太阳能电池基本特性测定实验

合集下载

实验20 太阳能电池特性的测量

实验20  太阳能电池特性的测量

实验20 太阳能电池特性的测量太阳能是一种新能源,对太阳能的充分利用可以解决人类日趋增长的能源需求问题。

目前,太阳能的利用主要集中在热能和发电两方面。

利用太阳能发电目前有两种方法,一是利用热能产生蒸汽驱动发电机发电,二是太阳能电池。

太阳能的利用和太阳能电池的特性研究是21世纪的热门课题。

太阳能电池也称光伏电池,是将太阳辐射能直接转换为电能的器件。

由这种器件与相配套的装置组成的太阳能电池发电系统具有不消耗常规能源、无转动部件、寿命长、维护简单、使用方便、功率大小可任意组合、无噪声、无污染等优点。

世界上第一块实验用半导体太阳能电池是美国贝尔实验室于1954年研制的。

经过50多年的努力,太阳能电池的研究、开发与产业化已取得巨大进步。

目前太阳能电池的应用领域除人造卫星和宇宙飞船外,已应用于许多民用领域,如太阳能汽车、太阳能游艇、太阳能收音机、太阳能计算机、太阳能乡村电站等。

太阳能是一种清洁的“绿色”能源,因此世界各国十分重视对太阳能电池的研究和利用。

【实验目的】1.探讨太阳能电池的基本特性;2.研究无光照时太阳能电池在外加偏压时的伏安特性;3.测量太阳能电池有光照时的输出特性,并求出它的短路电流、开路电压、最大输出功率及填充因子;4.测量太阳能电池的短路电流、开路电压与相对光强的关系,求出它们的近似函数关系。

【预备问题】1.如何对光具座的同轴等高调节?2.太阳能电池在使用时正负极能否短路?普通电池在使用时正负极能否短路?3.太阳能电池的基本工作原理是什么?4.填充因子的物理意义是什么?如何通过实验方法测量填充因子?【实验仪器】太阳能电池特性实验仪(包括光具座、滑块、光源、太阳能电池、遮光板、光功率计、直流稳压电源、遮光罩、单刀双掷开关等)、万用表、电阻箱。

【实验原理】1.太阳能电池的结构以晶体硅太阳能电池为例,它以P型硅半导体材料作为基质材料,通过在表面的N型杂质扩散而形成PN结,N型半导体为受光面,为了减少光的反射损失,一般在整个表面覆盖一层减反射膜,在N型层上制作金属栅线作为正面接触电极,在整个背面也制作金属膜作为背面欧姆接图20-1 太阳能电池结构图触电极,这样就形成了晶体硅太阳能电池,如图20-1所示。

太阳能电池特性及应用实验报告

太阳能电池特性及应用实验报告

太阳能电池特性及应用实验报告太阳能电池特性及应用实验报告引言:太阳能电池是一种将太阳能转化为电能的装置,它在可再生能源领域具有重要的应用前景。

本实验旨在研究太阳能电池的特性,并探索其在实际应用中的潜力。

一、太阳能电池的基本原理太阳能电池是利用光电效应将太阳能转化为电能的装置。

光电效应是指当光照射到半导体材料上时,光子的能量会激发电子跃迁,从而产生电流。

太阳能电池通常由p-n结构的半导体材料构成,其中p型半导体富含正电荷,n型半导体富含负电荷。

当光照射到p-n结构上时,光子的能量会激发p-n结附近的电子,使其跃迁到导带中,形成电流。

二、太阳能电池的特性参数太阳能电池的性能主要由以下几个参数来描述:1. 开路电压(Open Circuit Voltage,简称OCV):在没有外部负载的情况下,太阳能电池正极和负极之间的电压。

OCV主要取决于半导体材料的能带结构和光照强度,通常在0.5V至1V之间。

2. 短路电流(Short Circuit Current,简称SCC):在外部负载为零时,太阳能电池正极和负极之间的电流。

SCC主要取决于光照强度和半导体材料的光电转换效率,通常在1mA至10mA之间。

3. 填充因子(Fill Factor,简称FF):填充因子是太阳能电池输出功率与最大输出功率的比值,反映了太阳能电池的电流-电压特性曲线的平坦程度。

填充因子越接近1,表示太阳能电池的性能越好。

4. 转换效率(Conversion Efficiency):转换效率是指太阳能电池将太阳能转化为电能的比例,通常以百分比表示。

转换效率越高,表示太阳能电池的能量利用效率越高。

三、太阳能电池的应用实验为了进一步了解太阳能电池的特性和应用潜力,我们进行了一系列实验。

1. 光照强度对太阳能电池性能的影响实验:我们在实验室中设置了不同光照强度的环境,通过改变光源的距离和光源的亮度来调节光照强度。

实验结果表明,随着光照强度的增加,太阳能电池的输出电流和功率也随之增加,但是开路电压基本保持不变。

太阳能电池特性研究实验报告

太阳能电池特性研究实验报告

太阳能电池特性研究实验报告实验目的:本实验旨在研究太阳能电池的特性,包括其源电压、最大功率点、短路电流、开路电压等参数的测量与分析。

实验仪器:太阳能电池板、电子负载、数字万用表、直流电源、光强计、亚麻线等。

实验步骤:1.搭建实验电路,将太阳能电池板与电子负载、直流电源、数字万用表、光强计等设备按照实验要求连接起来;2.将电池板朝向太阳,并利用光强计调节光照强度,使其保持恒定不变;3.通过调节电子负载,将太阳能电池输出电流调整到不同值,记录下此时太阳能电池的输出电压、电流和光照震荡度等参数,并计算得出其等效电阻;4.统计数据,绘制实验结果图表;5.分析实验结果,比较其与标准太阳能电池参数的区别,并解释原因。

实验结果:通过实验,我们得出如下结果:1.太阳能电池的源电压随着光照强度的增加而增大;2.当太阳能电池的输出电流为最大功率点时,其输出功率达到最大值;3.短路电流是一个恒定的值,不随光照强度而变化;4.开路电压随着光照强度的增加而略有增大。

实验分析:从实验结果来看,与标准太阳能电池相比,我们的实验结果比较接近。

这表明我们的实验操作规范、数据准确。

但是,我们发现开路电压和最大功率点的偏差比较大,原因可能是我们使用的太阳能电池板质量不佳,功率转换效率不够高。

综上所述,通过本实验,我们了解了太阳能电池的特性,为今后的太阳能电池研究提供了依据。

同时,我们也发现了实验中存在的问题,为今后的改进提出了一些建议。

实验结论:太阳能电池的特性表现为:源电压随着光照强度的增加而增大,当电池输出电流为最大功率点时,其输出功率达到最大值。

短路电流是一个恒定的值,不随光照强度而变化。

开路电压随着光照强度的增加而略有增大。

本实验结果比较接近标准太阳能电池参数,但存在偏差,可能是由于太阳能电池板的质量不佳。

太阳能电池基本特性测定实验

太阳能电池基本特性测定实验

太阳能电池基本特性测定实验目对太阳能的充分利用可以解决人类日趋增长的能源需求问题。

太阳能是一种新能源,一是利利用太阳能发电目前有两种方法,前,太阳能的利用主要集中在热能和发电两方面。

太阳能的利用和太阳能电池的特性研究二是太阳能电池。

用热能产生蒸气驱动发电机发电,为此,许多发达国家正投入大量人力物力对太阳能接收器进行研究。

是21 世纪的热门课题,介绍太阳能电池的电学性质我们尝试在普通物理实验中开设了太阳能电池的特性研究实验,联系科并对两种性质进行测量。

该实验作为一个综合设计性的普通物理实验,和光学性质,技开发实际,有一定的新颖性和实用价值,能激发学生的学习兴趣。

】实验目的【无光照时,测量太阳能电池的伏安特性曲线1.IPU FF、开路电压及填充因子、最大输出功率2. 测量太阳能电池的短路电流SCaxmOC IJJU的关系,求出它与相对光强3. 测量太阳能电池的短路电流、开路电压SC0OC们的近似函数关系。

【实验仪器】光具座、滑块、白炽灯、太阳能电池、光功率计、遮光罩、电压表、电流表、电阻箱】【实验原理, 在没有光照时太阳能电池能够吸收光的能量,并将所吸收的光子的能量转化为电能。

UI的关系为可将太阳能电池视为一个二极管,其正向偏压与通过的电流qU????1?I?Ie nKT (1) ??0??In qK,1。

是二极管的反向饱和电流,是玻尔兹曼常量是理想二极管参数,理论值为其中0q T为热力学温度。

(可令)为电子的电荷量,??nKT EEE?由半导体理论知,二极管主要是由如图所示的能隙为的半导体所构成。

CVC E当入射光子能量大于能隙时,光子被半导体所吸为半导体价电带。

为半导体导电带,V空穴对受到二极管内电场的影响而产生光生电动势,这一电子-收,并产生电子-空穴对。

现象称为光伏效应。

光电流示意图IPU, 和外太阳能电池的基本技术参数除短路电流和开路电压还有最大输出功率SCaxOCm P IUFFFF。

最大输出功率也就是定义为的最大值。

4.5太阳能电池基本特性的测量

4.5太阳能电池基本特性的测量

4.5太阳能电池基本特性的测量一、实验目的、意义和要求硅光电池又称太阳能电池,其结构简单,不需要电源,具有重量轻、寿命长、价格便宜、使用方便等优点。

它既可以用作光信号探测器(光电传感器),在光电转换、自动控制和计算机输入和输出等现代化科学技术中发挥重要作用,又能将太阳能转换成电能,如果把许多硅光电池科学的串联或并联起来,可以建成太阳能发电站,为人类更有效的利用太阳能打开新的道路。

本实验要求学生通过对太阳能电池基本特性的测量,了解和掌握它的特性和有关的测量方法,并通过它对使用日益广泛的各种光电器件有更深入全面的了解。

二、参考书籍与材料1.杨之昌,马秀芳。

物理光学实验。

上海:复旦大学出版社,1993。

2.陆廷济,费定曜,胡德敬。

物理实验。

上海:同济大学出版社,1991。

3.曹泽淳,安其霖。

国产太阳能电池参数的研究。

应用科学学报,1(3),1983。

三、实验前应回答的问题1.试述太阳能电池的工作原理。

2.假设太阳能电池的理论模型是由一理想电流(光照产生光电流的电流源)、一个理想二极管、一个并联电阻R sh 与一个串联电阻R s 组成。

(1)画出太阳能电池受光照射下的等效电路。

(2)以R sh 、R s 、I ph (光电流)与I d (流过二极管的电流)表示,推导出上述等效电路的I~V 关系式。

(3)假设R sh =与R s =0,即两电阻都能被忽略,求出它的I~V 关系式,并证明此关系式可表达如下:∞,其中V oc 为开路电压,I sc 为短路电流,I 0、是常数。

)1ln(01+=−I I V sc oc ββ3.太阳能电池的主要结构是由一个二极管组成,在没有光的照射下,它的正向电压与电流之间的经验关系式为:,如何用实验方法加以验证?并画出实验线路图。

)1e (I I V 0−=β4.在不加偏压的情况下,如何测出太阳能电池的输出电压、输出电流与负载电阻之间的关系?画出测量电路图。

5.如何求得太阳能电池的最大输出功率?最大输出功率与它的最佳匹配电阻有什么关系?6.充填因子FF 是代表太阳能电池性质优劣的一个重要参数,它与哪些物理量有关?7.在测量太阳能电池的光照特性时,需要改变并确定入射于太阳能电池光束的光强,这可以通过什么方式实现?试写出至少两种改变入射光强的方法。

物理实验(下)太阳能电池基本特性的测量

物理实验(下)太阳能电池基本特性的测量

太阳能电池基本特性的测量The Experiment of Measuring The Electronic Properties of SolarCells摘要:这个实验旨在测量太阳能电池的一系列特性,根据太阳能电池的PN结结构,探究无光条件下太阳能电池的正向偏压伏安特性。

同时探究在固定光强下太阳能电池的负载特性。

利用光功率测定仪,定量分析太阳能电池的光照特性。

使用不同滤色片测量对应太阳能电池短路电流,从而推算其禁带宽度。

关键词:太阳能电池,伏安特性,填充因子,禁带宽度Abstract:What I did in this experiment is just to achieve an purpose of investigating into the character of solar cells, during which I measured the volt-ampere characteristics with a no-sight of light by the side of the cell and also the load character with a fixed photo intensity of it. With the help of photometer and color filters, the electric properties of the semiconductor solar cells used in different circumstances of illumination are stepping out little by little. And at the end of the game, the forbidden band width of the semiconductor materials is no more hiding.Key words: solar cells; volt-ampere characteristic; filling factor; forbidden band width一、引言太阳能电池又称硅光电池,其结构简单,不需要电源,具有重量轻、寿命长、价格便宜、使用方便等优点。

太阳能电池的特性测量

太阳能电池的特性测量

太阳能电池的特性测量实验目的1. 测量不同照度下太阳能电池的伏安特性、开路电压U 0和短路电流I s 。

2. 在不同照度下,测定太阳能电池的输出功率P 和负载电阻R 的函数关系。

3. 确定太阳能电池的最大输出功率P max 以及相应的负载电阻R max 和填充因数。

原理当光照射在距太阳电池表面很近的pn 结时,只要入射光子的能量大于半导体材料的禁带宽度E g ,则在p 区、n 区和结区光子被吸收会产生电子-空穴对(如图1)。

那些在 pn 结附近n 区中产生的少数载流子由于浓度梯度而要扩散。

只要少数载流子离pn 结的距离小于它的扩散长度,总有一定几率扩散到结界面处。

在p 区与n 区交界面的两侧即结区,存在一空间电流区,也称为耗尽区。

在耗尽区中,正负电荷间形成一电场,电场方向由n 区指向p 区,这个电场称为内建电场。

只有p 区的光生电子和n 区的光生空穴和结区的电子空穴对(少子)扩散到结电场附近时能在内建电场作用下漂移过结。

光生电子被拉向n 区,光生空穴被拉向p 区,即电子空穴对被内建电场分离。

这导致在n 区边界附近有光生电子积累,在p 区边界附近有光生空穴积累。

它们产生一个与热平衡pn 结的内建电场方向相反的光生电场,其方向由p 区指向n 区。

这一现象称为光伏效应(Photovoltaic effect )。

图1 太阳能电池的工作原理太阳能电池的工作原理是基于光伏效应的。

当光照射太阳电池时,将产生一个由n 区到p 区的光生电流I s 。

同时,由于pn 结二极管的特性,存在正向二级管电流I D ,此电流方向从p 区到n 区,与光生电流相反。

因此,实际获得的电流I 为两个电流之差:)()(D S U I ΦI I -= (1)如果连接一个负载电阻R ,电流I 可以被认为是两个电流之差,即取决于辐照度Φ的负方向电流I s ,以及取决于端电压U 的正方向电流I D 。

由此可以得到太阳能电池伏安特性的典型曲线(见图2)。

太阳能电池基本特性测定实验

太阳能电池基本特性测定实验

太阳能电池基本特性测定实验太阳能电池基本特性测定实验太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件,是一个半导体光电二极管,当太阳光照到光电二极管上时,光电二极管就会把太阳的光能变成电能,产生电流。

当许多个电池串联或并联起来就可以成为有比较大的输出功率的太阳能电池方阵了。

太阳能电池是一种大有前途的新型电源,具有永久性、清洁性和灵活性三大优点.太阳能电池寿命长,只要太阳存在,太阳能电池就可以一次投资而长期使用;与火力发电、核能发电相比,太阳能电池不会引起环境污染。

太阳能电池根据所用材料的不同,可分为:硅太阳能电池、多元化合物薄膜太阳能电池、聚合物多层修饰电极型太阳能电池、纳米晶太阳能电池四大类,其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位。

硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。

单晶硅太阳能电池转换效率最高,技术也最为成熟。

在实验室里最高的转换效率为23%,规模生产时的效率为15%。

在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降低其成本很困难,为了节省硅材料,发展了多晶硅薄膜和非晶硅薄膜做为单晶硅太阳能电池的替代产品。

多晶硅薄膜太阳能电池与单晶硅比较,成本低廉,而效率高于非晶硅薄膜电池,其实验室最高转换效率为18%,工业规模生产的转换效率为10%。

因此,多晶硅薄膜电池不久将会在太阳能电地市场上占据主导地位。

非晶硅薄膜太阳能电池成本低重量轻,转换效率较高,便于大规模生产,有极大的潜力。

但受制于其材料引发的光电效率衰退效应,稳定性不高,直接影响了它的实际应用。

太阳能的利用和太阳能电池的特性研究是21 世纪的热门课题,许多发达国家正投入大量人力物力对太阳能接收器进行研究。

我们开设此太阳能电池的特性研究实验,通过实验了解太阳能电池的电学性质和光学性质,并对两种性质进行测量。

该实验作为一个综合设计性的物理实验,联系科技开发实际,有一定的新颖性和实用价值。

太阳能电池特性测量实验

太阳能电池特性测量实验

YUNNAN NORMAL UNIVERSITY本科学生实验报告学号 ___________ 姓名_______________学院物电学院专业、班级12 级光电子班实验课程名称太阳能电池特性测量实验_____________教师及职称 _________开课学期2014 至2015 学年下学期填报时间2015 年____________ 月25 日云南师范大学教务处编印、实验设计方案2. 实验原理、实验流程或装置示意图太阳能电池能够吸收光的能量,并将所吸收的光子的能量转化为电能。

在没有光照时,可将太阳能电池视为一个二极管,其正向偏压U与通过的电流I的关系为:qUI I0 e nKT 1其中I o是二极管的反向饱和电流,n是理想二极管参数,理论值为1。

K是玻尔兹曼常量,q为电子的电荷量,T为热力学温度。

由半导体理论知,二极管主要是由如图1-1所示的能隙为E C E V的半导体所构成。

E C 为半导体导电带,E V为半导体价电带。

当入射光子能量大于能隙时,光子被半导体所吸收,并产生电子-空穴对。

电子-空穴对受到二极管内电场的影响而产生光生电动势,这一现象称为光伏效应。

•㊀电子|导带光子_ 能隙©空穴价带图1-1光电流示意图太阳能电池的基本技术参数除短路电流I sc和开路电压U OC外,还有最大输出功率P max 和填充因子FF 。

最大输出功率P max 也就是IU 的最大值。

填充因子 FF 定义为:FF 是代表太阳能电池性能优劣的一个重要参数。

FF 值越大,说明太阳能电池对光的利用率越高。

3. 实验设备及材料光电技术创新综合实验平台 太阳能电池模块 连接导线4.实验万法步骤及注意事项实验步骤:1、开路电压测试+ 太 阳 能 电 池图1-2(1) 移动太阳能电池板,将其置于灯(模拟太阳光源)正下方; (2) 用2#连接导线直接将太阳能电池板与电压表连接 (红-正,黑-负),连接如图1-2所示;(3) 列表记录电压值于表 1-1,重复测量5次; (4) 拆除实验连线,还原实验仪器。

太阳电池基本特性测量实验

太阳电池基本特性测量实验

太阳电池基本特性测量实验太阳电池(Solar Cells),也称为光伏电池,是将太阳光辐射能直接转换为电能的器件。

由这种器件封装成太阳电池组件,再按需要将一块以上的组件组合成一定功率的太阳电池方阵,经与储能装置、测量控制装置及直流.交流变换装置等相配套,即构成太阳电池发电系统,也称为之光伏发电系统。

它具有不消耗常规能源、无转动部件、寿命长、维护简单、使用方便、功率大小可任意组合、无噪音、无污染等优点。

世界上第一块实用型半导体太阳电池是美国贝尔实验室于l954年研制的。

经过人们40多年的努力,太阳电池的研究、开发与产业化己取得巨大进步。

目前,太阳电池已成为空问卫星的基本电源和地面无电、少电地区及某些特殊领域(通信设备、气象台站、航标灯等)的重要电源。

随着太阳电池制造成本的不断降低,太阳能光伏发电将逐步地部分替代常规发电。

近年来,在美国和日本等发达国家,太阳能光伏发电已进入城市电网。

从地球上化石燃料资源的渐趋耗竭和大量使用化石燃料必将使人类生态环境污染日趋严重的战略观点出发,世界各国特别是发达国家对于太阳能光伏发电技术十分重视,将其摆在可再生能源开发利用的首位。

因此,太阳能光伏发电有望成为21世纪的重要新能源。

有专家预言,在21世纪中叶,太阳能光伏发电将占世界总发电量的15%~20%,成为人类的基础能源之一,在世界能源构成中占有一定的地位。

1、实验目的1、了解太阳电池的基本结构及基本原理2、研究太阳电池的基本特性:太阳电池的开路电压和短路电流以及它们与入射光强度的关系;太阳电池的输出伏安特性等。

2、实验仪器YJ-TYN-1太阳电池基本特性测量仪、光源、负载电阻箱3、实验原理1、太阳电池基本结构太阳电池用半导体材料制成,多为面结合PN结型,靠PN 结的光生伏特效应产生电动势。

常见的有太阳电池和硒光电池。

在纯度很高、厚度很薄(0.4mm)的N型半导体材料薄片的表面,采用高温扩散法把硼扩散到硅片表面极薄一层内形成P层,位于较深处的N层保持不变,在硼所扩散到的最深处形成PN结。

太阳能电池的基本特性测量

太阳能电池的基本特性测量

中文摘要太阳能是人类取之不尽用之不竭的可再生能源,也是可利用的最直接的清洁能源之一。

而太阳能电池则是把太阳能直接转换电能的一种器件。

主要是通过光生伏打效应,简单的说,当物体受到光照时,其内部电荷分布状态发生改变而产生电动势和电流。

本论文的目的在于测量太阳能电池的转换效率,在实验过程中采用的是晶体硅太阳能电池板,在暗室中以汞灯和钠灯作为光源,分别测出在钠灯和汞灯的照射下,不同距离、不同波长,不同负载,同一光照度的I-U,记录其数据并画出相关的U-I曲线。

讨论分析此太阳能电池板的性能,计算出其填充因子。

关键词:太阳能电池,转换效率,不同波长,不同负载,开路电压,填充因子AbstractSolar energy is the inexhaustible renewable energy, clean energy is one of the most directly available. The solar cell is the direct conversion of solar energy electric energy device. Mainly through the photovoltaic effect, said simply, when the objects are light, the internal charge distribution changes caused electromotive force and current.The purpose of this paper is to measure the conversion efficiency of solar cells used in the experiment, in the process of the crystal silicon solar panels, in the dark with mercury lamp and sodium lamp as the light source, were measured in the sodium lamp and mercury lamp irradiation, different distance, different wavelength, different load, with the illumination of I-U, record the data and draw the U-I curves. Discuss the performance analysis of the solar panels, calculate the fill factor.Keywords: solar cell conversion efficiency, different wavelength, different load, open circuit voltage, and fill factor目录第一章引言 (2)1.1能源危机 (2)1.2我国能源概况 (2)1.3太阳能发展历史及现状 (3)第二章太阳能电池的基本特性测量 (6)2.1太阳能电池测量原理 (6)2.2实验前的测量准备 (8)2.3太阳能电池在不同特性的参数测量 (8)2.3.1太阳能电池离光源不同距离特性测量 (10)2.3.2 太阳能电池在汞灯照射下的特性测量 (10)2.3.3 太阳能电池在钠灯照射下的特性测量 (16)2.3.4 相同光照度下太阳能电池的I-U曲线 (19)第三章结论 (22)参考文献 (23)致谢 (24)第一章引言1.1能源危机能源短缺和地球生态环境污染已经成为人类面临的最大问题。

太阳能电池特性的测量实验报告

太阳能电池特性的测量实验报告

太阳能电池特性的测量实验报告一、实验目的本实验旨在研究太阳能电池的特性,包括开路电压、短路电流、最大功率点以及填充因子等参数,深入了解太阳能电池的工作原理和性能特点,为太阳能电池的应用和优化提供实验依据。

二、实验原理太阳能电池是一种基于半导体pn 结光生伏特效应的能量转换器件。

当太阳光照射到太阳能电池表面时,光子的能量被半导体吸收,产生电子空穴对。

在内建电场的作用下,电子和空穴分别向 n 区和 p 区移动,形成光生电流和光生电压。

1、开路电压(Voc)当太阳能电池处于开路状态时,即外电路电阻无穷大,此时输出的电压即为开路电压。

开路电压与半导体材料的禁带宽度、光照强度和温度等因素有关。

2、短路电流(Isc)当太阳能电池的输出端被短路,即外电路电阻为零,此时流过的电流即为短路电流。

短路电流主要取决于光照强度和电池的面积。

3、最大功率点(Pm)在不同的负载电阻下,太阳能电池的输出功率不同。

当负载电阻与太阳能电池的内阻匹配时,输出功率达到最大值,此时对应的工作点称为最大功率点。

4、填充因子(FF)填充因子是衡量太阳能电池性能的重要参数,定义为最大功率与开路电压和短路电流乘积的比值,即 FF = Pm /(Voc × Isc)。

三、实验仪器与材料1、太阳能电池实验装置包括太阳能电池板、可变电阻箱、数字电压表、数字电流表、光源等。

2、计算机及数据采集软件四、实验步骤1、连接实验电路将太阳能电池板与可变电阻箱、数字电压表和数字电流表按照正确的电路连接方式连接好。

2、测量开路电压在光源关闭的情况下,将可变电阻箱调至无穷大,测量太阳能电池的开路电压 Voc,并记录数据。

3、测量短路电流在光源关闭的情况下,将可变电阻箱调至零,测量太阳能电池的短路电流 Isc,并记录数据。

4、测量不同负载下的输出特性打开光源,调节可变电阻箱的阻值,从大到小依次测量不同负载电阻下太阳能电池的输出电压 V 和输出电流 I,并记录数据。

大学物理研究性实验报告_太阳能电池的特性测量

大学物理研究性实验报告_太阳能电池的特性测量

在正文的第一部分,我从一名大二本科生的角度对实验原理进行了系统地重新表述,查阅资料补充了部分电学的必要知识(例如禁带宽度的定义),同时我还根据自己的理解写出了太阳能电池的基本原理和太阳能电池器件的等效电路。

在正文的第二部分,本文详细介绍了操作需要用到的仪器并细致地描述了实验操作的各个流程。

在正文的第三部分,本文重新进行了数据处理,并初步分析了实验误差,标注了实验注意事项以及对实验课后思考题做出了自己的回答。

在正文的第四部分,也就是讨论部分,我做了大量的工作。

先分析了影响太阳能电池转换效率的因素,然后提出了两种实验改进方法,接着提出了禁带宽度的测量方法,最后探索了实际P-N结与理想模型之间的差别以及对实验数据的影响。

并且在第四部分的最后我还写了两年来自己学习物理实验的实验感想以及收获。

关键词:太阳能电池开路电压短路电流输出特性AbstractIn the first part of the text, from the perspective of a sophomore undergraduate experimental principle rephrase supplemented with some electrical knowledge necessary (for example, the band gap of the definition), access to information, at the same time I also according to their understanding to write the equivalent circuit of the basic principles of solar cells and solar cell devices.In the second part of the text, this article details the operation requires the use of instruments and detailed description of the experimental operation of the various processes.In the third part of the text, re-processing, and a preliminary analysis of the experimental error, marked experimental Notes and Questions experimental after-school made its own answer.In the fourth part of the text, that is, the discussion section, I have done a lot of work. First analyze the factors affecting the conversion efficiency of the solar cell, and then the two experimental improved method, followed by the forbidden bandwidth of the measuring method, and the last explore the difference between the actual PN junction with the ideal model and the experimental data. And I also wrote in the fourth part of the last two years studying physics experiment experimental feelings and harvest.Key word: Solar cell Open-circuit voltage Short-circuit current Output Characteristics第一部分实验原理的重新表述 (1)一、实验要求 (1)二、实验原理 (1)1.太阳能电池的分类 (1)2.P-N结 (1)3.禁带宽度 (2)4.太阳能电池的伏安特性曲线及相关特性参数 (2)5.太阳能电池的基本原理 (4)6.太阳能电池器件的等效电路 (4)第二部分实验内容及操作详细流程 (5)三、仪器介绍 (5)四、实验内容及操作详细流程 (7)1.硅太阳能电池的暗伏安特性测量 (7)2.开路电压,短路电流与光强关系测量 (7)3.太阳能电池输出特性实验 (8)4.注意事项 (8)第三部分数据的重新处理与深入思索 (9)五、太阳能电池基本特性测量 (9)1.硅太阳能电池的暗伏安特性测量 (9)2.开路电压、短路电流与光强关系测量 (10)3.太阳能输出特性试验 (12)六、实验误差分析 (14)七、实验课后思考题 (14)第四部分讨论 (15)八、影响太阳能电池转换效率的因素 (15)九、实验方法的比较与改进 (15)1.传统的太阳能电池伏安特性测量方法 (15)2.利用计算机和Labcoder数据采集分析系统改进实验 (16)3.利用C8051F020单片机改进实验 (18)十、禁带宽度的测量 (19)1.测量原理 (19)2.测量方法 (19)十一、实际P-N结与理想模型之间的差别 (20)P-N结的伏安特性分析及等效电路 (20)十二、实验感想与体会 (22)1.课前认真地预习 (22)2.做好课堂操作 (23)3.掌握好一些基本的数据处理方法。

太阳能电池IV特性实验报告

太阳能电池IV特性实验报告

一、太阳能电池基本IV特性实验1.实验目的1.了解太阳能光伏电池的基本特性参数:开路电压、短路电流、峰值电压、峰值电流、峰值功率、填充因子及转换效率2.了解太阳能光伏电池的伏安特性及曲线绘制3.掌握电池特性的测试与计算2.实验设备光伏太阳能电池特性实验箱。

3.实验原理(1)开路电压Uoc开路电压(Open circuit voltage VOC),当将太阳能电池的正负极不接负载、使电流i=0时,此时太阳能电池正负极间的电压就是开路电压,开路电压的单位是伏特(V)。

单片太阳能电池的开路电压不随电池片面积的增减而变化,一般为0.5~0.7V。

(2)短路电流Isc短路电流(short-circuit current),当将太阳能电池的正负极短路、使电压u=0时,此时的电流就是电池片的短路电流,短路电流的单位是安培(A),短路电流随着光强的变化而变化。

(3)峰值电压Um峰值电压也叫最大工作电压或最佳工作电压。

峰值电压是指太阳能电池片输出最大功率时的工作电压,峰值电压的单位是v。

峰值电压不随电池片面积的增减而变化,一般为0.45~0.5v,典型值为0.48v。

(4)峰值电流Im峰值电流也叫最大工作电流或最佳工作电流。

峰值电流是指太阳能电池片输出最大功率时的工作电流,峰值电流的单位是安培(A)。

(5)峰值功率Pm峰值功率也叫最大输出功率或最佳输出功率。

峰值功率是指太阳能电池片正常工作或测试条件下的最大输出功率,也就是峰值电流与峰值电压的乘积:Pm=Im×Um。

峰值功率的单位是w(瓦)。

太阳能电池的峰值功率取决于太阳辐照度、太阳光谱分布和电池片的工作温度,因此太阳能电池的测量要在标准条件下进行,测量标准为欧洲委员会的101号标准,其条件是:辐照度l000W/m2、光谱AMl.5、测试温度25±1℃。

(6)填充因子FF填充因子也叫曲线因子,是指太阳能电池的最大输出功率与开路电压和短路电流乘积的比值。

大学物理研究性实验报告_太阳能电池的特性测量

大学物理研究性实验报告_太阳能电池的特性测量

在正文的第一部分,我从一名大二本科生的角度对实验原理进行了系统地重新表述,查阅资料补充了部分电学的必要知识(例如禁带宽度的定义),同时我还根据自己的理解写出了太阳能电池的基本原理和太阳能电池器件的等效电路。

在正文的第二部分,本文详细介绍了操作需要用到的仪器并细致地描述了实验操作的各个流程。

在正文的第三部分,本文重新进行了数据处理,并初步分析了实验误差,标注了实验注意事项以及对实验课后思考题做出了自己的回答。

在正文的第四部分,也就是讨论部分,我做了大量的工作。

先分析了影响太阳能电池转换效率的因素,然后提出了两种实验改进方法,接着提出了禁带宽度的测量方法,最后探索了实际P-N结与理想模型之间的差别以及对实验数据的影响。

并且在第四部分的最后我还写了两年来自己学习物理实验的实验感想以及收获。

关键词:太阳能电池开路电压短路电流输出特性AbstractIn the first part of the text, from the perspective of a sophomore undergraduate experimental principle rephrase supplemented with some electrical knowledge necessary (for example, the band gap of the definition), access to information, at the same time I also according to their understanding to write the equivalent circuit of the basic principles of solar cells and solar cell devices.In the second part of the text, this article details the operation requires the use of instruments and detailed description of the experimental operation of the various processes.In the third part of the text, re-processing, and a preliminary analysis of the experimental error, marked experimental Notes and Questions experimental after-school made its own answer.In the fourth part of the text, that is, the discussion section, I have done a lot of work. First analyze the factors affecting the conversion efficiency of the solar cell, and then the two experimental improved method, followed by the forbidden bandwidth of the measuring method, and the last explore the difference between the actual PN junction with the ideal model and the experimental data. And I also wrote in the fourth part of the last two years studying physics experiment experimental feelings and harvest.Key word: Solar cell Open-circuit voltage Short-circuit current Output Characteristics第一部分实验原理的重新表述 (1)一、实验要求 (1)二、实验原理 (1)1.太阳能电池的分类 (1)2.P-N结 (1)3.禁带宽度 (2)4.太阳能电池的伏安特性曲线及相关特性参数 (2)5.太阳能电池的基本原理 (4)6.太阳能电池器件的等效电路 (4)第二部分实验内容及操作详细流程 (5)三、仪器介绍 (5)四、实验内容及操作详细流程 (7)1.硅太阳能电池的暗伏安特性测量 (7)2.开路电压,短路电流与光强关系测量 (7)3.太阳能电池输出特性实验 (8)4.注意事项 (8)第三部分数据的重新处理与深入思索 (9)五、太阳能电池基本特性测量 (9)1.硅太阳能电池的暗伏安特性测量 (9)2.开路电压、短路电流与光强关系测量 (10)3.太阳能输出特性试验 (12)六、实验误差分析 (14)七、实验课后思考题 (14)第四部分讨论 (15)八、影响太阳能电池转换效率的因素 (15)九、实验方法的比较与改进 (15)1.传统的太阳能电池伏安特性测量方法 (15)2.利用计算机和Labcoder数据采集分析系统改进实验 (16)3.利用C8051F020单片机改进实验 (18)十、禁带宽度的测量 (19)1.测量原理 (19)2.测量方法 (19)十一、实际P-N结与理想模型之间的差别 (20)P-N结的伏安特性分析及等效电路 (20)十二、实验感想与体会 (22)1.课前认真地预习 (22)2.做好课堂操作 (23)3.掌握好一些基本的数据处理方法。

太阳能电池IV特性实验报告

太阳能电池IV特性实验报告

太阳能电池IV特性实验报告一、本太阳能电池基本IV 特性实验 1. 实验目的 1.了解太阳能光伏电池的基本特性参数:开路电压、短路电流、峰值电压、峰值电流、峰值功率、填充因子及转换效率 2.了解太阳能光伏电池的伏安特性及曲线绘制 3.掌握电池特性的测试与计算 2. 实验设备光伏太阳能电池特性实验箱。

3. 实验原理(1)开路电压Uoc 开路电压(Open circuit voltage VOC),当将太阳能电池的正负极不接负载、使电流i=0 时,此时太阳能电池正负极间的电压就是开路电压,开路电压的单位是伏特(V)。

单片太阳能电池的开路电压不随电池片面积的增减而变化,一般为0.5~0.7V。

(2)短路电流Isc 短路电流(short-circuit current),当将太阳能电池的正负极短路、使电压u=0 时,此时的电流就是电池片的短路电流,短路电流的单位是安培(A),短路电流随着光强的变化而变化。

(3)峰值电压Um 峰值电压也叫最大工作电压或最佳工作电压。

峰值电压是指太阳能电池片输出最大功率时的工作电压,峰值电压的单位是v。

峰值电压不随电池片面积的增减而变化,一般为0.45~0.5v,典型值为0.48v。

(4)峰值电流Im 峰值电流也叫最大工作电流或最佳工作电流。

峰值电流是指太阳能电池片输出最大功率时的工作电流,峰值电流的单位是安培(A)。

(5)峰值功率Pm 峰值功率也叫最大输出功率或最佳输出功率。

峰值功率是指太阳能电池片正常工作或测试条件下的最大输出功率,也就是峰值电流与峰值电压的乘积:Pm=Im×Um。

峰值功率的单位是w(瓦)。

太阳能电池的峰值功率取决于太阳辐照度、太阳光谱分布和电池片的工作温度,因此太阳能电池的测量要在标准条件下进行,测量标准为欧洲委员会的101 号标准,其条件是:辐照度l000W/m2、光谱AMl.5、测试温度25±1℃。

(6)填充因子FF 填充因子也叫曲线因子,是指太阳能电池的最大输出功率与开路电压和短路电流乘积的比值。

太阳能电池特性测试实验报告

太阳能电池特性测试实验报告

太阳电池特性测试实验太阳能是人类一种最重要可再生能源,地球上几乎所有能源如: 生物质能、风能、水能等都来自太阳能。

利用太阳能发电方式有两种:一种是光—热—电转换方式,另一种是光—电直接转换方式。

其中,光—电直接转换方式是利用半导体器件的光伏效应进行光电转换的,称为太阳能光伏技术,而光—电转换的基本装置就是太阳电池。

太阳电池根据所用材料的不同可分为:硅太阳电池、多元化合物薄膜太阳电池、聚合物多层修饰电极型太阳电池、纳米晶太阳电池、有机太阳电池。

其中,硅太阳电池是目前发展最成熟的,在应用中居主导地位。

硅太阳电池又分为单晶硅太阳电池、多晶硅薄膜太阳电池和非晶硅薄膜太阳电池三种。

单晶硅太阳电池转换效率最高,技术也最为成熟,在大规模应用和工业生产中仍占据主导地位,但单晶硅成本价格高。

多晶硅薄膜太阳电池与单晶硅比较,成本低廉,而效率高于非晶硅薄膜电池。

非晶硅薄膜太阳电池成本低,重量轻,转换效率较高,便于大规模生产,有极大的潜力,但稳定性不高,直接影响了实际应用。

太阳电池的应用很广,已从军事、航天领域进入了工业、商业、农业、 通信、家电以及公用设施等部门,尤其是在分散的边远地区、高山、沙漠、海岛和农村等得到广泛使用。

目前,中国已成为全球主要的太阳电池生产国,主要分布在长三角、环渤海、珠三角、中西部地区,已经形成了各具特色的太阳能产业集群。

一、 实验目的1. 熟悉太阳电池的工作原理; 2. 太阳电池光电特性测量。

二、 实验原理(1) 太阳电池板结构以硅太阳电池为例:结构示意图如图1。

硅太阳电池是以硅半导体材料制成的大面积PN 结经串联、并联构成,在N 型材料层面上制作金属栅线为面接触电极,背面也制作金属膜作为接触电极,这样就形成了太阳电池板。

为了减小光的反射损失,一般在表面覆盖一层减反射膜。

(2) 光伏效应当光照射到半导体PN 结上时,半导体PN 结吸收光能后,两端产生电动势,这种现象称为光生伏特效应。

由于P-N结耗尽区存在着较强的图1 太阳能电池板结构示意图内建静电场,因而产生在耗尽区中的电子和空穴,在内建静电场的作用下,各向相反方向运动,离开耗尽区,结果使P 区电势升高,N 区电势降低,P-N 结两端形成光生电动势,这就是P-N 结的光生伏特效应。

太阳能电池基本特性研究实验数据

太阳能电池基本特性研究实验数据

五:数据记录与处理1表一负载电压和电流记录表由上图可知:当R 小于某一值时,负载电流几乎不变,此时,可视为恒流源;当R 大于某一值时,负载电流近乎按指数形式减小。

从图中可知:mA I SC 58.3= V U SC 61.1= 当R 增加时,P 先增加,后减小,UI P = 由图可看出,当R=Ω时,P m =故填充因子:F f =OC SC U I P max =61.158.3728.5⨯=且F f 值越大,太阳能电池对光的利用率越高,光转化率越高.2, 表二太阳能电池正向偏压与电流数据表—1)=I o (μ—1)解方程组可得:I o = β= 所以经验公式为:)1(5.702.0-=μe I j 3:表三不同光强下太阳能电池开路电压及短路电流有曲线可知,在不通光照下,随光照的增强,开路电压和短路电流也随之增强。

短路电流呈线性变化,开路电压开始增加较快,后趋于水平。

求OC SC U I 和:在图中取两点A (,1)B (,2)带入)1ln(1OSCOC I I U +=β可得方程组: )00.11ln(190.1OI +=β)00.21(ln 122.2O I +=β解方程组可得 I= β=所以,)0392.001ln 29.4SCOC OC SC I U U I +=(:之间的近似函数关系为和4:表四 不同角度光照下电池开路电压及短路电流在一定光照下随角度的逐渐增大,太阳能电池的输出功率逐渐减小。

5:表五 太阳能电池串并联特性 因为电阻不是无限大,开路电压实际是有电流通过的;因为总电阻不为零,短路电流也不是理论中的无限大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

太阳能电池基本特性测定实验
太阳能是一种新能源,对太阳能的充分利用可以解决人类日趋增长的能源需求问题。

目前,太阳能的利用主要集中在热能和发电两方面。

利用太阳能发电目前有两种方法,一是利用热能产生蒸气驱动发电机发电,二是太阳能电池。

太阳能的利用和太阳能电池的特性研究是21 世纪的热门课题,许多发达国家正投入大量人力物力对太阳能接收器进行研究。

为此,我们尝试在普通物理实验中开设了太阳能电池的特性研究实验,介绍太阳能电池的电学性质和光学性质,并对两种性质进行测量。

该实验作为一个综合设计性的普通物理实验,联系科技开发实际,有一定的新颖性和实用价值,能激发学生的学习兴趣。

【实验目的】
1. 无光照时,测量太阳能电池的伏安特性曲线
2. 有光照时,测量电池在不同负载电阻下,I 对U 变化关系,画出U I -曲线图;并测量太阳能电池的短路电流SC I 、开路电压OC U 、最大输出功率max P 及填充因子FF
3. 测量太阳能电池的短路电流SC I 与相对光强0J J 的关系,求出它们的近似函数关系。

【实验仪器】
光具座、滑块、白炽灯、太阳能电池、光功率计、遮光罩、电压表、电流表、电阻箱
【实验原理】
太阳能电池能够吸收光的能量,并将所吸收的光子的能量转化为电能。

在没有光照时, 可将太阳能电池视为一个二极管,其正向偏压U 与通过的电流I 的关系为

⎪⎭

⎝⎛-=10nKT qU e I I (1) 其中0I 是二极管的反向饱和电流,n 是理想二极管参数,理论值为1。

K 是玻尔兹曼常量,q 为电子的电荷量,T 为热力学温度。

(可令nKT
q


由半导体理论知,二极管主要是由如图所示的能隙为V C E E -的半导体所构成。

C E 为半导体导电带,V E 为半导体价电带。

当入射光子能量大于能隙时,光子被半导体所吸收,并产生电子-空穴对。

电子-空穴对受到二极管内电场的影响而产生光生电动势,这一现象称为光伏效应。

光电流示意图
太阳能电池的基本技术参数除短路电流SC I 和开路电压OC U 外, 还有最大输出功率max P 和填充因子FF 。

最大输出功率max P 也就是IU 的最大值。

填充因子FF 定义为
OC SC U I P FF max
=
(2)
FF 是代表太阳能电池性能优劣的一个重要参数。

FF 值越大,说明太阳能电池对光的利用
率越高。

【实验内容及步骤】
1.在没有光源(全黑)的条件下,测量太阳能电池正向偏压时的U I -特性(直流偏压从V 0.30-)
(1)连接电路图。

图1
(2)利用测得的正向偏压时U I -关系数据,画出U I -曲线并求出常数nKT
q

和0I 的值。

2.在不加偏压时,用白色光照射,测量太阳能电池一些特性。

注意此时光源到太阳能电池距
离保持为cm 20 (1)连接电路图。

图2
(2)测量电池在不同负载电阻下,I 对U 变化关系,画出U I -曲线图。

(3)求短路电流SC I 和开路电压OC U 。

(4)求太阳能电池的最大输出功率及最大输出功率时负载电阻。

(5)计算填充因子OC SC U I P FF max
=
3.测量太阳能电池的光电效应与电光性质
在暗箱中(用遮光罩挡光),取离白光源20CM 水平距离光强作为标准光照强度,用光功率计测量该处的光照强度0J ;改变太阳能电池到光源的距离,用光功率计测量该处的光照强度
J ,求光强J 与位置关系。

测量太阳能电池接受到相对光强度0J J 不同值时,相应的SC I 和
OC U 的值。

(1) 设计测量电路图,并连接。

(2) 测量太阳能电池接受到相对光强度0J J 不同值时,相应的SC I 和OC U 的值。

(3) 描绘SC I 和与相对光强0J J 之间的关系曲线,求SC I 和与相对光强0J J 之间的近
似关系函数。

【数据记录及处理】
2.在不加偏压时,在使用遮光罩条件下,保持白光源底座到太阳能电池底座距离25CM ,测量太阳能电池的输出电流对太阳能电池的输出电压的关系。

并得到SC I 和开路电压OC U , 还有
)(V U
)(A I μ
最大输出功率max P 和填充因子FF
SC I = OC U =
max P = FF =
3.测量太阳能电池SC I 和OC U 与相对光强0J J 的关系。

0J = (mW)
)(V U
)(mA I
【注意事项】
1. 连接电路时,保持太阳能电池无光照条件。

2. 避免太阳光照射太阳能电池。

3. 第二、三个实验内容中连接电路时,保持电源开关断开。

【思考题】
1. 设计电路,利用两节干电池,一个电压表,一个电阻箱来测量太阳能电池在全黑的条件下的伏安特性曲线。

2. 两个太阳能电池串联,测量它们的伏安特性曲线,填充因子。

3. 两个太阳能电池并联,测量它们的伏安特性曲线,填充因子。

SC I (mA。

相关文档
最新文档