图形的相似知识点总结

合集下载

初三相似的图形知识点归纳总结

初三相似的图形知识点归纳总结

初三相似的图形知识点归纳总结相似的图形在初中数学中占据非常重要的位置。

相似的图形具有相同的形状但不一定相等的大小。

在初三学习过程中,我们接触到了许多涉及相似图形的知识点。

本文将对初三相似的图形知识点进行归纳总结,以帮助同学们更好地理解和掌握这一内容。

一、相似三角形的判定条件1. AAA相似定理:如果两个三角形的对应角相等,则它们相似。

2. AA相似定理:如果两个三角形的一个角对应对应地相等,并且两个对应边成比例,则它们相似。

3. 相似三角形的对应边的比例关系:如果两个三角形相似,那么它们的对应边的长度之比等于相似比。

即\(\frac{AB}{A'B'} = \frac{BC}{B'C'} = \frac{CA}{C'A'}\)二、相似三角形的性质和应用1. 相似三角形的边长比例性质:两个相似三角形的相应边的比等于它们的相似比。

即\(\frac{AB}{A'B'} = \frac{BC}{B'C'} = \frac{CA}{C'A'}\)2. 相似三角形的高线比例性质:两个相似三角形的高线与底边之比等于相似比。

即\(\frac{h_1}{h_2} = \frac{AB}{A'B'} = \frac{BC}{B'C'} =\frac{CA}{C'A'}\)3. 相似三角形的面积比例性质:两个相似三角形的面积之比等于边长之比的平方。

即\(\frac{S_1}{S_2} = \left(\frac{AB}{A'B'}\right)^2 =\left(\frac{BC}{B'C'}\right)^2 = \left(\frac{CA}{C'A'}\right)^2\)4. 利用相似三角形性质解决实际问题。

如影子定理、塔楼高度的测量等。

人教版相似图形知识点总结

人教版相似图形知识点总结

人教版相似图形知识点总结一、基本概念1. 相似图形的定义相似图形是指形状相同但大小可能不同的图形。

当两个图形的对应角相等,对应边成比例时,我们称这两个图形是相似的。

2. 相似比相似图形之间的边的长度比叫做相似比。

设两个相似图形的对应边分别为a和b,那么a:b就是它们的相似比。

3. 相似比的性质相似比是真分数或小数。

相似比的倒数也是其相似比。

4. 相似比的应用相似比可用于求解各种问题,如测量图形的大小,进行比例测量等。

在解决实际问题时,我们经常需要根据相似比进行尺寸的调整和计算。

二、相似图形的性质1. 对应角相等相似图形的对应角相等。

这意味着,如果两个图形是相似的,它们的对应角度度数是相等的。

2. 对应边成比例相似图形的对应边成比例。

这意味着,如果两个图形是相似的,那么它们的对应边的长度之比是相等的。

3. 面积的比相似图形的面积比等于边长比的平方。

设两个相似图形的对应边分别为a和b,它们的面积分别为S1和S2,那么S1:S2 = (a/b)²。

三、相似图形的判定1. 判断相似的方法(1)角对应相等判断两个图形是否相似,可以首先比较它们对应的角度是否相等。

如果对应角相等,则这两个图形是相似的。

(2)边成比例当两个图形的对应边成等比例时,它们是相似的。

也就是说,如果两个图形的对应边的长度之比相等,那么这两个图形是相似的。

2. 斜率的判断方法两条直线斜率相等,那么它们之间的夹角相等。

因此,我们可以通过计算两个图形的直线斜率来判断它们是否相似。

3. 重要结论如果三角形的一个角相等,则它们是相似的。

如果三角形的三边成比例,则它们是相似的。

四、相似图形的应用1. 相似图形的构造通过相似图形的性质,我们可以利用已知的图形构造出相似的新图形。

比如通过放缩、旋转等方式,我们可以构造出相似的图形。

2. 根据相似图形的性质进行计算使用相似图形的性质,我们可以进行各种计算。

比如求解未知边长、未知角度的大小等问题。

北师大版九年级数学上册第四章《图形的相似》知识点总结

北师大版九年级数学上册第四章《图形的相似》知识点总结

北师大版九年级数学上册第四章《图形的相似》知识点总结
一.比例线段:
1两条线段的比是 的比。

将“形”的问题转化为“数”的问题。

2.成比例线段:四条线段a,b,c,d 中,如果 ,那么这四条线段a,b,c,d 叫做成比例线段。

比例线段是有顺序的,即a,b,c,d 是成比例线段,则是a:b=c:d
3.如果c
b b
a ,那么
b 叫做a 和
c 的比例中项; 4.比例的性质:
(1)基本性质:如果 ,那么 。

()等比性质:如果 ,那么 5.平行线分线段成比例定理:
如图,321////l l l ,则可得比例式: DE//AB,则所得比例式:
6.黄金分割: 黄金比 二.相似三角形:
1.相似三角形的判定方法:
(1)两角对应 的两个三角形相似。

(2)两边对应 且 相等的两个三角形相似。

(3)三边 的两个三角形相似
2.相似三角形的性质:
3.位似图形:
4.位似图形有同向和 两种。

在坐标系中,图形上点的坐标都乘以k 时,得到的图形与原图形关于原点位似,且位似比是|k|.
5.判定两个三角形相似的常用步骤:
先通过已知,平行、对顶角、公共角等,看能否找到两对相等的角; 若只能找到一对相等的角,再分析夹这个角的两边是否成比例; 若找不到相等的角,就分析三边是否成比例。

5.常见的基本模型有 :
D E F
1l 3
l 2
l m n
B A C。

苏科版九年级数学下册第六章《图形的相似》知识点总结+易错点汇总

苏科版九年级数学下册第六章《图形的相似》知识点总结+易错点汇总

第六章《图形的相似》知识点一:比例线段1.比例线段:在四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即a cb d=,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段. 2.比例的基本性质:(1)基本性质:a cb d =⇔ ad =bc ;(b 、d ≠0)(2)合比性质:a c b d =⇔a b b ±=c dd±;(b 、d ≠0) (3)等比性质:a cb d ==…=m n =k (b +d +…+n ≠0)⇔......a c mb d n++++++=k .(b+d …+n ≠0) 3.平行线分线段成比例定理:(1)两条直线被一组平行线所截,所得的对应线段成比例.即如图所示,若l 3∥l 4∥l 5,则AB DEBC EF=.(2)平行于三角形一边的直线截其他两边(或两边的延长 线),所得的对应线段成比例.即如图所示,若AB ∥CD ,则OA OBOD OC=. (3)平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似. 如图所示,若DE ∥BC ,则△ADE ∽△ABC.4. 黄金分割:点C 把线段AB 分成两条线段AC 和BC ,如果AC AB ==5-12≈0.618,那么线段AB 被点C 黄金分割.其中点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.例1:把长为10cm 的线段进行黄金分割,那么较长线段长为 cm 。

知识点二 :相似三角形的性质与判定5. 相似三角形的判定:(1) 两角对应相等的两个三角形相似(AAA).如图,若∠A =∠D ,∠B =∠E ,则△ABC ∽△DEF. (2) 两边对应成比例,且夹角相等的两个三角形相似. 如图,若∠A =∠D ,AC ABDF DE=,则△ABC ∽△DEF. FE DC B A学 班级 姓名 考试号-----------------------------------------------------------密---------------------------------封----------------------------------线--------------------------------------(3) 三边对应成比例的两个三角形相似.如图,若AB AC BCDE DF EF==,则△ABC∽△DEF.6.相似三角形的性质:(1)对应角相等,对应边成比例.(2)周长之比等于相似比,面积之比等于相似比的平方.(3)相似三角形对应高的比、对应角平分线的比和对应中线的比等于相似比.例2:(1)已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为2,则△ABC与△DEF的面积之比为 .(2) 如图,DE∥BC, AF⊥BC,已知S△ADE:S△ABC=1:4,则AF:AG= .【学习目标】1.加深了解比例的基本性质、线段的比、成比例线段,认识图形的相似、位似等概念和性质.2.理解相似图形的性质与判定、位似的性质与把一个图形放大或缩小,在同一坐标系下感受位似变换后点的坐标的变化规律.【重点难点】重点:利用相似三角形知识解决实际的问题;位似的应用及在平面直角坐标系中作位似图形.难点:如何把实际问题抽象为相似三角形、位似形这一数学模型.【知识回顾】1、相似三角形定义:_________________________.2、判定方法:__________________________3、相似三角形性质:(1)对应角相等,对应边成比例;(2)对应线段之比等于;(对应线段包括哪几种主要线段?)(3)周长之比等于;(4)面积之比等于.4、相似三角形中的基本图形.(1)平行型(X型,A型); (2)交错型;(3)旋转型;(4)母子三角形.5、位似形的性质: .6、将一个图形按一定的比例放大或缩小的步骤为: . 【综合运用】1.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC(2)若AB=4,AD=33,AE=3,求AF的长.2如图,在等腰三角形△ABC中,底边BC=60cm,高AD=40cm,四边形PQRS是正方形,S,R分别在AB,AC上,SR与AD相交于点E.(1)△ASR与△ABC相似吗?为什么?(2)求正方形PQRS的边长.【矫正补偿】如图1,已知矩形ABED,点C是边DE的中点,且AB = 2AD.(1)判断△ABC的形状,并说明理由;(2)保持图1中ABC固定不变,绕点C旋转DE所在的直线MN到图2中(当垂线段AD、BE在直线MN的同侧),试探究线段AD、BE、DE长度之间有什么关系?并给予证明.【完善整合】1.通过本节课的学习你有那些收获?2.你还有哪些疑惑?第六章《图形的相似》易错疑难易错点1 对黄金分割的概念理解不清而出现漏解AB ,点C是线段AB的黄金分割点,则AC的长为.1. 已知线段20易错点2 找不准三角形的对应关系2. 如图,ACD ∆和ABC ∆相似需具备的条件是() A.AC AB CD BC =; B. CD BCAD AC=C. 2AC AD AB =g ;D. 2CD AD BD =g易错点3 混淆相似三角形的性质,误认为相似三角形的面积比等于相似比 3. 如图,若ADE ABC ∆∆:,DE 与AB 相交于点D ,与AC 相交于点E ,2DE =,5BC =,20ABC S ∆=,求ADE S ∆的值.易错点4 不能区分“相似”写“:”的含义4. 如图,在矩形ABCD 中,10,4AB AD ==,点P 是边AB 上一点,连接,PD PC ,若APD ∆与BPC ∆相似,则满足条件的点P 有 个.第4题第5题5. 如图,ABC ∆中,90C ∠=︒,16BC =cm ,12AC =cm ,点P 从点B 出发,沿BC 以2 cm/s 的速度向点C 移动,点Q 从点C 出发,以1 cm/s 的速度向点A 移动,若点,P Q 分别从点,B C 同时出发,设运动时间为t s ,当t = 时,CPQ ∆与CBA ∆相似. 疑难点1 相似三角形的判定和性质的综合应用1. 如图是一块含30°角的直角三角板,它的斜边8AB =8cm ,里面空心DEF ∆的各边与ABC ∆的对应边平行,且各对应边间的距离都是1 cm ,那么DEF ∆的周长是( )A. 5cm ;B. 6cm ;C. (63)-cm ;D. (33)+cm第1题第2题2. 如图,已知矩形ABCD ,2,6AB BC ==,点E 从点D 出发,沿DA 方向以每秒1个单位长度的速度向点A 运动,点F 从点B 出发,沿射线AB 以每秒3个单位长度的速度运动,当点E 运动到点A 时,,E F 两点停止运动.连接BD ,过点E 作EH BD ⊥,垂足为H ,连接EF ,交BD 于点G ,交BC 于点M ,连接,CF EC .给出下列结论:①CDE CBF ∆∆:;②DBC EFC ∠=∠;③DE HGAB EH=;④GH 10.上述结论正确的个数为( )A.1B. 2C. 3D. 4 疑难点2 相似图形中的规律探索3.如图,在平面直角坐标系中,矩形AOCB 的两边,OA OC 分别在x 轴和y 轴上,且2,1OA OC ==.在第二象限内,将矩形AOCB 以原点O 为位似中心放大为原来的32倍,得到矩形111A OC B ,再将矩形111A OC B 以原点O 为位似中心放大32倍,得到矩形222A OC B ……依此类推,得到的矩形n n n A OC B 的对角线交点的坐标为 .第3题 第4题4.如图,已知正方形11ABC D 的边长为1,延长11C D 到1A ,以11A C 为边向右作正方形1122AC C D ,延长22C D 到2A ,以22A C 为边向右作正方形2233A C C D ……依此类推,若112A C =,且点12310,,,,,A D D D D …都在同一直线上,则正方形991010A C C D 的边长是 .疑难点3 相似三角形与函数等知识的综合5. 反比例函数y =的图象在第一象限的分支上有一点A (3,4),P 为x 轴正半轴上的一个动点,(1)求反比例函数解析式.(2)当P 在什么位置时,△OP A 为直角三角形,求出此时P 点的坐标.疑难点4 动态问题中的相似三角形6.如图,在直角坐标系中,点(0,4),(3,4),(6,0)A B C --,动点P 从点A 出发以1个单位长度/秒的速度在y 轴上向下运动,动点Q 同时从点C 出发以2个单位长度/秒的速度在x 轴上向右运动,过点P 作PD y ⊥轴,交OB 于点D ,连接DQ .当点P 与点O 重合时,两动点均停止运动.设运动的时间为t 秒.(1)当1t =时,求线段DP 的长;(2)连接CD ,设CDQ ∆的面积为S ,求S 关于t 的函数表达式,并求出S 的最大值; (3)运动过程中是否存在某一时刻,使ODQ ∆与ABC ∆相似?若存在,请求出所有满足要求的t 的值;若不存在,请说明理由参考答案例1. 5(5-1);例 2.(1)9:4;(2)1:2 综合运用:1.分析:(1)根据平行四边形的性质可得AD ∥BC ,AB ∥CD ,即得∠ADF =∠CED ,∠B +∠C =180°,再由∠AFE +∠AFD =180°,∠AFE =∠B ,可得∠AFD =∠C ,问题得证; (2)根据平行四边形的性质可得AD ∥BC ,CD =AB =4,再根据勾股定理可求得DE 的长,再由△ADF ∽△DEC 根据相似三角形的性质求解即可. 证明:(1)∵四边形ABCD 是平行四边形∴AD ∥BC ,AB ∥CD ∴∠ADF =∠CED ,∠B +∠C =180°∵∠AFE +∠AFD =180,∠AFE =∠B ∴∠AFD =∠C ∴△ADF ∽△DEC ; 解:(2)∵四边形ABCD 是平行四边形,∴AD ∥BC ,CD =AB =4。

九年级图形的相似性知识点

九年级图形的相似性知识点

九年级图形的相似性知识点九年级的数学课程中,图形的相似性是一个重要的知识点。

相似性是指两个或多个图形在形状上相似的性质。

在学习相似性的过程中,我们将会了解到比例、角度、边长等概念的应用,进一步提高我们的几何思维能力。

一、比例和比例关系相似性的关键之一是比例。

比例在几何学中的应用非常广泛,它在描述相似图形的关系时起着重要的作用。

比例可以理解为两个或多个量之间的比较,通常可以用两个数字或表达式之间的比值表示。

在相似图形中,我们可以通过比较两个图形的对应边长的比例来判断它们是否相似。

例如,设有两个三角形ABC和DEF,如果它们的对应边长的比例相等,即AB/DE = BC/EF = AC/DF,那么这两个三角形就是相似的。

通过比较他们的边长比例,我们可以得出它们形状相似的结论。

二、角度的对应关系除了比例关系外,角度的对应关系也是判断图形相似的重要依据。

两个相似的图形,其对应的内角度是相等的。

也就是说,如果两个三角形ABC和DEF是相似的,那么它们的对应内角度A、B、C和D、E、F是相等的。

这个性质在实际问题中非常有用。

通过测量两个图形的内角度的大小,我们可以判断它们是否相似,从而在解决几何问题时得到更精确的结果。

三、比例尺在实际应用中,我们经常会遇到需要进行测量并绘制缩放图形的情况。

比例尺是一种常用的工具,它能够将实际尺寸与绘制尺寸之间的比例关系呈现出来。

比例尺通常以分数的形式表示,例如1/50或1:50。

意思是1个单位的实际长度对应于绘制的50个单位长度。

通过使用比例尺,我们可以将实际的图形缩小或放大到所需的大小,以便更好地进行观察和研究。

四、图形的相似性应用图形的相似性在实际生活中有着广泛的应用。

举个例子,我们常常看到地图上的图形,它们是按比例绘制的,以便更直观地显示地理信息。

此外,相似性还被应用在建筑、工程、艺术等领域。

例如,在建筑设计中,相似三角形的原理被广泛运用。

建筑师可以通过相似性来计算建筑物的比例,以便在保持整体平衡和美观的同时,满足功能和结构的要求。

知识点1 图形相似的定义

知识点1 图形相似的定义

知识点1 图形相似的定义定义:我们把形状相同的图形叫做相似图形. (1)两个图形相似,其中一个图形可以看做是由 另一个图形放大或缩小得到的. (2)全等图形可以看成是一种特殊的相似图形, 即不仅形状相同,大小也相同. (3)判断两个图形是否相似,就是看两个图形是不是相同,与图形的大小、位置无关,这也 是相似图形的本质.【例1】下列图形不是相似图形的是( )A.同一张底片冲洗出来的两张不同尺寸的照片B.用放大镜将一个细小物体图案放大过程中原 有图案C.某人的侧身照片和正面照片D.大小不同的两张同版本中国地图 解析:依据图形相似的定义,某人的侧身照片和正 面照片是两个不同角度的照片,它们的形状不同,因此不是相似图形. 答案:C知识点2 线段成比例注意:在a cb d ,b=c 时,我们把b 叫做a,d 的比例中 项,此时b 2=ad. 点C 把线段AB 分成两条线段AC 和BC (AC >BC ),如果AC 是线段AB 和BC 的比例中项,且ACAB=BC AC =5-12≈0.618,则C 点叫做线段AB 的黄金分割点.【例2】已知线段a 、b 、c 、d 成比例线段,其中 a=2 m ,b=4 m ,c=5 m ,则d=()A.1 mB.10 mC. mD. m解析:根据比例线段的定义得到a∶b=c∶d,然后把a=2 m,b=4 m,c=5 m代入进行计算即可∵线段a、b、c、d是成比例线段∴a∶b=c∶d而a=2 m,b=4 m,c=5 m∴d= bca452⨯= =10 m答案:B知识点3 相似多边形及其性质定义:两个边数相同的多边形,如果它们的角分别相等,边成比例,那么这两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.性质:相似多边形的对应角相等,对应边成比例.注意:(1)仅有角相等,或仅有对应边成比例的两个多边形不一定相似.(2)相似比的值与两个多边形的前后顺序有关.【例3】如图,四边形ABCD和四边形EFGH相似,求∠α、∠β的大小和EH 的长度解:∵四边形ABCD和四边形EFGH相似,∴∠α=∠B=83°,∠D=∠H=118°,∠β=360°-(83°+78°+118°)=81°,EH:AD=HG:DC∴EH24 2118=∴EH=28(cm).答:∠=83°,∠=81°,EH=28cm.ABC 相似,且 △DEF 的最大边长为20,则△DEF 的周长为 解:∵△DEF ∽△ABC ,△ABC 的三边之比为2:3:4 ∴△DEF 的三边之比为2:3:4 又∵△DEF 的最大边长为20∴△DEF 的另外两边分别为10、15 ∴△DEF 的周长为10+15+20=45 答案:45知识点1 相似三角形的判定定理1平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似 因为DE ∥BC ,所以图中△ABC ∽△ADE.【例1】如图所示,已知在ABCD中,E 为AB 延长线 上的一点,AB =3BE ,DE 与BC 相交于点F ,请找出图中各对相似三角形,并求出相应的相似比.解:∵四边形ABCD是平行四边形∴AB//CD,AD//BC∴△BEF∽△CDF,△BEF∽△AED∴△BEF∽△CDF∽△AED∴当△BEF∽△CDF时,相似比k1=BE/CD=1/3 ;当△BEF∽△AED时,相似比K2=BE/AE=1/4;当△CDF∽△AED时,相似比K3=CD/AE=3/4 .知识点2 相似三角形的判定定理2三边成比例的两个三角形相似.这种判定方法是常用的判定方法,也就是说两个三角形只要三条对应边的比相等,就可判定这两个三角形相似.C知识点1 相似三角形的判定定理3两边成比例且夹角相等的两个三角形相似.如图所示,在△ABC与△DEF中,∠B=∠E,23AB BCDE EF==,可判定△ABC∽△DEF.注意在利用该方法时,相等的角必须是已知两对应边的夹角,才能使这两个三角形相似,不要错误地认为是任意一角对应相等,两个三角形就相似.注意:在两个直角三角形中,若两组直角边的比相等,则这两个直角三角形相似.【例1】如图,在正方形ABCD中,E为边AD的中点,点F在边CD上,且CF=3FD,△ABE与△DEF相似吗?为什么?知识点2 相似三角形的判定定理4两角分别相等的两个三角形相似如图所示,如果∠A=∠A′,∠B=∠B′,那么△ABC∽△A1B1C1.注意:在两个直角三角形中,若有一个锐角对应相等,则这两个直角三角形相似.知识点3 相似三角形的判定定理的综合运用判定三角形相似的几种基本思路:(1)条件中若有平行线,可采用相似三角形基本定理;(2)条件中若有一对等角,可再找一对等角或再找夹边成比例;(3)条件中若有两边对应成比例,可找夹角相等;(4)条件中若有一对直角,可考虑再找一对等角或证明斜边、直角边对应成比例;(5)条件中若有等腰关系,可找顶角相等或一对底角相等,也可找底和腰对应成比例.知识点1 性质一:相似三角形对应线段的比等于似比相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.一般地,我们有:相似三角形对应线段的比等于相似比.已知一个三角形三边长为8,6,12,另一个三角形有一条边为4,要使这两个三角形相似,则另外两边长分别为.知识点2 性质二:相似三角形周长的比等于相似比两个相似三角形对应中线的比为1:4,它们的周长之差为27cm,则较大的三角形的周长为cm.解:令较大的三角形的周长为x cm 小三角形的周长为(x-27)cm由两个相似三角形对应中线的比为1:4得1:4=(x-27):x,解得x=36 cm答案:36知识点3 相似三角形面积的比等于相似比的平方两个相似三角形的周长是2:3,它们的面积之差是60cm2,那么它们的面积之和是.解:∵两个相似三角形的周长是2:3∴它们的相似比为2:3,面积的比为4:9设两个三角形的面积分别为4k,9k由题意得,9k-4k=60,解得k=12∴两个三角形的面积分别为48cm2,108cm2∴它们的面积之和是48+108=156cm2答案:156cm2。

数学图形相似九年级知识点

数学图形相似九年级知识点

数学图形相似九年级知识点数学中的图形相似是指两个或多个图形在形状上相似,即它们的对应角度相等,对应边的比例相等。

图形相似在几何学中有重要的应用,能够帮助我们分析和解决各种数学问题。

本文将介绍九年级数学中关于图形相似的知识点。

1. 判断图形相似的条件在九年级数学中,判断两个图形是否相似,需要满足以下三个条件:(1)对应角相等:两个图形的对应角度相等。

(2)对应边比例相等:两个图形中,对应边的长度之比相等。

(3)对应边平行:两个图形中,对应边之间相互平行。

2. 图形相似的性质图形相似具有以下性质:(1)对应角的性质:相似图形的对应角相等,即它们的内角相等,外角相等。

(2)对应边的比例:相似图形的对应边之比等于它们的周长、面积之比。

即若图形A与图形B相似,那么两个图形的对应边AB与A'B'的比例等于它们的周长或面积之比。

3. 相似三角形的定理在相似三角形中,我们可以应用以下定理来求解各种问题:(1)AAA相似定理:如果两个三角形的三个内角分别相等,则这两个三角形相似。

(2)AA相似定理:如果两个三角形的一个内角相等,并且两个三角形的对应边比例相等,则这两个三角形相似。

(3)SAS相似定理:如果两个三角形的一个内角相等,并且两个三角形的一个对边与这个角的对边的比例相等,则这两个三角形相似。

4. 图形相似应用图形相似在实际问题中有广泛的应用,比如:(1)计算高塔的高度:通过相似三角形的定理,我们可以计算高塔的高度。

例如,利用影子定理可以测量高塔的高度,其中就用到了相似三角形的概念。

(2)建模问题:在建模问题中,相似图形的概念可以帮助我们将实际物体或建筑的比例缩小或放大,以便进行实际测量或设计。

总结:数学图形相似是九年级数学中的重要知识点,它可以帮助我们分析和解决各种数学问题。

相似图形的判断条件、性质以及应用都需要我们掌握。

通过学习相似图形的知识,我们可以更好地理解几何学中的概念和应用,提升数学解题能力。

第四章 图形的相似(知识点)

第四章  图形的相似(知识点)

第四章 图形的相似一.成比例线段1.线段的比※1.如果选用同一个长度单位量得两条线段AB, CD 的长度分别是m 、n,那么就说这两条线段的比AB:CD=m:n ,或写成nm B A =. ※2.成比例线段及比例的性质: (1)成比例线段:四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 的比,即d c b a =,那么这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段.※注意点:①a:b=k,说明a 是b 的k 倍; ②由于线段a 、b 的长度都是正数,所以k 是正数; ③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致.(2)比例的基本性质:若dc b a =, 则ad=bc ; 若ad=bc, 则d b c a d c b a ==或 ※合比性质:如果dc b a =,那么d d c b b a ±=±; ※等比性质:如果n m d c b a =⋅⋅⋅==(0≠+⋅⋅⋅++n d b ),那么n d b m c a +⋅⋅⋅+++⋅⋅⋅++=b a 注意:若没有“b+d+…+n ≠0”这个条件,需分类讨论.二.平行线分线段成比例※平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.如图1,1l //2l //3l ,则EFBC DE AB =.推广:过一点的一线束被平行线截得的对应线段成比例.定理推论:①平行于三角形一边的直线截其它两边(或两边的延长线)所得对应线段成比例.②平行于三角形一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.三.黄金分割如图,点C 把线段AB 分成两条线段AC 和BC,如果ACBC AB AC =,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比, 一条线段有两个黄金分割点.≈-=215AB AC :0.618:1;AB BC 253-=四.相似多边形一般地,形状相同的图形称为相似图形.1.概念:对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.2.性质:相似多边形的对应角相等、对应边成比例;周长等于相似比;面积比等于相似比的平方.(3)判定:对应角相等、对应边成比例的两个多边形相似.(两个条件缺一不可)五.三角形的相似(“∽”不需分类讨论,“相似”需分类讨论)1.探索三角形相似的条件※相似三角形的判定方法:一般三角形直角三角形基本定理:平行于三角形的一边且和其他两边(或两边的延长线)相交的直线,所截得的三角形与原三角形相似.①两角对应相等;②两边对应成比例,且夹角相等;③三边对应成比例. ①一个锐角对应相等;②两条边对应成比例;a. 两直角边对应成比例;b.斜边和一直角边对应成比例.2.相似三角形的判定定理的证明3.利用相似三角形测高(3种方法)(1)利用太阳光线平行运用方法1:可以把太阳光近似地看成平行光线,计算时还要用到观测者的身高.(2)利用标杆运用方法2:观测者的眼睛必须与标杆的顶端和旗杆的顶端“三点共线”,标杆与地面要垂直,在计算时还要用到观测者的眼睛离地面的高度.(3)利用反射运用方法3:光线的入射角等于反射角.4.相似三角形的性质 (1)对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比.(2)全等三角形是相似三角的特例,这时相似比等于1. 注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.(3)性质:①相似三角形对应角相等,对应边成比例;②相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比;③相似三角形周长的比等于相似比;④相似三角形面积的比等于相似比的平方.※5.图形的位似:→位似图形的概念:如果两个图形不仅相似,而且每组对应点的连线交于一点,对应边互相平行或在一条直线上,那么这样的两个图形叫做位似图形,这个点叫做位似中心.这时两个相似图形的相似比又叫做它们的位似比.→位似图形的性质:(1)位似图形是相似图形,具备相似图形的所有性质;(2)位似图形上的任意一对对应点到位似中心的距离之比等于相似比;(3)位似图形中的对应线段平行(或在一条直线上).→位似图形的画法:(1)画出基本图形; (2)选取位似中心;(3)根据条件确定对应点,并描出对应点;(4)顺次连结各对应点,所成的图形就是所求的图形.例题:如图,已知△ABC 和点O.以O 为位似中心,求作△ABC 的位似图形,并把△ABC 的边长扩大到原来的两倍.注意:给出基本图形和位似中心,可以做两个图形与原图形位似,分别在位似中心同侧和异侧各有一个,在具体的题中需根据实际情况作图.→位似变换与坐标在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k.例如:点A(x,y)的对应点为A ´,则A ´点的坐标可以这样确定xA ´=xA ×k ,yA ´=yA ×k 即A ´(kx,ky )或xA ´=xA ×(-k),yA ´=yA ×(-k) 即A ´(-kx,-ky ) 例题:在平面直角坐标系中, 四边形ABCD 的四个顶点的坐标分别为A(-6,6),B(-8,2),C(-4,0),D(-2,4),画出它的一个以原点O 为位似中心,相似比为21的位似图形.题:△ABC三个顶点坐标分别为A(2,3),B(2,1),C(6,2),以点O为位似中心,相似比为2,将△ABC放大,点A的对应点A′的坐标为____________总结:至此,我们学过的图形变换有:平移,轴对称,旋转,位似.(1)平移:上下移:横坐标不变,纵坐标随之平移左右移:纵坐标不变,横坐标随之平移(2)轴对称:关于x轴对称:横坐标不变,纵坐标互为相反数关于y轴对称:纵坐标不变,横坐标互为相反数(3)旋转:绕原点旋转180度(中心对称):横坐标、纵坐标都互为相反数(4)位似:以原点为位似中心,相似比为k的位似图形对应点的坐标的比等于k或-k.。

第二十七章_相似知识点

第二十七章_相似知识点

第二十七章 相似知识体系 第一节 图形的相似1.比例线段:①.如果a/b=c/d ,那么ad=bc ;②.如果ad=bc ,且bd≠0,那么a/b=c/d ; 如果a/b=c/d ,那么(a+b)/b=(c+d)/d 。

2.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段的比相等。

3.相似图形:形状相同的图形叫做相似图形①.相似图形的大小不一定相等。

形状、大小都相等的图形叫做全等图形②.全等图形是相似图形的特殊情况③.图形的相似具有传递性:如果图形A 与图形B 相似,图形B 与图形C 相似,那么图形A 与图形C 相似。

4.相似多边形的特征:①.对应边成比例,对应角相等②.两个相似多边形对应边的比叫做这两个多边形的相似比5.相似多边形的识别:如果两个多边形对应边成比例,对应角相等,那么这两个多边形相似6.黄金分割把一条线段分成两条线段,使较长的线段是原线段与较小的线段的比例中项,叫做把这条线段黄金分割。

A P B即:如图,如果点P 把线段AB 分成两条线段AP 和BP ,使得BP AP AP AB=,那么线段AB 被点P 黄金分割,线段AP 与AB 的比叫做黄金比,点P 叫做线段AB 的黄金分割点,即51AP AB -=. 第二节 相似三角形1.相似三角形的概念:两个对应角相等,对应边成比例的三角形叫做相似三角形。

即:如图,△ABC 和△A 'B 'C ',其中∠A=∠A ',∠B=∠B ',∠C=∠C ',B A ''AB =C B BC ''=A C CA '', 则有△ABC ∽△A 'B 'C '。

1.定义法 对应角相等,对应边成比例的三角形相似2.判定定理①平行于三角形一边的直线和其他两条相交,所构成的三角形与原三角形相似 3.判定定理②如果三角形的三组对应边相等,那么这两个三角形相似 4.判定定理③如果三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似 5.判定定理④ 如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似 第二:腰和底对应成比例的两个等腰三角形相似。

九年级相似图形知识点归纳

九年级相似图形知识点归纳

九年级相似图形知识点归纳相似图形是几何学中的一个基本概念,它指的是形状相似但尺寸不同的两个或多个图形。

在九年级的数学学习中,相似图形是一个重要的知识点,涉及到比例、比例尺、相似比等概念。

本文将对九年级相似图形的相关知识进行归纳总结。

一、相似图形的定义相似图形是指在形状上相似但尺寸不同的两个或多个图形。

相似图形具有以下特点:1. 对应角相等:两个相似图形的对应角都相等;2. 对应边成比例:两个相似图形的对应边的长度成比例。

二、相似图形的判定方法1. AAA判定法:若两个图形的对应角分别相等,则它们是相似图形。

2. AA判定法:若两个图形的两组对应角分别相等,则它们是相似图形。

三、相似图形的性质和定理1. 三角形的相似定理:a. AA相似定理:如果两个三角形的两组对应角相等,则这两个三角形是相似的。

b. SSS相似定理:如果两个三角形的三组对边成比例,则这两个三角形是相似的。

c. SAS相似定理:如果两个三角形的一组对边成比例且对应角相等,则这两个三角形是相似的。

2. 相似三角形的性质:a. 对应边成比例:相似三角形的对应边的长度成比例。

b. 三角形内角对应:相似三角形的内角都对应相等。

四、相似图形的应用相似图形的知识在实际生活和实际问题中有广泛应用,例如:1. 测量:利用相似图形的知识可以进行测量,如通过测量一个三角形的边长和另一个相似三角形的边长,可以得到未知边长的长度。

2. 设计:在设计中,相似图形的概念可以应用于建筑、道路等方面,通过对已知图形进行放大或缩小,使其与实际需求相适应。

3. 地图测绘:地图上的比例尺就是利用相似图形的原理进行测绘的。

五、示例题目1. 已知两个三角形的对边成比例,但两个三角形的对应角不全等,是否可以判定这两个三角形是相似的?2. 若一个平面图形与一个已知的相似图形所对应的角相等,并且对应边成比例,能否判断这两个图形是相似的?六、总结九年级相似图形是一个重要的几何学知识点,它涵盖了相似图形的定义、判定方法、性质和应用等方面。

数学相似图形知识点总结归纳

数学相似图形知识点总结归纳

数学相似图形知识点总结归纳※1、如果选用同一个长度单位量得两条线段AB,CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n,或写成.※2、四条线段a、b、c、d中,如果a与b的比等于c 与d的比,即,那么这四条线段a、b、c、d叫做成比例线段,简称比例线段.※3、注意点:①a:b=k,说明a是b的k倍;②由于线段a、b的长度都是正数,所以k是正数;③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致;④除了a=b之外,a:b≠b:a,与互为倒数;⑤比例的基本性质:若,则ad=bc;若ad=bc,则※1、如图1,点C把线段AB分成两条线段AC和BC,如果,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.※2、黄金分割点是最优美、最令人赏心悦目的点.三、相似多边形¤1、一般地,形状相同的图形称为相似图形.※2、对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.※1、在相似多边形中,最为简简单的就是相似三角形.※2.对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比.※3、全等三角形是相似三角的特例,这时相似比等于1.注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.※4、相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.※5、相似三角形周长的比等于相似比.※6、相似三角形面积的比等于相似比的平方.※1、相似三角形的判定方法:一般三角形直角三角形基本定理:平行于三角形的一边且和其他两边(或两边的延长线)相交的直线,所截得的三角形与原三角形相似.①两角对应相等;②两边对应成比例,且夹角相等;③三边对应成比例.①一个锐角对应相等;②两条边对应成比例:a.两直角边对应成比例;b.斜边和一直角边对应成比例.※2、平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.※3、平行于三角形一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.※相似多边形的周长等于相似比;面积比等于相似比的平方.※1.如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形;这个点叫做位似中心;这时的相似比又称为位似比.※2.位似图形上任意一对对应点到位似中心的距离之比等于位似比.◎3.位似变换:①变换后的图形,不仅与原图相似,而且对应顶点的连线相交于一点,并且对应点到这一交点的距离成比例.像这种特殊的相似变换叫做位似变换.这个交点叫做位似中心.②一个图形经过位似变换后得到另一个图形,这两个图形就叫做位似形.③利用位似的方法,可以把一个图形放大或缩小.。

九年级《图形的相似》知识点归纳

九年级《图形的相似》知识点归纳

苏科版九下《图形的相似》知识点归纳知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多边形.相似多边形对应边长度的比叫做相似比(相似系数).知识点2 比例线段的相关概念、比例的性质(1)定义: 在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad c b =. ②()()()a bc d a c d c b d b ad bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 核心内容:bc ad = (2)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB .即512AC BC AB AC == 简记为:512长短==全长 注:①黄金三角形:顶角是360的等腰三角形 ②黄金矩形:宽与长的比等于黄金数的矩形(3)合、分比性质:a c a b c db d b d±±=⇔=. 注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=dc dc b a b a c cd a a b d c b a 等等.(4)等比性质:如果)0(≠++++====n f d b n mf e d c b a , 那么ban f d b m e c a =++++++++ . 知识点3 比例线段的有关定理平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例.已知AD ∥BE ∥CF,可得AB DE AB DE BC EF BC EF AB BC BC EF AC DF AB DE AC DF DE EF=====或或或或等. 特别在三角形中: 由DE ∥BC 可得:ACAEAB AD EA EC AD BD EC AE DB AD ===或或 知识点4 相似三角形的概念(1)定义:对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∽”表示,读作“相似于” .相似三角形对应边的比叫做相似比(或相似系数).相似三角形对应角相等,对应边成比例. 注:①对应性:即把表示对应顶点的字母写在对应位置上 ②顺序性:相似三角形的相似比是有顺序的.③两个三角形形状一样,但大小不一定一样. ④全等三角形是相似比为1的相似三角形.(2)三角形相似的判定方法1、平行法:(上图)平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.2、判定定理1:简述为:两角对应相等,两三角形相似.3、判定定理2:简述为:两边对应成比例且夹角相等,两三角形相似.4、判定定理3:简述为:三边对应成比例,两三角形相似.5、判定定理4:直角三角形中,“斜边和一直角边对应成比例” 全等与相似的比较:三角形全等三角形相似两角夹一边对应相等(ASA) 两角一对边对应相等(AAS) 两边及夹角对应相等(SAS) 三边对应相等(SSS)、(HL )两角对应相等两边对应成比例,且夹角相等三边对应成比例“斜边和一直角边对应成比例”(3如图,Rt △ABC 中,∠BAC=90°,AD 是斜边BC 上的高,则 ∽ ==> AD 2=BD ·DC ,∽ ==> AB 2=BD ·BC ,∽ ==> AC 2=CD ·BC .知识点5 相似三角形的性质(1)相似三角形对应角相等,对应边成比例. (2)相似三角形周长的比等于相似比.(3)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比. (4)相似三角形面积的比等于相似比的平方.知识点6 相似三角形的几种基本图形:(1) 如图:称为“平行线型”的相似三角形(有“A 型”与“X 型”图)FE D CB A E BD E D(3)B C AE DBC(2) 如图:其中∠1=∠2,则△ADE∽△ABC称为“斜交型”的相似三角形。

初三数学相似图形知识点归纳

初三数学相似图形知识点归纳

初三数学相似图形知识点归纳 (一)线段的比1.两条线段的比的概念:两条线段的比就是两条线段长度的比例:(1)线段a 的长度为3厘米,线段b 的长度为6米,所以两线段a ,b 的比为3 : 6=1 : 2, 对吗?不对,因为a 、b 的长度单位不一致,.注意在量线段时要选用同一个长度单位•(3 )若二E ,且 a 「b ,c=8,则 a = 。

53 2 --------a b c 令 k ,贝 V a=5k , b=3k , c = 2k 解: 5 3 2a-b c=5k-3k 2k=4k=8 k=2 a = 5k =10(4 )若 x:y:z =2: 3: 4,则3x一2y z=。

y -------------------解:设 x=2k , y=3k , z=4k3x -2y z 3 2k -2 3k 4k 6k - 6k 4k 4k 4y ~ 3k - 3k 一 3k 一 3(二)比例尺二图上距离/实际距离.例1.已知:A 、B 两地的实际距离是 80千米,在某地图上测得这两地之间的距离为 1cm ,则该地图的比例尺为 ________ 。

现量得该地图上太原到北京的距离为6.4cm ,则两地的实际距离为 ___________ (用科学记数法表示)。

相距50千米的C 、D 两地在该地图上的距离为比例尺二1丁 1解:80 千米 80000006.4 8000000 二 51200000cm 二 512km = 512 102km50.625 (cm ) 8000000 8000000 82答案:1: 8000000; 5.12 X 10 km ; 0.625cma c(1)若 5a =7b ,则-=b(2)若 8x -5y = 0,贝V x =50km 5000000(三)比例的基本性质:如果那么ad 二bey为50cm , 求 ABC 的周长。

(4)a 右一b - k ,则 k -b c a ca bA. 1或_1B. 1C. TD.- 222a c e 5(1)-解: b d f7a 2c-3e 5b 2d -3f 7 a 2c -3e _ 5 b 2d - 3f 7(2) 8x = 5yx 5x = 5k ,y = 8ky 8x y 5k 8k 13k 13 x -y 5k -8k --3k 3 (3)已知x yz 11 十 ,求 x 。

图形关系知识点总结

图形关系知识点总结

图形关系知识点总结一、相似三角形1. 定义:如果两个三角形的对应角相等,那么我们称它们为相似三角形。

2. 判定条件:两个三角形相似的充分必要条件是它们的对应角相等。

3. 相似三角形的性质:a. 对应边成比例:如果两个三角形是相似的,那么它们的对应边长成比例。

b. 相似三角形的高成比例定理:相似三角形的高与边的长度成比例。

c. 相似三角形点到边的距离成比例:相似三角形中的相似三角形的对应边上的高分别成比例。

4. 相似三角形的判定方法:a. 角-角-相似定理:如果两个三角形的两个角分别相等,则这两个三角形是相似的。

b. 三角形的高分成比例定理:如果两个三角形的高分成比例,则这两个三角形是相似的。

二、全等三角形1. 定义:如果两个三角形的对应边和对应角分别相等,那么我们称它们为全等三角形。

2. 判定条件:两个三角形全等的充分必要条件是它们的对应边和对应角分别相等。

3. 全等三角形的性质:全等三角形的所有对应元素都相等。

4. 全等三角形的判定方法:a. 边-边-边全等定理:如果两个三角形的三边分别相等,则这两个三角形是全等的。

b. 边-角-边全等定理:如果两个三角形的一对对应边和夹角分别相等,则这两个三角形是全等的。

c. 角-边-角全等定理:如果两个三角形的两对对应角和一对对应边分别相等,则这两个三角形是全等的。

三、平行四边形1. 定义:四边形的对边分别平行,两对对角相等的四边形叫做平行四边形。

2. 平行四边形性质:a. 对边平行性质:在平行四边形中,对边是平行的。

b. 对角相等性质:在平行四边形中,对角相等。

c. 对角平分性质:在平行四边形中,对角平分。

d. 传递性:如果一方是平行四边形,那么这一方的异边,对角也是平行四边形。

3. 平行四边形的判定方法:a. 对边平行定理:如果四边形的一对对边平行,那么这个四边形是平行四边形。

b. 对角相等定理:如果四边形的一对对角相等,那么这个四边形是平行四边形。

四、直角三角形1. 定义:含有一个直角的三角形叫做直角三角形。

九年级下册相似图形的知识点

九年级下册相似图形的知识点

九年级下册相似图形的知识点相似图形是初中数学中的一个重要概念,让我们一起来了解一下九年级下册相似图形的知识点。

相似图形是指具有相同形状但尺寸不同的图形。

在相似图形中,对应角相等,对应边成比例。

通过相似图形的研究,我们可以推导出很多有用的结论和定理。

1. 相似比例相似比例是指两个相似图形相对应边的比值。

设两个相似三角形ABC和A'B'C',则相似比例为:AB/A'B' = BC/B'C' = AC/A'C'2. 相似三角形的性质(1)相似三角形的对应角相等。

(2)相似三角形的对应边成比例。

(3)相似三角形的高线、中线、角平分线也是相似的。

3. 判断相似三角形(1)两个三角形的对应角相等,并且两对对应边成比例时,这两个三角形相似。

(2)两个三角形的一个角相等,且两个角的对边成比例,这两个三角形相似。

4. 相似三角形的应用(1)测量高处难以到达的高度,可以利用相似三角形定理进行测算。

(2)在地图测绘中,利用相似三角形可以计算远处的高度和距离。

(3)在影视特效制作中,利用相似三角形可以实现物体的缩放和变形效果。

5. 相似多边形相似三角形的概念可以推广到相似多边形。

在相似多边形中,对应角相等,对应边成比例。

利用相似多边形的性质,我们可以解决很多与长度、面积等有关的几何问题。

总结:九年级下册相似图形是一个重要的数学知识点,通过研究相似图形,我们可以深入理解几何形状的特性,解决与长度、面积等相关的几何问题。

相似三角形和相似多边形的性质可以应用于实际生活中的测量、设计和计算中,具有广泛的应用价值。

掌握了相似图形的知识,我们可以更好地理解几何学,提高问题解决的能力。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形的相似
考点一、比例线段
1、比例线段的相关概念
如果选用同一长度单位量得两条线段a ,b 的长度分别为m ,n ,那么就说这两条线段的比是,或写成a :b=m :n
在两条线段的比a :b 中,a 叫做比的前项,b 叫做比的后项。

在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段
若四条a ,b ,c ,d 满足或a :b=c :d ,那么a ,b ,c ,d 叫做组成比例的项,线段a ,d 叫做比例外项,线段b ,c 叫做比例内项,线段的d 叫做a ,b ,c 的第四比例项。

如果作为比例内项的是两条相同的线段,即c
b
b a =或a :b=b :
c ,那么线段b 叫做线段a ,c 的比例中项。

2、比例的性质
(1)基本性质①a :b=c :d ⇔ad=bc ②a :b=b :c ac b =⇔2
(2)更比性质(交换比例的内项或外项)
d
b
c a =(交换内项) ⇒=d
c
b a a
c b
d =(交换外项)
a
b
c d =(同时交换内项和外项) (3)反比性质(交换比的前项、后项):
c
d a b d c b a =⇒= (4)合比性质:d
d
c b b a
d c b a ±=
±⇒= (5)等比性质:
b
a n f d
b m e
c a n f
d b n m f
e d c b a =++++++++⇒≠++++==== )0( 3、黄金分割
把线段AB 分成两条线段AC ,BC (AC>BC ),并且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC=
2
1
5-AB ≈0.618AB 考点二、平行线分线段成比例定理
三条平行线截两条直线,所得的对应线段成比例。

推论:(1)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。

逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。

n
m
b a =d
c
b a =
(2)平行于三角形一边且和其他两边相交的直线截得的三角形的三边与原三角形的三边对应成比例。

考点三、相似三角形
1、相似三角形的概念
对应角相等,对应边成比例的三角形叫做相似三角形。

相似用符号“∽”来表示,读作“相似于”。

相似三角形对应边的比叫做相似比(或相似系数)。

2、相似三角形的基本定理
平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

用数学语言表述如下:∵DE∥BC,∴△ADE∽△ABC
相似三角形的等价关系:
(1)反身性:对于任一△
ABC,都有△ABC∽△ABC;
(2)对称性:若△ABC∽△
A’B’C’,则△A’B’C’∽△ABC
(3)传递性:若△ABC∽△
A’B’C’,并且△A’B’C’∽△A’’B’’C’’,则△ABC∽△A’’B’’C’’。

3、三角形相似的判定(1)三角形相似的判定方法
①定义法:对应角相等,对应边成比例的两个三角形相似②平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
③判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。

④判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。

⑤判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似
(2)直角三角形相似的判定方法
①以上各种判定方法均适用
②定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
③垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。

4、相似三角形的性质
(1)相似三角形的对应角相等,对应边成比例
(2)相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比
(3)相似三角形周长的比等于相似比
(4)相似三角形面积的比等于相似比的平方。

5、相似多边形
(1)如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形。

相似多边形对应边的比叫做相似比(或相似系数)
(2)相似多边形的性质
①相似多边形的对应角相等,对应边成比例
②相似多边形周长的比、对应对角线的比都等于相似比
③相似多边形中的对应三角形相似,相似比等于相似多边形的相似比
④相似多边形面积的比等于相似比的平方
6、位似图形:如果两个图形不仅是相似图形,而且每组对应点所在直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,此时的相似比叫做位似比。

性质:每一组对应点和位似中心在同一直线上,它们到位似中心的距离之比都等于位似比。

由一个图形得到它的位似图形的变换叫做位似变换。

利用位似变换可以把一个图形放大或缩小。

(注:文档可能无法思考全面,请浏览后下载,供参考。

可复制、编制,期待你的好评与关注)。

相关文档
最新文档