七年级下册经典例题透析----易错题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下册经典例题透析----易错题
第五章相交线与平行线
1.未正确理解垂线的定义
1.下列判断错误的是().
A.一条线段有无数条垂线;
B.过线段AB中点有且只有一条直线与线段AB垂直;
C.两直线相交所成的四个角中,若有一个角为90°,则这两条直线互相垂直;
D.若两条直线相交,则它们互相垂直.
错解:A或B或C.
解析:本题应在正确理解垂直的有关概念下解题,知道垂直是两直线相交时有一角为90°的特殊情况,反之,若两直线相交则不一定垂直.
正解:D.
2.未正确理解垂线段、点到直线的距离
2.下列判断正确的是().
A.从直线外一点到已知直线的垂线段叫做这点到已知直线的距离;
B.过直线外一点画已知直线的垂线,垂线的长度就是这点到已知直线的距离;
C.画出已知直线外一点到已知直线的距离;
D.连接直线外一点与直线上各点的所有线段中垂线段最短.
错解:A或B或C.
解析:本题错误原因是不能正确理解垂线段的概念及垂线段的意义.
A.这种说法是错误的,从直线外一点到这条直线的垂线段的长度叫做点到直线的距离. 仅仅有垂线段,没有指明这条垂线段的长度是错误的.
B.这种说法是错误的,因为垂线是直线,直线没有长短,它可以无限延伸,所以说“垂线的长度”就是错误的;
C.这种说法是错误的,“画”是画图形,画图不能得到数量,只有“量”才能得到数量,这句话应该说成:画出已知直线外一点到已知直线的垂线段,量出垂线段的长度.
正解:D.
3.未准确辨认同位角、内错角、同旁内角
3.如图所示,图中共有内错角().
组;组;组;组.
错解:A.
解析:图中的内错角有∠AGF与∠GFD,∠BGF与∠GFC,∠HGF与∠GFC三组.其中∠HGF与∠GFC 易漏掉。
正解:B.
4.对平行线的概念、平行公理理解有误
4.下列说法:①过两点有且只有一条直线;②两条直线不平行必相交;③过一点有且只有一条
直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行. 其中正确的有().
个;个;个;个.
错解:C或D.
解析:平行线的定义必须强调“在同一平面内”的前提条件,所以②是错误的,平行公理中的“过一点”必须强调“过直线外一点”,所以④是错误的,①③是正确的.
正解:B.
5.不能准确识别截线与被截直线,从而误判直线平行
5.如图所示,下列推理中正确的有().
①因为∠1=∠4,所以BC∥AD;②因为∠2=∠3,所以AB∥CD;
③因为∠BCD+∠ADC=180°,所以AD∥BC;④因为∠1+∠2+∠C=180°,所以BC∥AD.
个;个;个;个.
错解:D.
解析:解与平行线有关的问题时,对以下基本图形要熟悉:“”“”“”,只有③推理正确.
正解:A.
6.混淆平行线的判定和性质、忽略平行线的性质成立的前提条件
6.如图所示,直线,∠1=70°,求∠2的度数.
错解:由于,根据内错角相等,两直线平行,可得∠1=∠2,又因为∠1=70°,所以∠2=70°.
解析:造成这种错误的原因主要是对平行线的判定和性质混淆. 在运用的时候要注意:(1)判定是不知道直线平行,是根据某些条件来判定两条直线是否平行;(2)性质是知道两直线平行,是根据两直线平
行得到其他关系.
正解:因为(已知),
所以∠1=∠2(两直线平行,内错角相等),
又因为∠1=70°(已知),
所以∠2=70°.
7.对命题这一概念的理解不透彻
7.判断下列语句是否是命题. 如果是,请写出它的题设和结论.
(1)内错角相等;(2)对顶角相等;(3)画一个60°的角.
错解:(1)(2)不是命题,(3)是命题.
解析:对于命题的概念理解不透彻,往往认为只有存在因果关系的关联词才是命题,正确认识命题这一概念,关键要注意两点,其一必须是一个语句,是一句话;其二必须存在判断关系,即“是”或“不是”.
正解:
(1)是命题. 这个命题的题设是:两条直线被第三条直线所截;结论是:内错角相等. 这个命题是一个错误的命题,即假命题.
(2)是命题. 这个命题的题设是:两个角是对顶角;结论是:这两个角相等. 这个命题是一个正确的命题,即真命题.
(3)不是命题,它不是判断一件事情的语句.
8.忽视平移的距离的概念
8.“如图所示,△A′B′C′是△ABC平移得到的,在这个平移中,平移的距离是线段AA′”这句话对吗?
错解:正确.
解析:平移的距离是指两个图形中对应点连线的长度,而不是线段,所以在这个平移过程中,平移的距离应该是线段AA′的长度.
正解:错误.
第六章平面直角坐标系
1.不能确定点所在的象限
1.点A的坐标满足,试确定点A所在的象限.
错解:因为,所以,,所以点A在第一象限.
解析:本题出错的原因在于漏掉了当,时,的情况,此时点A在第三象限.
正解:因为,所以为同号,即,或,. 当,时,点A在第一象限;当,时,点A在第三象限.
2.点到x轴、y轴的距离易混淆
2.求点A(-3,-4)到坐标轴的距离.
错解:点A(-3,-4)到轴的距离为3,到轴的距离为4.
解析:错误的原因是误以为点A()到轴的距离等于,到轴的距离等于,而事实上,点A()到轴的距离等于,到轴的距离等于,不熟练时,可结合图形进行分析.
正解:点A(-3,-4)到轴的距离为4,到轴的距离为3.
第七章三角形
1.画三角形的高易出错
1.如图所示,钝角△ABC中,∠B是钝角,试作出BC边上的高AE.
错解:如图所示:
解析:对三角形高的定义理解不牢,理解不清楚造成的. 未抓住垂直这一特征,只是凭主观想象,认为钝角三角形的高和锐角三角形的高一样,也在三角形的内部. AE和BC不垂直在图中是很明显的.
正解:如图所示:
2.不能正确使用三边关系定理
2.有四条线段,长度分别为4cm,8cm,10cm,12cm,选其中三条组成三角形,试问可以组
成多少个三角形?
错解:有4种情况可以组成三角形:①12cm,10cm,8cm;②12cm,10cm,4cm;③10cm,8cm,4cm;④12cm,8cm,4cm.