小学六年级数学比和按比例分配应用题
小升初比和比例应用题专题练习(应用题)人教版六年级下册数学
人教版小升初比和比例应用题专题练习学校:___________姓名:___________班级:___________考号:___________一、解答题1.希望小学六年级学生中,男生与女生的人数比为7∶5,又转来15名男生,这时男生与女生的人数比为3∶2。
希望小学六年级现在有多少名学生?2.下面是三名同学某次足球练习情况。
姓名射门/次射中/次张晓156李欣105王浩1810(1)张晓的射中次数与射门次数的比是(),比值是()。
(2)李欣的射中次数与射门次数的比是(),比值是()。
(3)王浩的射中次数与射门次数的比是(),比值是()。
(4)马上举行全省小学生足球赛,各个小学推荐一名优秀的足球选手。
如果你是体育老师,你会推荐谁去?为什么?3.甲、乙、丙三人参加长跑比赛,甲和乙速度比是3:4,乙和丙速度的比是2∶5,求甲、乙、两三人速度的比.4.五(1)班男、女生人数比是12:11,又转来4名女生后,全班共有50人,求现在男、女生的人数比?5.某工厂有三个车间,第一车间人数与总数的比是1∶4,第二车间人数是第三车间的78。
第一车间比第三车间少21人,这个工厂一共有多少人?6.园林绿化队要栽一批树苗,第一天栽了总数的15%,第二天栽了76棵,这时剩下的与已栽的棵数的比是3:5.这批树苗一共有多少棵?7.新学期,六(一)班购置图书50本,要分给班上的男生和女生,男生人数和女生人数的比是1∶4,男生和女生各能分到多少本书?8.老师给班里买了90本儿童读物,按4∶5分别借给一组和二组。
这两个组各借书多少本?(用两种方法解答)9.一台播种机第一次工作3时,播种17100m2;第二次工作4时,播种22800m2,分别写出每次播种的面积和工作时间的比,你认为它们能组成比例吗?为什么?10.两个外项的积加上两个内项的积结果是120,其中一个内项是最小的质数,一个外项是最小的合数,请你写出所有符合条件的比例。
11.五一假期,郑磊和爸爸妈妈自驾去外地看外婆。
小学数学六年级下册《比例》试题五套
人教版小学数学六年级下册《比例》试题(五套)按比例分配应用题练习一1、公鸡与母鸡的只数比是2∶9,也就是公鸡占总只数的( ),母鸡占总只数的( ),公鸡的只数是母鸡的( ),母鸡的只数是公鸡的( )。
2、一批货物按2∶3∶4分配给甲、乙、丙三个队去运,甲队运这批货物的( ),丙队比乙队多运这批货物的( )。
3、公园里柳树和杨树的棵数比是5∶3,柳树和杨树共40棵,柳树和杨树各有多少棵?4、把300个苹果按4∶5∶6分给幼儿园的小、中、大三个班。
小班、中班、大班各分得多少个苹果?5、一种药水是把药粉和水按照1∶100配制而成,要配制这种药水5050千克,需要药粉多少千克?6、水果店运来梨和苹果共50筐,其中梨的筐数是苹果的32,运来梨和苹果各多少筐?7、用24厘米的铁丝围成一个直角三角形,这个三角形三条边长度的比是3∶4∶5,这个直角三角形斜边上的高是多少厘米?8、把一根长8米的绳子按3∶2截成甲、乙两段,甲、乙两段各长多少米?9、把一根绳子按3∶2截成甲、乙两段,已知甲段长4.8米, 乙段长多少米?10、把一根绳子按3∶2截成甲、乙两段,已知乙段长4.8米, 这根绳子原来长多少米?11、把一根绳子按3∶2截成甲、乙两段,已知乙段比甲段短1.6米, 甲、乙两段各长多少米?12、商店运来一批洗衣机,卖出24台,卖出的台数与剩下的台数的比是3∶5,这批洗衣机一共有多少台?13、雏鹰假日小队的同学分3组采集蓖麻籽,第一小组、第二小组、第三小组的工作效率之比是12∶11∶7,第一小组采集蓖麻籽36千克,第二、第三小组各采集蓖麻籽多少千克?14、已知甲数的32等于乙数的43,甲数是80,则乙数是多少?15、小伟和小英给希望工程捐款的钱数比是7∶8,两人共捐款75元。
小伟和小英各捐款多少元?16、两地相距480千米,甲、乙两辆汽车同时从两地相向开出,4小时后相遇,已知甲、乙两车速度的比是5∶3。
甲、乙两车每小时各行多少千米?17、用36米长的篱笆围成一个长方形菜地,要求长与宽的比是5∶4,这块菜地的面积是多少平方米?18、已知A 、B 、C 三个数的比是2∶3∶5,这三个数的平均数是90,这三个数分别是多少 ?19、把54本图书分给三个组,A 组的和B 组的以及C 组的相等,A 、B 、C 三个组各分得图书多少本?20、水果店运进梨和苹果的筐数比是3∶2,当只卖出15筐梨后,苹果的筐数占梨的。
六年级上册数学《比》3类必考应用题及练习
六年级上册数学第四单元《比》3类必考应用题+练习(一)比例尺应用题数量关系:图上距离÷实际距离=比例尺例题如下:在比例尺是1:3000000的地图上,量得A城到B 城的距离是8厘米,A城到B城的实际距离是多少千米?思路分析:把比例尺写成分数的形式,把实际距离设为x,代入比例尺的关系式就可解答了。
所设未知数的计量单位名称要与已知的计量单位名称相同。
练习:1、一种精密零件长2毫米,用20∶1的比例尺画图,应画多少厘米?解:应画X毫米。
X/2=20/1X=40(mm)40mm=4cm(二)按比例分配应用题方法:先求出各部分的份数和,在确定各部分量占总数量的几分之几,最后根据求一个数的几分之几是多少,用乘法计算,求出各部分的数量。
按比例分配也可以用归一法来解。
例题如下:一种农药溶液是用药粉加水配制而成的,药粉和水的重量比是1:100。
2500千克水需要药粉多少千克?5.5千克药粉需加水多少千克?思路分析:已知药和水的份数,就可以知道药和水的总份数之和,也就可以知道药和水各自占总份数的几分之几,知道了分率,相应地也就可以求出各自相对量。
练习:1、一种生理盐水是把盐水和水按照1∶100配制而成,要配制这种生理盐水5050千克,需要盐水多少千克?解:1+100=101 5050÷101=50(千克)答:需要盐水50千克。
2、一种石灰水是用石灰和水按1∶100配成的,要配制5656千克的石灰水,需石灰多少千克?解:1+100=1015656÷101=56(千克)答:需石灰56千克。
(三)正、反比例应用题数量关系:如果用字母x、y表示两种相关联的量,用K表示比值(一定),两种相向关联的量成正比例时,用下面的式子来表示:kx=y(一定)。
如果两种相关联的量成反比例时,可用下面的式子来表示:×y=K(一定)。
例题如下:六一玩具厂要生产2080套儿童玩具。
前6天生产了960套,照这样计算,完成全部任务共需要多少天?思路分析:因为工作总量÷工作时间=工作效率,已知工作效率一定,所以工作总量与工作时间成正比例。
比和按比例分配应用题(1)
专项练习一
1、两人同走一段路,甲用12分钟,乙用15分钟,甲乙走完这一段路所用时间的最简整数比是多少?甲乙速度的最简整数比是多少?
2、甲和乙两个正方形的边长比是5︰6,则周长比是多少?面积比是多少?
3、读一本书,小明用了12天读完,小芳用的时间比
小明多1
5,求小明和小芳读书所用时间的比,
4、一个等腰直角三角形,它的三个内角的度数比是多少?
5、减数相当于被减数的3
5,差和减数的比是多少?
6、一项工程,甲队独做要15天完成,乙队独做只能9天完成一半,求甲乙两队的工效比。
7、甲组人数比乙组人数多1
4,甲乙两组的人数比是多
少?
8、两条彩带,甲剪去3
4,乙剪去
3
10,两条彩带剩下
的一样长,原来甲、乙两条彩带的长度比是多少?9、甲、乙两人在银行都有存款,如果甲再存入原来钱的
1
4,乙再存入原来钱的
1
5,这时两人的存款数相等。
原来甲、乙存款数的比是多少?
10、一个三角形的面积是27平方厘米,底与高的比是2︰3,三角形的底和高分别是多少厘米?
11、甲、乙两人步行的速度比是13︰11,如果甲、乙分别由A、B两地同时出发相向而行0.5小时后相遇;如果他们同向而行,那么甲追上乙需要多少小时?
12、两个三角形重叠在一起,重叠部分的面积占大三角形的
1
6,占小三角形面积的
1
4。
(1)求大小三角形的面积比
是多少?
(2)如果重叠部分的面积是12平方厘米,那么大三角形的面积是多少?
(3)如果整个图形覆盖的面积是99平方厘米,那么小三角形的面积是多少?。
六年级上册数学按比例分配应用题专项作业(2)
类型三:已知A + B = 和,未知A :B = 比,按比例分配1)A + B = 220, A÷B = 1.2,A、B各多少?
2)学校把种70棵树的任务按人数分配给六年
级三个班,一班46人,二班44人,三班50人,
三个班各种多少棵树?
3)畜牧场鸡、鸭、鹅一共有380只,鸡的只数
与鸭的比是3:2 ,鸭的只数与鸡的比也是3:2,
问:鸡、鸭、鹅各多少只?
4)有牛和羊一共230头,牛的头数的2
5
与羊
的3
4
一样多,牛和羊各多少头?
5)一个等腰三角形,顶角与底角的比是3:1 这
个三角形的顶角是多少度?
6)有三位朋友一起拼车,按路程分摊路费,第
一位朋友坐到全程的
1
3
A地下车,第二位朋友
坐到全程的
3
4
B地下车,第三位朋友坐到终点
C地。
三们朋友共付车费57元,问三位朋友各
出多少元?
7)老李一家4口人和老王家3口人一起(AA制)
到餐厅吃饭,共花费175元。
老李、老王各出
多少元?
8)一个块长方形地,长边靠墙。
现在要用篱笆
把另外三边围起来种菜,共用篱笆18米,长与
宽的比是5:2,这块长方形地的面积是多少平方
米?
类型四:已知A - B = 差,已知A :B = 比,求A或B
9)A - B = 120, A :B = 2:5,A、B各多少?10)甲数减去乙数差是56,甲数与乙数的比是5:2,甲数乙数各是多少?。
小学六年级上册 比的应用题和拓展 完整版题型训练+答案详解
比的应用题和拓展内容总结:(1)按比例分配(2)单比化连比(3)列表法还原(4)比较估算例题讲解板块一:基础题型1.水果店运来了西瓜和哈密瓜共234个,如果西瓜和哈密瓜的个数比为5:4,那么水果店运来西瓜和哈密瓜各多少个?解答:西瓜和哈密瓜的个数比是5:4,可以把水果店运来的西瓜和哈密瓜总和看做5+4=9份,其中西瓜占5份,哈密瓜占4份;先求出每份的量;再求所求量。
每份:234 ÷(5+4)=26个西瓜:26×5=130个哈密瓜:26×4=104个2.有429名小学生参加数学冬令营,其中男生和女生的人数比为7:6.后来又有一些女生报名参赛,这时男生和女生的人数比变为11:10.请问:后来报名的女生有多少人?解答:开始男生与总人数的比是7:13,来了一些女生后,男生与总人数的比是11:21,因为男生是不变量,先求出男生人数,再求出来一些女生后的总人数,现在总人数减去以前的总人数就是增加的女生人数。
男生人数:429÷13×7=231人现在总人数:231÷11×21=441人后来报名女生人数:441-429=12人3.松鼠一家三口出门采摘松果,松鼠爸爸采得最快,他每采摘7颗松果,松鼠妈妈只能采摘6颗;松鼠宝宝采得最慢,他每采摘2颗,松鼠妈妈已经采摘了3颗.一天下来,他们一共采摘了340颗松果.试问:其中有多少颗是松鼠宝宝采的?解析:根据条件可知松鼠妈妈采摘6颗,松鼠宝宝可以采摘4颗;所以相同时间内松鼠爸爸松鼠妈妈和松鼠宝宝采摘的松果比是7:6:4。
松鼠宝宝采摘的:340÷(7+6+4)×4=80颗4.育才小学五年级学生分成三批去参观博物馆,第一批与第二批的人数比是5:4,第二批与第三批的人数比是3:2.已知第一批的人数比第二、三批的总和少55人.请问:育才小学五年级一共有多少人?解析:根据条件可知第一批,第二批和第三批的人数比是15:12:8。
六年级数学按比分配全面专项练习题
按比分配专项练习按比分配::把一个数按着一定的比来进行分配,这种分配方法通常叫做按比分配. 归纳总结:解答按比例分配问题,要根据已知条件,把已知数量与份数对应起来,转化为求一个数的几分,一、简单的按比例分配应用题1、学校把栽480棵树的任务,按着六年级三班的人数分配给各组,一组有47人,二组有38人,三组有35人,三个组各应栽树多少棵?2、老师给班里买了90本儿童读物,按4:5分别借给一组和二组.这两个组各借书多少本?3、三条绳长的和是84米,三条绳的比是3:4:5.三条绳各长多少米?4、粮食公司有三个汽车队,甲队有6辆货车,乙队有7辆货车,丙队有8辆货车,每辆载重量相等,有378吨粮食运往外地,按运输能力分配,各队应运粮食多少吨?5、养殖专业户养鸡、鸭共6000只,鸡和鸭的比是1:11,鸡、鸭各多少只?6、一个直角三角形,两个锐角度数的比是1:4,这两个锐角各多少度?7、42名同学到面积分别是60和80平方米的菜园去帮忙种菜。
如果按面积大小分配人员,这两处菜园各应去多少名同学种菜?8、学校把540本画册按4:5借给三年级和五年级学生,每个年级各分到画册多少本?9、一个三角形铁框,三个内角度数的比是1:2:3,这个铁框的三个角分别是多少度?10、学校把864本图书按人数借给三个年级。
一年级有49人,二年级有50人,三年级有45人,三个年级各分得图书多少本?11、分别以1:2:10的石灰、硫磺和水配农药。
现在要配制农药650千克,石灰、硫磺和水各需要多少千克?12、一个等腰三角形的铁片,顶角和一个底角的度数的比是4:3,求这个等腰三角形的顶角和底角各是多少度?13、粮食局有三个汽车队,一队有9辆载重汽车,二队有8辆,三队有7辆,每辆载重量相同,有264吨粮食往外地运,按运输能力,各队应运粮食多少吨?二、稍复杂的按比例分配应用题例1.一个长方形的周长是360为米,长与宽的比是4:2,这个长方形的长和宽各是多少?例2.有840吨粮食,分给两个运输队运出去。
比例的应用题六年级
比例的应用题六年级一、按比例分配问题。
1. 学校把栽70棵树的任务,按照六年级三个班的人数分配给各班,一班有46人,二班有44人,三班有50人。
三个班各应栽树多少棵?- 解析:首先求出三个班的总人数:46 + 44+50=140(人)。
然后计算各班人数占总人数的比例,一班:(46)/(140),二班:(44)/(140),三班:(50)/(140)。
最后用树的总数乘以各班所占比例得到各班应栽树的棵数。
- 一班应栽树:70×(46)/(140) = 23(棵);- 二班应栽树:70×(44)/(140)=22(棵);- 三班应栽树:70×(50)/(140)=25(棵)。
2. 一种混凝土是由水泥、沙子和石子按2:3:5的比例混合而成的。
如果要配制20吨这种混凝土,需要水泥、沙子和石子各多少吨?- 解析:首先求出总份数:2 + 3+5 = 10份。
然后计算每份的重量:20÷10 = 2吨。
最后根据各自的份数求出水泥、沙子和石子的重量。
- 水泥:2×2 = 4吨;- 沙子:2×3 = 6吨;- 石子:2×5 = 10吨。
3. 某工厂有三个车间,第一车间、第二车间、第三车间的人数比是8:12:21,第一车间比第二车间少80人,三个车间共有多少人?- 解析:设第一车间有8x人,第二车间有12x人。
根据第一车间比第二车间少80人,可列方程12x-8x = 80,解得x = 20。
则三个车间总人数为(8 +12+21)×20=41×20 = 820人。
二、比例尺问题。
4. 在比例尺是1:6000000的地图上,量得A、B两地的距离是5厘米。
一辆汽车以每小时75千米的速度从A地开往B地,需要多少小时?- 解析:根据比例尺公式,实际距离=图上距离÷比例尺,所以A、B两地的实际距离为5÷(1)/(6000000)=5×6000000 = 30000000厘米=300千米。
2022六年级上册数学单元测试 4.比和按比例分配 西师大版(含解析)
六年级上册数学单元测试-4比和按比例分配一、单项选择题1小正方形边长6厘米,大正方形边长7厘米.那么大、小正方形周长的比是多少,比值是多少〔〕A 9:5, B 8:3, C 7:6, D 6:7,2一块长方形的周长是28米,它的长和宽的比是4:3,这块地的面积是〔〕平方米。
A 192B 48C 283将甲组人数的拨给乙组,那么甲、乙两组人数相等原来甲、乙两组人数的比是A 5:1B 5:3C 5:44某班有学生52人,那么这个班男女生人数的比可能是〔〕A 8:7B 7:6C 6:5D 5:4二、判断题5判断对错.甲数是乙数的,甲数与乙数的比是3∶1.6一个圆锥和一个圆柱的高相等,它们底面积的比是3:2,圆锥的体积与圆柱的体积的比是1:2.7大牛与小牛头数的比是4:5,表示大牛比小牛少,小牛比大牛多.〔判断对错〕8判断对错比的前项加4,要使比值不变,后项也应该加4.三、填空题∶16=________==________÷________从左到右依次填写10大圆的半径是3厘米,小圆的直径是2厘米,那么大圆与小圆的周长比是________,小圆与大圆的面积比是________。
11某班男生人数和女生人数的比是5:7,那么女生人数占全班人数的________.12甲乙两数的比是5∶8,那么甲数比乙数少________,乙数比甲数多________四、解答题13小明和小华所存钱数的比是3:5,如果小明再存入400元,就和小华存的钱数一样多。
小明原来存了多少钱?五、综合题14根据要求操作并填空.〔每个方格是面积为1的小正方形〕〔1〕梯形的面积是________.〔2〕画一个与梯形面积相等的三角形.〔3〕把梯形按2:1的比例画出放大后的图形.〔4〕放大后的面积与原面积的比是________.六、应用题15李师傅两天加工零件的情况如表.〔1〕分别写出李师傅两天里加工零件的个数与时间比.如果这两个比能组成比例,请写出来.〔2〕分别写出李师傅两天里加工零件的个数比与时间比.如果这两个比能组成比例,请写出来.16甲、乙两杯中分别有水2021、250克.甲杯中放入30克糖,乙杯中放入40克糖,哪杯水比拟甜?和同学交流一下,所用的方法一样吗?填甲杯或乙杯参考答案一、单项选择题1【答案】C【解析】【解答】解:大正方形的周长:小正方形的周长=〔7×4〕:〔6×4〕=7:67:6=7÷6=1故答案为:C。
六年级数学比和按比例分配试题答案及解析
六年级数学比和按比例分配试题答案及解析1.一个文具盒卖价5元,如果小东买了这个文具盒,小东与小鹏的钱数之比是2∶5,如果小鹏买了这个文具,则小东与小鹏的钱数之比是8∶13,小东原来有多少钱?【答案】5÷(﹣)÷ =20(元)答:所以小东原来有20元钱。
【解析】由比与除法的定义,根据题意列方程式得。
2.两辆汽车同时从相距360km的两地相对开出,2.4小时后相遇.已知两辆车的速度比是12:13,两辆车的速度分别是多少?【答案】其中一辆车的速度是每小时行72千米,另一辆车的速度是每小时行78千米.【解析】首先根据路程÷时间=速度,用两地之间的距离除以两车相遇用的时间,求出两车的速度之和是多少;然后把两车的速度之和看作单位“1”,则其中一辆车的速度占两车速度之和的(=),根据分数乘法的意义,用两车的速度之和乘以,求出其中一辆车的速度是多少;最后用两车的速度之和减去其中一辆车的速度,求出另一辆车的速度是多少即可.解答:解;360÷2.4×=150×=72(千米)360÷2.4﹣72=150﹣72=78(千米)答:其中一辆车的速度是每小时行72千米,另一辆车的速度是每小时行78千米.3.六(1)班男生和女生人数的比是5:4,男生比女生多6人,这个班一共有学生.【答案】54.【解析】男女生比是5:4,所以男生人数是全班人数的,女生人数是人班人数的,男生人数比女生人数多6人,所以全班人数是6.解:6÷=6÷=54(人)故答案为:54.【点评】本题关健是先根据男女生的比求出男女生各占全班人数的几分之几,然后将全班人数当做单位“1”求出全班人数.4. 27: = ÷12=0.75== %【答案】36,9,8,75.【解析】解:27:36=9÷12=0.75==75%.故答案为:36,9,8,75.5.如果A:B=4:5,那么A=3,B=5 .(判断对错)【答案】×【解析】解:A=3,B=5代入 A:B=4:5,得到3:5=4:5,因为4×5=20,3×5=15,两个内项积就不等于两个外项积,这样的两个比就不能组成比例了.故应判断为:×.6.把10克盐放入100克水中,盐和盐水的比是1:10..(判断对错)【答案】×.【解析】解:10:(10+100)=10:110=1:11,故答案为:×.7.大圆和小圆半径的比是5:4,小圆面积和大圆面积的比是()A.5:4B.4:5C.16:25D.10:8【答案】C【解析】解:设小圆的半径为4r,大圆的半径为5r,小圆的面积为:π(4r)2=16πr2大圆的面积为:π(5r)2,=25πr2大圆的面积与小圆面积的比为:16πr2:25πr2=16:25.故选:C.8. ÷20= :12=18÷ =3:4= (填小数)【答案】15,9,24,0.75.【解析】解:15÷20=9:12=18÷24=3:4=0.75.故答案为:15,9,24,0.75.9.甲数的与乙数的相等,甲乙两数的比是.【答案】8:9【解析】解:设甲数为1.则乙数为÷=甲数:乙数=1:=8:9.故答案为:8:9.10. 5克糖放入15克水中,糖和水的比是5:15..(判断对错)【答案】√【解析】解:糖与水的比:5:15=1:3.故答案为:√.11. 3:5的前项增加12,要使比值不变,后项应增加20..(判断对错)【答案】√【解析】解:3:5比的前项增加12,由3变成15,相当于前项乘5;要使比值不变,后项也应该乘5,由5变成25,相当于后项加上:25﹣5=20;所以后项应该增加20,说法正确;故答案为:√.12.一套衣服480元,裤子是上衣的,裤子和上衣各是多少元?(用比的知识和列方程这两种方法解答)【答案】裤子180元,上衣300元【解析】解:方法①裤子的价格:上衣的价格=5:3480×=180(元)480×=300(元);答:裤子180元,上衣300元.方法②设上衣的价格是x元,则裤子的价格是x元,x+x=480x=480x=300480﹣300=180(元);答:裤子180元,上衣300元.13.妈妈准备按1:25的比例配用糖水,如果用糖20克,那么能配备克糖水.【答案】520.【解析】糖水中糖与水的比是1:25,把糖看成1份,那么水就是25份,水是糖的25倍,用糖的质量乘上25即可求出水的质量,再把糖和水的质量相加就是糖水的总质量.解:20×25+20=500+20=520(克)答:能配备 520克糖水.故答案为:520.【点评】解决本题把比看成份数,求出水的质量是糖的质量的多少倍,再根据乘法的意义求出水的质量,进而求出糖水的质量.14.是比例尺,把它改写成数值比例尺是.【答案】线段,1:1500000.【解析】根据比例尺的意义作答,即比例尺是图上距离与实际距离的比.解:是线段比例尺,15千米=1500000厘米,改写成数值比例尺为1:1500000.故答案为:线段,1:1500000.【点评】本题主要考查了比例尺的意义,注意图上距离与实际距离的单位要统一.15.农贸公司的香蕉占水果重量的,桔子占总重量的,其余的是苹果.(1)写出香蕉、苹果重量的最简比.(2)如果苹果是35千克,那么香蕉有多少千克?(3)你还能提出什么问题?并解答出来.【答案】(1)5:7(2)25千克.(3)写出香蕉和桔子的比,香蕉和桔子的比为5:8.【解析】把水果的总重量看成单位“1”,那么香蕉的重量就是,桔子的重量就是,苹果的重量就是1﹣;(1)先计算出苹果的重量占水果总重量的几分之几,然后再作比;(2)先根据苹果的重量求出水果的总重量,然后再用乘法求出香蕉的重量.(3)根据以上数据提出问题,并解答.解:(1)1﹣=,:=:=5:7;答:香蕉与苹果的比为5:7.(2)35×,=100×,=25(千克);答:香蕉有25千克.(3)写出香蕉和桔子的比,并化成最简整数比.:=:=:=5:8;香蕉和桔子的比为5:8.【点评】本题关键是把水果的总重量看成单位“1”,用分数分别把香蕉,桔子,苹果的重量表示出来,再根据基本的数量关系求解.16.:的最简整数比是,比值是.【答案】5:8,.【解析】(1)根据比的基本性质作答,即比的前项和后项同时乘一个数或除以一个数(0除外)比值不变;(2)用比的前项除以后项即可.解:(1):,=(×20):(×20),=5:8;(2):,=÷,=;故答案为:5:8,.【点评】要注意化简比的结果是一个比,它的前项和后项都是整数,并且是互质数;而求比值的结果是一个商,可以是整数、小数或分数.17.六(1)有男生35人,女生25人,男生占全班的,女生占全班的,男生和女生的比是,女生和男生的比是.【答案】7:5,5:7.【解析】把全班人数看成单位“1”,用男生人数除以全班总人数就是男生占全班人数的几分之几,再用1减去男生占的分率就是女生占的分率;分别写出男生和女生的比及女生和男生的比;再化简即可.解:35÷(35+25)=1﹣=35:25=7:525:35=5:7答:男生占全班的,女生占全班的,男生和女生的比是7:5,女生和男生的比是5:7.故答案为:7:5,5:7.【点评】本题属于基本的分数除法应用题,求一个数是另一个数的几分之几,只要找出单位“1”,问题不难解决.18.比的前项和后项同时乘或除以一个数,比值不变..(判断对错)【答案】×【解析】比的基本性质的内容是比的前项和后项同时乘或除以一个数(0除外)比值不变;所以此题的说法是错误的.解:比的基本性质的内容是比的前项和后项同时乘或除以一个数(0除外)比值不变;所以此题的说法是错误的.故判断为:×【点评】本题主要考查了比例的基本性质,注意“0”这个特殊的数.19. a是b的9倍,b与a的比是9:1..(判断对错)【答案】×【解析】设b为x,则a是9x,根据题意进行比,然后化成最简整数比即可.解:设b为x,则a是9x,则:b与a的比是:x:9x=1:9;故答案为:×.【点评】解答此题应进行假设,设出其中的一个量为x,另一个量也用未知数表示,根据题意进行比,解答即可.20.一个机器零件的长度是8毫米,画在比例尺是10:1的图纸上的长度是()A.8分米 B.8毫米 C.8厘米【答案】C【解析】比例尺=图上距离:实际距离,根据题意列出比例式求解即可.解:根据题意,设图纸上的长度是x毫米,10:1=x:8,x=10×8,x=80;80毫米=8厘米.故选:C.【点评】考查了图上距离与实际距离的换算(比例尺的应用),关键是理解比例尺的概念,正确进行计算.。
六年级比和比例应用题
六年级比和比例应用题一、比和比例的基础知识1. 比的意义- 两个数相除又叫做两个数的比。
例如:公式,其中公式是前项,公式是后项,公式是比号。
- 比值是比的前项除以后项所得的商,如公式的比值为公式。
2. 比例的意义- 表示两个比相等的式子叫做比例。
例如:公式,其中公式和公式是比例的外项,公式和公式是比例的内项。
- 比例的基本性质:在比例里,两个外项的积等于两个内项的积。
如在公式中,公式。
二、比和比例应用题类型及解析1. 按比例分配问题- 题目:学校把公式本图书按照公式分给四、五、六年级,每个年级各分得多少本图书?- 解析:- 首先求出总份数:公式(份)。
- 然后计算每份的本数:公式(本)。
- 四年级分得的本数:公式(本)。
- 五年级分得的本数:公式(本)。
- 六年级分得的本数:公式(本)。
2. 比例尺问题- 题目:在一幅比例尺为公式的地图上,量得甲、乙两地的距离是公式厘米,那么甲、乙两地的实际距离是多少千米?- 解析:- 根据比例尺的定义,图上距离与实际距离的比等于比例尺。
设甲、乙两地的实际距离是公式厘米。
- 可得公式,根据比例的基本性质公式厘米。
- 因为公式千米公式厘米,所以公式厘米公式千米。
3. 比例关系问题(正比例和反比例)- 正比例题目:一辆汽车公式小时行驶公式千米,照这样的速度,公式小时行驶多少千米?- 解析:- 因为速度一定,路程和时间成正比例关系。
设公式小时行驶公式千米。
- 速度公式路程公式时间,先求出速度为公式(千米/小时)。
- 可列出比例公式,根据比例的基本性质公式,解得公式千米。
- 反比例题目:一间教室,如果用边长为公式分米的方砖铺地,需要公式块。
如果改用边长为公式分米的方砖铺地,需要多少块?- 解析:- 教室地面的面积是一定的,方砖的面积和所需块数成反比例关系。
- 边长为公式分米的方砖面积为公式平方分米,公式块的面积就是公式平方分米。
- 边长为公式分米的方砖面积为公式平方分米。
按比例分配应用题 参考答案
按比例分配应用题参考答案典题探究一.基本知识点:二.解题方法:例1.六年级(2)班有学生48人,男生与总人数的比是5:8,则女生有()人.A.30 B.18 C.25考点:按比例分配应用题.专题:比和比例应用题.分析:“男生与总人数的比是5:8”,则女生占了总人数的,总人数已知是48人,就是求48的是多少.据此解答.解答:解:48×=18(人)答:女生有18人.故选:B.点评:本题的重点是求出女生人数占总数的几分之几,再根据分数乘法的意义列式解答.例2.甲、乙、丙三个数的比是3:4:5,这三个数的平均数是48,乙数是()A.48 B.36 C.12 D.60考点:按比例分配应用题.专题:比和比例应用题.分析:“甲、乙、丙三个数的比是3:4:5”,则乙数占了三个数总和的,这三个数的和是48×3=144.据此解答.解答:解:48×3=144144×=48答:乙数是48.故选:A.点评:本题的重点是求出乙占了三个数和的几分之几,再求出三个数的和是多少,然后根据分数乘法的意义列式解答.例3.欢欢看一本80页的书,已看的页数和剩下的页数比是7:5,欢欢大约看了()页.A.7B.47 C.56考点:按比例分配应用题;比的应用.专题:比和比例应用题.分析:由“已看的页数和剩下的页数比是7:5”,可求出已看的页数占总页数的,然后根据总页数,解决问题.解答:解:7+5=12,80×=80×≈47(页).答:欢欢大约看了47页.故选:B点评:本题关健是先通过“已看的页数和剩下的页数比“求出已看的页数占总页数的几分之几,用按比例分配的方法,解决问题.例4.一批货物按2:3:5分配给甲、乙、丙三个商店.丙商店分得这批货物的,乙商店分得这批货物的30%.考点:按比例分配应用题.分析:把这批货物的总重量看做单位“1”,也就是要分配的总量,是按照甲、乙、丙三个商店的质量比为2:3:5进行分配的,先求出三个商店分得的总份数,进一步用按比例分配的方法求出三家商店各分得这批货物的几分之几,进而确定哪家商店分得这批货物的,进一步把乙商店分得这批货物的几分之几改写成百分数即可.解答:解:三个商店分得的总份数:2+3+5=10(份),甲商店分得:1×=,乙商店分得:1×==0.3=30%,丙商店分得,1×==;答:丙商店分得这批货物的,乙商店分得这批货物的30%.故答案为:丙,30.点评:此题属于比的应用按比例分配,关键是先弄清要分配的总量是多少,没有具体的数量,就看作单位“1”.演练方阵A档(巩固专练)1.在50千克盐水中,盐和水的比是1:9,盐是()千克.A.1:10 B.1:9 C.5D.5考点:按比例分配应用题.专题:比和比例应用题.分析:盐和水的比是1:9,则盐就占了盐水的,已知盐水重50千克,用乘法可求出盐的重量.据此解答.解答:解:50×=5(千克)答:盐是5千克.故选:D.点评:本题的重点是根据比与分数的关系求出盐占了盐水的几分之几,再根据求一个数的几分之几是多少用乘法计算.2.一个三角形,3个内角度数之比是2:5:2,这个三角形是()三角形.A.锐角B.钝角C.直角D.等边考点:按比例分配应用题;三角形的内角和.专题:比和比例应用题;平面图形的认识与计算.分析:已知三角形三个内角的度数之比,根据三角形内角和定理,可求得最大角的度数,由此判断三角形的类型.解答:解;2+5+2=9180×=100(度);答:这个三角形是钝角三角形;故选:B.点评:解答此题应明确三角形的内角度数的和是180°,求出最大的角的度数,然后根据三角形的分类判定类型.3.甲、乙、丙三数之比为2:7:9,这三个数的平均数为24,则甲数是()A.8B.16 C.32 D.64考点:按比例分配应用题.专题:比和比例应用题.分析:根据这三个数的平均数为24,可得这三个数的和是24×3=72,求出这三个数的总份数及甲数占总份数的几分之几,根据求一个数的几分之几是多少用乘法计算.解答:解:2+7+9=1872×=8故选:A.点评:根据平均数求出总数,利用求一个数的几分之几是多少用乘法计算是解决此题的关键.4.一个三角形三个内角度数的比是3:2:1,这是一个()三角形.A.锐角B.直角C.钝角D.无法确定考点:按比例分配应用题;三角形的分类.专题:比和比例应用题.分析:因为三角形的内角度数和是180°,三角形的最大的角的度数占内角度数和的,根据一个数乘分数的意义,求出最大角,进而判断即可.最大的角:180°×=90°所以这个三角形是直角三角形故选:B.点评:解答此题应明确三角形的内角度数的和是180°,求出最大的角的度数,然后根据三角形的分类判定类型.5.从直角的顶点引一条射线,把直角分成两个角,使它们的度数之比为2:3,其中较大角的度数是()A.36°B.54°C.18°D.108°考点:按比例分配应用题.专题:比和比例应用题.分析:把直角分成两个角,使它们的度数之比为2:3,就是把90度按照2:3进行分配,那么较大的角就占,根据一个数乘分数的意义,求出较大角.解答:解:2+3=5;90°×=54°;答:较大的角是54°.故选:B.点评:解答此题应明确直角是90°,求出总份数,然后求出较大角占的分率,再根据分数乘法的意义求解.6.把140本书按一定的比分给2个班,合适的比是()A.4:5 B.3:4 C.5:6考点:按比例分配应用题;比的应用.专题:压轴题.分析:把140本书按一定的比分给2个班,如果按4:5分,就是把140平均分成4+5=9(份),一个班分4份,一个班分5份,140不能被9整除;如果按3:4分,就是把140平均分成3+4=7(份),一个班分3份,一个班分5份,140能被7整除;如果按5:6分,就是把140平均分成5+6=11(份),一个班分5份,一个班分6份,140不能被11整除.解答:解:根据分析,如果按3:4分,就是把140平均分成3+4=7(份),一个班分3份,一个班分5份,140能被7整除;故选:B点评:本题是考查按比例分配的实际应用,培养学生应用所学知识解决问题的能力.7.已知甲数与乙数的比是2:7,甲乙两数的和是36,甲数比乙数少()A.16 B.18 C.20 D.22考点:按比例分配应用题.分析:根据题意可知:乙数占两数和的,乙数占两数和的,甲数比乙数少两数和的(﹣),进而根据一个数乘分数的意义,解答即可.36×(﹣),=36×,=20;故选:C.点评:解答此题的关键:判断出单位“1”,先求出甲数比乙数少两数和的几分之几,进而根据一个数乘分数的意义,解答即可.8.把600本书按3:5分给五、六年级,六年级分到()本.A.150 B.225 C.300 D.375考点:按比例分配应用题.分析:此题要分配的总量是600本书,是按照五、六年级的本数比为3:5进行分配,先求出五、六年级分得本数的总份数,进一步求出六年级分得的本数占总本数的几分之几,最后求得六年级分得的本数,列式解答后再选择即可.解答:解:总份数:3+5=8(份),六年级分得的本数:600×=375(本);答:六年级分到375本.故选:D.点评:此题属于比的应用按比例分配,关键是先弄清要分配的总量是多少,再看此总量是按照什么比例进行分配的,再进一步按照比例分配的方法求出其中的一个量.9.六一班有学生50人,六二班有学生40人,两个班共植树36棵,要合理分配任务,六一班应植树几棵?正确列式是()A.B.C.D.考点:按比例分配应用题.专题:压轴题;比和比例应用题.分析:要合理分配任务,也就是按照两个班的学生人数进行分配.先求出两个班一共有多少人,再求出六一班学生人数占两个班总人数的几分之几,然后根据一个数乘分数的意义,用乘法解答.解答:解:50+40=90(人),36×=20(棵),答:六一班应植树20棵.故选:C.点评:此题解答关键是理解只有按两个班的人数的多少进行分配才合理.根据按比例分配的方法解答.10.被减数、减数与差的和是80,差与减数的比是5:3,差是()A.50 B.25 C.15考点:按比例分配应用题.分析:由于被减数=减数+差,所以根据“被减数、减数与差的和是80,”可求出减数和差的和,再由“差与减数的比是5:3,”可找到总数和总份数,即可求出一份.解答:解:(80÷2)÷(5+3)=40÷8=55×5=25故选B点评:找准总数,找准把总数分成的总份数,求出一份是多少.即可解答.B档(提升精练)1.把63吨化肥,按4:2:3分配给甲、乙、丙三个乡,甲乡比乙乡多分()吨.A.28 B.7C.14 D.21考点:按比例分配应用题.分析:根据总数是63吨,总份数是4+2+3,可求出一份是多少,再根据甲乡比乙乡多(4﹣2)份,即可求出甲乡比乙乡多分的吨数.解答:解:63÷(4+2+3)×(4﹣2)=63÷9×2=7×2=14(吨)答:故选C.点评:找准总数,找准把总数分成的总份数,再求出一份是多少.2.长方形的周长是48厘米,长与宽的比是3:5,它的面积是()平方厘米.A.270 B.135 C.540考点:按比例分配应用题;长方形、正方形的面积.专题:比和比例应用题;平面图形的认识与计算.分析:先求出长与宽的总份数,再求出长与宽占总数的几分之几,分别求出长与宽,进一步求出面积.解答:解:长与宽的总份数:3+5=8(份),48÷2×=9(厘米),48÷2×=15(厘米).面积:9×15=135(平方厘米).答:面积是135平方厘米.故选B.点评:此题主要考查按比例分配应用题的特点:已知两个数的比(三个数的比),两个数的和(三个数的和),求这两个数(三个数),用按比例分配解答.3.一个等腰三角形的周长是120厘米,相邻两条边长度的比是2:1,这个等腰三角形的底是()A.60厘米B.48厘米C.30厘米D.24厘米考点:按比例分配应用题;等腰三角形与等边三角形.专题:压轴题.分析:由题意可知“等腰三角形相邻两条边长度的比是2:1”,根据三角形边的关系“三角形的两边之和大于第三边,两边之差小于第三边”,所以腰的长度大于底的长度,即:腰的长度:底的长度=2:1;这样把三角形的周长分成了2+2+1=5(份),底占其中的1份,底是周长的;知道周长求底,根据题意列式计算即可.解答:解:120×,=120×,=24(厘米);即:三角形的底是24厘米.故选:D.点评:解答此题先根据三角形边的关系确定腰和底的比,再求出周长的总份数,最后求底的长度.4.一个三角形三个角度数的比是2:2:5,这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形考点:按比例分配应用题;三角形的分类.分析:三角形的内角和是180°,根据比例求出这三个角各是多少度,再根据角的度数判断是什么样的三角形.解答:解:总份数:2+2+5=9(份);这三个角的最大角是:180°×=100°;100°>90°;这个三角形是钝角三角形.故答案选:C.点评:此题主要考查按比例分配应用题的特点:已知两个数的比(三个数的比),两个数的和(三个数的和),求这两个数(三个数),用按比例分配解答.5.甲、乙、丙三人储蓄钱数的比是1:2:3,他们储蓄钱数的平均数是50元,乙储蓄了()元.A.50 B.100 C.150考点:按比例分配应用题.专题:压轴题;比和比例应用题.分析:根据“甲乙丙三人储蓄钱数之比是1:2:3”,求得甲乙丙储蓄钱数的总份数,再求得乙储蓄的钱数占总数的几分之几;根据“他们储蓄钱数的平均数是50元”,求得三人储蓄的总钱数;最后求得乙储蓄的钱数,列式解答即可.解答:解:甲乙丙储蓄钱数的总份数:1+2+3=6(份);三人储蓄的总钱数:50×3=150(元);乙储蓄的钱数:150×=50(元).答:乙储蓄了50元.故选:A.点评:此题主要考查按比例分配应用题的特点:已知三个数的比,三个数的和,求其中的一个数,用按比例分配解答.6.把126吨化肥,按4:3:2分配给甲、乙、丙三个村,甲村比丙村多分化肥()吨.A.14 B.28 C.42考点:按比例分配应用题.专题:比和比例应用题.分析:根据总数是126吨,总份数是4+3+2,可求出一份是多少,再根据甲村比丙村多(4﹣2)份,即可求出甲村比丙村多分的吨数.解答:解:126÷(4+3+2)×(4﹣2)=126÷9×2=28(吨)答:甲村比丙村多分化肥28吨.故选:B.点评:找准总数,找准把总数分成的总份数,再求出一份是多少,进而解决问题.7.甲、乙、丙三个数的和为300,甲数为120,乙数和丙数的比是5:4,丙数是()A.180 B.100 C.80考点:按比例分配应用题.专题:比和比例.分析:乙数和丙数的比是5:4,根据比与分数的关系可知:丙数就占乙丙两数和,乙丙两数的和是(300﹣120).据此解答.解答:解:(300﹣120)×,=180×,=80.答:丙数是80.故选:C.点评:本题的关键是根据比与分数的关系求出丙占乙丙两数和的几分之几,再求出乙丙两数的和是多少,然后根据分数乘法的意义列式解答.8.A、B、C、D四人一起完成一件工作,D做了一天就因病请假了,结果A做了6天,B 做了5天,C做了4天,D作为休息的代价,拿出480元给A、B、C三人作为报酬,若按天数计算劳务费,则这480元中A应该分()元.A.180 B.192 C.200 D.320考点:按比例分配应用题.专题:比和比例应用题.分析:根据题意可知:他们一共做了6+5+4+1=16天,那么平均算下来,16÷4=4天,一个人就要做四天,但D做了一天因事请假,他做了一天,就少做了3天,则A多做了6﹣4=2天,B多做了一天,那么那48元是给多做天数的报酬,一共多做了3天,就用报酬费480÷3=160元,一天就要给160元,A多做了2天,就用160×2=320元即可解决.解答:解:一共做的天数:6+5+4+1=16(天)平均每人做的天数:16÷4=4(天)A多做的天数:6﹣4=2(天)B多做的天数:5﹣4=1(天)一共多做的天数:2+1=3(天)A应得480÷3×2=320(元),答:这480元应分给A320元.故选:D.点评:解答此题的关键是先求出一共做的天数,从而知道平均每人要做的天数,再求出A多做了几天,就把D少做3天的酬劳平均分成3份,即可求出.9.已知A+B=80,A:B=3:5,则A、B分别是()A.30、48 B.50、30 C.30、50考点:按比例分配应用题.分析:首先求得A、B两数的总份数,再分别求得A、B所占总数的几分之几,最后求得A、B两个数,列式解答即可.解答:解:总份数:3+5=8(份),数A:80×=30,数B:80×=50,或80﹣30=50.答:则A是30,B是50.故选:C.点评:此题主要考查按比例分配应用题的特点:已知两个数的比与两个数的和,求这两个数,用按比例分配的方法解答.10.绿化队准备植树96棵,按7:8:9的比例分配给甲、乙、丙三个小组.甲组应植树()棵.A.36 B.32 C.28 D.26考点:按比例分配应用题.专题:比和比例应用题.分析:由题意可得:甲组植树的棵数占植树总棵数的,把植树总棵数看作单位“1”,根据一个数乘分数的意义,用乘法解答即可.解答:解:7+8+9=24,96×=28(棵);答:甲组应植树28棵;故选:C.点评:此题主要考查按比例分配应用题的特点:已知两个数的比(三个数的比),两个数的和(三个数的和),求这两个数(三个数),用按比例分配解答.C档(跨越导练)1.一个分数的分子分母和是132,约分后为,原分数是()A.B.C.考点:按比例分配应用题.专题:压轴题.分析:解答此题先求分子和分母的和的总份数,再求1份是多少,然后求分子和分母分别是多少,最后写出这个分数.解答:解:总份数:4+7=11(份),一份:132÷11=12,分子:4×12=48,分母:7×12=84.即:这个分数是.故选:B.点评:此题主要考查按比例分配,解答此题先求分子、分母和的总份数,再求其中的1份是多少,最后求分子、分母分别是多少.2.一个最简真分数,分子、分母的和是50,如果把这个分数的分子、分母都减去5,所得分数的值是,原来的分数是()A.B.C.D.考点:按比例分配应用题.分析:这个最简分数的分子、分母分别减去5之后,所得分数的分子、分母之和为(50﹣5﹣5)40.因为所得分数的值是,根据比例分配,则:所得分数的分子为:40×=16,分母为:40×=24.故:原分数为:=.解答:解:(50﹣5﹣5)×,=40×,=16;40×,=24.,=.故选:B.点评:解答此题的关键是求所得分数的分子、分母之和;重点是根据比例分配,求出所得现在分数的分子、分母分别占和的几分之几.3.把1些树苗按2:3:5分配给一班、二班、三班的学生去种植,一班比三班的树苗少()%.A.60 B.40 C.20考点:按比例分配应用题;百分数的实际应用.专题:比和比例应用题.分析:用一班比三班少的份数除以三班的份数,就是一班比三班少百分之几.据此解答.解答:解:(5﹣2)÷5,=3÷5,=60%.答:一班比三班的树苗少60%.故选:A.点评:本题的关键是根据比与除法的关系来进行解答.4.某电器商店有180台电视机,彩电与黑白电视的台数比是5:4,彩电有()台.A.50 B.100 C.80考点:按比例分配应用题.专题:比和比例应用题.分析:根据题意,首先求出总份数,再求出彩电占总数量的几分之几,根据一个数乘分数的意义,有乘法解答.解答:解:180×=100(台);答:彩电有100台.故选:B.点评:此题考查的目的是让学生掌握按比例分配应用题的特点及解答规律,已知两个数的比(三个数的比),两个数的和(三个数的和),求这两个数(三个数),用按比例分配解答.5.一种混合糖中甲、乙两种糖的比是2:3,现加入甲糖120千克,乙糖40千克,得到混合糖660千克,新混合糖中甲、乙两种糖的比是()A.15:16 B.16:17 C.16:15 D.15:17考点:按比例分配应用题;比的意义.分析:根据题意“现加入甲糖120千克,乙糖40千克,得到混合糖660千克”得到加入糖之前甲、乙两种糖的和:660﹣(120+40)=500克,再根据题意求得甲、乙两种糖的总份数,然后分别求得甲、乙两种糖各占总分数的几分之几,最后分别求得加入糖之前甲、乙两种糖的质量,用原来两种糖的质量分别加上加入糖的质量,求出新混合糖种甲乙两种糖分别是多少,再求比并化简,列式解答即可.解答:解:加入糖之前甲、乙两种糖的和:660﹣(120+40),=660﹣160,=500(千克),总分数:2+3=5(份),加入糖之前甲、乙两种糖的质量分别是:500×=200(千克),600×=300(千克),新混合糖中甲、乙两种糖的质量分别是:200+120=320(千克),300+40=340(千克),新混合糖甲、乙两种糖的比:320:340,=(320÷20):(340÷20),=16:17.答:新混合糖中甲、乙两种的比16:17.故选:B.点评:此题主要考查按比例分配应用题的特点:已知两个数的比和两个数的和,在这里需根据题意求这两个数得和,用现在糖的质量减去加入糖的质量,用按比例分配的方法解答.6.甲、乙、丙三个数的平均数是19,甲、乙两数的比是3:4,丙比甲少3,甲是()A.24 B.18 C.15考点:按比例分配应用题.分析:根据“甲、乙、丙三个数的平均数是19”,可求出三个数的和为57,再根据“丙比甲少3”,可假设丙和甲一样也占3份,那么三个数的和就成为(57+3),先求出三个数的总份数,再求出甲数占三个数和的几分之几,进而求出甲数的数值即可.解答:解:三个数的和:19×3=57,丙和甲一样也占3份时,三个数的和为:57+3=60,总份数:3+4+3=10(份),甲数为:60×=18;答:甲数是18.故选:B.点评:此题属于考查按比例分配的应用题,解决此题关键是把丙和甲看的一样多,都占3份时,三个数的和是多少,作为要分配的总量,进而按照3:4:3进行分配,再用按比例分配的方法进行解答.7.下面的说法正确的是()A.一个等腰三角形的周长是108厘米,其中两条边的比是2:5,腰为24或45厘米B.一种彩票的中奖率是1%,爸爸买了100张这种彩票,爸爸一定会有1次中奖C.相关联的两个量X、Y,Y=X,那么Y和X成正比例考点:按比例分配应用题;辨识成正比例的量与成反比例的量;简单事件发生的可能性求解.专题:比和比例;比和比例应用题;可能性.分析:(1)根据三角形的特性:三角形的任意两条边之和一定大于第三条边,可知等腰三角形三条边的比为2:5:5,不会是2:2:5,按比例分配求出腰即可判断;(2)一种彩票的中奖率是1%,属于不确定事件,可能中奖,也可能不中奖,买了100张彩票只能说明比买1张的中奖的可能性大;(3)由Y=X,变式可得出=4,根据正比例的意义作出判断.解答:解:A.因为:三角形的任意两条边之和一定大于第三条边,所以等腰三角形三条边的比为2:5:5,108×=45(厘米),因此腰为24厘米不对;B.一种彩票的中奖率是1%,买100张彩票一定有1张中奖的说法错误.C.Y=X,=4,比值一定,所以Y和X成正比例,是正确的;故选:C.点评:此题主要考查了概率的意义,以及等腰三角形的性质和正比例的意义等知识.8.下面说法正确的是()A.一个三角形内角度数的比是1:2:3,这是个锐角三角形B.国际儿童节和国庆节都在大月C.同一个平面内,永不相交的两条直线叫做平行线D.在生活中,知道了物体的方向,就能确定物体的位置考点:按比例分配应用题;年、月、日及其关系、单位换算与计算;垂直与平行的特征及性质;三角形的分类;三角形的内角和;方向.专题:综合判断题.分析:(1)根据三角形内角和是180度,按比例分配求出最大角的度数,即可判断;(2)知道一年中1、3、5、7、8、10、12是大月,再知道儿童节和国庆节在哪个月,即可得解;(3)根据平行线的定义:在同一平面内,不相交的两条直线叫平行线,即可判断;(4)物体位置对于某一观察点来说,是由一定的方向和距离确定的,只知道方向或距离不能确定物体的位置.判断即可.解答:解;A.180×=90°,所以是直角三角形而不是锐角三角形;B.国际儿童节是6月1日,国庆节是10月1日,6月是小月,10月是大月,所以国际儿童节和国庆节都在大月错误;C.在同一平面内,不相交的两条直线叫做平行线,是正确的;D.对于某一观察点来说,知道了物体的方向和距离就可以确定物体的位置,只知道方向或距离不能确定物体的位置.故选c.点评:此题主要考查的知识:平行线的定义,一年中哪些是大月和小月,节日的日期,以及要确定一物体的位置,必须知道方向和距离.9.甲、乙、丙三人的平均体重是50千克,他们的体重的比是4:3:3,甲的体重是()A.50×3×B.50×C.50×D.50×3×考点:按比例分配应用题.分析:根据题意,三人的总体重为50×3=150(千克),甲的体重占三人总体重的,根据一个数乘分数的意义,列式即可.解答:解:甲的体重是:50×3×;故选:A.点评:解答此题的关键是找准对应量,找出数量关系,根据数量关系,用按比例分配解答.10.水是由氢和氧按1:8的重量化合而成的,72千克水中,含氢和氧各()A.1千克,71千克B.8千克,64千克C.9千克,63千克D.63千克,9千克考点:按比例分配应用题.专题:比和比例应用题.分析:因为氢和氧按1:8化合成水,氢占水的,氧占水的,然后用乘法解答即可.解答:解:72×=8(千克)72×=64(千克);答:含氢和氧分别有8千克、64千克;故选:B.点评:本题的关键是分别求出氢和氧各占水的几分之几,然后再根据一个数乘分数的意义,用乘法列式解答.。
六年级【小升初】小学数学专题课程《比和比例问题》(含答案)
16、比和比例问题知识要点梳理一、比例尺应用题在比例尺应用题中,图上距离、实际距离和比例尺三者之间的关系式是:图上距离∶实际距离=比例尺,三个相关的量中,知道任意两个量,就可以根据关系式,求出另一个量。
在计算中,要注意各种量的单位要统一。
二、按比例分配的应用题把一个数量按照一定的比分配成几部分。
按比例分配应用题是在比的意义、比与分数的关系的基础上解决的。
关键是要根据各部分之比,确定各部分量与总量之间的关系,即各部分占总量的几分之几,然后按照“求一个数的几分之几是多少”的问题。
三、正、反比例应用题正比例应用题中的各种相关联的数量有正比例关系,关系式是:yx=k(一定);反比例应用题中的各种相关联的数量有反比例关系,关系式是:x·y=k(一定)。
四、解答正、反比例应用题的一般方法与步骤1.找出题目中两种相关联的量,并分析判断是成正比例,还是成反比例。
2.设未知数为x,并注明单位名称。
3.根据比值(一定)或积(一定)建立比例式,并解比例。
4.检验,写答语。
考点精讲分析典例精讲考点1 按比例分配的应用题【例1】希望小学要种一批树共390棵,按照三个班的人数来分配。
一班有42人,二班有45人,三班有43人,三个班各应植树多少棵?【精析】这是一道把390棵植树任务按三个班人数之比42:45:43进行分配的问题。
要分的总数是390,总份数是42+45+43=130。
其中一班占总数的42130,二班占总数的45130,三班占总数的43130,要求各班应植树的棵数,实际上是分别求390的42130,45130,43130各是多少。
【答案】解法一:按比例分配法42+45+43=130390×42130=126(棵)390×45130=135(棵)390×43130=129(棵)解法二:份数解法390÷(42+45+43)=3(棵)3×42=126(棵)3×45=135(棵)3×43=129(棵)答:一班应植树126棵,二班应植树135棵,三班应植树129棵。
小学六年级【小升初】数学《比和比例问题专题课程》含答案
16、比和比例问题知识要点梳理一、比例尺应用题在比例尺应用题中,图上距离、实际距离和比例尺三者之间的关系式是:图上距离∶实际距离=比例尺,三个相关的量中,知道任意两个量,就可以根据关系式,求出另一个量。
在计算中,要注意各种量的单位要统一。
二、按比例分配的应用题把一个数量按照一定的比分配成几部分。
按比例分配应用题是在比的意义、比与分数的关系的基础上解决的。
关键是要根据各部分之比,确定各部分量与总量之间的关系,即各部分占总量的几分之几,然后按照“求一个数的几分之几是多少”的问题。
三、正、反比例应用题正比例应用题中的各种相关联的数量有正比例关系,关系式是:yx=k(一定);反比例应用题中的各种相关联的数量有反比例关系,关系式是:x·y=k(一定)。
四、解答正、反比例应用题的一般方法与步骤1.找出题目中两种相关联的量,并分析判断是成正比例,还是成反比例。
2.设未知数为x,并注明单位名称。
3.根据比值(一定)或积(一定)建立比例式,并解比例。
4.检验,写答语。
考点精讲分析典例精讲考点1 按比例分配的应用题【例1】希望小学要种一批树共390棵,按照三个班的人数来分配。
一班有42人,二班有45人,三班有43人,三个班各应植树多少棵?【精析】这是一道把390棵植树任务按三个班人数之比42:45:43进行分配的问题。
要分的总数是390,总份数是42+45+43=130。
其中一班占总数的42130,二班占总数的45130,三班占总数的43130,要求各班应植树的棵数,实际上是分别求390的42130,45130,43130各是多少。
【答案】解法一:按比例分配法42+45+43=130390×42130=126(棵)390×45130=135(棵)390×43130=129(棵)解法二:份数解法390÷(42+45+43)=3(棵)3×42=126(棵)3×45=135(棵)3×43=129(棵)答:一班应植树126棵,二班应植树135棵,三班应植树129棵。
新人教版六年级上册数学第四单元按比例分配应用题
3 )。 2 )。
3
男生人数占全班人数的( 占全班人数的( )。 ),女生人数
3、为了迎接校庆,我校准备购 进一批彩旗,红旗、黄旗、蓝 旗面数的比是3∶2∶1。 红旗占这批彩旗的 黄旗占这批彩旗的 蓝旗占这批彩旗的
想想可以怎样分:
200毫升
医院的一种药 水是按药粉与 水重量的比1: 40来配制的。
1200元
工地上的混凝土是按 照水泥、黄沙、石子 重量的比2:3:5配 制而成的。
ቤተ መጻሕፍቲ ባይዱ
某单位把这些奖金按 3:2:1分发给一、 二、三等奖获得者。
把一个数量按照 一定的比来进行分配, 这种分配方法通常叫 做按比分配,习惯上 叫做按比例分配。
六(2)班体育课上,王老师要把14个毽 子分给7个男同学和7个女同学,分成男、女 两大组练习,毽子可以怎样分?
六(2)班体育课上,王老师要把14个毽 子平均分给12名男同学和2名女同学,分成男、 女两大组练习,你认为这样分好吗?为什么? 你认为毽子可以怎样分?
1
足球的表面是 按照黑色五边 形与白色六边 形个数的比3: 5来设计的。
方法一: 51+50=101 303÷101=3(人) 3×51=153(人) 3×50=150(人) 51+50=101 51 303× 101 =153(人) 50 303× 101 =150(人)
答:上月新生男婴儿有153人,女婴儿有150人。
方法一: 9+1=10 200÷10=20(mL) 20×1=20(mL) 20×9=180(mL)
新人教版六年级上册数学第四新人教版六年级上册数学第四单元按比例分配应用题单元按比例分配应用题根据信息填空
小学六年级上册 比的应用题和拓展 完整版题型训练+答案详解
比的应用题和拓展内容总结:(1)按比例分配(2)单比化连比(3)列表法还原(4)比较估算例题讲解板块一:基础题型1.水果店运来了西瓜和哈密瓜共234 个,如果西瓜和哈密瓜的个数比为5:4,那么水果店 运来西瓜和哈密瓜各多少个?解答:西瓜和哈密瓜的个数比是 5:4,可以把水果店运来的西瓜和哈密瓜总和看做5+4=9 份, 其中西瓜占 5 份,哈密瓜占 4 份;先求出每份的量;再求所求量。
每份:234 ÷ 5+4 =26 个 ( ) 西瓜:26×5=130 个 哈密瓜:26×4=104 个2.有 429 名小学生参加数学冬令营,其中男生和女生的人数比为7:6.后来又有 一些女生报名参赛,这时男生和女生的人数比变为 11:10.请问:后来报名的女生有多少人? 解答:开始男生与总人数的比是7:13,来了一些女生后,男生与总人数的比是11:21,因 为男生是不变量,先求出男生人数,再求出来一些女生后的总人数,现在总人数减去以前的 总人数就是增加的女生人数。
男生人数:429÷13×7=231 人现在总人数:231÷11×21=441 人后来报名女生人数:441-429=12 人3.松鼠一家三口出门采摘松果,松鼠爸爸采得最快,他每采摘7 颗松果,松鼠妈妈只能采 摘 6 颗;松鼠宝宝采得最慢,他每采摘2 颗,松鼠妈妈已经采摘了3 颗.一天下来,他们一 共采摘了 340 颗松果.试问:其中有多少颗是松鼠宝宝采的?解析:根据条件可知松鼠妈妈采摘 6 颗,松鼠宝宝可以采摘 4 颗;所以相同时间内松鼠爸爸 松鼠妈妈和松鼠宝宝采摘的松果比是 7:6:4。
松鼠宝宝采摘的:340÷(7+6+4)×4=80 颗4.育才小学五年级学生分成三批去参观博物馆,第一批与第二批的人数比是 5:4,第二批与 第三批的人数比是 3:2.已知第一批的人数比第二、三批的总和少55 人.请问:育才小学 五年级一共有多少人?解析:根据条件可知第一批,第二批和第三批的人数比是15:12:8。
六年级数学上册典型例题系列之第四单元比:按比例分配应用题专项练习
六年级数学上册典型例题系列之第四单元比:按比例分配应用题专项练习(解析版)专项练习一:和比、差比、单量与比问题的辨析1.配置一种药水,水与药的比是5:3,现在有药水2400克,那么药有多少克? 解析:该题是和比问题。
水:2400×355+=1500(克) 药:2400×353+=900(克) 答:略。
2.配置一种药水,水与药的比是5:3,现在有水2400克,那么药有多少克? 解析:该题是单量与比的问题。
药:2400÷5×3=1440(克)答:略。
3.配置一种药水,水与药的比是5:3,现在水比药多2400克,那么药有多少克?解析:该题是差比问题。
药:2400÷(5-3)×3=3600(克)答:略。
4.把一根长4.8米的绳子按3:2截成甲、乙两段,甲、乙两段各长多少米? 解析:该题是和比问题。
甲段:4.8×233+=2.88(米) 乙段:4.8×232+=1.92(米) 答:略。
5.把一根绳子按3∶2截成甲、乙两段,已知甲段长4.8米, 乙段长多少米? 解析:该题是单量与比的问题。
乙段:4.8÷3×2=3.2(米)答:略。
6.把一根绳子按3∶2截成甲、乙两段,已知乙段长4.8米, 这根绳子原来长多少米?解析:该题是单量与比的问题。
原来长:4.8÷2×(3+2)=12(米)答:略。
7.把一根绳子按3∶2截成甲、乙两段,已知乙段比甲段短4.8米, 甲、乙两段各长多少米?解析:该题是差比问题。
甲段:4.8÷(3-2)×3=14.4(米)乙段:4.8÷(3-2)×2=9.6(米)答:略。
8.一种糖水,糖与水的比是2:5,现在有糖水140千克,其中糖有多少千克? 解析:该题是和比问题。
糖:140×522+=40(克) 答:略。
9.一种糖水,糖与糖水的比是2:5,现在有糖水140千克,其中糖有多少千克?解析:该题是单量与比的问题。
比和比例及列方程解应用题
比和比例及列方程解应用题一、有关比的应用题(按比例分配)在这一部分中,我们需要解决的问题是已知各部分的总和与各部分量的比,求各部分量。
为了解决这个问题,我们可以使用归一法或分数乘法。
对于归一法,我们需要先计算出总数量除以总份数的结果,这个结果就是每份数。
然后,我们将每份数乘以各自的份数,就可以得到各部分的量。
对于分数乘法,我们需要将总数量乘以各部分的份数,然后再除以总份数,就可以得到各部分的量。
以下是一些例题:1.一个长方形,长与宽的比是4:3,这个长方形的周长是280厘米,它的面积是多少平方厘米?2.一个长方体的棱长总和是96分米,长、宽、高的比是3:3:2,它的表面积和体积各是多少?3.工程队修一条路,已经修好的和未修的比是1:2,如果再修1.5千米,刚好修完这条路的一半,这条公路全长多少米?4.青年运输队计划3天运完一批货物。
第一天运了480吨,占这批货物的40%;第二天运的和第三天运的吨数比是3:5,第三天运的货物是多少吨?5.红云小队三天共植树150棵,第一与第二天植树棵数的比是5:6,第二天与第三天植树的比是3:2,第一、第二、第三天植树多少棵?二、比例应用题(正比例和反比例)在这一部分中,我们需要解决的问题是已知两个量之间的比例关系,求另一个量。
这个问题可以分为正比例和反比例两种情况。
对于正比例,我们可以使用比例公式y=kx,其中k为比例系数,x和y分别表示两个量。
我们可以通过已知的x和y 值来求解k,然后再根据已知的x或y值来求解另一个量。
对于反比例,我们可以使用比例公式y=k/x,其中k为比例系数,x和y分别表示两个量。
同样地,我们可以通过已知的x和y值来求解k,然后再根据已知的x或y值来求解另一个量。
以下是一些例题:1.数学小组和美术小组人数的比为5:3,数学小组不美术小组多24人,两组各有多少人?2.师徒两人共同加工一批零件,师傅和徒弟加工零件个数的比为4:1,已知徒弟比师傅少加工600个。
【小学数学】六年级上册数学单元测试 4.比和按比例分配(含答案)
六年级上册数学单元测试-4比和按比例分配一、单选题1一个三角形三个内角度数的比是1:4:5,这个三角形是()三角形.A 锐角B 直角C 钝角D 等边2配制一种盐水,盐和水重量的比是1∶2021在用80克盐配制这种盐水,需加水A 4克B 160克C 1600克D 140克3从甲盐库取出的盐运到乙盐库,这时两个盐库所存的盐的质量相等,原来甲盐库和乙盐库的存盐质量的比是多少?()A 5:3B 4:5C 6:5D 5:44摩托车速度比汽车快则摩托车速度与汽车速度的比是()A 1∶4B 4∶1C 5∶4D 4∶5二、判断题5判断对错:B=3:5,那么A=3,B=5.(判断对错)7一项工程,甲队单独完成要9天,乙队单独完成要7天,甲队和乙队工作效率的比是9:7.8判断对错若甲数是乙数的,则甲、乙两数的比是5:6三、填空题∶32的比值是________:2的比值是________.10一杯糖水,糖与水的比是1:4,喝去杯糖水后,又用水加满,这时杯中糖与水的比是________。
11建模小组有男生25人,女生2021男生人数是女生的________%,女生人数是男生的________%.男生和女生人数的比是________,女生和男生人数的比是________.12一种酒精溶液,纯酒精与水的体积比是1∶50.(1)25毫升纯酒精需加水________毫升才能调成这种酒精溶液?(2)800毫升水需加纯酒精________毫升才能调成这种酒精溶液?四、解答题13甲工程队有150名工人,甲乙两个工程队人数比是3:2。
乙工程队有多少工人?五、综合题14只列式,不计算.(1)小李存了20210元三年定期储蓄,年利率是%,到期时应得利息多少元?(2)电冰箱厂五月计划生产5000台电冰箱,实际比计划多生产了400台,超产了百分之几?(3)一辆汽车从甲地开往乙地,行了全程的,两地相距240千米,这是汽车离甲地多少千米?(4)某养殖厂养鸡300只,养鸡的只数和鸭的只数比是2:3.养殖厂养鸭多少只?六、应用题15为了解决用电矛盾,供电部门决定在某小区试点实施居民分时电价,具体通知如下:(i)时段划分:居民分时电价分为高峰时段和低谷时段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学六年级数学比和按比例分配应用题
1、学校买来一批书,共1000本,把这批书按3:4:5分给四、五、六三个年级,每个年级各分到多少本?
2、(1)果园里梨树与桃树的比是3:5,这个果园里共有果树40棵,梨树与桃树各多少棵?
(2)果园里梨树与桃树的比是3:5,已知桃树有40棵。
这个果园共有果树多少棵?(3)果园里梨树与桃树的比是3:5,已知梨树比桃树少40棵,这个果园共有果树多少棵?
3、一个长方形的周长是40分米,它的长与宽的比是3:2,这个长方形的面积是多少?
4、小明在期末考试中数文、数学、英语的均分为75分,它的三门学科成绩的比为8:8:9,它的三门成绩分别是多少?
5、把一段长96厘米的铁丝做一个长方体框架,长方体的长宽高的比是5:4:3,这个长方体的长、宽、高分别是多少?
6、加工一批零件,王师傅每小时加工48个,与李师傅每小时加工个数的比是4:5。
两个共同加工3小时,可以加工多少个零件?
7、工厂买来120吨生产原料,其中的分给一车间,其余的按3:5分给甲乙两个车间,甲乙两个车间各分到多少吨?
8、一种药水是用药粉和水按3:100配成的。
(1)要配制这种药水515千克,需要药粉多少千克?
(2)有水60千克,需要药粉多少千克?
(3)用90千克的药粉,可配成多少千克的药水?
9、一杯盐水,盐与盐水的比为1:5,再加上16克盐后,盐与盐水的比为1:4,原来盐水有多少千克?
10、甲乙两地相距600千米,两车分别从两地相向同时出发,3小时后两车相遇,已知快车与慢车的速度比为11:9,快车与慢车的速度分别是多少?
11、某车间有140名职工,分成三个生产小组,已知第一组和第二组人数比为2:3,第二组和第三组人数比为4:5,这三个小组名有多少人?
12、一班和二班的人数比为8:7,如果将一班的8名同学调到二班去,那么一班和二班的人数的比为4:5,求原来两班各有多少人?。