2012年上海市中考数学试卷(解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
年上海市中考数学试卷
一.选择题<共小题)
.<上海)在下列代数式中,次数为地单项式是<)
......
考点:单项式.
解答:解:根据单项式地次数定义可知:
、地次数为,符合题意;
、不是单项式,不符合题意;
、地次数为,不符合题意;
、地次数为,不符合题意.
故选.
.<上海)数据,,,,,,地中位数是<)
....
考点:中位数.
解答:解:将数据,,,,,,按从小到大依次排列为:
,,,,,,,
位于中间位置地数为.
故中位数为.
故选.
.<上海)不等式组地解集是<)
.>﹣.<﹣.>.<
考点:解一元一次不等式组.
解答:解:,
由①得:>﹣,
由②得:>,
所以不等式组地解集是>.
故选.
.<上海)在下列各式中,二次根式地有理化因式是<)
....
考点:分母有理化.
解答:解:∵×﹣,
∴二次根式地有理化因式是:.
故选:.
.<上海)在下列图形中,为中心对称图形地是<)
.等腰梯形.平行四边形.正五边形.等腰三角形考点:中心对称图形.
解答:解:中心对称图形,即把一个图形绕一个点旋转°后能和原来地图形重合,、、都不符合;
是中心对称图形地只有.
故选:.
.<上海)如果两圆地半径长分别为和,圆心距为,那么这两个圆地位置关系是<).外离.相切.相交.内含考点:圆与圆地位置关系.
解答:解:∵两个圆地半径分别为和,圆心距为,
又∵﹣,>,
∴这两个圆地位置关系是内含.
故选:.
二.填空题<共小题)
.<上海)计算.
考点:绝对值;有理数地减法.
解答:解:﹣﹣,
故答案为:.
.因式分解:﹣.
考点:因式分解提公因式法.
解答:解:﹣<﹣).
故答案为:<﹣).
.<上海)已知正比例函数<≠),点<,﹣)在函数上,则随地增大而 <增大或减小).
考点:正比例函数地性质;待定系数法求一次函数解读式.
解答:解:∵点<,﹣)在正比例函数<≠)上,
∴﹣,
解得:﹣,
∴正比例函数解读式是:﹣,
∵﹣<,
∴随地增大而减小,
故答案为:减小.
.方程地根是.
考点:无理方程.
解答:解:方程两边同时平方得:,
解得:.
检验:时,左边,则左边右边.
故是方程地解.
故答案是:.
.<上海)如果关于地一元二次方程﹣<是常数)没有实根,那么地取值范围是.
考点:根地判别式.
解答:解:∵关于地一元二次方程﹣<是常数)没有实根,
∴△<﹣)﹣<,
即﹣<,
>.
故答案为>.
.<上海)将抛物线向下平移个单位,所得抛物线地表达式是.
考点:二次函数图象与几何变换.
解答:解:∵抛物线向下平移个单位,
∴抛物线地解读式为﹣,
故答案为﹣.
.<上海)布袋中装有个红球和个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到地球恰好为红球地概率是.
考点:概率公式.
解答:解:∵一个布袋里装有个红球和个白球,
∴摸出一个球摸到红球地概率为:.
故答案为.
.<上海)某校名学生参加生命安全知识测试,测试分数均大于或等于且小于,分数段地频率分布情况如表所示<其中每个分数段可包括最小值,不包括最大值),结合表地信息,可测得测试分数在~分数段地学生有名.
考点:频数<率)分布表.
解答:解:~分数段地频率为:﹣﹣﹣,
故该分数段地人数为:×人.
故答案为:.
.<上海)如图,已知梯形,∥,,如果,,那么 <用,表示).
考点:*平面向量.
解答:解:∵梯形,∥,,,
∴,
∵,
∴.
故答案为:.
.<上海)在△中,点、分别在、上,∠∠,如果,△地面积为,四边形地面积为,那么地长为.
考点:相似三角形地判定与性质.
解答:解:∵∠∠,∠是公共角,
∴△∽△,
∴,
∵△地面积为,四边形地面积为,
∴△地面积为,
∵,
∴,
解得:.
故答案为:.
.<上海)我们把两个三角形地中心之间地距离叫做重心距,在同一个平面内有两个边长相等地等边三角形,如果当它们地一边重合时,重心距为,那么当它们地一对角成对顶角时,重心距为.
考点:三角形地重心;等边三角形地性质.
解答:解:设等边三角形地中线长为,
则其重心到对边地距离为:,
∵它们地一边重合时<图),重心距为,
∴,解得,
∴当它们地一对角成对顶角时<图)中心距×.
故答案为:.
.<上海)如图,在△中,∠°,∠°,,点在上,将△沿直线翻折后,将点落在点处,如果⊥,那么线段地长为.
考点:翻折变换<折叠问题).
解答:解:∵在△中,∠°,∠°,,
∴,
∵将△沿直线翻折后,将点落在点处,
∴∠∠,,
∵⊥,
∴∠∠°,
∴∠∠°,
∴∠∠﹣∠°﹣°°,
∵∠°,
∴∠∠°,
∴,
∴﹣﹣.
故答案为:﹣.
三.解答题<共小题)
.<上海).
考点:二次根式地混合运算;分数指数幂;负整数指数幂.
解答:解:原式
.
.<上海)解方程:.
考点:解分式方程.
解答:解:方程地两边同乘<)<﹣),得
<﹣),
整理,得﹣,
解得,.
经检验:是方程地增根,是原方程地根,
故原方程地根为.
.<上海)如图在△中,∠°,是边地中点,⊥,垂足为点.己知,.