小学一年级数学同步练习题 数阵图之谜

合集下载

一年级奥数巧填数阵图问题及答案

一年级奥数巧填数阵图问题及答案

一年级奥数巧填数阵图问题及答案
一年级奥数巧填数阵图问题及答案
1.巧填数阵图
把1~9这九个数字填入下列圆圈内,使每条横线、竖线、斜线连接起来的三个圆圈内的数之和都等于15。

解答:
【小结】这些数中1+9=2+8=3+7=4+6=10,那么可以判断中间的公共数填5,这样每行、每列、每一斜行的数相加都是15。

2.单双数的.性质
一堆小棒,4根4根的数,最后还剩下一根,猜一猜这堆小棒的根数是单数还是双数?
解答:这堆小棒的总数是单数。

【小结】4是双数,所以不管拿几次都是双数。

而最后却留下了一根,所以这堆小棒的总是是单数。

一年级数学(数阵图)(推荐文档)

一年级数学(数阵图)(推荐文档)

《数阵图》
第一类题:比较简单,已知两个数,求剩下的一个数,不需要试,直接就可以写出答案K填数,使横行、竖行的三个数相加都得11.
1L
22□

第二类题:需要找到突破口,即,找到已经有2个数字的某一行,某一列,或者是斜行
3.在每个方格中填入适当的数,使每一横行、竖行的和以及两斜行的三个数之和都是
18.
4、要使表格中每行、每列和两条对角线上的三个数的和都为彳8.下面每个方框里应填什么数?
7
E £6
8
‘册亏/的拱老血幻儿疋取匕第三类题:开放型,没有特定答案
5.在下面的O 中填上适当的数,使每条线上的三个数相加都等于15.
6.在下面的O 里填上适当的数,使每条线上的三个数之和都是12.
5, 6六个数,分别填入O 内,使每条线上3个数的和相等.
2>把乙3, 4, 5, E 这五个数分别填入圆圈中,使每条线上三
个数相加的和 都等于1 2.
3.把1,乙3, 4* 5, 6 7这七个数分别填入O 里*使每条直线上的三个数
相加的和都为12-
头芬吨L /隔趨错隣F :勺儿囂碧

具务号/ JK 翔老师的儿童教肓
把 1, 2, 3, 4,。

小学数学《数字谜与数阵图》练习题(含答案)

小学数学《数字谜与数阵图》练习题(含答案)

小学数学《数字谜与数阵图》练习题(含答案)数字谜这类题目往往综合了数字的整除特征、质数与合数、分解质因数、个位数字、余数、分数与小数互化、方程、估算、找规律等题型,因此要求同学们能够很好地掌握上述知识点,并加以灵活运用.数字谜一般分为横式数字谜和竖式数字谜.横式数字谜经常和数论里面的知识结合考察,有些时候也可以转化为竖式数字谜来解答.解题技巧:(一)解题的突破口多在于竖式或横式中的特殊之处,例如首位、个位、重复数字以及位数的差异. (二)要根据不同的情况逐步缩小范围,并进行恰当的估算.(三)当题目中涉及多个字母或汉字时,要注意利用不同符号代表不同数字这一条件来排除若干可能性.(四)注意结合进位及退位来考虑.(五)有时可运用到数论中的分解质因数等方法.【例1】右式中不同的汉字代表1~9中不同的数字,当算式成立时,“中国”这两个汉字所代表的两位数最大是多少?【分析】显然,“新”=9.因为要使“中国”尽量大,所以可以假定“中”=8.因为十位加法(含个位加法进位)等于20,所以“北+奥”在1~7中的取值有三种可能:7,5;7,4;6,5.再考虑到“国+京+运”的个位数是8,经试算,只有“北”、“奥”等于7,5,“国”、“京”、“运”等于1,3,4.“国”取l,3,4中最大的4,得到“中国”最大是84.【例2】下图的等式中,不同的汉字表示不同的数字,如果“巧+解+数+字+谜=30”,那么,“数字谜”所代表的三位数是_______.【分析】谜字只能取0或5.如果谜=0,字也要取0,不合题目要求,所以谜=5.3个字加上2是10的倍数,所以字=6. 2个数加上2是10的倍数.所以数=4或9,如果数=4,那么解+1=10,所以解=9.但这时巧=30-9-4—6—5=6与字相同,不合题意.因此数=9,解+2=10,所以解=8,巧=30-8-9-6-5=2,所以“数字谜”所代表的三位数是965.【巩固】在下面的算式中,汉字“第、十、一、届、华、杯、赛”代表1,2,3,4,5,6,7,8,9中的7个数字,不同的汉字代表不同的数字,恰使得加法算式成立.则“第、十、一、届、华、杯、赛”所代表的7个数字的和等于多少?【分析】根据加法规则,“第”=1.“届”+“赛”=6或“届”+“赛”=16.若“届”+“赛”=6,只能是“届”、“赛”分别等于2或4,此时“一”+“杯”=10 只能是“一”、“杯”分别为3或7.此时“十”+“华”=9,“十”、“华’’分别只能取 (1,8),(2,7),(3,6),(4,5).但l,2,3,4均已被取用,不能再取.所以,“届”+ “赛”=6填不出来,只能是“届”+“赛”=16.这时“届”、“赛”只能分别取9和7.这时只能是“一”+“杯”+1=10,且“十”+“华”+1=10,也就是“一”+“杯”=9,同时“十”+“华”=9.所以它们可以分别在(3,6),(4,5)两组中取值.因此“第、十、一、届、华、杯、赛”所代表的7个数字的和等于1+9+9+16=35.【例3】在图所示的乘法算式中,每个方框和汉字都代表一个数字,相同的汉字代表相同的数字,不同的汉字代表不同的数字.那么,这个乘法算式的最后乘积是多少?【分析】问题中出现的都是末位数.而且都是奇数,故应先从末位数开始考虑.第三行的末位为1,共有三种可能的组合:1×1,3×7,9×9.由于第二行数的每一位与第一行相乘后都得到五位数,故第二行的各位数字不会为1.故1×1、9×9均不满足条件.第一行和第二行末位数为3、7或者7、3.分两种情况来讨论:若第一行末位为3,第二行末位为7,由末位的9推知第二行的数应为3337,由第三行的十位应为0知第一行的十位为4.从而得到第四、五、六行的十位皆为2,进而有第三行的百位应该是8,于是推出第一行的百位为5.这样便立刻得到第四、五、六行的百位为6,从而由第三行的4位为1得到第一行的千位为4.于是有4543×3337=15159991,满足条件.若第一行末位为7,第二行末位为3,同样的方法立刻有第二行数应为7773.依次推得第一行的十位、百位、千位分别为6、4、0,不符合题目要求.于是本题答案为15159991.评注:本题采用了枚举的方法,对可能的有限种情况分别讨论,从而求解出问题.在数字谜的求解中常常用到这种方法.【例4】内填入适当的数字,使下列竖式成立,并使商尽可能小:【分析】由右式知d=8,所以c=3或8.当a=2时,由bc×a=□5□,推出c不等于3,所以c=8,故推出b=7;因为除数是两位数,它与商的各个数位的乘积都是三位数,所以商的最小可能值为262.数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵. 幻方是特殊的数阵图,一般地,将九个不同的数填在3×3(即三行三列)的方格中,使每行、每列、及二条对角线上的三数之和均相等,这样的3×3的数阵阵列称为三阶幻方. n阶幻方的定义与三阶幻方相仿!【例5】请你把1~7这七个自然数,分别填在右图的圆圈内,使每条直线上的三个数的和都相等.应怎样填?【分析】关键在于确定中心数a和每条直线上几个圆圈内数的和k. 为了叙述方便,先在各圆圈内填上字母,设每条直线上的数字和为k.根据题意可得:2a+(1+2+3+4+5+6+7)=3k,2a+28=3k,由于28与2a的和为3的倍数,a又为1~7中的数字,经过尝试可知:a为1、4或7.答案如下:(1)当a=1,时2+7=5+4=3+6,得到第一种答案。

小学奥数题目-一年级-数字敏感度类-数阵图之初步知识点习题

小学奥数题目-一年级-数字敏感度类-数阵图之初步知识点习题

数阵图1.概念简析数阵图:就是把一些数按照一定的规则,排列成各种各样的图形,这种图形就称作数阵图。

幻方就是一种特殊的数阵图,而数独可以说是幻方的延伸。

2.解题步骤(1)分拆法:将总和进行拆分。

(2)求关键数:其中的关键数也叫公共数。

例1如右图所示,把适当的数填到三角形的空圈里,使每条直线上3个圈中的数相加都是10.1.在圆圈中填数,使每条线上的三个数之和都等于15.问空白处的三个数的和为_______.2.在下面的○里填上适当的数,使每条线上的三个数之和都是12.问空白处的三个数之和为_________.例2如右图,把3、4、6、7四个数填在四个空格里,使横行、竖行三个数相加都等于14,问怎么填?1.把3、4、5、6、7这五个数字分别填入下图的五个方格中,使横行、竖列三个数的和都是14。

问最中间的数字为_____.2.把数字1,2,3,5,6,7,9填在下面的○里,使每边上的和为15.问最上行左右两个数字之和为_______.例3如右图所示,把1、2、3、4、5五个数填入五个圆圈内,要求分别满足以下条件:(1)使横行、竖行圆圈里的数加起来都等于8;(2)使横行、竖行圆圈里的数加起来都等于9;(3)使横行、竖行圆圈里的数加起来都等于10.1.见图。

把2、3、4、5、6填入下图的五个方格里,使横行、竖行三个数之和相等,那么当它们的和取11、12、13时。

问最中间数分别是___、___、___.(按前后顺序回答,答案用一个空格隔开,例如:2 3 4)2.将1,2,3,4,5,6这6个数分别填入下图中,使两个大圆上4个数的和都等于14.问已知数字4上面的数字为_______.例4如右图所示,圆圈里填上不同的数,使每条直线上的三个数相加之和都等于10.1.把2,3,4,5,6这五个数分别填入圆圈中,使每条线上三个数相加的和都等于12.问最中间的数为______.2.把3,4,5,6,7这五个数分别填入下面的空格里,使横行、竖行的三个数相加都得15.问最中间的数为_______.例5如图所示,在圆圈里填上不同的数,使每条直线上三个数相加之和都是15.(圆圈内数字不考虑数字0)1.在下列两图的空格中填上数,使每条对角线上的三个数相加都等于16(圆圈中的数字不能相同,也不考虑数字0)。

66666小学奥数专题之数阵图练习题例

66666小学奥数专题之数阵图练习题例

小学奥数专题之——————数阵图数阵是由幻方演化出来的另一种数字图。

幻方一般均为正方形。

图中纵、横、对角线数字和相等。

数阵则不仅有正方形、长方形,还有三角形、圆、多边形、星形、花瓣形、十字形,甚至多种图形的组合。

变幻多姿,奇趣迷人。

一般按数字的组合形式,将其分为三类,即辐射型数阵、封闭型数阵、复合型数阵。

数阵的特点是:每一条直线段或由若干线段组成的封闭线上的数字和相等。

它的表达形式多为给出一定数量的数字,要求填入指定的图中,使其具备数阵的特点。

解数阵问题的一般思路是:1.求出条件中若干已知数字的和。

2.根据“和相等”,列出关系式,找出关键数——重复使用的数。

3.确定重复用数后,对照“和相等”的条件,用尝试的方法,求出其他各数。

有时,因数字存在不同的组合方法,答案往往不是唯一的。

1.10.5.2辐射型数阵例1 将1~5五个数字,分别填入下图的五个○中,使横、竖线上的三个数字和都是10。

解:已给出的五个数字和是:1+2+3+4+5=15题中要求横、竖每条线上数字和都是10,两条线合起来便是20了。

20-15=5,怎样才能增加5呢?因为中心的一个数是个重复使用数。

只有5连加两次才能使五个数字的和增加5,关键找到了,中心数必须填5。

确定中心数后,按余下的1、2、3、4,分别填在横、竖线的两端,使每条线上数的和是10便可。

例2将1~7七个数字,分别填入图中的各个○内,使每条线上的三个数和相等。

解:图中共有3条线,若每条线数字和相等,三条线的数字总和必为3的倍数。

设中心数为a,则a被重复使用了2次。

即,1+2+3+4+5+6+7+2a=28+2a,28+2a应能被3整除。

(28+2a)÷3=28÷3+2a÷3其中28÷3=9…余1,所以2a÷3应余2。

由此,便可推得a只能是1、4、7三数。

当a=1时,28+2a=30 30÷3=10,其他两数的和是10-1=9,只要把余下的2、3、4、5、6、7,按和为9分成三组填入两端即可。

小学数学《数阵图与数字谜》练习题

小学数学《数阵图与数字谜》练习题

小学数学《数阵图与数字谜》练习题数 阵 图数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵. 幻方是特殊的数阵图,一般地,将九个不同的数填在3×3(即三行三列)的方格中,使每行、每列、及二条对角线上的三数之和均相等,这样的3×3的数阵阵列称为三阶幻方. n 阶幻方的定义与三阶幻方相仿!【例1】 (1)将九个数填入下图(1)的九个空格中,使得任一行、任一列以及两条对角线上的三个数之和都等于定数k ,则中心方格中的数必为3k .请你说明理由!(2)将九个数填入下图(2)的空格中,使得每行、每列、每条对角线上的三个数之和都相等,则一定有:2a b e +=.请你说明理由!(3)将九个数填入下图(3)的空格中,使得每行、每列、每条对角线上的三个数之和都相等,则一定有:2a b c +=.请你说明理由!【例2】 在右图的每个空格中,填入不大于12且互不相同的八个自然数,使得每行、每列、每条对角线上的三个数之和都等于21 .【例3】将1,3,5,7,9,11,13,15,17填入3×3的方格内,使其构成一个幻方. 【例4】右图是一个四阶幻方,请将其补全:【例5】右图是大家都熟悉的奥林匹克的五环标志. 请将1~9分别填入五个圆相互分割的九个部分,并且使每个圆环内的数字之和都相等.【例6】将1~7这七个自然数分别填入右图的七个○内,使得三个大圆周上的四个数之和都等于定数,指出这个定数所有的可能取值,并给出定数为13时的一种填法.【例7】在右图所示立方体的八个顶点上标出1~9中的八个,使得每个面上四个顶点所标数字之和都等于k,并且k不能被未标出的数整除.数字谜【例8】将0~9中的8个不同的数字分别用a、b、c、d、e、f、g、h替换.在替换规则+=,如上面4个式子中,“+”、“×”、下:g×g=db,g×c=bd,g×f=ef,ag b eh⨯的“=与平常算术中相应的符号意义相同,而且也是十进位制.在这种替换规则下,ca e数值等于 .【例9】在下面的加法算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.请把下面汉字算式翻译成数字算式.【例10】在右面的□内,各填一个合适的数字,使算式成立.【例11】□内填入适当的数字,使下列竖式成立,并使商尽可能小:练习十一1.在左下图的每个空格中填入一个数字,使得每行、每列及每条对角线上的三个数之和都相等.2.用2,4,6,12,14,16,22,24,26九个偶数编制一个幻方.3.在下列各图的每个方格中都填入一个数字,使得每行、每列以及每条对角线上的四个数字都是1,2,3,4.4.下面是三个数的加法算式,每个口内有一个数字,则三个加数中最大的是 .5.右面式中不同的汉字代表不同的数字,问:“数学好玩”表示的四位数是多少?。

小学数学 《数阵图》练习题(含答案)

小学数学 《数阵图》练习题(含答案)

小学数学《数阵图》练习题(含答案)数阵图问题千变万化,这一类问题要求数阵中填入了一些数以后,能保证数阵中特定关系线(或关系区域)上的数的和相等,解决这一类问题可以按以下步骤解决问题:第一步:区分数阵图中的普通点(或方格),和交叉点(方格)第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算各个点与该点被重复计算次数之积的和的代数式,即数阵图关系线(关系区域)上和的总和,这个和是关系线(关系区域)的个数的整数倍.第三步:判断少数关键点上可以填入的数的余数性质,并得出相应的数阵图关系线(关系区域)和.第四步:运用已经得到的信息进行尝试:数阵图还有一类题型比较少见,解决这一类问题需要理清数阵中数与数之间的相关关系,找出问题关键.(一)封闭型数阵问题【例1】(★★★)小青蛙不小心爬到一个正方形数阵图中,必须把1,2,3,4,5,6,7,8八个数字填入下图中的○内,使正方形每条边上三个数的和都等于13才能通过这个数阵图,你能帮它吗?【例2】(★★★)小乌龟被困在五个圆里面(如下图),五圆相连,每个位置的数字都是按一定规律填写的,它必须找出规律,并求出x所代表的数才能脱困,你知道该怎么办吗?24273028262218 1720x【例3】(★★★)1~9分别填入小三角形内(每个小三角形内只填一个数),要求靠近大三角形三条边的每五个数相加和相等.想一想,怎样填这些数才能使五个数的和尽可能大一些?【例4】(★★★)能否将数0,1,2,…,9分别填人下图的各个圆圈内,使得各阴影三角形的3个顶点上的数之和相等?【例5】(★★★),小熊和妈妈去外婆家要过一条河,必须要按照下面的要求填数才可以顺利通过,要求如下:20以内共有10个奇数,去掉9和15还剩八个奇数,将这八个奇数填入右图的八个○中(其中3已经填好),使得图中用箭头连接起来的四个数之和都相等.3(二)辐射型数阵【例6】(★★★)将1~7这七个数字,分别填人图中各个○内,使每条线段上的三个○内数的和相等.【例7】 (★★★)把10至20这11个数分别填入下图的各圆圈内,使每条线段上3个圆内所填数的和都相等.如果中心圆内填的数相等,那么就视为同一种填法.请写出所有可能的填法.【例8】 (★★★)左图中有三个正三角形,将1~9填入它们顶点处的九个○中,要求每个正三角形顶点的三数之和都相等,并且通过四个○的每条直线上的四数之和也相等.【例9】 (★★★)在下图的七个圆圈内各填上一个数,要求每条线上的三个数中,当中的数是两边两个数的平均数,现在已填好两个数,求x 是多少?(三)其它类型的数阵图【例10】 (★★★)在下图中的10个○内填入0~9这10个数字,使得按顺时针循环式成立:【例11】 (★★★★)将1~8这八个自然数填入左下图的空格内,使四边形组成的四个等式都成立:【例12】 (★★★★)下图包括6个加法算式,要在圆圈里填上不同的自然数,使6个算式都成立.那么最右边的圆圈中的数最少是多少?+=====----===×÷+=-+=+=1.请分别将1,2,4,6这4个数填在下图的各空白区域内,使得每个圆圈里4个数的和都等于15.2.把1~5这五个数填入下图中的○里,使每条直线上的三个数之和相等.3.把1至6分别填入下图的各方格中,使得横行3个数的和与竖列4个数的和相等.4.将1~7七个数字填入左下图的七个○内,使每个圆周和每条直线上的三个数之和都相等.5.将1~8八个数分别填入右上图的八个○内,使得图中的六个等式都成立.△代表几?37 5=== =+++++(一)封闭型数阵问题【例13】 (★★★)小青蛙不小心爬到一个正方形数阵图中,必须把1,2,3,4,5,6,7,8八个数字填入下图中的○内,使正方形每条边上三个数的和都等于13才能通过这个数阵图,你能帮它吗?75623841或84362571分析:因为每边上的和为13,那么四条边上的数字之和为13×4=52,而1+2+…+7+8=36,所以四个角上的四个数之和等于52-36=16.在1~8中选四个数,四数之和等于16,且其中相邻两个的和与任意三个的和不等于13的只有:16=1+2+6+7=1+2+5+8=1+4+5+6.经试验,只有右上图的两种填法.亮点设计:(1)求数阵问题的关键是找到关键数,也就是重复数,教会学生学会找关键数的方法是最重要的.(2)设计问题:正方形每条边之和是13,13×4=52,但是所有数的和是:1+2+…+7+8=36,为什么会出现结果不同的问题呢?仔细观察这个数阵,四条边上所有数相加的过程中四个角上的数都被重复加了一次,也就是四个角上的数是重复数,52-36=16即为这四个重复数的和. (3)强调分组法与试验法:知道了四个数的和之后,下一步就要先确定这四个数,采用分组法和试验法.分组法是将这个和根据要求拆成四个数,例如本题中要求其中相邻两个的和与任意三个的和不等于13,根据要求将16分成4个数的和:16=1+2+6+7=1+2+5+8=1+4+5+6,但是未必每一组都是合适的,这就需要采用试验法,将它们一一进行试验.(4)小结:对于封闭型的数阵,重复数基本上都是两条线相交的点,这在后面的例题中有大量体现.[前铺]将1~6六个自然数分别填入下图的○内,使三角形每边上的三数之和都等于11.614532分析:因为每边上的和为11,那么三条边上的数字之和为11×3=33,而1+2+…+5+6=21,所以三个角的三个数之和等于33-21=12,在1~6中选3个和为12的数,且其中任意两个的和不等于11,这样的组合有:12=2+4+6=3+4+5,经试验,填法见右上图.[拓展]将1~6填入左下图的六个○中,使三角形每条边上的三个数之和都等于k ,请指出k 的取值范围.654321654321654321654321k=9 k=10 k=11 k=12分析:设三角形三个顶点的数字之和为s.因为每个顶点属于两条边公有,所以把三条边的数字和加起来,等于将1至6加一遍,同时将三个顶点数字多加一遍.于是有(1+2+3+4+5+6)+s=3k,化简后为s+21=3k.由于s是三个数之和,故最小为1+2+3=6,最大为4+5+6=15,由此求出9≤k≤12.s和k有四组取值:通过试验,每组取值都对应一种填数方法(见右上图).【例14】(★★★)小乌龟被困在五个圆里面(如下图),五圆相连,每个位置的数字都是按一定规律填写的,它必须找出规律,并求出x所代表的数才能脱困,你知道该怎么办吗?242730282622181720x分析:经观察,图中所填数的规律为两个圆相交部分的数等于与它相邻两部分里的数的和的一半.比如:(26+18)÷2=22.(30+26)÷2=28.(24+30)÷2=27.所以x+18=17×2,x=16.经检验,16和24相加除以2,也恰好等于20.[拓展]找规律求xx24123082616186452分析:经观察,图中所填数的规律为两个圆相交部分的数等于与它相邻两部分里的数的差的2倍.比如:(26-18)×2=16.(30-26)×2=8.(30-24)×2=12.因为52÷2=26>24,所以x=26+24=50.经检验,(50--18)×2=64.【例15】(★★★)1~9分别填入小三角形内(每个小三角形内只填一个数),要求靠近大三角形三条边的每五个数相加和相等.想一想,怎样填这些数才能使五个数的和尽可能大一些?分析:1+2+3+4+5+6+7+8+9=45,用s表示靠近大三角形三条边的五个数的和.因为有三个小三角形所填的数在求和时只用了一次(用a,b,c来表示这三个数),其余均用了两次.于是,45×2-(a+b+c)=3 s.要使s尽可能大,只要a+b+c尽可能小.所以a+b+c=1+2+3=6,于是90-6=3 s,s=28.剩下的六个数分成三组,并且每组中两数的和是三个连续自然数,那么:4+8=12;6+7=13;5 +9=14.经过调配可得到几十种填法,右上图是填法之一.[拓展一]如图是奥林匹克的五环标志,其中a,b,c,d,e,f,g,h,i处分别填入整数1至9,如果每一个圆环内所填的各数之和都相等,那么这个相等的和最大是多少,最小是多少?ihgfedcba分析:计算五个圈内各数之和的和,其中b,d,f,h被计算了两遍,所以这个和是1+2+3+4+5+6+7+8+9+b+d+f+h,而这个和一定能被5整除,所以b,d,f,h中填入大数时能使这个和取得最大值,最大是6、7、8、9,各圆圈内的和也取得15,由于15=6+9=7+8,所以满足条件的所有数无法配成15,当和为14时可以找出满足条件的填法,所以和最大为14,当b,d,f,h取1、2、3、4时这个和取得最小值,各圆圈内的和也取得最小值11.[拓展二]有10个连续的自然数,9是其中第三大的数.现在把这10个数填到下图的10个方格中,每格内填一个数,要求图中3个2×2的正方形中的4个数之和相等.那么,这个和数的最小值是多少?分析:9是其中第三大的数,所以这10个连续自然数是2、3、4、5……9、10、11,计算三个正方形中的和的和,这个和能被3整除,其中a和b被重复计算了两次,所以2+3+……11+a+b=65+a+b=3s,当a+b=1,4,7……时,65+a+b可以被3整除,因为要取最小值,所以a+b的值越小越好,但是不可能取1与4,所以,a+b=7时,这个和取得最小值,每个正方形中的和也取得最小值(65+7)÷3=24.【例16】(★★★)能否将数0,1,2,…,9分别填人下图的各个圆圈内,使得各阴影三角形5619372481528763049分析:0+…+9=45,45-中心数=3个阴影三角形的3个顶点上的数字之和,所以中心数必须是3的倍数,只能是0,3,6,9.枚举法实验,中心数只能是3,6,答案如右上图.[拓展一]将1~10分别填入图中,使得每个小三角形3个顶点上的数字之和为图中所表示的数值.分析:先确定中间5个重复数,它们的和为(20+16+12+13+10)-(1+2+…+10)=16,所以中间5个重复数只能是1,2,3,4,6的组合.又因为有1个和为20,相应三角形上的三个数只能是4,6,10,逐一试验,答案如右上图.[拓展二]图中有大、中、小3个正方形,组成了8个三角形.现在先把1,2,3,4分别填在大正方形的4个顶点上,再把1,2,3,4分别填在中正方形的4个顶点上,最后把1,2,3,4分别填在小正方形的4个顶点上.(1)能否使8个三角形顶点上数字之和都相等?如果能,请给出填数方法;如果不能,请说明理由. (2)能否使8个三角形顶点上数字之和各不相同?如果能,给出填数方法;如果不能,请说明理由.344341222311分析:(1)不能,如果能,则8个三角形顶点和的总和应该是8的倍数,但是这个总和有三组1、2、3、4组成,其中一组数被重复计算三次,一组数被重复计算两次,一组数仅被计算一次,因此该总和的值为6×(1+2+3+4)=60,不是8的倍数,产生矛盾,因此没有任何填法使8个三角形顶点上数字之和都相等. (2)能,见右上图.【例17】 (★★★),小熊和妈妈去外婆家要过一条河,必须要按照下面的要求填数才可以顺利通过,要求如下:20以内共有个○中(其中3已经填好),使得图中用箭头连接起来的四个数之和都相等.分析:3组数都包括左右两端的数,所以每组数的中间两数之和必然相等.现在还有1、5、7、11、13、17、19七个数供选择,两两之和相等的有1+19=7+13,只有两组,淘汰这一组;还有1+17=5+13+7+11,于是得到右上图的填法.(二)辐射型数阵【例18】 (★★★)将1~7这七个数字,分别填人图中各个○内,使每条线段上的三个○内数的和相等.635412762534175243716(1) (2) (3)分析:设中心○内填a ,由于三条线上的数字和相加应是3的倍数,其中a 一共加了3次,所以1+2+3+4+5+6+7+2a=28+2a 一定是3的倍数.而28÷3—9余1,那么2a ÷3的余数应该是2,因此,a=1,4或7.(1)当a=1时,28+2=30,30÷3=10,10-1=9,除中心外,其他两数的和应是9,只要把2,3,4,5,6,7六个数按“和”是9分成三组填入相应的○内就可以了.填法如图(1) (2)当a=4时,28+8=36,36÷3=12.填法如图(2)(3)当a=7时,28+14=42,42÷3=14.填法如图(3).亮点设计:(1)建议教师首先让学生进行试做,并让学生尝试多种填法。

小学数学《数阵图》练习题(含答案) (1)

小学数学《数阵图》练习题(含答案) (1)

小学数学《数阵图》练习题(含答案)课前复习1.在下面的○里填上适当的数,使每条线上的三个数之和都是16.【答案】【答案】2.在空格内填入适当的数,使得每行、每列和两条对角线上的三个数的和都为18.【答案】3. 在空格内填上适当的数,使得图中每行、每列及两对角线上四个数的和都是64.【答案】在神奇的数学王国里,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷.它就是数阵.到底什么是数阵呢?我们先观察下面2个图:在空格内填上适当的数,使得图中每行、每列及两条对角线上三个数的和都是15.认真观察,你发现每个图中的数字有什么特点?左上图有两条直线,每条直线上都有3个数字,它们的和都分别等于15;而右上图,将l~9九个数字排成三行、三列,每一行、每一列、每一斜行上的3个数字的和都等于15.数阵就是用数(一般指自然数)按一定的要求和规律,组成特定的形状或布成特定的阵势.它一般分为辐射型(左上图)和封闭型(右上图).要把一些数字按一定的规则填入图形中,有没有巧妙的方法来填呢?今天这节课我们就一起来学习.辐射型数阵图【例1】把1,2,3,4,5这5个数分别填入图中的圆圈内,使得横行3个数的和与竖列3个数的和都等于10.【分析】横行的三个数之和加上竖列的三个数之和,只有重叠数a被加了两次,即重叠了一次,其余各数均被加了一次.因为横行的三个数之和与竖列的三个数之和都等于10,所以(1+2+3+4+5)+a=10×2,a=5.剩下4个数中每两个数之和应该等于5,,1+4=2+3。

【例2】把4~8这五个数填入图中(已填入6),使两条直线上的三个数之和相等.【分析】方法一:把6除外,还剩4,5,7,8,这四个数,在这四个数中4+8=5+7,这样可以填出答案。

方法二:与例1不同之处是已知“重叠数”为6,而不知道两条直线上的三个数之和都等于什么数.可以先求出这个“和k”.(4+5+6+7+8)+6=k×2.K=18。

一年级下 数学思维训练 奥数 第9讲 数阵图

一年级下  数学思维训练  奥数  第9讲  数阵图

第9讲数阵练习
1、填数,使横行、竖行的三个数相加都得11.
2、填数,使每条线上的三个数之和都得15.
3、在每个方格中填入适当的数,使每一横行、竖行的和以及两斜行的三个数之和都是18.
4、要使表格中每行、每列和两条对角线上的三个数的和都为18,下面每个方框里应填什么数?
5、在下面的○中填上适当的数,使每条线上的三个数相加都等于15.
6、在下面的○里填上适当的数,使每条线上的三个数之和都是
12.
提高篇
1、把1,2,3,4,5,6六个数,分别填入○内,使每条线上3个数的和相等.
2、把2,3,4,5,6这五个数分别填入圆圈中,使每条线上三个数相加的和都等于1 2.
3、把1,2,3,4,5,6,7这七个数分别填入○里,使每条直线上的三个数相加的和都为12.。

数阵图练习题库

数阵图练习题库

数阵图练习题库数阵图是一种常见的数学练习题形式,它由一组数字按照特定规律排列形成的图形。

通过解题时观察、分析和推理数阵图中的规律,可以帮助学生培养逻辑思维和问题解决能力。

本文将介绍一些常见的数阵图练习题,并提供详细的解题方法和思路。

1. 数阵图基本概念数阵图是由一组数字按照规律排列形成的图形,通常呈现为方状或矩形的结构。

数阵图中的每个数字都占据一个位置,并且有一定的顺序关系。

在解决数阵图问题时,关键是要观察和分析数字的排列规律,找出其中隐藏的规律并加以利用。

2. 数阵图解题方法解题时,可以采用逐行逐列或者逐列逐行的方式观察数字的变化规律。

常见的变化规律包括数值递增或递减、等差数列、等比数列、斐波那契数列等。

根据观察到的规律,可以推测出图中缺失的数字或下一个可能出现的数字。

3. 数阵图练习题示例以下是一些常见的数阵图练习题。

题目一:1 1 21 3 45 8 ?观察第一行中的数字,可以看出第二个数字是前两个数字的和,即1 + 1 = 2。

观察第二行中的数字,可以看出第三个数字是前两个数字的和,即1 + 3 = 4。

根据同样的规律,可以推测第三行的数字是第一行和第二行的和,即2 + 4 = 6。

所以,缺失的数字是6。

题目二:2 4 63 7 108 ? 19观察第一行中的数字,可以看出第二个数字比第一个数字大2,第三个数字比第二个数字大2。

观察第二行中的数字,可以看出第一个数字比第三行第一个数字小5,第三个数字比第一个数字大3。

根据同样的规律,缺失的数字是13。

4. 总结数阵图练习题是培养学生逻辑思维和问题解决能力的重要工具。

通过观察和分析数阵图中数字的变化规律,可以帮助学生提高解题能力。

解题时应该注意观察细节,运用已有的数学知识来推理和解决问题,从而达到提升数学能力的目的。

本文介绍了数阵图的基本概念和解题方法,并提供了一些常见的练习题示例。

希望通过这些例子的讲解,读者能够对数阵图有更加深入的理解,并在实际练习中能够灵活运用所学知识解决问题。

小学一年级数学同步练习题 数阵图之谜

小学一年级数学同步练习题 数阵图之谜

小学一年级数学同步练习题数阵图之谜一年级()班姓名:_________一、口算(共50分)⑴每小题1.5分,共30分。

7 + 6 = 5 + 9 = 8 + 7 = 5 + 8 = 7 + 9 =8 + 6 = 3 + 8 = 5 + 5 = 7 + 8 = 12 – 4 = 15 – 6 = 14 – 7 = 11 – 8 = 14 – 9 = 15 – 7 =12 – 8 = 11 – 7 = 18 – 9 = 17 – 8 = 14 – 8 =⑵每小题2分,共10分。

11+9 – 9 = 12 – 8 + 7 = 7 – 3 + 6 = 6 + 4 + 8 =9 – 9 +4 =二、在()里填上合适的数。

(每题2分,共10分)3 +()=13 5 +()=54 +()=17 4 -()+4=48 –()+3=8三、智力题。

(共50分)1、⑴、我排第6,我的后面有4人,一共有()人。

⑵、我的左边有6人,我的右边有4人,一共有()人。

2、⑴、从左边数小明是第5,小明的右边还有3人,一共有()人。

⑵、12个同学排成一排,从右边数小明是第5,小明的左边还有()人。

3、接着画下去。

○●○●●○●●●○●●●●○●●○●●○●●○●●●○●○●●○●●○●●●○四、小文和小山分★,每人分到10个,小文给小山2个后,小文比小山少()个。

五、用1、2、3、4、5、6、7、8、10组成三道加法算式,数不能重复使用。

()+()=()()+()=()()+()=()六、△+○=8○=△+△+△○=( )△=( )七、数一数,有()个△。

(4分)八、数一数下图有几个正方体?()个()个九、按规律填数。

⑴2、4、6、()、()……⑵1、2、5、10、()、()……规律:+1 +3 +5 +7 +9……十、找规律填表。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学一年级数学同步练习题数阵图之谜
一年级()班姓名:_________
一、口算(共50分)
⑴每小题1.5分,共30分。

7 + 6 = 5 + 9 = 8 + 7 = 5 + 8 = 7 + 9 =
8 + 6 = 3 + 8 = 5 + 5 = 7 + 8 = 12 – 4 = 15 – 6 = 14 – 7 = 11 – 8 = 14 – 9 = 15 – 7 =
12 – 8 = 11 – 7 = 18 – 9 = 17 – 8 = 14 – 8 =
⑵每小题2分,共10分。

11+9 – 9 = 12 – 8 + 7 = 7 – 3 + 6 = 6 + 4 + 8 =
9 – 9 +4 =
二、在()里填上合适的数。

(每题2分,共10分)
3 +()=13 5 +()=5
4 +()=17 4 -()+4=4
8 –()+3=8
三、智力题。

(共50分)
1、⑴、我排第6,我的后面有4人,一共有()人。

⑵、我的左边有6人,我的右边有4人,一共有()人。

2、⑴、从左边数小明是第5,小明的右边还有3人,一共有()人。

⑵、12个同学排成一排,从右边数小明是第5,小明的左边还有()人。

3、接着画下去。

○●○●●○●●●○●●●●
○●●○●●○●●○●●
●○●○●●○●●○●●●○
四、小文和小山分★,每人分到10个,小文给小山2个后,小文比小山少()个。

五、用1、2、3、4、5、6、7、8、10组成三道加法算式,数不能重复使用。

()+()=()()+()=()
()+()=()
六、△+○=8○=△+△+△○=( )△=( )
七、数一数,有()个△。

(4分)
八、数一数下图有几个正方体?
()个()个
九、按规律填数。

⑴2、4、6、()、()……
⑵1、2、5、10、()、()……规律:+1 +3 +5 +7 +9……
十、找规律填表。

2 1
3 7
4 5 12
4 7 4 11
1 6 7 7。

相关文档
最新文档