x的数据:(1)画出数据对应的散点图;(2)求线性回归方程,并在散点图中加上回归直线;(3)据(2)的结果估计当房屋面积为2150m时的销售价格.(4)求第2个点的残差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地区人均GDP/元人均消费水平/元22460 11226 34547 4851 5444 2662 4549 7326 4490 11546 2396 2208 1608 2035求:(1)人均GDP作自变量,人均消费水平作因变量,绘制散点图,并说明二者之间的关系形态。
(2)计算两个变量之间的线性相关系数,说明两个变量之间的关系强度。
(3)求出估计的回归方程,并解释回归系数的实际意义。
(4)计算判定系数,并解释其意义。
(5)检验回归方程线性关系的显著性(0.05α=)。
(6)如果某地区的人均GDP为5000元,预测其人均消费水平。
(7)求人均GDP为5000元时,人均消费水平95%的置信区间和预测区间。
解:(1)可能存在线性关系。
(2)相关系数:有很强的线性关系。
(3)回归方程:734.6930.309y x=+回归系数的含义:人均GDP没增加1元,人均消费增加0.309元。
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。
系数(a)模型非标准化系数标准化系数t 显著性B 标准误Beta1 (常量)734.693 139.540 5.265 0.003人均GDP(元)0.309 0.008 0.998 36.492 0.000 a. 因变量: 人均消费水平(元)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(4)模型汇总模型R R 方调整R 方标准估计的误差1 .998a.996 .996 247.303a. 预测变量: (常量), 人均GDP。
人均GDP对人均消费的影响达到99.6%。
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。
模型摘要模型R R 方调整的R 方估计的标准差1 .998(a) 0.996 0.996 247.303a. 预测变量:(常量), 人均GDP(元)。
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(5)F检验:Anova b模型平方和df 均方 F Sig.1 回归81444968.680 1 81444968.680 1331.692 .000a残差305795.034 5 61159.007总计81750763.714 6a. 预测变量: (常量), 人均GDP。
b. 因变量: 人均消费水平%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。
系数(a)模型非标准化系数标准化系数t 显著性B 标准误Beta1 (常量)734.693 139.540 5.265 0.003人均GDP(元)0.309 0.008 0.998 36.492 0.000 a. 因变量: 人均消费水平(元)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(6)某地区的人均GDP为5000元,预测其人均消费水平为734.6930.30950002278.693y=+⨯=(元)。
(7)人均GDP为5000元时,人均消费水平95%的置信区间为[1990.74915,2565.46399],预测区间为[1580.46315,2975.74999]。
2 从n=20的样本中得到的有关回归结果是:SSR(回归平方和)=60,SSE(误差平方和)=40。
要检验x 与y 之间的线性关系是否显著,即检验假设:01:0H β=。
(1)线性关系检验的统计量F 值是多少? (2)给定显著性水平0.05α=,F α是多少?(3)是拒绝原假设还是不拒绝原假设?(4)假定x 与y 之间是负相关,计算相关系数r 。
(5)检验x 与y 之间的线性关系是否显著?解:(1)SSR 的自由度为k=1;SSE 的自由度为n-k-1=18;因此:F=1SSR k SSE n k --=6014018=27 (2)()1,18F α=()0.051,18F =4.41 (3)拒绝原假设,线性关系显著。
(4),由于是负相关,因此r=-0.7746(5)从F 检验看线性关系显著。
3 随机抽取7家超市,得到其广告费支出和销售额数据如下:求:(1)用广告费支出作自变量x ,销售额作因变量y ,求出估计的回归方程。
(2)检验广告费支出与销售额之间的线性关系是否显著(0.05α=)。
(3)绘制关于x 的残差图,你觉得关于误差项ε的假定被满足了吗? (4)你是选用这个模型,还是另寻找一个更好的模型? 解:(1)系数(a)模型 非标准化系数标准化系数t 显著性B 标准误Beta1(常量)29.399 4.807 6.1160.002 广告费支出(万元)1.5470.4630.8313.3390.021a. 因变量: 销售额(万元)(2)回归直线的F检验:ANOVA(b)模型平方和df 均方 F 显著性1 回归691.723 1 691.723 11.147 .021(a)残差310.277 5 62.055合计1,002.000 6a. 预测变量:(常量), 广告费支出(万元)。
b. 因变量: 销售额(万元)显著。
回归系数的t检验:系数(a)模型非标准化系数标准化系数t 显著性B 标准误Beta1 (常量)29.399 4.807 6.116 0.002广告费支出(万元) 1.547 0.463 0.831 3.339 0.021 a. 因变量: 销售额(万元)显著。
(3)未标准化残差图:标准化残差图:学生氏标准化残差图:看到残差不全相等。
(4)应考虑其他模型。
可考虑对数曲线模型:y=b0+b1ln(x)=22.471+11.576ln(x)。
4 根据下面SPSS输出的回归结果,说明模型中涉及多少个自变量?多少个观察值?写出回归方程,并根据F,s e,R2及调整的2aR的值对模型进行讨论。
模型汇总b模型R R 方调整R 方标准估计的误差1 0.8424070.7096500.630463109.429596系数a模型非标准化系数t Sig.B 标准误差1 (常量) 657.0534 167.459539 3.9236550.002378VAR00002 VAR00003 VAR000045.710311-0.416917-3.4714811.7918360.3221931.4429353.186849-1.293998-2.4058470.0086550.2221740.034870解:自变量3个,观察值15个。
回归方程:ˆy=657.0534+5.710311X1-0.416917X2-3.471481X3拟合优度:判定系数R2=0.70965,调整的2aR=0.630463,说明三个自变量对因变量的影响的比例占到63%。
估计的标准误差yxS=109.429596,说明随即变动程度为109.429596回归方程的检验:F检验的P=0.002724,在显著性为5%的情况下,整个回归方程线性关系显著。
回归系数的检验:1的t检验的P=0.008655,在显著性为5%的情况下,y与X1线性关系显著。
β的t检验的P=0.222174,在显著性为5%的情况下,y与X2线性关系不2显著。
β的t检验的P=0.034870,在显著性为5%的情况下,y与X3线性关系显3著。
因此,可以考虑采用逐步回归去除X2,从新构建线性回归模型。
求:(1)计算y与x1、y与x2之间的相关系数,是否有证据表明销售价格与购进价格、销售价格与销售费用之间存在线性关系?(2)根据上述结果,你认为用购进价格和销售费用来预测销售价格是否有用?α=)。
(3)求回归方程,并检验模型的线性关系是否显著(0.05(4)解释判定系数R2,所得结论与问题(2)中是否一致?(5)计算x1与x2之间的相关系数,所得结果意味着什么?(6)模型中是否存在多重共线性?你对模型有何建议?解:(1)y与x1的相关系数=0.309,y与x2之间的相关系数=0.0012。
对相关性进行检验:相关性销售价格购进价格销售费用销售价格Pearson 相关性 1 0.309 0.001显著性(双侧)0.263 0.997N 15 15 15 购进价格Pearson 相关性0.309 1 -.853(**)显著性(双侧)0.263 0.000N 15 15 15 销售费用Pearson 相关性0.001 -.853(**) 1显著性(双侧)0.997 0.000N 15 15 15 **. 在 .01 水平(双侧)上显著相关。
可以看到,两个相关系数的P值都比较的,总体上线性关系也不现状,因此没有明显的线性相关关系。
(2)意义不大。
(3)回归统计Multiple R0.593684R Square0.35246Adjusted R Square0.244537标准误差69.75121观测值15方差分析df SS MS F Significance F回归分析231778.153915889.08 3.2658420.073722残差1258382.77944865.232总计1490160.9333Coefficients标准误差t Stat P-value Lower 95%Upper95%下限95.0%上限95.0%(常量)375.6018339.4105621.106630.290145-363.911115.114-363.911115.114购进价格x10.5378410.210446742.5557110.02520.0793170.9963650.0793170.996365销售费用x2 1.4571940.667706592.1823860.0496810.0023862.9120010.002386 2.912001从检验结果看,整个方程在5%下,不显著;而回归系数在5%下,均显著,说明回归方程没有多大意义,并且自变量间存在线性相关关系。
(4)从R2看,调整后的R2=24.4%,说明自变量对因变量影响不大,反映情况基本一致。
(5)方程不显著,而回归系数显著,说明可能存在多重共线性。
(6)存在多重共线性,模型不适宜采用线性模型。
6 一家电器销售公司的管理人员认为,每月的销售额是广告费用的函数,并想通过广告费用对月销售额作出估计。
下面是近8个月的销售额与广告费用数据:(1)用电视广告费用作自变量,月销售额作因变量,建立估计的回归方程。
(2)用电视广告费用和报纸广告费用作自变量,月销售额作因变量,建立估计的回归方程。