第三章 奥氏体在冷却时的转变

合集下载

工程材料复习资料

工程材料复习资料

⼯程材料复习资料第⼀章⼀、名词解释:晶体:当材料处于固体状态时,若组成它的离⼦、原⼦或分⼦在三维空间呈有规则的长距离(⼤⼤超过原⼦或分⼦尺⼨)的周期性重复排列,即具有长程有序,这⼀类固态物质称为晶体。

它们离⼦、原⼦、分⼦规则排列的⽅式就称为晶体结构。

晶格:为了便于描述晶体中原⼦排列规律,把晶体中的原⼦(或离⼦等)想象成⼏何结点,并⽤直线从其中⼼连接起来⽽构成的空间格架,称为晶格。

固溶体:在固态下,合⾦组元间会相互溶解,形成在某⼀组元晶格中包含其它组元的新相,这种新相称为固溶体。

强度:指在外⼒作⽤下材料抵抗变形和断裂的能⼒。

弹性:卸载后试样的变形⽴即消失即恢复原状,这种不产⽣永久变形的性能称为弹性。

刚度:,弹性模量,⼯程上叫刚度。

疲劳强度:疲劳强度是指在⼤⼩和⽅向重复循环变化的载荷作⽤下,材料抵抗断裂的能⼒。

在理论上,是抵抗断裂的最⼤应⼒,⽤σ-1表⽰。

塑性:⾦属的塑性指⾦属材料在外⼒作⽤下,产⽣永久性变形⽽不破坏其完整性的能⼒。

⽤伸长率δ和断⾯收缩率ψ表⽰。

硬度:硬度是在外⼒作⽤下,材料抵抗局部塑性变形的能⼒。

⼆、名词区别:1、置换固溶体与间隙固溶体置换固溶体是指溶质原⼦取代部分溶剂原⼦⽽占据着晶格的结点位置所形成的固溶体;若溶质原⼦不是占据晶格结点位置⽽是分布在晶格间隙所形成的固溶体,称为间隙固溶体。

2、相组成物和组织组成物相组成物有三种:铁素体、奥⽒体、渗碳体。

组织组成物是有相组成物组成的物质,也可由单⼀相构成,如:珠光体、莱⽒体。

算相对量⽤每种相的铁碳⽐例。

三、何谓点缺陷?对性能有何影响?点缺陷是⼀种在三维空间各个⽅向上尺⼨都很⼩,尺⼨范围约为⼀个或⼏个原⼦间距的缺陷,包括空位、间隙原⼦、置换原⼦。

四.固溶体和⾦属间化合物在结构、性能上有何不同?当合⾦中溶质含量超过固溶体的溶解度时,将析出新相。

若新相的晶体结构与合⾦其它组元相同,则新相是为另⼀个组元为溶剂的固溶体。

若新相不同于任⼀组元,则新相是组元间形成的⼀种新物质-化合物。

第三章 钢冷却时的转变

第三章  钢冷却时的转变

奥氏体化是钢的热处理重要的第一步。

在此基础上,在后续的冷却过程中可以通过控制过冷奥氏体分解,从而获得不同的组织。

钢从奥氏体状态的冷却过程是热处理的关键工序。

在热处理生产中,钢制奥氏体化后通常有两种冷却方式:等温冷却方式和连续冷却方式。

过冷奥氏体——在临界点以下存在且不稳定的、将要发生转变的奥氏体。

第三章钢在冷却时的转变(过冷奥氏体分解)冷却条件的不同,过冷奥氏体可通过不同机制进行转变而获得完全不同的组织。

三种转变:珠光体、贝氏体、马氏体转变(1)珠光体转变:以缓慢速度冷却时,发生分解的过冷度很小,过冷奥氏体在高温下有足够的时间进行扩散分解,转变为近于平衡的珠光体型的组织。

扩散型相变这种冷却速度相当于炉冷或空冷的冷却方式,热处理生产上成为退火或正火。

(2)贝氏体转变——当冷却速度很快时,可以把奥氏体过冷至较低温度,此时碳原子尚可进行扩散,但铁原子不能进行扩散,奥氏体只能转变为贝氏体。

半扩散型相变(3)马氏体转变——当采用更快的冷却速度时,奥氏体迅速过冷至不能进行扩散分解的低温M S点以下,此时只能得到马氏体。

非扩散型相变。

这种冷却方式相当于水冷方式,生产上叫淬火。

过冷奥氏体分解同样是一个点阵重构和碳的扩散过程,也是一个形核和长大的过程。

§3.1 过冷奥氏体等温转变图§3.2 过冷奥氏体连续冷却转变图及应用§3.1 过冷奥氏体等温转变图一、过冷奥氏体等温转变图的建立将奥氏体迅速冷至临界温度以下的一定温度,并在此温度下进行等温,在等温过程中所发生的相变称为过冷奥氏体等温转变。

测定过冷奥氏体等温转变图的方法有金相法、膨胀法、磁性法、热分析法等。

将若干共析碳钢小试样加热到奥氏体状态,保温一定时间后迅速冷却到A1点以下不同温度,例如700℃、650℃、600℃等,随后在各温度下保温,每经过一定时间取出一个试样立即淬入盐水中,使未转变的奥氏体转变为马氏体。

其中马氏体为白色,分解产物为黑色。

奥氏体在冷却时的转变

奥氏体在冷却时的转变

第三节奥氏体在冷却时的转变奥氏体在冷却时发生的组织转变,既可在恒温下进行,也可在连续冷却过程中进行,随着冷却条件的不同,奥氏体可在A1以下不同的温度发生转变,获得不同的组织。

所以,冷却是热处理的关键工序,它决定着钢在热处理后的组织和性能。

在临界转变温度A1以上存在的奥氏体是稳定的,不会发生转变。

但一旦冷却到A1以下,则变得不稳定,冷却时要发生组织转变。

这种在临界温度以下存在且不稳定的、将要发生转变的奥氏体称为过冷奥氏体。

研究过冷奥氏体的冷却转变行为,通常采用两种方法,一种是利用奥氏体等温转变曲线研究奥氏体在不同过冷度下的等温转变过程,另一种是利用奥氏体连续冷却转变曲线研究奥氏体在不同冷速下的连续冷却中的转变过程。

一、共析钢过冷奥氏体等温转变曲线这里以金相-硬度法为例,来说明共析钢的过冷奥氏体等温转变曲线的测定过程。

将共析钢制成圆形薄片试样(Φ10×1.5mm)。

试样被加热到临界点Ac1以上某一温度并保温一段时间,得到均匀的奥氏体组织,然后将试样分别迅速投入到不同温度的盐浴炉中,从放入盐浴中开始计时,每隔一段时间从盐浴中取出一块试样迅速放入水中。

对各试样做金相组织观察和硬度测定就可以得出各等温温度下不同等温时间内奥氏体的转变量,就可以得到一系列的奥氏体等温转变开始点和转变终了点。

若以等温转变温度为纵坐标,转变时间(以对数表示)为横坐标,将所有的转变开始点连接成一条曲线(称为等温转变开始线);同样,将所有的转变终了点也连成一条曲线(称为等温转变终了线),就可以得到如所示的共析钢过图 3-1共析钢的过冷奥氏体等温转变曲线图冷奥氏体等温转变曲线。

由于该曲线具有英文字母“C”的形状,故称C曲线,也称TTT(Time Temperature Transformation)曲线。

C曲线上部的水平线A1是奥氏体和珠光体的平衡温度。

下部的两条水平线分别表示奥氏体向马氏体转变的开始温度M s和终了温度M f。

第3章 奥氏体相变

第3章 奥氏体相变

针状A形成示意图
针状A晶粒合并长大示意图
颗粒状Ag
针状Aa
(一)针状A晶粒的形成及长大


钢的成分:低中碳钢 形成温度:在Ac1~Ac3之间 形核位置:小角晶界上(原始M板条之间 形成) 在形成Aa同时也会形成Ag
M束
低碳板条马氏体
M板条间的Aa和M板条束间的Ag
Aa的形成机制



形核:Aa核在板条条界上、碳化物旁形成。由于板条 条界是小角晶界,故Aa核可以与两侧均形成共格或半 共格晶界,保持K-S关系。由于共格或半共格界面能 量低,故形核功小,在不大的过热度下即可形成。 长大:形核后依靠碳化物的溶解与碳在F与A中的扩散 而长大。但因核两侧均为共格或半共格晶界,活动性 差,而条界又可以提供长大所需的碳原子,故沿条界 长大速度大,长成针状A。 合并:由于同一板条束内的Aa均具有相同的空间取向, 故相遇时合并成一个大颗粒状A(组织遗传)。
1)奥氏体的形核
以共析钢的等温形成A为例: P (F + Fe3C) A 含碳量: 0.02% 6.67% 0.77% 结构: 体心立方 复杂斜方 面心立方 形成位置: i) 在F和Fe3C交界面上通过扩散机构形成; ii) 珠光体团界; iii) 先共析F/珠光体团交界处。
界面形核的原因
1)成分上:在相界面上容易形成A所需的浓度

本节讨论共析钢和亚共析钢的等温形成动 力学
一、共析钢奥氏体等温形成动力学
1. 等温形成动力学图- 时间-温度-转变量关系图
动力学曲线
共析钢等温形成动力学图
2. 共析钢等温转变动力学图特点
1)转变需要孕育期 2)曲线呈S型 初期:速度随时间加快; 50%后:速度下降 3)随温度升高,孕育期缩短,速度加快

第三章 钢的过冷奥氏体转变图

第三章   钢的过冷奥氏体转变图

四、IT图的基ቤተ መጻሕፍቲ ባይዱ类型
4. P转变与B转变曲线相分离, P转变的孕育期比B转变的短。 碳含量较高的合金钢。Cr12MOV。 5.只呈现P转变曲线。合金元素大大延长B转变孕育期。 碳和强碳化物形成元素含量较高的钢。不锈钢4Cr13、工具钢
Cr12 6.只析出碳化物,无任何其它相变。 碳和合金元素含量较高的钢。奥氏体钢,4Cr14Ni14W2Mo。
时间
具有先共析线的C曲线
a) 亚共析钢 b) 过共析钢
温度 (℃)
800 700 600 500
400 300 Ms 200 100
0 Mf
-100 0
亚共析钢的TTT曲线
A3
F A
A1
P+F S+F
T+F
B
M + A残
1
10
102
103
104 时间(s)
温度 (℃)
800 700 600 500
三、影响IT图的因素
4.外加应力与塑性变形的影响 外加应力:拉应力加速转变,压应力
阻碍转变外加应力对比 容的影响 塑性变形:造成晶粒破碎和晶格扭曲,缺陷密度,还可能伴有碳 化物析出A稳定性,转变加快。 含有Cr、Mo、W、V等强碳化物形成元素的钢
四、IT图的基本类型
1.P转变与B转变曲线部分相重叠:一个“鼻子” 鼻温 P转变 <鼻温 B转变 碳钢或含非(弱)碳化物形成元素的低合金钢 2.P转变与B转变曲线相分离,出现过冷A稳定区,P转变的孕育期比B 转变的长。含Cr、Mo、W、V强碳化物形成元素的钢。40CrNiMoA。 3.只呈现B转变曲线 合金元素大大推迟P转变孕育期,P转变曲线未出现。 镍含量较多的低碳和中碳铬镍钼钢或铬镍钨钢,18Cr2Ni4WA。

机械制造基础课程—课题三钢的热处理

机械制造基础课程—课题三钢的热处理

二、奥氏体化过程
加热是热处理的第一道工序。加热分两种:一 种是在A1以下加热,不发生相变;另一种是在 临界点以上加热,目的是获得均匀的奥氏体组 织,称奥氏体化。
现以共析钢为例说明奥氏体的形成过程
1.奥氏体的形成的基本过程 奥氏体化也是形核和长大的过程,分为四步。现以 共析钢为例说明:
第一步:奥氏体晶核形成:首先在与Fe3C相界形核。
把加热到奥氏体状 态的钢,快速冷却 到低于A1的某一温度, 临界温度 并等温停留一段时 间,使奥氏体发生 转变,然后再冷却 到室温。
把加热到奥氏 体状态的钢, 以不同的冷却 速度连续冷却 到室温。
连续冷却
等温冷却
时间
过冷奥氏体的等温转变
图是表示奥氏体急速冷
却到临界点A1 以下在各
不同温度下的保温过程
珠光体(P)转变 铁素体和渗碳体片层相间的机械混合物
珠光体转变也是形核和长大的过程。渗碳体晶核首先在奥氏体晶界上形成,在长大过
程中,其两侧奥氏体的含碳量下降,促进了铁素体形核,两者相间形核并长大,形成 一个珠光体团。
贫碳区
富碳区
珠光体转变
⑴ 珠光体:
形成温度为A1-650℃,片层较厚,500倍光镜下可
时间
650℃ 过冷A 600℃ 过冷A 550℃
过冷A
A
A→S
A1~550℃;高 温转变区;扩散 型转变;P 转变 区。 550~Ms (230℃);中温 转变区;半扩 散型转变;贝 氏体( B ) 转变 区。 Ms~ Mf (50℃);低温 转变区;非 扩散型转变; 马氏体 ( M ) 转变区.

600
200
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 马氏体的碳浓度 Wc 100

奥氏体在冷却时的转变综述

奥氏体在冷却时的转变综述

度的浴炉中进行等温转变,并开始计时。
4. 记时:每隔一定时间取出一个试样,进行高温 金相 组织观察。记录开始转变时间和转变终了 时间。
将其余各组试 样,用上述方法分别 测出不同等温条件下 A转变开始和终了时 间,最后将所有转变 开始时间点和终了时 间点标在温度—时间 (对数) 坐标上,并分 别连接起来,即得C 曲线。
(二)应用
1. 在转变图上估计连续冷却转变产物
→退火 →正火 →淬火
→淬火
CCT曲线位于 TTT的右下方;CCT曲线中没有 A→B 转变
2. 马氏体淬火临界冷却速度 淬火临界冷却速度:
v
' k
A1 t m
1.5τ
m
Vk ´—获得完全M组织的最小冷却速度或与转变开始线相切的冷却速度 tm—C曲线鼻尖处温度 τm—C曲线鼻尖处时间
A中的C%↑ 则 MS、Mf ↓,残余A含量↑。
(6)产生很大内应力。
奥氏体的碳含量对残余奥氏体量的影响
700 600 500 400 300 200 100
温度/℃
Ms
0 Mf -100 -200 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Wc(%)
奥氏体的碳含量对M转变温度的影响
过冷A转变开始线 过冷A转变终了线 相变线 P S 5 ~25HRC 25 ~35HRC
性能
P 转变
T
3 5 ~40HRC
B 转变 M 转变
M转变开始线 M转变终了线
上B 40 ~50HRC 下B 50 ~60HRC
M+A′60 ~65HRC
下 降
三、过冷奥氏体转变产物的组织形态及其性能
(一)极其缓慢冷却转变

钢在冷却时的转变

钢在冷却时的转变

图4-5 珠光体的显微组织
3
奥氏体转变为珠光体的过程也是形核和长大的过程,如图4-6所示。当奥氏体过冷到A1 以下时,首先在奥氏体晶界上产生渗碳体晶核,通过原子扩散,渗碳体依靠其周围奥氏体 不断地供应碳原子而长大。同时,由于渗碳体周围奥氏体含碳量不断降低,从而为铁素体 形核创造了条件,使这部分奥氏体转变为铁素体。由于铁素体溶碳能力低(<0.0218%C), 所以又将过剩的碳排挤到相邻的奥氏体中,使相邻奥氏体含碳量增高,这又为产生新的渗 碳体创造了条件。如此反复进行,奥氏体最终全部转变为铁素体和渗碳体片层相间的珠光 体组织。
5
1.2 贝氏体转变及其组织
过冷奥氏体在550℃~Ms的转变称为中温 转变,其转变产物为贝氏体,所以又称贝氏 体转变。贝氏体用符号B表示,它是渗碳体分 布在碳过饱和的铁素体基体上的两相混合物, 硬度也比珠光体型的高。奥氏体向贝氏体的 转变属半扩散型相变,铁原子基本不扩散而 碳原子有一定扩散能力。
6
9
生产上,中、高碳钢常利用 等温淬火获得以下贝氏体为主的 组织,使钢件具有较高的强韧性, 同时由于下贝氏体比容比马氏体 小,可减少变形开裂。
10
1.3 马氏体转变及其组织
当奥氏体以极大的冷却速度过冷到Ms以下时, 即发生马氏体转变。与珠光体转变和贝氏体转变不 同,马氏体转变是在连续冷却的过程中进行的,由 于过冷度极大,碳原子已无法扩散,过冷奥氏体以 非扩散的形式发生铁的晶格转变,即由面心立方晶 格的γ-Fe“切变”为体心立方的α-Fe中,形成了碳 在α-Fe中的过饱和间隙固溶体,称之为马氏体,用 符号M表示。马氏体的成分与过冷奥氏体相同。
1 上贝氏体组织形态
上贝氏体在550~350℃温度范围内形成,在低碳钢中形成温度要高些。在光学显微镜下 呈羽毛状,即成束的自晶界向晶粒内生长的铁素体条,如图4-7(a)所示。在电子显微镜下, 可以看到铁素体和渗碳体两个相,渗碳体(亮白色)以不连续的、短杆状形状分布于许多平 行而密集的过饱和铁素体条(暗黑色)之间,如图4-8(a)所示。在铁素体条内分布有位错 亚结构,位错密度随形成温度的降低而增大。

热处理原理和工艺

热处理原理和工艺
低温回火: 温度: 150— 200° C ;得到的组织: M回;内应力和脆性降低,保持了
高硬度和高耐磨性。
中温回火
温度:350 —500 °C ;得到的组织: T回;具有一定的韧性和高的弹性
极限及屈服极限 高温回火
温度: 500-650°C;组织: S回;具有适当的强度和足够的塑性和韧性。
淬火后高温回火称调质处理。
体化。铁碳合金相图是确定钢加热转变的重要理论依据。
2、奥氏体化过程
共析钢加热到 727 °C( A1) 以上,珠光体转变成奥氏体,经历了奥
氏体形核、长大、残余渗碳体的溶解和奥氏体成分均匀化四个阶段。如 下图所示:
奥氏体 形核
转变步骤
奥氏体
核长大
残余渗碳
体溶解
奥氏体成 分均匀化
奥氏体晶粒长大及其控制
650 °C---600°C :珠光体层片较细, S (索氏体) 600 ° C--560 °C: 珠光体层片极细, T (托氏体 )
珠光体
索氏体
托氏体
2、 马氏体转变
(1)转变温度: Ms(230 °C)- Mf (2)产物:马氏体 (3)马氏体:碳在 a--Fe 中形成的过饱和铁
素体,具有体心正方结构。
速度冷却,使奥氏体转变为马氏体或下贝氏体的热处理工艺。
回火:将淬火后的钢加热至 Ac1以下的某一温度后进行冷却的热处理工艺。
退火与正火
退火 :采用炉冷,冷却速度很低
分类:
完全退火 球化退火
等温退火
扩散退火(均匀化退火) 去应力退火(低温退火) 再结晶退火
正火(采用空冷,冷却速度较快)
主要应用 低碳钢:调整硬度(适当增加硬度),利于切削;
A1
700

08讲 钢在加热、冷却时组织的转变

08讲 钢在加热、冷却时组织的转变

《机械制造技术基础》教案教学内容:钢在加热和冷却时的组织转变教学方式:结合实际,由浅如深讲解教学目的:1.掌握钢在加热时组织转变——钢的奥氏体化;2.明确过冷奥氏体的等温转变;3.掌握冷奥氏体连续冷却转变。

重点、难点:钢的奥氏体化过冷奥氏体的等温转变冷奥氏体连续冷却转变教学过程:1.3 钢的热处理热处理:采用适当的方式对金属材料或工件进行加热、保温和冷却以获得预期的组织结构与性能的工艺。

热处理的分类:1.整体热处理:对工件整体进行穿透加热的热处理,如退火、正火、淬火、回火等。

2.表面热处理:仅对表面进行热处理的工艺,如火焰淬火、感应淬火等。

3.化学热处理:将工件置于适当的活性介质中加热、保温,使一种或几种元素渗入它的表层,以改变其化学成分、组织和性能的热处理,如渗碳等。

钢的热处理过程包括加热、保温和冷却三个阶段。

其主要工艺参数是加热温度、保温时间和冷却速度。

1.3.1 钢在加热和冷却时的组织转变1.3.1.1钢在加热时组织转变Fe-Fe3C相图相变点A1、A3、A cm是碳钢在极缓慢地加热或冷却情况下测定的。

但在实际生产中,加热和冷却并不是极其缓慢的,因此,钢的实际相变点都会偏离平衡相变点。

即:加热转变相变点在平衡相变点以上,而冷却转变相变点在平衡相变点以下。

通常把实际加热温度标为Ac1、Ac3、Ac cm、Ar1、Ar3、Ar cm。

如图6-1所示。

图6-1 钢在加热、冷却时的相变温度钢加热到Ac1点以上时会发生珠光体向奥氏体的转变,加热到Ac3和Ac cm以上时,便全部转变为奥氏体,这种加热转变过程称为钢的奥氏体化。

1.奥氏体的形成珠光体转变为奥氏体是一个从新结晶的过程。

由于珠光体是铁素体和渗碳体的机械混合物,铁素体与渗碳体的晶包类型不同,含碳量差别很大,转变为奥氏体必须进行晶包的改组和铁碳原子的扩散。

下面以共析钢为例说明奥氏体化大致可分为四个过程,如图4-2所示。

1)奥氏体形核奥氏体的晶核上首先在铁素体和渗碳体的相界面上形成的。

奥氏体在冷却时的转变

奥氏体在冷却时的转变

第三节奥氏体在冷却时的转变奥氏体在冷却时发生的组织转变,既可在恒温下进行,也可在连续冷却过程中进行,随着冷却条件的不同,奥氏体可在A1以下不同的温度发生转变,获得不同的组织。

所以,冷却是热处理的关键工序,它决定着钢在热处理后的组织和性能。

在临界转变温度A1以上存在的奥氏体是稳定的,不会发生转变。

但一旦冷却到A1以下,则变得不稳定,冷却时要发生组织转变。

这种在临界温度以下存在且不稳定的、将要发生转变的奥氏体称为过冷奥氏体。

研究过冷奥氏体的冷却转变行为,通常采用两种方法,一种是利用奥氏体等温转变曲线研究奥氏体在不同过冷度下的等温转变过程,另一种是利用奥氏体连续冷却转变曲线研究奥氏体在不同冷速下的连续冷却中的转变过程。

一、共析钢过冷奥氏体等温转变曲线这里以金相-硬度法为例,来说明共析钢的过冷奥氏体等温转变曲线的测定过程。

将共析钢制成圆形薄片试样(Φ10×1.5mm)。

试样被加热到临界点Ac1以上某一温度并保温一段时间,得到均匀的奥氏体组织,然后将试样分别迅速投入到不同温度的盐浴炉中,从放入盐浴中开始计时,每隔一段时间从盐浴中取出一块试样迅速放入水中。

对各试样做金相组织观察和硬度测定就可以得出各等温温度下不同等温时间内奥氏体的转变量,就可以得到一系列的奥氏体等温转变开始点和转变终了点。

若以等温转变温度为纵坐标,转变时间(以对数表示)为横坐标,将所有的转变开始点连接成一条曲线(称为等温转变开始线);同样,将所有的转变终了点也连成一条曲线(称为等温转变终了线),就可以得到如所示的共析钢过图 3-1共析钢的过冷奥氏体等温转变曲线图冷奥氏体等温转变曲线。

由于该曲线具有英文字母“C”的形状,故称C曲线,也称TTT(Time Temperature Transformation)曲线。

C曲线上部的水平线A1是奥氏体和珠光体的平衡温度。

下部的两条水平线分别表示奥氏体向马氏体转变的开始温度M s和终了温度M f。

过冷奥氏体转变曲线图

过冷奥氏体转变曲线图
6
3)加热条件的影响
加热条件主要指加热温度和保温时间。奥氏体化温度越高,保温时间 越长,则形成的奥氏体晶粒越粗大,成分越均匀。同时,加热温度的提高 也有利于先析出相及其他难熔质点的熔化。所有这些因素都将提高奥氏体 的稳定性,使C曲线右移。
7
1.2 过冷奥氏体连续冷却转变
实际中多数热处理工艺应用的是连续冷却转变, 即过冷奥氏体是在不断的降温过程中发生转变的, 这就需要研究过冷奥氏体的连续冷却转变规律。
1ቤተ መጻሕፍቲ ባይዱ过冷奥氏体连续冷却转变曲线
如图4-16所示为共析钢的连续冷却转变曲线,又 称CCT曲线(Continuous Cooling Transformation)。 它反映了过冷奥氏体的冷却状况与组织结构之间的关 系,是研究钢在冷却转变时组织转变的理论基础,也 是选择热处理冷却工艺的重要依据。
8
图4-16 共析钢连续冷却转变曲线示意图
图4-16中的Ps线为过冷奥氏体转变为珠光体的开始线,Pf 线 为转变终了线,两线之间为转变过渡区。 KK ' 线为转变的中止线, 当冷却曲线碰到此线时,过冷奥氏体便中止向珠光体型组织转变, 剩余的奥氏体将被过冷到 Ms点以下转变为马氏体。Vk是与Ps线相 切的冷却速度,它是钢在淬火时可抑制非马氏体组织转变的最小 冷却速度,称为淬火冷却速度或上临界冷却速度。Vk' 是获得全部 珠光体组织的最大冷却速度,称为下临界冷却速度。
2)合金元素的影响
除Co,Al以外,所有的合金元素溶于奥氏体后都会提高过冷奥氏体 的稳定性,使C曲线右移。其中,非碳化物形成元素(如Ni,Si,Cu等) 只改变C曲线的位置,不改变其形状。碳化物形成元素(如Cr,Mo,V等) 可同时改变C曲线的位置和形状。必须指出,碳化物形成元素必须溶于奥 氏体中才能提高过冷奥氏体的稳定性,否则作用相反。

钢在冷却时的转变

钢在冷却时的转变

1/1钢在冷却时的组织转变常识钢进行热处理冷却的目的是获得所需要的组织和性能,这需要通过采用不同冷却方式来实现。

冷却方式不同转变的组织也不同,性能差异较大。

奥氏体冷却至A1以下温度时将发生组织转变(A1温度以下还存在的不稳定奥氏体通常称过冷奥氏体)。

钢的冷却方式分为等温冷却和连续冷却。

等温冷却的组织转变形式1.奥氏体的等温转变对过冷奥氏体(即:奥氏体在A1线以上是稳定相,当冷却到A1线以下还未转变的奥氏体)经过一段时间的等温保持后转变为稳定的新相。

这种转变过程就称为奥氏体的等温转变。

2.等温冷却转变钢经奥氏体化后迅速冷却至临界点Ar1或Ar3)线以下,等温保持时过冷奥氏体发生的转变。

等温冷却的组织转变产物与性能1.A1~550℃也称高温转变,获片状珠光体型(F+P)组织,按转变温度由高到低的顺序,转变产物分别为珠光体、索氏体、托氏体;片层间距由粗到细,趋势是:片层间距越小,塑性变形阻力越大,强度和硬度越高1)A1~650℃获粗片状珠光体金相组织2)650~600℃获细片状索氏体金相组织3)600~550℃获极其细片状的托氏体金相组织2.550℃~M S 也称中温转变,获贝氏体型组织(过饱和的铁素体和碳化物组成,有上贝氏体和下贝氏体之分。

)1)550~350℃获羽毛状上贝氏体金相组织2)550℃~M S获黑色针状下贝氏体金相组织(这种组织强度和韧性都较高)3.M S线温度以下连续冷却时,过冷奥氏体发生转变获得马氏体组织,马氏体内的含碳量决定着马氏体的强度和硬度,总的趋势是随着马氏体含碳量的提高,强度与硬度也随之提高;高碳马氏体硬度高、脆性大,而低碳马氏体具有良好的强度和韧性。

连续冷却的组织转变过冷奥氏体在一个温度范围内,随温度连续下降发生组织转变。

连续冷却有炉冷、空冷、油冷、水冷四种最为常用的连续冷却方式1)炉冷冷速约10℃/min,产生新相为珠光体,如退火的冷却2)空冷冷速约10℃/s,产生新相为索氏体,如正火的冷却3)油冷冷速约150℃/s,产生新相为托氏体+马氏体,如油淬4)水冷冷速约600℃/s,产生新相为残余奥氏体+马氏体,如水淬(残余奥氏体的存在降低了淬火钢的硬度和耐磨性,也会因零件在使用过程中残余奥氏体会继续转变为马氏体,从而使工件变形;一些重要精密的零件通常会通过把淬火后的工件冷却到室温以下并继续冷却到-80~-50℃来减少残余奥氏体含量的存在)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六节钢在冷却时的转变
一、共析钢的过冷奥氏体转变
由铁碳相图可知,共析钢从奥氏体状态冷却到临界点A1点以下时将要发生珠光体转变。

实际上,迅速冷却到A1点以下温度时,转变并不是立即开始的,在A1点以下未转变的奥氏体称为过冷奥氏体。

1.过冷奥氏体转变曲线
(1)过冷奥氏体等温转变曲线图10—38是通过实验测定的共析钢过冷奥氏体等温转变
动力学曲线,又称过冷奥氏体等温转变
等温图(又称TTT图或C曲线)。

图中
左边的曲线是转变开始线,右边的曲线
是转变完了线。

它的上部向A1线无限
趋近,它的下部与Ms线相交。

Ms点是
奥氏体开始向马氏体转变的温度。

由图
可以看出,过冷奥氏体开始转变需要经
过一段孕育期,在550~500℃等温时孕
育期最短,转变最快,称为C曲线的
“鼻子”。

在鼻温以上的高温阶段,随过冷
度的增加,转变的孕育期缩短,转变加
快;在鼻温以下的中温阶段,随过冷度的
增加,转变的孕育期变长,转变变慢。


是因为共析转变是扩散型相变,转变速
率是由相变驱动力和扩散系数D两个
因素综合决定的(参看第三节)。

过冷奥氏体在不同的温度区间会发
生三种不同的转变。

在A1~500~C区间
发生珠光体转变,转变的产物是珠光体(P),其硬度值较低,在11~40HRC之间;550~C~
Ms点区间发生贝氏体转变,产物是贝氏体(B),硬度值较高在40~55HRC之间;在Ms点
以下将发生马氏体转变,得到马氏体(M),马氏体的硬度很高,可达到60HRC以上。

碳素
钢的贝氏体转变温度区间与珠光体、马氏体转变的温度区间没有严格的界限,相互之间有重叠。

一般认为过冷奥氏体有了1%的转变即为转变的开始,转变已完成99%即为转变完了。

在转变开始线和转变完了线之间,还可以划出转变量为10%、50%、90%等等几条大体平行的曲线(图中以虚线表示)。

转变开始线、终止线与A。

线、Ms线之间将等温转变图划分成几个区域,各个区域表示组织状态及转变量与温度和时间之间的关系。

从等温转变图右侧的纵坐标,还可以看出各温度下转变产物的硬度值。

例如,过冷奥氏体在600~C进行等温转变,若等温时间只有1s,钢仍然处在过冷奥氏体状态;如果等温了3s,这时已有50%的奥氏体转变成珠光体,组织状态是奥氏体加珠光体各占50%;若在600~C等温7s以上,过冷奥氏体早已全部转变成珠光体,珠光体的硬度值是38HRC。

如果在600~C等温3s后立即淬火,将得到50%马氏体加珠光体的组织。

(2)过冷奥氏体连续冷却转变曲线在绝大多数情况下奥氏体转变是在连续冷却的条件下进行的。

如铸造、锻轧、焊接之后,一般都是采用在空气中冷却,或在坑中堆放冷却等连续冷却方式。

从奥氏体状态经炉内冷却退火。

或空气中冷却正火,或水中急冷淬火等热处理工艺也都是连续冷却过程。

因此,研究过冷奥氏体连续冷却转变图(CCT图),有更大的实际意义。

实验测定的不同冷却条件下共析碳钢的CCT图如图10—39所示。

由图可以看出,不同冷却速度下,过冷奥氏体开始转变的时间和温度不同,冷却速度越快,开始转变所需的时间越短,转变温度越低。

图中还划出该钢的c曲线。

与c曲线相比较,CCT图中同样性质的曲线(转变开始线,转变终了线)均位于C曲线的下方。

在连续冷却条件下,共析碳钢不发生贝氏体转变。

若冷却速度小于33.4~C.s叫(图中的曲线3)时,奥氏体将全部转变成珠光
一、
总之,在奥氏体等温转变图上可以划分为珠光体相变、贝氏体相变和马氏体相变等三个区域。

上述共析钢曲线形状比较简单,但随着钢中碳量和合金元素的不同,会有各种类型的C 曲线。

在碳钢中,亚共析钢和过共析钢的C曲线形状与共析钢基本相似,但位置向左移,
同时在过冷奥氏体分解的温度范围内,还有先共析铁素体或先共析渗碳体的析出。

如过共析钢的奥氏体化温度在A 3-A cm 之间,由于存在较多的未溶渗碳体,因而在其C 曲线上一般没有先共析渗碳体析出线。

在合金钢中,合金元素对C 曲线的影响主要有两个方面,一是改变前后位置,即促进或延迟过冷奥氏体的分解,二是改变形状,使珠光体转变区与贝氏体转变区分开。

各种合金元素对珠光体转变和贝氏体转变的影响是不同的,强碳化物形成元素如钛、钒、钼、钨、铬在含量较多时,大都使珠光体与贝氏体转变区分开并对奥氏体到珠光体转变有更为明显的推迟作用。

根据C 曲线的形状以及珠光体转变区、贝氏体转变区相互位置的不同,在Ms 温度以上时的C 曲线大致可归纳为以下几种类型 :
1)珠光体转变与贝氏体转变曲线重迭
图中在A 1~Ms 的温度范围内只有一个“鼻子”,在“鼻子”上部区进行珠光体转变;“鼻子”下部区进行贝氏体转变;碳钢及非碳化物形成元素或非稳定碳化物形成元素的低合金钢,如Co 钢、Ni 钢、Mn 钢(锰含量较低时)等的奥氏体等
温转变曲线属于这种类型。

2)珠光体转变曲线与贝氏体转变曲线分开,奥氏体最大转变速度在贝氏体转变区
图中出现了两组曲线,上面一组表示珠光体转变,下面一组为贝氏体转变,两个转变区域之间出现一个奥氏体稳定区域,在Cr、W、Mo、V等形成稳定碳化物元素的钢中经常具有这种类型的曲线。

应当指出,在合金元素含量较低时,两个“鼻子”间的奥氏体稳定区不很明显,含量较高时,两组曲线往往截然分开。

通常,在合金奥氏体中含碳量少时,奥氏体
最大转变速度在贝氏体转变区,如38CrMoAl。

3)只有贝氏体转变区
曲线图Ms点温度以上只有贝氏体转变区域,由于合金元素的作用,珠光体转变的孕育期很长,以致一般不在图中出现,含较多Ni的低碳和中碳CrNiMo钢或CrNiW钢具
有这种类型的C曲线,如18Cr2Ni4WA。

4)珠光体转变曲线与贝氏体转变曲线分开,奥氏体最大转变速度在珠光体内 在合金奥氏体中含碳量较多时,奥氏体最大转变速度在珠光体内,如Cr12。

5)只有珠光体转变
这种类型表示形成稳定碳化物元素含量与碳含量的比值较高的钢的C 曲线。

如3Cr l3,4Cr l3的C 曲线,在合金元素影响下,贝氏体转变速度大大降低,它的转变曲线剧烈右移或同时剧烈下移,甚至移到不能在一般的奥氏体等温转变曲线图上出现,因此在A 1-Ms 温度范围内只发生珠光体转变。

6)只析出碳化物,无任何相变
这种类型较特殊,即在较高的碳和合金元素含量影响下,珠光体转变和贝氏体转变都没有被发现,同时Ms,点降到室温以下,于是从A 1到室温的整个温度范围内,除了析出碳化物外,不发生任何相变,这类钢的奥氏体通常极其稳定,属于奥氏体钢。

四、各种因素对奥氏体等温转变曲线的影响
影响a曲线形状位置的因素很多,主要有:
1.碳的影响
在正常加热条件下,亚共析钢的C曲线随着含碳量增加向右移动,过共析钢的C 曲线随含碳量的增加向左移动。

故在碳钢中以共析碳钢过冷奥氏体最稳定。

2.合金元素的影响
除了Co以外,所有的合金元素溶入奥氏体后,都增大其稳定性,使一曲线右移。

碳化物形成元素含量较多耐,使C曲线的形状发生变化,出现两组曲线。

3.加热温度和保温时间的影响
随着加热温度的提高和保温时间的延长,奥氏体的成分更加均匀,作为奥氏体分解的晶核数量减少,同时奥氏体晶粒长大,晶界面积减少,这些都不利于过冷奥氏体的分解,提高了奥氏体的稳定性,使C曲线右移。

图2—7表示奥氏体化温度对Garl5钢a曲线的影响。

C线的应用很广,例如可以利用C线大致估计出这种钢制的工件在某种冷却介质中冷却得到的组织;可以利用C线制订等温退火、等温淬火和分级淬火的工艺;可以用来估计钢的接受淬火的能力,并据此选择适当的冷却介质等等。

若冷却速度在3、2曲线之间,则奥氏体冷却到500~C
时,已有相当一部分奥氏体转变为珠光体,而尚未转变
的奥氏体将停止转变,直到冷却到Ms点以下发生马氏
体转变。

若冷却速度大于140~C.s_。

(图中曲线2),过冷
奥氏体将不会发生分解转变,将一直冷却到Ms点以下
发生马氏体转变。

连续冷却过程中,奥氏体不发生分解
转变的最低速度,称为临界冷却速度。

奥氏体的晶粒度与奥氏体化温度和时间对过冷奥
氏体的稳定性和转变速率以及临界冷却速度有很大的
影响。

奥氏体晶粒细小,单位体积内晶界面积增大,促
进珠光体形成,加快奥氏体转变,使C曲线相对左移,即
临界冷却速度大。

奥氏体化温度高或保温时间长,促进
渗碳体溶解和奥氏体均匀化,同时也会使奥氏体晶粒粗
大,因而推迟了珠光体的形成,使过冷奥氏体转变的速
率变慢,使C曲线相对右移,即临界冷却速度变慢。


外,奥氏体成分的微量变化,对C曲线的位置也有影响,
因此,在利用手册中钢的C曲线资料时,应注意钢的成
分、奥氏体化温度和晶粒度等条件。

奥氏体实际转变温度与A1的温差称为过冷
度。

过冷度越大,二相间化学自由能差越大,相变驱动力越大。

奥氏体等温转变图反映了奥氏体在A点以下不同温度保温时,恒温时间和转变量的关
系。

最基本的和直观的测定方法是金相法。

它是将一组奥氏体化的薄片试样迅速冷却到各个不同的等温温度(一般用导热性好的熔融金属或盐浴作为等温浴炉)。

在每个温度保温不同的时间,然后迅速冷却(即进行淬火),此时未分解的奥氏体就变成了马氏体,将试样放在体。

相关文档
最新文档