“一次函数”中考试题分类汇编(含答案)

合集下载

中考数学模拟题汇总《一次函数》专项练习(附答案)

中考数学模拟题汇总《一次函数》专项练习(附答案)

中考数学模拟题汇总《一次函数》专项练习(附答案)一、选择题1.若函数y=(k﹣1)x+b+2是正比例函数,则( )A.k≠﹣1,b=﹣2B.k≠1,b=﹣2C.k=1,b=﹣2D.k≠1,b=22.下列函数:①y=16x;②y=-4x;③y=3-12x;④y=3x2﹣2;⑤y=x2﹣(x﹣3)(x+2);⑥y=6x.其中,是一次函数的有( ).A.5个B.4个C.3个D.2个3.经过以下一组点可以画出函数y=2x图象的是( )A.(0,0)和(2,1)B.(1,2)和(-1,-2)C.(1,2)和(2,1)D.(-1,2)和(1,2)4.设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=( )A.2B.﹣2C.4D.﹣45.若一次函数y=(3﹣k)x﹣k的图象经过第二、三、四象限,则k的取值范围是( )A.k>3B.0<k≤3C.0≤k<3D.0<k<36.一次函数y1=kx+b与y2=x+a的图象如图所示.则下列结论:①k<0;②a>0;③当x<3时,y1<y2,错误的个数是( )A.0B.1C.2D.37.若点A(2,4)在函数y=kx﹣2的图象上,则下列各点在此函数图象上的是( ).A.(0,﹣2)B.(32,0) C.(8,20) D.(12,12)8.在平面直角坐标系中,将直线l1:y=﹣3x﹣1平移后,得到直线l2:y=﹣3x+2,则下列平移方式正确的是( )A.将l1向左平移1个单位 B.将l1向右平移1个单位C.将l1向上平移2个单位 D.将l1向上平移1个单位9.下图是温度计的示意图,左边的刻度表示摄氏温度,右边的刻度表示华氏温度,华氏温度y(℉)与摄氏温度x(℃)之间的一次函数表达式为( )A.y=95x+32 B.y=x+40 C.y=59x+32 D.y=59x+3110.直线y=kx+b交坐标轴于A(﹣8,0),B(0,13)两点,则不等式kx+b≥0的解集为( )A.x≥﹣8B.x≤﹣8C.x≥13D.x≤1311.若等腰△ABC的周长是50cm,底边长为xcm,一腰长为ycm,则y与x的函数关系式及自变量x的取值范围是( )A.y=50-2x(0<x<50)B.y=50-2x(0<x<25)C.y= (50-2x)(0<x<50)D.y= (50-x)(0<x<25)12.对于函数y=﹣2x+5,下列表述:①图象一定经过(2,﹣1);②图象经过一、二、四象限;③与坐标轴围成的三角形面积为12.5;④x每增加1,y的值减少2;⑤该图象向左平移1个单位后的函数表达式是y=﹣2x+4.正确的是( )A.①③B.②⑤C.②④D.④⑤二、填空题13.点(0.5,y1),(2,y2)是一次函数y=﹣0.5x﹣3图像上的两点,则y1y2.(填“>”、“=”或“<”)14.若一次函数y=(m﹣1)x﹣m+4的图象与y轴的交点在x轴的上方,则m的取值范围是________.15.如图,在△ABC中,∠ACB=90°,斜边AB在x轴上,点C在y轴的正半轴上,直线AC的解析式是y=-2x+4,则直线BC的解析式为_________________16.一次函数y= -4x+12的图象与x轴交点坐标是,与y轴交点坐标是,图象与坐标轴所围成的三角形面积是 .17.如图,一次函数y1=k1x+b1与y2=k2x+b2的图象相交于A(3,2),则不等式(k2﹣k1)x+b2﹣b1>0的解集为_________.18.如图,矩形ABCD边AB在x轴上,AB的中点与原点O重合,AB=2,AD=1,点E坐标为(0,2).点F(x,0)在边AB上运动,若过点E、F的直线将矩形ABCD周长分成2:1两部分,则x值为.三、解答题19.已知一次函数y=kx﹣4,当x=2时,y=﹣3.(1)求一次函数的解析式;(2)将该函数的图象向上平移6个单位,求平移后的图象与x轴交点的坐标.20.已知一次函数y=kx+b的图象经过M(0,2),N(1,3)两点.(1)求k,b的值;(2)若一次函数 y=kx+b的图象与x轴的交点是A(a,0),求a的值.21.如图,一次函数y=﹣x+m的图象和y轴交于点B,与正比例函数y=32x的图象交于点P(2,n).(1)求m和n的值;(2)求△POB的面积.22.如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a的值.23.学校为奖励在艺术节系列活动中表现优秀的同学,计划购买甲、乙两种奖品.已知购买甲种奖品30件和乙种奖品25件需花费1950元,购买甲种奖品15件和乙种奖品35件需花费1650元.(1)求甲、乙两种奖品的单价;(2)学校计划购买甲、乙两种奖品共1800件,其中购买乙种奖品的件数不超过甲种奖品件数的2倍,学校分别购买甲、乙两种奖品多少件才能使总费用最小?最小费用是多少元?24.在平面直角坐标系xOy中,直线y=kx+4(k≠0)与y轴交于点A.(1)如图,直线y=﹣2x+1与直线y=kx+4(k≠0)交于点B,与y轴交于点C,点B横坐标为-1.①求点B的坐标及k的值;②直线y=-2x+1与直线y=kx+4与y轴所围成的△ABC的面积等于;(2)直线y=kx+4(k≠0)与x轴交于点E(x0,0),若-2<x<-1,求k的取值范围.25.正方形OABC的边长为2,其中OA、OC分别在x轴和y轴上,如图1所示,直线l经过A、C两点.(1)若点P是直线l上的一点,当△OPA的面积是3时,请求出点P的坐标;(2)如图2,直角坐标系内有一点D(﹣1,2),点E是直线l上的一个动点,请求出|BE+DE|的最小值和此时点E的坐标.(3)若点D关于x轴对称,对称到x轴下方,直接写出|BE﹣DE|的最大值,并写出此时点E的坐标.参考答案1.B2.C3.B4.B5.D6.C7.C 8.B 9.A. 10.A 11.D 12.C. 13.答案为:>; 14.答案为:m <4且m ≠1 15.答案为:y=12x+4.16.答案为:(3,0),(0,12),18. 17.答案为:x <3 18.答案为:±23.19.解:(1)将x =2,y =﹣3代入y =kx ﹣4, 得﹣3=2k ﹣4,解得k=12.故一次函数的解析式为y=12x-4.(2)将y=12x-4的图象向上平移6个单位得y=12x+2,当y =0时,x =﹣4,故平移后的图象与x 轴交点的坐标为(﹣4,0). 20.解:(1)由题意知解得∴k ,b 的值分别为1,2. (2)由(1)得y =x +2.∴当y =0时,x =﹣2,即a =﹣2.21.解:(1)∵点P(2,n)在正比例函数y =32x 的图象上,∴n =32×2=3.把点P 的坐标(2,3)代入y =﹣x +m ,得 3=﹣2+m , ∴m =5.即m=5,n=3.(2)由(1)知,一次函数为y=﹣x+5,令x=0,得y=5,∴点B的坐标为(0,5),∴S△POB =12×5×2=5.22.解:(1)∵点P(1,b)在直线l1:y=2x+1上,∴b=2×1+1=3.∵点P(1,3)在直线l2:y=mx+4上,∴3=m+4,∴m=-1.(2)当x=a时,yC =2a+1.当x=a时,yD=4-a.∵CD=2,∴|2a+1-(4-a)|=2,解得a=13或53.23.解:(1)设甲种奖品的单价为x元/件,乙种奖品的单价为y元/件,依题意,得:,解得:.答:甲种奖品的单价为40元/件,乙种奖品的单价为30元/件.(2)设购买甲种奖品m件,则购买乙种奖品(1800﹣m)件,设购买两种奖品的总费用为w,∵购买乙种奖品的件数不超过甲种奖品件数的2倍,∴1800﹣m≤2m,∴m≥600.依题意,得:w=40m+30(1800﹣m)=10m+54000,∵10>0,∴w随m值的增大而增大,∴当学习购买600件甲种奖品、1200件乙种奖品时,总费用最小,最小费用是60000元.24.解:(1)①∵直线y=-2x+1过点B,点B的横坐标为-1,∴y=2+1=3,∴B(-1,3),∵直线y =kx +4过B 点, ∴3=-k +4,解得:k =1; ②∵k =1,∴一次函数解析式为:y =x +4, ∴A(0,4), ∵y =-2x +1, ∴C(0,1), ∴AC =4-1=3,∴△ABC 的面积为12×1×3=32.(2)∵直线y =kx +4(k ≠0)与x 轴交于点E(x 0,0),-2<x 0<-1, ∴当x 0=-2,则E(-2,0),代入y =kx +4得:0=-2k +4, 解得:k =2,当x 0=-1,则E(-1,0),代入y =kx +4得:0=-k +4, 解得:k =4,故k 的取值范围是:2<k <425.解:(1)如图1中,由题意知点A 、点C 的坐标分别为(﹣2,0)和(0,2) 设直线l 的函数表达式y =kx +b(k ≠0),经过点A(﹣2,0)和点C(0,2), 得解得,∴直线l 的解析式为y =x +2. 设点P 的坐标为(m ,m +2), 由题意得12×2×|m +2|=3, ∴m =1或m =﹣5.∴P(1,3),P ′(﹣5,﹣3).(2)如图2中,连接OD 交直线l 于点E ,则点E 为所求,此时|BE +DE|=|OE +DE|=OD ,OD 即为最大值.设OD所在直线为y=k1x(k1≠0),经过点D(﹣1,2),∴2=﹣k1,∴k1=﹣2,∴直线OD为y=﹣2x,由解得,∴点E的坐标为(﹣23,43),又∵点D的坐标为(﹣1,2),∴由勾股定理可得OD=5.即|BE+DE|的最小值为5.(3)如图3中,∵O与B关于直线l对称,∴BE=OE,∴|BE﹣DE|=|OE﹣DE|.由两边之差小于第三边知,当点O,D,E三点共线时,|OE﹣DE|的值最大,最大值为OD.∵D(﹣1,﹣2),∴直线OD的解析式为y=2x,OD=5,由,解得,∴点E(2,4),∴|BE﹣D′E|的最大值为5此时点E的坐标为(2,4).。

2023年湖南省中考数学真题分类汇编:一次函数、二次函数(含答案)

2023年湖南省中考数学真题分类汇编:一次函数、二次函数(含答案)

;2023年湖南省中考数学真题分类汇编:一次函数、二次函数一、选择题1.(2023·长沙)下列一次函数中,y随x的增大而减小的函数是( )A.y=2x+1B.y=x―4C.y=2x D.y=―x+1 2.(2023·邵阳)已知P1(x1,y1),P2(x2,y2)是抛物线y=a x2+4ax+3(a是常数,a≠0)上的点,现有以下四个结论:①该抛物线的对称轴是直线x=―2;②点(0,3)在抛物线上;③若x1>x2>―2,则y1>y2;④若y1=y2,则x1+x2=―2其中,正确结论的个数为( )A.1个B.2个C.3个D.4个3.(2023·株洲)如图所示,直线l为二次函数y=a x2+bx+c(a≠0)的图像的对称轴,则下列说法正确的是( )A.b恒大于0B.a,b同号C.a,b异号D.以上说法都不对4.(2023·衡阳)已知m>n>0,若关于x的方程x2+2x―3―m=0的解为x1,x2(x1<x2).关于x的方程x2+2x―3―n=0的解为x3,x4(x3<x4).则下列结论正确的是( )A.x3<x1<x2<x4B.x1<x3<x4<x2C.x1<x2<x3<x4D.x3<x4<x1<x2二、填空题5.(2023·郴州)在一次函数y=(k―2)x+3中,y随x的增大而增大,则k的值可以是 (任写一个符合条件的数即可).6.(2023·郴州)抛物线y=x2―6x+c与x轴只有一个交点,则c= .三、综合题7.(2023·常德)如图,二次函数的图象与x轴交于A(―1,0),B(5,0)两点,与y轴交于点C,顶点为D.O为坐标原点,tan∠ACO=1.5(1)求二次函数的表达式;(2)求四边形ACDB的面积;(3)P是抛物线上的一点,且在第一象限内,若∠ACO=∠PBC,求P点的坐标.8.(2023·株洲)某花店每天购进16支某种花,然后出售.如果当天售不完,那么剩下的这种花进行作废处理、该花店记录了10天该种花的日需求量n(n为正整数,单位:支),统计如下表:日需求量n131415161718天数112411(1)求该花店在这10天中出现该种花作废处理情形的天数;(2)当n<16时,日利润y(单位:元)关于n的函数表达式为:y=10n―80;当n≥16时,日利润为80元.①当n=14时,间该花店这天的利润为多少元?②求该花店这10天中日利润为70元的日需求量的频率.9.(2023·张家界)如图,在平面直角坐标系中,已知二次函数y=a x2+bx+c的图象与x轴交于点A(―2,0)和点B(6,0)两点,与y轴交于点C(0,6).点D为线段BC上的一动点.(1)求二次函数的表达式;(2)如图1,求△AOD周长的最小值;(3)如图2,过动点D作DP∥AC交抛物线第一象限部分于点P,连接PA,PB,记△PAD与△PBD的面积和为S,当S取得最大值时,求点P的坐标,并求出此时S的最大值.10.(2023·郴州)已知抛物线y=a x2+bx+4与x轴相交于点A(1,0),B(4,0),与y轴相交于点C.(1)求抛物线的表达式;的值;(2)如图1,点P是抛物线的对称轴l上的一个动点,当△PAC的周长最小时,求PAPC?若存在,求出点Q的坐(3)如图2,取线段OC的中点D,在抛物线上是否存在点Q,使tan∠QDB=12标;若不存在,请说明理由.11.(2023·邵阳)如图,在平面直角坐标系中,抛物线y=a x2+x+c经过点A(―2,0)和点B(4,0),且与直线l:y=―x―1交于D、E两点(点D在点E的右侧),点M为直线l上的一动点,设点M的横坐标为t.(1)求抛物线的解析式.(2)过点M作x轴的垂线,与拋物线交于点N.若0<t<4,求△NED面积的最大值.(3)抛物线与y轴交于点C,点R为平面直角坐标系上一点,若以B、C、M、R为顶点的四边形是菱形,请求出所有满足条件的点R的坐标.12.(2023·株洲)已知二次函数y=a x2+bx+c(a>0).(1)若a=1,c=―1,且该二次函数的图象过点(2,0),求b的值;(2)如图所示,在平面直角坐标系Oxy中,该二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<0<x 2,点D 在⊙O 上且在第二象限内,点E 在x 轴正半轴上,连接DE ,且线段DE 交y 轴正半轴于点F ,∠DOF =∠DEO ,OF =32DF .①求证:DO EO =23.②当点E 在线段OB 上,且BE =1.⊙O 的半径长为线段OA 的长度的2倍,若4ac =―a 2―b 2,求2a +b 的值.13.(2023·岳阳)已知抛物线Q 1:y =―x 2+bx +c 与x 轴交于A(―3,0),B 两点,交y 轴于点C(0,3).(1)请求出抛物线Q 1的表达式.(2)如图1,在y 轴上有一点D(0,―1),点E 在抛物线Q 1上,点F 为坐标平面内一点,是否存在点E ,F 使得四边形DAEF 为正方形?若存在,请求出点E ,F 的坐标;若不存在,请说明理由.(3)如图2,将抛物线Q 1向右平移2个单位,得到抛物线Q 2,抛物线Q 2的顶点为K ,与x 轴正半轴交于点H ,抛物线Q 1上是否存在点P ,使得∠CPK =∠CHK ?若存在,请求出点P 的坐标;若不存在,请说明理由.14.(2023·衡阳)如图,已知抛物线y =a x 2―2ax +3与x 轴交于点A(―1,0)和点B ,与y 轴交于点C ,连接AC ,过B 、C 两点作直线.(1)求a的值.(2)将直线BC向下平移m(m>0)个单位长度,交抛物线于B′、C′两点.在直线B′C′上方的抛物线上是否存在定点D,无论m取何值时,都是点D到直线B′C′的距离最大,若存在,请求出点D的坐标;若不存在,请说明理由.(3)抛物线上是否存在点P,使∠PBC+∠ACO=45°,若存在,请求出直线BP的解析式;若不存在,请说明理由.15.(2023·怀化)如图一所示,在平面直角坐标系中,抛物线y=a x2+bx―8与x轴交于A(―4,0)、B(2,0)两点,与y轴交于点C.(1)求抛物线的函数表达式及顶点坐标;(2)点P为第三象限内抛物线上一点,作直线AC,连接PA、PC,求△PAC面积的最大值及此时点P的坐标;交抛物线于点M、N,求证:无论k为何值,平行于x轴的直线l2:y=―(3)设直线l1:y=kx+k―35437上总存在一点E,使得∠MEN为直角.4答案解析部分1.【答案】D2.【答案】B3.【答案】C4.【答案】B5.【答案】3(答案不唯一)6.【答案】97.【答案】(1)解:∵二次函数的图象与x 轴交于A(―1,0),B(5,0)两点.∴设二次函数的表达式为y =a(x +1)(x ―5)∵AO =1,tan ∠ACO =15,∴OC =5,即C 的坐标为(0,5)则5=a(0+1)(0―5),得a =―1∴二次函数的表达式为y =―(x +1)(x ―5);(2)解:y =―(x +1)(x ―5)=―(x ―2)2+9∴顶点的坐标为(2,9)过D 作DN ⊥AB 于N ,作DM ⊥OC 于M ,四边形ACDB 的面积=S △AOC +S 矩形OMDN ―S △CDM +S △DNB=12×1×5+2×9―12×2×(9―5)+12×(5―2)×9=30;(3)解:如图,P 是抛物线上的一点,且在第一象限,当∠ACO =∠PBC 时,连接PB ,过C 作CE ⊥BC 交BP 于E ,过E 作EF ⊥OC 于F ,∵OC =OB =5,则△OCB 为等腰直角三角形,∠OCB =45°.由勾股定理得:CB =52,∵∠ACO =∠PBC ,∴tan ∠ACO =tan ∠PBC ,即15=CE CB =CE 52,∴CE =2由CH ⊥BC ,得∠BCE =90°,∴∠ECF =180°―∠BCE ―∠OCB =180°―90°―45°=45°.∴△EFC 是等腰直角三角形∴FC =FE =1∴E 的坐标为(1,6)所以过B 、E 的直线的解析式为y =―32x +152令y =―32x +152y =―(x +1)(x ―5)解得x =5y =0,或x =12y =274所以BE 直线与抛物线的两个交点为B(5,0),P(12,274)即所求P 的坐标为P(12,274)8.【答案】(1)解:当n <16时,该种花需要进行作废处理,则该种花作废处理情形的天数共有:1+1+2=4(天);(2)解:①当n <16时,日利润y 关于n 的函数表达式为y =10n ―80,当n =14时,y =10×14―80=60(元);②当n <16时,日利润y 关于n 的函数表达式为y =10n ―80;当n≥16时,日利润为80元,80>70,当y=70时,70=10n―80解得:n=15,由表可知n=15的天数为2天,则该花店这10天中日利润为70元的日需求量的频率为2.9.【答案】(1)解:由题意可知,设抛物线的表达式为y=a(x+2)(x―6),将(0,6)代入上式得:6=a(0+2)(0―6),a=―1 2所以抛物线的表达式为y=―12x2+2x+6;(2)解:作点O关于直线BC的对称点E,连接EC、EB,∵B(6,0),C(0,6),∠BOC=90°,∴OB=OC=6,∵O、E关于直线BC对称,∴四边形OBEC为正方形,∴E(6,6),连接AE,交BC于点D,由对称性|DE|=|DO|,此时|DO|+|DA|有最小值为AE的长,AE=AB2+BE2=82+62=10∵△AOD的周长为DA+DO+AO,AO=2,DA+DO的最小值为10,∴△AOD的周长的最小值为10+2=12;(3)解:由已知点A(―2,0),B(6,0),C(0,6),设直线BC的表达式为y=kx+b,将B(6,0),C(0,6)代入y=kx+b中,6k+b=0b=0,解得k=―1b=6,∴直线 BC 的表达式为 y =―x +6 ,同理可得:直线 AC 的表达式为 y =3x +6 ,∵PD ∥AC ,∴设直线 PD 表达式为 y =3x +a ,由(1)设 P(m ,―12m 2+2m +6) ,代入直线 PD 的表达式得: a =―12m 2―m +6 ,∴直线 PD 的表达式为: y =3x ―12m 2―m +6 ,由 y =―x +6y =3x ―12m 2―m +6 ,得 x =18m 2+14m y =―18m 2―14m +6 ,∴D(18m 2+14m ,―18m 2―14m +6) ,∵P ,D 都在第一象限,∴S =S △PAD +S △PBD =S △PAB ―S △DAB=12|AB|[(―12m 2+2m +6)―(―18m 2―14m +6)]=12×8(―38m 2+94m)=―32m 2+9m =―32(m 2―6m)=―32(m ―3)2+272,∴当 m =3 时,此时P 点为 (3,152) .S 最大值=272.10.【答案】(1)解:∵抛物线y =a x 2+bx +4与x 轴相交于点A(1,0),B(4,0),∴a +b +4=016a +4b +4=0,解得:a =1b =―5,∴y =x 2―5x +4;(2)解:∵y =x 2―5x +4,当x =0时,y =4,∴C(0,4),抛物线的对称轴为直线x =52∵△PAC 的周长等于PA +PC +AC ,AC 为定长,∴当PA +PC 的值最小时,△PAC 的周长最小,∵A ,B 关于对称轴对称,∴PA +PC =PB +PC ≥BC ,当P ,B ,C 三点共线时,PA +PC 的值最小,为BC 的长,此时点P 为直线BC 与对称轴的交点,设直线BC 的解析式为:y =mx +n ,则:4m +n =0n =4,解得:m =―1n =4,∴y =―x +4,当x =52时,y =―52+4=32,∴P(52,32),∵A(1,0),C(0,4),∴PA =(52―1)2+(32)2=322,PC =(52)2+(4―32)2=522,∴PA PC =35;(3)解:存在,∵D 为OC 的中点,∴D(0,2),∴OD =2,∵B(4,0),∴OB =4,在Rt △BOD 中,tan ∠OBD =OD OB =12,∵tan ∠QDB =12=tan ∠OBD ,∴∠QDB =∠OBD ,①当Q 点在D 点上方时:过点D 作DQ ∥OB ,交抛物线与点Q ,则:∠QDB =∠OBD ,此时Q 点纵坐标为2,设Q 点横坐标为t ,则:t 2―5t +4=2,解得:t =5±172,∴Q(5+172,2)或Q(5―172,2);②当点Q 在D 点下方时:设DQ 与x 轴交于点E ,则:DE =BE ,设E(p ,0),则:D E 2=O E 2+O D 2=p 2+4,B E 2=(4―p)2,∴p 2+4=(4―p)2,解得:p =32,∴E(32,0),设DE 的解析式为:y =kx +q ,=2+q =0,解得:q =2k =―43,∴y =―43x +2,联立y =―43x +2y =x 2―5x +4,解得:x =3y =―2或x =23y =109,∴Q(3,―2)或Q(23,109);综上:Q(5+172,2)或Q(5―172,2)或Q(3,―2)或Q(23,109).11.【答案】(1)解:∵抛物线y =a x 2+x +c 经过点A(―2,0)和点B(4,0),∴4a ―2+c =016a +4+c =0,解得:a =―12c =4,∴抛物线解析式为:y =―12x 2+x +4;(2)解:∵抛物线y =―12x 2+x +4与直线l :y =―x ―1交于D 、E 两点,(点D 在点E 的右侧)联立y =―12x 2+x +4y =―x ―1,解得:x =2+14y =―3―14或x =2―14y =―3+14,∴D(2+14,―14―3),E(2―14,14―3),∴x D ―x E =(2+14)―(2―14)=214,∵点M 为直线l 上的一动点,设点M 的横坐标为t .则M(t ,―t ―1),N(t ,―12t 2+t +4),∴MN =―12t 2+t +4―(―t ―1)=―12t 2+2t +5=―12(t ―2)2+7,当t =2时,MN 取得最大值为7,∵S △END =12(x D ―x E )×MN ,∴当MN 取得最大值时,S △END 最大,∴S △END =12×214×7=714,∴△NED 面积的最大值714;(3)解:∵抛物线与y 轴交于点C ,∴y =―12x 2+x +4,当x =0时,y =4,即C(0,4),∵B(4,0),M(t ,―t ―1)∴BC =42+42=42,B M 2=(4―t)2+(―t ―1)2=2t 2―6t +17,C M 2=t 2+(t +5)2=2t 2+10t +25,①当BC 为对角线时,MB =CM ,∴2t 2―6t +17=2t 2+10t +25,解得:t =―12,∴M(―12,―12),∵BC ,MR 的中点重合,∴R x ―12=4R y ―12=4,解得:R x =92R y =92,∴R(92,92),②当BC 为边时,当四边形BMRC 为菱形,BM =BC∴2t 2―6t +17=(42)2,解得:t =3―392或t =3+392,∴―t ―1=―3―392―1=―5+392或―t ―1=―3+392―1=―5―392,∴M(3―392,―5+392)或M(3+392,―39―52),由CM ,BR 的中点重合,∴R x +4=3―392+0R y +0=―5+392+4或R x +4=3+392+0R y +0=―5―392+4,解得:R x =―5―392R y =3+392或R x =―5+392R y =3―392,∴R(―5―392,3+392)或R(―5+392,3―392),当BC =MC 时;如图所示,即四边形CMRB 是菱形,点R 的坐标即为四边形BMRC 为菱形时,M 的坐标,∴R 点为R(3―392,―5+392)或R(3+392,―39―52),综上所述,R 点为R(3―392,―5+392)或R(3+392,―39―52)或R(―5―392,3+392)或R(―5+392,3―392)或R(92,92).12.【答案】(1)解:∵a =1,c =―1,∴二次函数解析式为y =x 2+bx ―1,∵该二次函数的图象过点(2,0),∴4+4b―1=0解得:b=―32;(2)解:①∵∠DOF=∠DEO,∠ODF=∠EDO,∴△DOF∽△DEO∴DF DO =OF EO∴DO EO =OF DF∵OF=32DF∴DO EO =2 3;②∵该二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<0<x2,∴OA=―x1,OB=x2,∵BE=1.∴OE=x2―1,∵⊙O的半径长为线段OA的长度的2倍∴OD=―2x1,∵DO EO =2 3,∴―2x1x2―1=23,∴3x1+x2―1=0,即x2=1―3x1①,∵该二次函数的图象与x轴交于点A(x1,0),B(x2,0),∴x1,x2是方程a x2+bx+c=0的两个根,∴x1+x2=―b a,∵4ac=―a2―b2,a≠0,∴4·ca+1+(ba)2=0,即4(x1x2)+1+(x1+x2)2=0②,①代入②,即4x1(1―3x1)+1+(x1+1―3x1)2=0,即4x1―12x21+1+1+4x21―4x1=0,整理得―8x21=―2,∴x21=14,解得:x 1=―12(正值舍去)∴x 2=1―(―32)=52,∴抛物线的对称轴为直线x =―b 2a =x 1+x 22=―12+522=1,∴b =―2a ,∴2a +b =0.13.【答案】(1)解:∵抛物线Q 1:y =―x 2+bx +c 与x 轴交于A(―3,0),两点,交y 轴于点C(0,3), ∴把A(―3,0),C(0,3)代入Q 1:y =―x 2+bx +c ,得,―9―3b +c =0c =3,解得,b =―2c =3,∴抛物线的解析式为:y =―x 2―2x +3;(2)解:假设存在这样的正方形DAEF ,如图,过点E 作ER ⊥x 于点R ,过点F 作FI ⊥y 轴于点I ,∴∠AER +∠EAR =90°,∵四边形DAEF 是正方形,∴AE =AD ,∠EAD =90°,∴∠EAR +∠DAR =90°,∴∠AER =∠DAO ,又∠ERA =∠AOD =90°,∴△AER≅△DAO ,∴AR =DO ,ER =AO ,∵A(―3,0),D(0,―1),∴OA =3,OD =1,∴AR =1,ER =3,∴OR =OA ―AR =3―1=2,∴E(―2,3);同理可证明:△FID≅△DOA,∴FI=DO=1,DI=AO=3,∴IO=DI―DO=3―1=2,∴F(1,2);(3)解:∵y=―x2―2x+3=―(x+1)2+4,∴抛物线的顶点坐标为(―1,4),对称轴为直线x=―1,令y=0,则―x2―2x+3=0,解得,x1=―3,x2=1,∴B(1,0),∴将抛物线的图象右平移2个单位后,则有:K(―1,4),对称轴为直线x=―1+2=1,H(1+2,0),即H(3,0),∴点B在平移后的抛物线的对称轴上,∴HB=HO―OB=3―1=2,KB=4,∴KH=KB2+HB2=42+22=25,CB=CO2+BO2=32+12=10;CH=CO2+HO2=32,设直线CH的解析式为y=kx+b,把(3,0),(0,3)代入得,3k+b=0b=3,解得,k=―1 b=3,∴直线CH的解析式为y=―x+3,当x=1时,y=―1+3=2,∴S(1,2),此时KS=4―2=2,∴CS=(0―1)2+(3―2)2=2,∴HS=CH―CS=32―2=22,又KH CH =2510=2;KSCS=22=2;HSBS=222=2,∴KH CH =KSCS=HSBS=2,∴△KSH∼△CSB,∴∠CBK=∠CHK,所以,当点P与点B重合时,即点P的坐标为(1,0),则有∠CPK=∠CHK.14.【答案】(1)解:抛物线y=a x2―2ax+3与x轴交于点A(―1,0),得a +2a +3=0,解得:a =―1;(2)解:存在D (―12,154),理由如下:设B ′C ′与y 轴交于点G ,由(1)中结论a =―1,得抛物线的解析式为y =―x 2+2x +3,当y =0时,x 1=―1,x 2=3,即A (―1,0),B (3,0),C (0,3),OB =OC ,∠BOC =90°,即△BOC 是等腰直角三角形,∴∠BCO =45°,∵B ′C ′∥BC ,∴∠BCO =∠B ′GO =45°,设D (t ,―t 2+2t +3),过点D 作DE ∥y 轴交B ′C ′于点E ,作DF ⊥B ′C ′于点F ,∴∠DEF =∠B ′GO =45°,即△DEF 是等腰直角三角形,设直线BC 的解析式为y =kx +b ,代入B (3,0),C (0,3),得3k +b =0b =3,解得k =―1b =3,故直线BC 的解析式为y =―x +3,将直线BC 向下平移m(m >0)个单位长度,得直线B ′C ′的解析式为y =―x +3―m ,∴E (t ,―t +3―m ),DE =―t 2+2t +3―(―t +3―m )=―t 2+3t +m =―(t ―32)2+94+m ,当t =32时,DE 有最大值94+m ,此时DF =22DE 也有最大值,D (32,154);(3)解:存在P (―23,119)或P (2,3),理由如下:当点P 在直线BC 下方时,在y 轴上取点H (0,1),作直线BH 交抛物线于(异于点B )点P ,由(2)中结论,得∠OBC=45°,∴OH=OA=1,OB=OC,∠BOH=∠COA=90°,∴△BOH≌△COA(SAS),∴∠OBH=∠AOC,∴∠PBC+∠ACO=∠PBC+∠OBH=∠OBC=45°,设直线BP的解析式为y=k1x+b1,代入点B(3,0),H(0,1),得3k1+b1=0b1=1,解得k1=―13b1=1,故设直线BP的解析式为y=―13x+1,联立y=―13x+1y=―x2+2x+3,解得x1=3y1=0(舍)x2=―23y2=119,故P(―23,119);当点P在直线BC上方时,如图,在x轴上取点I,连接CI,过点P作BP∥CI抛物线于点P,∠PBC=∠BCI,OI=OA=1,OC=OC,∠COI=∠COA=90°,∴△COI≌△COA(SAS),∴∠OCI=∠AOC,∴∠PBC+∠ACO=∠BCI+∠OCI=∠OCB=45°,设直线CI的解析式为y=k2x+b2,代入点I(1,0),C(0,3),得k2+b2=0b2=3,解得k2=―3b2=3,故设直线CI的解析式为y=―3x+3,BP∥CI,且过点B(3,0),故设直线BP的解析式为y=―3x+9,联立y=―3x+9y=―x2+2x+3,解得x1=2y1=3,x2=3y2=0(舍),故P(2,3),综上所述:P(―23,119)或P(2,3)15.【答案】(1)解:将A(―4,0)、B(2,0)代入y=a x2+bx―8,得16a―4b―8=04a+2b―8=0,解得:a=1 b=2,∴抛物线解析式为:y=x2+2x―8,∴对称轴为x=―b2a=―1∴当x=―1时,y=(―1)2+2×(―1)―8=―9∴顶点坐标为(-1,-9);(2)解:如图所示,过点P作PD⊥x轴于点D,交AC于点E,由y=x2+2x―8,令x=0,解得:y=―8,∴C(0,―8),设直线AC的解析式为y=kx―8,将点A(―4,0)代入得,―4k―8=0,解得:k=―2,∴直线AC的解析式为y=―2x―8,设P(m,m2+2m―8),则E(m,―2m―8),∴PE=―2m―8―(m2+2m―8)=―m 2―4m=―(m +2)2+4,当m =―2时,PE 的最大值为4∵S △PAC =12PE ×OA =12×4×PE =2PE ∴当PE 取得最大值时,△PAC 面积取得最大值∴△PAC 面积的最大值为2×4=8,此时m =―2,m 2+2m ―8=4―4―8=―8∴P(―2,―8)(3)解:设M(x 1,y 1)、N(x 2,y 2),MN 的中点坐标为Q(x 1+x 22,y 1+y 22), 联立y =kx +k ―354y =x 2+2x ―8,消去y ,整理得:x 2+(2―k)x ―k +34=0, ∴x 1+x 2=k ―2,x 1x 2=―k +34,∴x 1+x 22=k 2―1,∴y 1+y 22=12k(x 1+x 2)+k ―354=12k(k ―2)+k ―354=12k 2―354,∴Q(12k ―1,12k 2―354),设Q 点到l 2的距离为QE ,则QE =12k 2―354―(―374)=12k 2+12,∵M(x 1,y 1)、N(x 2,y 2),∴y 1+y 2=k 2―352,y 1―y 2=x 21―x 22+2(x 1―x 2)=(x 1―x 2)(x 1+x 2+2)=k(x 1―x 2)∴M N 2=(x 1―x 2)2+(y 1―y 2)2=(x 1―x 2)2+k 2(x 1―x 2)2=(x 1―x 2)2(1+k 2)=[(x 1+x 2)2―4x 1x 2](1+k 2)=[(k ―2)2+4k ―3](k 2+1)=(k 2+1)(k 2+1)=(k 2+1)2∴MN =k 2+1,∴12MN =QE∴QM =QN =QE ,∴E 点总在⊙Q 上,MN 为直径,且⊙Q 与l 2:y =―374相切,∴∠MEN 为直角.∴无论k 为何值,平行于x 轴的直线l 2:y =―374上总存在一点E ,使得∠MEN 为直角.。

中考数学复习《一次函数》经典题型及测试题(含答案)

中考数学复习《一次函数》经典题型及测试题(含答案)

中考数学复习《一次函数》经典题型及测试题(含答案)命题点分类集训命题点1 一次函数的图象与性质【命题规律】1.考查内容:①一次函数所在象限;②一次函数(含正比例函数)解析式的确定;③一次函数的增减性与其系数之间的关系;④一次函数与方程(组)的关系;⑤一次函数与不等式的关系;⑥一次函数图象平移;⑦一次函数与几何图形结合.2.三大题型均有考查,但解答题的设题一般多与反比例函数结合(试题详见反比例函数).【命题预测】一次函数的图象与性质是命题的焦点与趋势,值得关注. 1. 一次函数y =-2x +3的图象不经过的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 1. C2.在直角坐标系中,点M ,N 在同一个正比例函数图象上的是( ) A. M (2,-3),N (-4,6) B. M (-2,3),N (4,6) C. M (-2,-3),N (4,-6) D. M (2,3),N (-4,6) 2. A3.若关于x 的一元二次方程x 2-2x +kb +1=0有两个不相等的实数根,则一次函数y =kx +b 的图象可能是( )3. B4.如图,直线y =ax +b 过点A (0,2)和点B (-3,0),则方程ax +b =0的解是( ) A. x =2 B. x =0 C. x =-1 D. x =-34. D 【解析】方程ax +b =0的解就是一元一次函数y =ax +b 的图象与x 轴交点的横坐标,即x =-3.5.设点A (a ,b )是正比例函数y =-32x 图象上的任意一点,则下列等式一定成立的是( )A.2a +3b =0B.2a -3b =0C.3a -2b =0D.3a +2b =05. D 【解析】把点A (a ,b )代入y =-32x ,得b =-32a ,即2b =-3a ,∴3a +2b =0.6.关于直线l :y =kx +k (k ≠0),下列说法不正确...的是( ) A. 点(0,k )在l 上 B. l 经过定点(-1,0)C. 当k >0,y 随x 的增大而增大D. l 经过第一、二、三象限6. D 【解析】逐项分析如下:选项 逐项分析正误 A点(0,k )在直线l 上,是直线与y 轴的交点√B 当x =-1时,函数值y =-k +k =0,所以直线l 经过定点(-1,0)√ C当k >0时,y 随x 的增大而增大√D直线l 经过第一、二、三象限仅仅当k 是正数时成立,当k 是负数时,函数图象经过二、三、四象限×7.一次函数y =43x -b 与y =43x -1的图象之间的距离等于3,则b 的值为( )A. -2或4B. 2或-4C. 4或-6D. -4或67. D 【解析】∵直线y =43x -1 与x 轴的交点A 的坐标为(34 ,0),与y 轴的交点C 的坐标为(0,-1),∴OA =34,OC =1,直线y =43x -b 与直线y =43x -1的距离为3,可分为两种情况:(1)如解图①,点B 的坐标为(0,-b ),则OB =-b ,BC =-b +1,易证△OAC ∽△DBC ,则OA DB =ACBC ,即343=12+(34)2-b +1,解得b =-4;(2)如解图②,点F 的坐标为(0,-b ),则CF =b -1,易证△OAC ∽△ECF ,则OA EC =ACCF ,即343=12+(34)2b -1,解得b =6,故b =-4或6.8.将直线y =2x +1向下平移3个单位长度后所得直线的解析式是____________.8. y =2x -2 【解析】根据直线的平移规律:上加下减,可得到平移后的解析式为y =2x +1-3=2x -2. 9.若函数y =(m -1)x |m |是正比例函数,则该函数的图象经过第________象限. 9. 二、四 【解析】∵函数y =(m -1)x |m|是正比例函数,则⎩⎪⎨⎪⎧|m|=1m -1≠0,∴m =-1.则这个正比例函数为y =-2x ,其图象经过第二、四象限.10.若一次函数y =-2x +b (b 为常数)的图象经过第二、三、四象限,则b 的值可以是________(写出一个即可).10. -1(答案不唯一,满足b <0即可) 【解析】∵一次函数y =-2x +b 的图象经过第二、三、四象限,∴b <0,故b 的值可以是-1.11.已知一次函数y =kx +2k +3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所能取到的整数值为________.11. -1 【解析】∵一次函数图象与y 轴的交点在y 轴的正半轴上,∴2k +3>0,∴k>-1.5;又∵函数值y 随x 的增大而减小,∴k<0,则-1.5<k<0,∵k 取整数,∴k =-1.12.如图,过点A (2,0)的两条直线l 1,l 2分别交y 轴于点B ,C ,其中点B 在原点上方,点C 在原点下方,已知AB =13. (1)求点B 的坐标;(2)若△ABC 的面积为4,求直线l 2的解析式. 12. 解:(1)∵点A 的坐标为(2,0),∴AO =2.在Rt △AOB 中,OA 2+OB 2=AB 2,即22+OB 2=(13)2, ∴OB =3, ∴B(0,3).(2)∵S △ABC =12BC·OA ,即4=12BC ×2,∴BC =4,∴OC =BC -OB =4-3=1, ∴C(0,-1).设直线l 2的解析式为y =kx +b(k ≠0), ∵直线l 2经过点A(2,0),C(0,-1),∴⎩⎪⎨⎪⎧0=2k +b -1=b, 解得⎩⎪⎨⎪⎧k =12b =-1.∴直线l 2的解析式为y =12x -1.命题点2 一次函数的实际应用【命题规律】1.考查内容:①结合一次函数图象分析实际问题;②结合表格考查一次函数的实际应用;③以阶梯费用问题为背景,考查分段函数;④根据文字中的变量列一次函数解决实际问题;⑤与方程不等式综合的一次函数实际问题.2.主要以解答题形式出题,设问以两问为主.【命题预测】一次函数的实际应用是全国命题趋势之一,一次函数图象分析题和一次函数与方程综合题是重点.13.为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S (米)与所用的时间t (秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第________秒.13. 120 【解析】从函数图象可知,小茜是正比例函数图象,小静是分段函数图象,小静第二段函数图象与小茜的函数图象的交点的横坐标便是她们第一次相遇的时间.可求出小茜的函数解析式为S =4t ,设小静第二段函数图象的解析式为S =kt +b ,把(60,360)和(150,540)代入得⎩⎪⎨⎪⎧60k +b =360150k +b =540,解得⎩⎪⎨⎪⎧k =2b =240,∴此段函数解析式为S =2t +240,解方程组⎩⎪⎨⎪⎧S =2t +240S =4t ,得⎩⎪⎨⎪⎧t =120S =480,故她们第一次相遇时间为起跑后第120秒.14.昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回.如图,是小明昨天出行的过程中,他距西安的距离y (千米)与他离家的时间x (时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB 所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家? 确定14. (1)【思路分析】利用待定系数法可求出函数解析式,再根据图象出自变量的取值范围.解:设线段AB 所表示的函数关系式为y =kx +b(k ≠0),则根据题意,得⎩⎪⎨⎪⎧b =1922k +b =0,解得⎩⎪⎨⎪⎧k =-96b =192, ∴线段AB 所表示的函数关系式为y =-96x +192(0≤x ≤2).(2)【思路分析】利用待定系数法求出线段CD 的解析式,令y =192,解方程即可求出小明到家的时间.解:由题意可知,下午3点时,x =8,y =112.设线段CD 所表示的函数关系式为y =k′x +b′(k′≠0),则根据题意,得⎩⎪⎨⎪⎧8k′+b′=1126.6k′+b′=0,解得⎩⎪⎨⎪⎧k′=80b′=-528.∴线段CD 的函数关系式为y =80x -528.∴当y =192时,80x -528=192,解得x =9. ∴他当天下午4点到家.15.根据卫生防疫部门要求,游泳池必须定期换水、清洗.某游泳池周五早上8∶00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11∶30全部排完,游泳池内的水量Q (m 3)和开始排水后的时间t (h)之间的函数图象如图所示,根据图象解答下列问题: (1)暂停排水需要多少时间?排水孔的排水速度是多少? (2)当2≤t ≤3.5时,求Q 关于t 的函数表达式.15. 解:(1)暂停排水时间为30分钟(半小时);排水孔的排水速度为900÷(3.5-0.5)=300 (m 3/h ).(2)由图可知排水 1.5 h 后暂停排水,此时游泳池的水量为900-300×1.5=450 (m 3),设当2≤t ≤3.5时,Q 关于t 的函数表达式为Q =kt +b(k ≠0),把(2,450),(3.5,0)代入得⎩⎨⎧450=2k +b ,0=3.5k +b ,解得⎩⎪⎨⎪⎧b =1050k =-300.∴函数表达式为Q =-300t +1050.16.某校准备组织师生共60人,从南靖乘动车前往厦门参加夏令营活动,动车票价格如下表所示(教师按成人票价购买,学生按学生票价购买):若师生均购买二等座票,则共需1020元.(1)参加活动的教师有________人,学生有________人;(2)由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,而后续前往的教师和学生均购买二等座票.设提早前往的教师有x 人,购买一、二等座票全部费用为y 元. ①求y 关于x 的函数关系式;②若购买一、二等座票全部费用不多于1032元,则提早前往的教师最多只能多少人?16. 解:(1)10,50;【解法提示】设有教师x 人,则有学生(60-x)人, 由题意列方程得: 22x +16(60-x)=1020, 解得x =10, ∴60-x =50(人),∴有教师10人,学生50人. (2)①由题意知:y =26x +22(10-x)+50×16 =26x +220-22x +800 =4x +1020; ②由题意得: 4x +1020≤1032, 解得x ≤3,∴提早前往的教师最多只能3人.中考冲刺集训一、选择题1.已知一次函数y =kx +5和y =k ′x +7,假设k >0且k ′<0,则这两个一次函数图象的交点在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限1. A 【解析】根据题意画出两个函数的图象,大致图象如解图所示,∴这两个一次函数图象的交点在第一象限.2.若k ≠0,b <0,则y =kx +b 的图象可能是( )2. B3.已知一次函数y =kx +b -x 的图象与x 轴的正半轴相交,且函数值y 随自变量x 的增大而增大,则k ,b 的取值情况为( )A. k >1,b <0B. k >1,b >0C. k >0,b >0D. k >0,b <03. A 【解析】原解析式可变形为y =(k -1)x +b ,∵函数值y 随自变量x 的增大而增大,∴k -1>0,∴k >1,∵图象与x 轴正半轴相交,∴b <0,即k >1,b <0.4.如图,一直线与两坐标轴的正半轴分别交于A 、B 两点,P 是线段AB 上任意一点(不包括端点),过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是( ) A. y =x +5 B. y =x +10 C. y =-x +5 D. y =-x +104. C 【解析】设P (x ,y ),则由题意得2(x +y )=10,∴x +y =5,∴过点P 的直线函数表达式为y =-x +5,故选C.5.若式子k -1+(k -1)0有意义,则一次函数y =(1-k )x +k -1的图象可能是( )5. C 【解析】式子k -1+(k -1)0有意义,则k >1,∴1-k <0,k -1>0,∴一次函数y =(1-k )x +k -1的图象经过第一、二、四象限.结合图象,故选C.6.在坐标平面上,某个一次函数的图象经过(5,0)、(10,-10)两点,则此函数图象还会经过下列哪点( ) A. (17,947) B. (18,958) C. (19,979) D. (110,9910)6. C 【解析】设该一次函数的解析式为y =kx +b (k ≠0),将点(5,0)、(10,-10)代入到y =kx +b 中得,⎩⎪⎨⎪⎧0=5k +b -10=10k +b ,解得⎩⎪⎨⎪⎧k =-2b =10,∴该一次函数的解析式为y =-2x +10.A.y =-2×17+10=957≠947,该点不在直线上;B.y =-2×18+10=934≠958,该点不在直线上;C.y =-2×19+10=979,该点在直线上;D.y =-2×110+10=945≠9910,该点不在直线上.二、填空题7.将正比例函数y =2x 的图象向上平移3个单位,所得的直线不经过第________象限.7. 四 【解析】根据平移规律“上加下减,左加右减”,将直线y =2x 向上平移3个单位,得到的直线解析式为y =2x +3,因为2>0,3>0,所以图象过第一、第二和第三象限,故不经过第四象限. 8.已知二元一次方程组⎩⎪⎨⎪⎧x -y =-5x +2y =-2的解为⎩⎪⎨⎪⎧x =-4y =1,则在同一平面直角坐标系中,直线l 1:y =x +5与直线l 2:y =-12x -1的交点坐标为________.8. (-4,1) 【解析】二元一次方程x -y =-5对应一次函数y =x +5,即直线l 1;二元一次方程x +2y =-2对应一次函数y =-12x -1,即直线l 2.∴原方程组的解即是直线l 1与l 2的交点坐标,∴交点坐标为(-4,1).9.如图,直线y =x +b 与直线y =kx +6交于点P (3,5),则关于x 的不等式x +b >kx +6的解集是________. 9. x >3 【解析】由题可知,当x =3时,x +b =kx +6,在点P 左边即x <3时,x +b <kx +6,在点P 右边即x >3时,x +b >kx +6,故答案为x >3.10.如图,把Rt △ABC 放在直角坐标系内,其中∠CAB =90°,BC =5,点A 、B 的坐标分别为(1,0)、(4,0),将△ABC 沿x 轴向右平移,当C 点落在直线y =2x -6上时,线段BC 扫过的区域面积为________.10. 16 【解析】平移后如解图所示.∵点A 、B 的坐标分别为(1,0)、(4,0),∴AB =3,∵∠CAB =90°,BC =5,∴AC =4,∴A ′C ′=4,∵点C′在直线y =2x -6上,∴2x -6=4,解得x =5,即OA′=5,∴CC ′=5-1=4,∴S ▱BCC ′B ′=4×4=16,即线段BC 扫过的面积为16. 三、解答题11.为保障我国海外维和部队官兵的生活,现需通过A 港口、B 港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨.若从甲、乙两仓库运送物资到港口的费用(元/吨)如下表所示.(1)设从甲仓库运送到A 港口的物资为x 吨,求总费用y (元)与x (吨)之间的函数关系式,并写出x 的取值范围;(2)求出最低费用,并说明总费用最低时的调配方案.港口 费用(元/吨)甲库 乙库 A 港 14 20 B 港10811. 解:(1)∵从甲仓库运往A 港口的物资为x 吨, ∴从甲仓库运往B 港口的物资为(80-x)吨, ∴从乙仓库运往A 港口的物资为(100-x)吨,∴乙仓库运往B 港口的物资为70-(100-x)=(x -30)吨, ∴y =14x +10(80-x)+20(100-x)+8(x -30) =-8x +2560,∵80-x ≥0,x -30≥0,100-x ≥0∴30≤x ≤80.(2)由(1)知,y =-8x +2560, ∵k =-8<0,∴y 随x 的增大而减小,∴当x =80时,y 最小,最小值为1920元.此时的调配方案是,将甲仓库所有物资运往A 港口,乙仓库的20吨货物运往A 港口,50吨货物运往B 港口.12.某物流公司引进A 、B 两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A 种机器人于某日0时开始搬运,过了1小时,B 种机器人也开始搬运.如图,线段OG 表示A 种机器人的搬运量y A (千克)与时间x (时)的函数图象,线段EF 表示B 种机器人的搬运量y B (千克)与时间x (时)的函数图象.根据图象提供的信息,解答下列问题: (1)求y B 关于x 的函数解析式;(2)如果A 、B 两种机器人各连续搬运5个小时,那么B 种机器人比A 种机器人多搬运了多少千克?12. 解:(1)设y B 关于x 的解析式为y B =k 1x +b(k 1≠0),把E(1,0)和P(3,180)代入y B =k 1x +b 中,得:⎩⎪⎨⎪⎧k 1+b =03k 1+b =180, 解得⎩⎪⎨⎪⎧k 1=90b =-90,∴y B 关于x 的解析式为y B =90x -90.(2)设y A 关于x 的解析式为y A =k 2x(k 2≠0),由题意得: 180=3k 2,即k 2=60, ∴y A =60x ,当x =5时,y A =5×60=300(千克), 当x =6时,y B =90×6-90=450(千克)450-300=150(千克).答:如果A 、B 两种机器人各连续搬运5小时,那么B 种机器人比A 种机器人多搬运了150千克.13.下图中的折线ABC 表示某汽车的耗油量y (单位:L/km)与速度x (单位:km/h)之间的函数关系(30≤x ≤120).已知线段BC 表示的函数关系中,该汽车的速度每增加1 km/h ,耗油量增加0.002 L/km. (1)当速度为50 km/h 、100 km/h 时,该汽车的耗油量分别为________L/km 、________L/km ; (2)求线段AB 所表示的y 与x 之间的函数表达式; (3)速度是多少时,该汽车的耗油量最低?最低是多少?13. 解:(1)0.13,0.14.【解法提示】x 轴表示速度,从30到60之间为40,50,对应的y 轴汽车耗油的量由0.15到0.12,列表如下:速度(km /h ) 30 40 50 60 耗油量(L /km )0.150.140.130.12∴当速度为50 km /h 时,该汽车耗油量为0.13 L /km ,当速度为100 km /h 时,该汽车耗油量为 0.12+0.002×(100-90)=0.14 L /km .(2)设线段AB 所表示的y 与x 之间的函数表达式为y =kx +b(k ≠0), ∵y =kx +b 的图象过点(30,0.15)与(60,0.12),∴⎩⎪⎨⎪⎧30k +b =0.1560k +b =0.12, 解得⎩⎪⎨⎪⎧k =-0.001b =0.18.∴线段AB 所表示的y 与x 之间的函数表达式为y =-0.001x +0.18. (3)根据题意,得线段BC 所表示的y 与x 之间的函数表达式为y =0.12+0.002(x -90)=0.002x -0.06, 由图象可知,B 是折线ABC 的最低点,也是AB 与BC 的交点,解方程组⎩⎪⎨⎪⎧y =-0.001x +0.18y =0.002x -0.06,得⎩⎪⎨⎪⎧x =80y =0.1. 因此,速度是80km /h 时,该汽车的耗油量最低,最低是0.1 L /km .11。

中考数学《一次函数》专题训练(附带答案)

中考数学《一次函数》专题训练(附带答案)

中考数学《一次函数》专题训练(附带答案)一、单选题1.已知一次函数y =(1﹣a )x+2a+1的图象经过第二象限,则a 的值可以是( )A .﹣2B .﹣1C .0D .12.如图,直线y =k 1x +b 1和直线y =k 2x +b 2相交于点M(23,−2),则关于x ,y 的方程组{y =k 1x +b 1y =k 2x +b 2,的解为( )A .{x =23,y =−2 B .{x =−2,y =23C .{x =23,y =2D .{x =−2,y =−233.若一次函数y=(3-k )x -k 的图象经过第二、三、四象限,则k 的取值范围是 ( )A .k >3B .0<k≤3C .0≤k <3D .0<k <34.如图,一直线与两坐标轴的正半轴分别交于A ,B 两点,P 是线段AB 上任意一点(不包括端点),过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是( )A .y=x+5B .y=x+10C .y=﹣x+5D .y=﹣x+105.设min{x ,y}表示x ,y 两个数中的最小值,例如min{0,2}=0,min{12,8}=8,则关于x 的函数y=min{2x ,x+2}可以表示为( ) A .y={2x(x <2)x +2(x ≥2)B .y={x +2(x <2)2x(x ≥2)C .y=2xD .y=x+26.已知一次函数y=kx ﹣1,若y 随x 的增大而增大,则该函数的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限7.已知k≠0,在同一坐标系中,函数y=k(x+1)与y= k x的图象大致为如图所示中的()A.B.C.D.8.下列函数中,当x>0时,y随x的增大而增大的是()A.y=-x+1B.y=x2-1C.y=1x D.y=-x2+19.下列y关于x的函数中,是正比例函数的为()A.y=x2B.y=2x C.y=x2D.y=x+1210.如图,在平面直角坐标系中,O为坐标原点,直线y=−x+4√2与x轴交于B点,与y轴交于A点,点C,D在线段AB上,且CD=2AC=2BD,若点P在坐标轴上,则满足PC+PD=7的点P的个数是()A.4B.3C.2D.111.已知在一次函数y=﹣1.5x+3的图象上,有三点(﹣3,y1)、(﹣1,y2)、(2,y3),则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.无法确定12.一次函数y=(k-3)x|k|-2+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题13.已知一次函数 y =(k +1)x −b ,若y 随x 的增大而减小,则k 的取值范围是 . 14.如图,一次函数与反比例函数的图象分别是直线 AB 和双曲线.直线 AB 与双曲线的一个交点为点 C ,CD ⊥x 轴于点 D ,OD =2OB =4OA =4 ,则此反比例函数的解析式为 .15.一次函数 y 1=k 1x +b 1 与 y 2=k 2x +b 2 的图象如图,则不等式组 {k 1x +b 1≤0k 2x +b 2>0 的解为 .16.若点 (m,n) 若在直线 y =3x −2 上,则代数式2n -6m+1的值是 .17.已知一次函数y =﹣x ﹣(a ﹣2)中,当a 时,该函数的图象与y 轴的交点坐标在x 轴的下方.18.已知一次函数 y =ax +|a −1| 的图象经过点(0,3),且函数y 的值随x 的增大而减小,则a 的值为 .三、综合题19.甲、乙两车分别从相距480千米的 A 、 B 两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途经 C 地,甲车到达 C 地停留1小时,因有事按原路原速返回 A 地.乙车从 B 地直达 A 地,两车同时到达 A 地.甲、乙两车距各自出发地的路程 y (千米)与甲车出发后所用的时间 x (时)的函数图象如图所示.(1)求t的值;(2)求甲车距它出发地的路程y与x之间的函数关系式;(3)求两车相距120千米时乙车行驶的时间.20.根据对某市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数y1=kx的图象如图①所示,乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx的图象如图②所示.(1)分别求出y1、y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t吨.①写出这两种蔬菜所获得的销售利润之和W(千元)与t(吨)之间的函数关系式.并求当这两种蔬菜各进多少吨时获得的销售利润之和最大,最大利润是多少元?②为了获得两种蔬菜的利润之和不少于8400元,则乙种蔬菜进货量应在什么范围内合适?21.已知一次函数y=-2x-2.(1)画出函数的图象;(2)求图象与x轴,y轴的交点A,B的坐标;(3)求A,B两点之间的距离;(4)求△AOB的面积;(5)当x为何值时,y≥0(利用图象解答)?22.在平面直角坐标系中,一次函数y=x+3的图象与x轴交于点A,二次函数y=x2+mx+n的图象经过点A.(1)当m=4时,求n的值;(2)设m=﹣2,当﹣3≤x≤0时,求二次函数y=x2+mx+n的最小值;(3)当﹣3≤x≤0时,若二次函数﹣3≤x≤0时的最小值为﹣4,求m、n的值.23.同时点燃甲乙两根蜡烛,蜡烛燃烧剩下的长度y(cm)与燃烧时间x(min)的关系如图所示.(1)求点P的坐标,并说明其实际意义;(2)求点燃多长时间,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍.24.冰墩墩是2022年北京冬季奥运会的吉样物.冬奥会来临之际,冰墩墩玩偶非常畅销.小张在某网店选中A,B两款冰墩墩玩偶,决定用900元(全部用完)从该网店进货并销售.两款玩偶的进货价和销售价如下表:A款玩偶B款玩偶进货价(元/个)2520销售价(元/个)3325(1)求y与x之间的函数表达式;(2)如果小张购进A款玩偶20个,那么这次进货全部售完,能盈利多少元?参考答案1.【答案】C 2.【答案】A 3.【答案】A 4.【答案】C 5.【答案】A 6.【答案】B 7.【答案】D 8.【答案】B 9.【答案】C 10.【答案】A 11.【答案】A 12.【答案】C 13.【答案】k <−1 14.【答案】y =−4x15.【答案】x≤-4 16.【答案】-3 17.【答案】>2 18.【答案】-219.【答案】(1)由函数图象得:乙车的速度为:60÷1=60(千米/小时),甲车从A 地出发至返回A 地的时间为:(480−60)÷60=420÷60=7(小时) ∴t =(7−1)÷2=3 即t 的值是3;(2)当0≤x≤3时,设y 与x 的函数关系式为y =kx , 则360=3k ,解得k =120∴当0≤x≤3时,y 与x 的函数关系式为:y =120x 当3<x≤4时,y =360当4<x≤7,设y 与x 的函数关系式为:y =ax +b 则 {4a +b =3607a +b =0 解得: {a =−120b =840∴当4<x≤7,y与x的函数关系式为:y=−120x+840由上可得,y与x的函数关系式为:y={120x(0≤x≤3) 360(3<x≤4)−120x+840(4<x≤7)(3)设乙车行驶的时间为m小时时,两车相距120千米,乙车的速度为60千米/小时,甲车的速度为360÷3=120(千米/小时)甲乙第一次相遇前,60+(60+120)×(m−1)+120=480,得m=8 3甲乙第一次相遇之后,60+(60+120)×(m−1)=480+120,得m=4甲车返回A地的过程中,当m=5时,两车相距5×60-(480-360)=180(千米)∴(120−60)×(m−5)=180−120得m=6答:两车相距120千米时乙车行驶的时间是83小时、4小时或6小时.20.【答案】(1)解:由题意得,设y1=kx5k=3∴k=0.6∴y1=0.6x根据题意得,设y2=ax2+bx+c,由图知,抛物线经过点(0,0)、(1,2)、(5,6),代入得{c=0a+b+c=2 25a+5b+c=6∴{a=−0.2b=2.2c=0∴y2=−0.2x2+2.2x;(2)解:①设乙种蔬菜的进货量为t吨,w=y1+y2=0.6(10−t)+(−0.2t2+2.2t)=−0.2t2+1.6t+6=−0.2(t−4)2+9.2当t=4,利润之和最大W最大=9200(元)答:当乙种蔬菜进货4吨,甲种蔬菜进货6吨,利润之和最大,最大9200元.②w=y1+y2=−0.2t2+1.6t+6当w≥8.4时,即−0.2t2+1.6t+6≥8.4∴−0.2t2+1.6t−2.4≥0令−0.2t2+1.6t−2.4=0t2−8t−12=0(t−2)(t−6)=0解得t1=2,t2=6因为抛物线开口向下,所以2≤t≤6答:乙种蔬菜进货量为2吨到6吨范围内.21.【答案】(1)解:列表:x……-10……y……0-2……(2)解:由(1)可得该图象与x轴,y轴的交点坐标分别为A(-1,0),B(0,-2).(3)解:A,B两点之间的距离为√OA2+OB2=√12+22=√5(4)解:S△AOB= 12OA·OB=12×1×2= 1(5)解:由(1)中图象可得,当x≤-1时,y≥0.22.【答案】(1)解:当y=x+3=0时,x=﹣3∴点A 的坐标为(﹣3,0).∵二次函数y=x 2+mx+n 的图象经过点A ∴0=9﹣3m+n ,即n=3m ﹣9 ∴当m=4时,n=3m ﹣9=3.(2)解:抛物线的对称轴为直线x=﹣ m 2当m=﹣2时,对称轴为x=1,n=3m ﹣9=﹣15 ∴当﹣3≤x≤0时,y 随x 的增大而减小∴当x=0时,二次函数y=x 2+mx+n 的最小值为﹣15.(3)解:①当对称轴﹣ m2 ≤﹣3,即m≥6时,如图1所示.在﹣3≤x≤0中,y=x 2+mx+n 的最小值为0,∴此情况不合题意;②当﹣3<﹣ m2 <0,即0<m <6时,如图2,有 {4n−m 24=49−3m +n =0解得: {m =2n =−3 或 {m =10n =21(舍去)∴m=2、n=﹣3;③当﹣ m2 ≥0,即m≤0时,如图3有 {n =−49−3m +n =0 ,解得: {m =53n =−4(舍去).综上所述:m=2,n=﹣3. 23.【答案】(1)解:设乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=kx+b ,得:{b =4050k +b =0 ,解得: {k =−0.8b =40,即乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=﹣0.8x+40,将x=20代入得y=24,故P (20,24)该点表示的实际意义是点燃20分钟后,两支蜡烛剩下的长度都是24cm ; (2)解:设甲蜡烛剩下的长度y 甲与x 之间的函数表达式为y 甲=mx+n ,得: {48=n 24=20m +n,解得: {m =−1.2n =48 ,∴y 甲与x 之间的函数表达式为y 甲=﹣1.2x+48.∵甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍,∴﹣1.2x+48=1.1(﹣0.8x+40),解得:x=12.5. 答:点燃12.5分钟,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍24.【答案】(1)解:由题意,得25x +20y =900∴y =−54x +45;(2)解:当x =20时,则y =−54×20+45=20∴这次进货全部售完,能盈利=20(33−25)+20(25−20)=260(元) 答:这次进货全部售完,能盈利260元.。

中考数学《一次函数》专题检测试卷及答案解析

中考数学《一次函数》专题检测试卷及答案解析

一次函数专题检测试卷一.选择题(共16小题)1.若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是()A.a+b<0B.a﹣b>0C.ab>0D.<02.一次函数y=kx+b(k,b是常数,k≠0)的图象,如图所示,则不等式kx+b>0的解集是()A.x<2B.x<0C.x>0D.x>23.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<04.对于实数a,b,定义符号min{a,b},其意义为:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a.例如:min={2,﹣1}=﹣1,若关于x的函数y=min{2x ﹣1,﹣x+3},则该函数的最大值为()A.B.1C.D.5.已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y16.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A.B.C.D.7.在平面直角坐标系中,一次函数y=x﹣1的图象是()A.B.C.D.8.将一次函数y=2x的图象向上平移2个单位后,当y>0时,x的取值范围是()A.x>﹣1B.x>1C.x>﹣2D.x>29.把直线y=2x﹣1向左平移1个单位,平移后直线的关系式为()A.y=2x﹣2B.y=2x+1C.y=2x D.y=2x+210.甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离y (m)与甲所用时间x(min)之间的函数关系如图所示.有下列说法:①A、B之间的距离为1200m;②乙行走的速度是甲的1.5倍;④a=34.以上结论正确的有()A.①②B.①②③C.①③④D.①②④11.已知一次函数y=kx+b,当0≤x≤2时,对应的函数值y的取值范围是﹣2≤y≤4,则kb的值为()A.12B.﹣6C.﹣6或﹣12D.6或1212.从2,3,4,5这四个数中,任取两个数p和q(p≠q),构成函数y=px﹣2和y=x+q,并使这两个函数图象的交点在直线x=2的右侧,则这样的有序数对(p,q)共有()A.12对B.6对C.5对D.3对13.如图,直线AB:y=x+1分别与x轴、y轴交于点A,点B,直线CD:y=x+b=4,则分别与x轴,y轴交于点C,点D.直线AB与CD相交于点P,已知S△ABD点P的坐标是()14.如图,在x轴上有五个点,它们的横坐标依次为1,2,3,4,5.分别过这些点作x轴的垂线与三条直线y=ax,y=(a+1)x,y=(a+2)x相交,其中a>0.则图中阴影部分的面积是()A.12.5B.25C.12.5a D.25a15.甲、乙、丙、丁四人一起到冰店买红豆与桂圆两种棒冰.四人购买的数量及总价分别如表所示.若其中一人的总价算错了,则此人是谁()甲乙丙丁红豆棒冰(枝)18152427桂圆棒冰(枝)30254045总价(元)396330528585A.甲B.乙C.丙D.丁16.在平面直角坐标系内,直线y=x+3与两坐标轴交于A、B两点,点O为坐标原点,若在该坐标平面内有以点P(不与点A、B、O重合)为顶点的直角三角形与Rt△ABO全等,且这个以点P为顶点的直角三角形与Rt△ABO有一条公共边,则所有符合条件的P点个数为()A.9个B.7个C.5个D.3个二.填空题(共5小题)17.甲、乙两动点分别从线段AB的两端点同时出发,甲从点A出发,向终点B 运动,乙从点B出发,向终点A运动.已知线段AB长为90cm,甲的速度为2.5cm/s.设运动时间为x(s),甲、乙两点之间的距离为y(cm),y与x的函数图象如图所示,则图中线段DE所表示的函数关系式为.(并写出自变量取值范围)18.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示放置,点A1,A2,A3和C1,C2,C3,…分别在直线y=x+1和x轴上,则点B的纵坐标是.19.如图,点A1(1,)在直线l1:y=x上,过点A1作A1B1⊥l1交直线l2:y=x于点B1,以A1B1为边在△OA1B1外侧作等边三角形A1B1C1,再过点C1作A2B2⊥l1,分别交直线l1和l2于A2,B2两点,以A2B2为边在△OA2B2外侧作等边三角形A2B2C2,…按此规律进行下去,则第n个等边三角形A n B n C n的面积为.(用含n的代数式表示)20.如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=2AD,连接CD,直线CD与直线y=x 交于点Q,则点Q的坐标为.21.如图,直线l1⊥x轴于点A(2,0),点B是直线l1上的动点.直线l2:y=x+1交l1于点C,过点B作直线l3垂直于l2,垂足为D,过点O,B的直线l4交l2于点E,当直线l1,l2,l3能围成三角形时,设该三角形面积为S1,当直线l2,l3,l4能围成三角形时,设该三角形面积为S2.(1)若点B在线段AC上,且S1=S2,则B点坐标为;(2)若点B在直线l1上,且S2=S1,则∠BOA的度数为.三.解答题(共8小题)22.某蔬菜加工公司先后两批次收购蒜薹(tái)共100吨.第一批蒜薹价格为4000元/吨;因蒜薹大量上市,第二批价格跌至1000元/吨.这两批蒜薹共用去16万元.(1)求两批次购进蒜薹各多少吨?(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?23.某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准.该市的用户每月应交水费y(元)是用水量x(立方米)的函数,其图象如图所示.(1)若某月用水量为18立方米,则应交水费多少元?(2)求当x>18时,y关于x的函数表达式,若小敏家某月交水费81元,则这个月用水量为多少立方米?24.如图,在平面直角坐标系中,四边形ABCD的边AD在x轴上,点C在y轴的负半轴上,直线BC∥AD,且BC=3,OD=2,将经过A、B两点的直线l:y=﹣2x ﹣10向右平移,平移后的直线与x轴交于点E,与直线BC交于点F,设AE的长为t(t≥0).(1)四边形ABCD的面积为;(2)设四边形ABCD被直线l扫过的面积(阴影部分)为S,请直接写出S关于t的函数解析式;(3)当t=2时,直线EF上有一动点P,作PM⊥直线BC于点M,交x轴于点N,将△PMF沿直线EF折叠得到△PTF,探究:是否存在点P,使点T恰好落在坐标轴上?若存在,请求出点P的坐标;若不存在,请说明理由.25.平面直角坐标系xOy中,点P的坐标为(m+1,m﹣1).(1)试判断点P是否在一次函数y=x﹣2的图象上,并说明理由;(2)如图,一次函数y=﹣x+3的图象与x轴、y轴分别相交于点A、B,若点P 在△AOB的内部,求m的取值范围.26.A,B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发.图中l1,l2表示两人离A地的距离s(km)与时间t(h)的关系,请结合图象解答下列问题:(1)表示乙离A地的距离与时间关系的图象是(填l1或l2);甲的速度是km/h,乙的速度是km/h;(2)甲出发多少小时两人恰好相距5km?27.江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾.“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y甲、y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示.(1)直接写出y甲,y乙关于x的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?28.如图,直角坐标系xOy中,A(0,5),直线x=﹣5与x轴交于点D,直线y=﹣x﹣与x轴及直线x=﹣5分别交于点C,E,点B,E关于x轴对称,连接AB.(1)求点C,E的坐标及直线AB的解析式;(2)设面积的和S=S△CDE +S四边形ABDO,求S的值;(3)在求(2)中S时,嘉琪有个想法:“将△CDE沿x轴翻折到△CDB的位置,而△CDB与四边形ABDO拼接后可看成△AOC,这样求S便转化为直接求△AOC 的面积不更快捷吗?”但大家经反复演算,发现S△AOC≠S,请通过计算解释他的想法错在哪里.29.【操作发现】在计算器上输入一个正数,不断地按“”键求算术平方根,运算结果越来越接近1或都等于1.【提出问题】输入一个实数,不断地进行“乘常数k,再加上常数b”的运算,有什么规律?【分析问题】我们可用框图表示这种运算过程(如图a).也可用图象描述:如图1,在x轴上表示出x1,先在直线y=kx+b上确定点(x1,y1),再在直线y=x上确定纵坐标为y1的点(x2,y1),然后在x轴上确定对应的数x2,…,以此类推.【解决问题】研究输入实数x1时,随着运算次数n的不断增加,运算结果x n,怎样变化.(1)若k=2,b=﹣4,得到什么结论?可以输入特殊的数如3,4,5进行观察研究;(2)若k>1,又得到什么结论?请说明理由;(3)①若k=﹣,b=2,已在x轴上表示出x1(如图2所示),请在x轴上表示x2,x3,x4,并写出研究结论;②若输入实数x1时,运算结果x n互不相等,且越来越接近常数m,直接写出k 的取值范围及m的值(用含k,b的代数式表示)参考答案与试题解析一.选择题(共16小题)1.若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是()A.a+b<0B.a﹣b>0C.ab>0D.<0【解答】解:∵一次函数y=ax+b的图象经过第一、二、四象限,∴a<0,b>0,∴a+b不一定大于0,故A错误,a﹣b<0,故B错误,ab<0,故C错误,<0,故D正确.故选:D.2.一次函数y=kx+b(k,b是常数,k≠0)的图象,如图所示,则不等式kx+b>0的解集是()A.x<2B.x<0C.x>0D.x>2【解答】解:函数y=kx+b的图象经过点(2,0),并且函数值y随x的增大而减小,所以当x<2时,函数值大于0,即关于x的不等式kx+b>0的解集是x<2.故选:A.3.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0【解答】解:∵一次函数y=kx+b的图象经过一、三象限,∴k>0,又该直线与y轴交于正半轴,∴b>0.综上所述,k>0,b>0.故选:A.4.对于实数a,b,定义符号min{a,b},其意义为:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a.例如:min={2,﹣1}=﹣1,若关于x的函数y=min{2x ﹣1,﹣x+3},则该函数的最大值为()A.B.1C.D.【解答】解:由题意得:,解得:,当2x﹣1≥﹣x+3时,x≥,∴当x≥时,y=min{2x﹣1,﹣x+3}=﹣x+3,由图象可知:此时该函数的最大值为;当2x﹣1≤﹣x+3时,x≤,∴当x≤时,y=min{2x﹣1,﹣x+3}=2x﹣1,由图象可知:此时该函数的最大值为;综上所述,y=min{2x﹣1,﹣x+3}的最大值是当x=所对应的y的值,如图所示,当x=时,y=,故选:D.5.已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y1【解答】解:∵点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,∴y1=﹣5,y2=10,∵10>0>﹣5,∴y1<0<y2.故选:B.6.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A.B.C.D.【解答】解:由题意得,2x+y=10,所以,y=﹣2x+10,由三角形的三边关系得,,解不等式①得,x>2.5,解不等式②的,x<5,所以,不等式组的解集是2.5<x<5,正确反映y与x之间函数关系的图象是D选项图象.故选:D.7.在平面直角坐标系中,一次函数y=x﹣1的图象是()A.B.C.D.【解答】解:一次函数y=x﹣1,其中k=1,b=﹣1,其图象为,故选:B.8.将一次函数y=2x的图象向上平移2个单位后,当y>0时,x的取值范围是()A.x>﹣1B.x>1C.x>﹣2D.x>2【解答】解:∵将y=2x的图象向上平移2个单位,∴平移后解析式为:y=2x+2,当y=0时,x=﹣1,故y>0,则x的取值范围是:x>﹣1.故选:A.9.把直线y=2x﹣1向左平移1个单位,平移后直线的关系式为()A.y=2x﹣2B.y=2x+1C.y=2x D.y=2x+2【解答】解:根据题意,将直线y=2x﹣1向左平移1个单位后得到的直线解析式为:y=2(x+1)﹣1,即y=2x+1,故选:B.10.甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离y (m)与甲所用时间x(min)之间的函数关系如图所示.有下列说法:①A、B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③b=960;④a=34.以上结论正确的有()A.①②B.①②③C.①③④D.①②④【解答】解:①当x=0时,y=1200,∴A、B之间的距离为1200m,结论①正确;②乙的速度为1200÷(24﹣4)=60(m/min),甲的速度为1200÷12﹣60=40(m/min),60÷40=1.5,∴乙行走的速度是甲的1.5倍,结论②正确;③b=(60+40)×(24﹣4﹣12)=800,结论③错误;④a=1200÷40+4=34,结论④正确.故选:D.11.已知一次函数y=kx+b,当0≤x≤2时,对应的函数值y的取值范围是﹣2≤y≤4,则kb的值为()A.12B.﹣6C.﹣6或﹣12D.6或12【解答】解:(1)当k>0时,y随x的增大而增大,即一次函数为增函数,∴当x=0时,y=﹣2,当x=2时,y=4,代入一次函数解析式y=kx+b得:,解得,∴kb=3×(﹣2)=﹣6;(2)当k<0时,y随x的增大而减小,即一次函数为减函数,∴当x=0时,y=4,当x=2时,y=﹣2,代入一次函数解析式y=kx+b得:,解得,∴kb=﹣3×4=﹣12.所以kb的值为﹣6或﹣12.故选:C.12.从2,3,4,5这四个数中,任取两个数p和q(p≠q),构成函数y=px﹣2和y=x+q,并使这两个函数图象的交点在直线x=2的右侧,则这样的有序数对(p,q)共有()A.12对B.6对C.5对D.3对【解答】解:令px﹣2=x+q,解得x=,因为交点在直线x=2右侧,即>2,整理得q>2p﹣4.把p=2,3,4,5分别代入即可得相应的q的值,有序数对为(2,2),(2,3),(2,4),(2,5),(3,3),(3,4),(3,5),(4,5),又因为p≠q,故(2,2),(3,3)舍去,满足条件的有6对.故选:B.13.如图,直线AB:y=x+1分别与x轴、y轴交于点A,点B,直线CD:y=x+b=4,则分别与x轴,y轴交于点C,点D.直线AB与CD相交于点P,已知S△ABD点P的坐标是()A.(3,)B.(8,5)C.(4,3)D.(,)【解答】解:由直线AB:y=x+1分别与x轴、y轴交于点A,点B,可知A,B的坐标分别是(﹣2,0),(0,1),由直线CD:y=x+b分别与x轴,y轴交于点C,点D,可知D的坐标是(0,b),C的坐标是(﹣b,0),=4,得BD•OA=8,根据S△ABD∵OA=2,∴BD=4,那么D的坐标就是(0,﹣3),C的坐标就应该是(3,0),CD的函数式应该是y=x﹣3,P点的坐标满足方程组,解得,即P的坐标是(8,5).故选:B.14.如图,在x轴上有五个点,它们的横坐标依次为1,2,3,4,5.分别过这些点作x轴的垂线与三条直线y=ax,y=(a+1)x,y=(a+2)x相交,其中a>0.则图中阴影部分的面积是()A.12.5B.25C.12.5a D.25a【解答】解:把x=1分别代入y=ax,y=(a+1)x,y=(a+2)x得:AW=a+2,WQ=a+1﹣a=1,∴AQ=a+2﹣(a+1)=1,同理:BR=RK=2,CH=HP=3,DG=GL=4,EF=FT=5,2﹣1=1,3﹣2=1,4﹣3=1,5﹣4=1,∴图中阴影部分的面积是×1×1+×(1+2)×1+×(2+3)×1+×(3+4)×1+×(4+5)×1=12.5,故选:A.15.甲、乙、丙、丁四人一起到冰店买红豆与桂圆两种棒冰.四人购买的数量及总价分别如表所示.若其中一人的总价算错了,则此人是谁()甲乙丙丁红豆棒冰(枝)18152427桂圆棒冰(枝)254045总价(元)396330528585A.甲B.乙C.丙D.丁【解答】解:设红豆和桂圆的单价分别为x、y,假设甲是对的,那么有18x+30y=396即3x+5y=66,将此式代入乙,丙,丁中,我们发现乙,丙都和甲相同,因此,甲是正确的,丁是错误的.故选D.16.在平面直角坐标系内,直线y=x+3与两坐标轴交于A、B两点,点O为坐标原点,若在该坐标平面内有以点P(不与点A、B、O重合)为顶点的直角三角形与Rt△ABO全等,且这个以点P为顶点的直角三角形与Rt△ABO有一条公共边,则所有符合条件的P点个数为()A.9个B.7个C.5个D.3个【解答】解:如图,图中的P1、P2、P3、P4、P5、P6、P7,就是符合要求的点P,注意以P1为公共点的直角三角形有3个.⊋故选:B.二.填空题(共5小题)17.甲、乙两动点分别从线段AB的两端点同时出发,甲从点A出发,向终点B运动,乙从点B出发,向终点A运动.已知线段AB长为90cm,甲的速度为2.5cm/s.设运动时间为x(s),甲、乙两点之间的距离为y(cm),y与x的函数图象如图所示,则图中线段DE所表示的函数关系式为y=4.5x﹣90(20≤x≤36).(并写出自变量取值范围)【解答】解:∵=36(s),观察图象可知乙的运动时间为45s,∴乙的速度==2cm/s,相遇时间==20,∴图中线段DE所表示的函数关系式:y=(2.5+2)(x﹣20)=4.5x﹣90(20≤x≤36).故答案为y=4.5x﹣90(20≤x≤36).18.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示放置,点A1,A2,A3和C1,C2,C3,…分别在直线y=x+1和x轴上,则点B2018的纵坐标是22017.【解答】解:当x=0时,y=x+1=1,∴点A1的坐标为(0,1).∵A1B1C1O为正方形,∴点C1的坐标为(1,0),点B1的坐标为(1,1).同理,可得:B2(3,2),B3(7,4),B4(15,8),∴点B n的坐标为(2n﹣1,2n﹣1),∴点B2018的坐标为(22018﹣1,22017).故答案为:22017.19.如图,点A1(1,)在直线l1:y=x上,过点A1作A1B1⊥l1交直线l2:y=x于点B1,以A1B1为边在△OA1B1外侧作等边三角形A1B1C1,再过点C1作A2B2⊥l1,分别交直线l1和l2于A2,B2两点,以A2B2为边在△OA2B2外侧作等边三角形A 2B2C2,…按此规律进行下去,则第n个等边三角形A n B n C n的面积为.(用含n的代数式表示)【解答】解:∵点A1(1,),∴OA1=2.∵直线l1:y=x,直线l2:y=x,∴∠A1OB1=30°.在Rt△OA1B1中,OA1=2,∠A1OB1=30°,∠OA1B1=90°,∴A1B1=OB1,∴A1B1=.∵△A1B1C1为等边三角形,∴A1A2=A1B1=1,同理,可得出:A 3B3=,A4B4=,…,A n B n=,∴第n个等边三角形A n B n C n的面积为×A n B n2=.故答案为:.20.如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=2AD,连接CD,直线CD与直线y=x 交于点Q,则点Q的坐标为(,).【解答】解:过P作MN⊥y轴,交y轴于M,交AB于N,过D作DH⊥y轴,交y轴于H,∠CMP=∠DNP=∠CPD=90°,∴∠MCP+∠CPM=90°,∠MPC+∠DPN=90°,∴∠MCP=∠DPN,∵P(1,1),在△MCP和△NPD中∴△MCP≌△NPD(AAS),∴DN=PM,PN=CM,∵BD=2AD,∴设AD=a,BD=2a,∵P(1,1),∴DN=2a﹣1,则2a﹣1=1,a=1,即BD=2.∵直线y=x,∴AB=OB=3,在Rt△DNP中,由勾股定理得:PC=PD==,在Rt△MCP中,由勾股定理得:CM==2,则C的坐标是(0,3),设直线CD的解析式是y=kx+3,把D(3,2)代入得:k=﹣,即直线CD的解析式是y=﹣x+3,即方程组得:,即Q的坐标是(,),②当点C在y轴的负半轴上时,作PN⊥AD于N,交y轴于H,此时不满足BD=2AD,故答案为:(,).21.如图,直线l1⊥x轴于点A(2,0),点B是直线l1上的动点.直线l2:y=x+1交l1于点C,过点B作直线l3垂直于l2,垂足为D,过点O,B的直线l4交l2于点E,当直线l1,l2,l3能围成三角形时,设该三角形面积为S1,当直线l2,l3,l4能围成三角形时,设该三角形面积为S2.(1)若点B在线段AC上,且S1=S2,则B点坐标为(2,0);(2)若点B在直线l1上,且S2=S1,则∠BOA的度数为15°或75°.【解答】解:(1)设B的坐标是(2,m),∵直线l2:y=x+1交l1于点C,∴∠ACE=45°,∴△BCD是等腰直角三角形.BC=|3﹣m|,则BD=CD=BC=|3﹣m|,S1=×(|3﹣m|)2=(3﹣m)2.设直线l4的解析式是y=kx,过点B,则2k=m,解得:k=,则直线l4的解析式是y=x.根据题意得:,解得:,则E的坐标是(,).S△BCE=BC•||=|3﹣m|•||=.∴S2=S△BCE﹣S1=﹣(3﹣m)2.=S2时,﹣(3﹣m)2=(3﹣m)2.当S1解得:m1=4或m2=0,易得点C坐标为(2,3),即AC=3,∵点B在线段AC上,∴m1=4不合题意舍去,则B的坐标是(2,0);(2)分三种情况:①当点B在线段AC上时当S2=S1时,﹣(3﹣m)2=(3﹣m)2.解得:m=4﹣2或2(不在线段AC上,舍去),或m=3(l2和l4重合,舍去).则AB=4﹣2.在OA上取点F,使OF=BF,连接BF,设OF=BF=x.则AF=2﹣x,根据勾股定理,,解得:,∴sin∠BFA=,∴∠BFA=30°,∴∠BOA=15°;或由s1=s2可得CD=DE,所以BD是CE的中垂线,所以BC=BE,根据∠BCD=45°即可知CB⊥BO,所以B必须与A重合,所以B(2,0),②当点B在AC延长线上时,此时,当S2=S1时,得:,解得符合题意有:AB=4+2.在AB上取点G,使BG=OG,连接OG,设BG=OG=x,则AG=4+2﹣x.根据勾股定理,得,解得:x=4,∴sin∠OGA=,∴∠OGA=30°,∴∠OBA=15°,∴∠BOA=75°;③当点B在CA延长线上时,S1>S2,此时满足条件的点B不存在,综上所述,∠BOA的度数为15°或75°.三.解答题(共8小题)22.某蔬菜加工公司先后两批次收购蒜薹(tái)共100吨.第一批蒜薹价格为4000元/吨;因蒜薹大量上市,第二批价格跌至1000元/吨.这两批蒜薹共用去16万元.(1)求两批次购进蒜薹各多少吨?(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?【解答】解:(1)设第一批购进蒜薹x吨,第二批购进蒜薹y吨.由题意,解得,答:第一批购进蒜薹20吨,第二批购进蒜薹80吨.(2)设精加工m吨,总利润为w元,则粗加工(100﹣m)吨.由m≤3(100﹣m),解得m≤75,利润w=1000m+400(100﹣m)=600m+40000,∵600>0,∴w随m的增大而增大,∴m=75时,w有最大值为85000元.23.某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准.该市的用户每月应交水费y(元)是用水量x(立方米)的函数,其图象如图所示.(1)若某月用水量为18立方米,则应交水费多少元?(2)求当x>18时,y关于x的函数表达式,若小敏家某月交水费81元,则这个月用水量为多少立方米?【解答】解:(1)由纵坐标看出,某月用水量为18立方米,则应交水费45元;(2)由81元>45元,得用水量超过18立方米,设函数解析式为y=kx+b (x>18),∵直线经过点(18,45)(28,75),∴,解得,∴函数的解析式为y=3x﹣9 (x>18),当y=81时,3x﹣9=81,解得x=30.答:这个月用水量为30立方米.24.如图,在平面直角坐标系中,四边形ABCD的边AD在x轴上,点C在y轴的负半轴上,直线BC∥AD,且BC=3,OD=2,将经过A、B两点的直线l:y=﹣2x ﹣10向右平移,平移后的直线与x轴交于点E,与直线BC交于点F,设AE的长为t(t≥0).(1)四边形ABCD的面积为20;(2)设四边形ABCD被直线l扫过的面积(阴影部分)为S,请直接写出S关于t的函数解析式;(3)当t=2时,直线EF上有一动点P,作PM⊥直线BC于点M,交x轴于点N,将△PMF沿直线EF折叠得到△PTF,探究:是否存在点P,使点T恰好落在坐标轴上?若存在,请求出点P的坐标;若不存在,请说明理由.【解答】解:(1)在y=﹣2x﹣10中,当y=0时,x=﹣5,∴A(﹣5,0),∴OA=5,∴AD=7,把x=﹣3代入y=﹣2x﹣10得,y=﹣4∴OC=4,∴四边形ABCD的面积=(3+7)×4=20;故答案为:20;(2)①当0≤t≤3时,∵BC∥AD,AB∥EF,∴四边形ABFE是平行四边形,∴S=AE•OC=4t;②当3≤t <7时,如图1,∵C (0,﹣4),D (2,0),∴直线CD 的解析式为:y=2x ﹣4,∵E′F′∥AB ,BF′∥AE′∴BF′=AE=t ,∴F′(t ﹣3,﹣4),直线E′F′的解析式为:y=﹣2x +2t ﹣10,解得, ∴G (,t ﹣7),∴S=S 四边形A BCD ﹣S △DE′G =20﹣×(7﹣t )×(7﹣t )=﹣t 2+7t ﹣,③当t ≥7时,S=S 四边形ABCD =20,综上所述:S 关于t 的函数解析式为:S=; (3)当t=2时,点E ,F 的坐标分别为(﹣3,0),(﹣1,﹣4), 此时直线EF 的解析式为:y=﹣2x ﹣6,设动点P 的坐标为(m ,﹣2m ﹣6),∵PM ⊥直线BC 于M ,交x 轴于N ,∴M (m ,﹣4),N (m ,0),∴PM=|(﹣2m ﹣6)﹣(﹣4)|=2|m +1|,PN=|﹣2m ﹣6|=2|m +3|,FM=|m ﹣(﹣1)|=|m +1|,①假设直线EF 上存在点P ,使点T 恰好落在x 轴上,如图2,连接PT ,FT ,则△PFM ≌△PFT ,∴PT=PM=2|m +1|,FT=FM=|m +1|,∴=2,作FK ⊥x 轴于K ,则KF=4,由△TKF ∽△PNT 得,=2, ∴NT=2KF=8,∵PN 2+NT 2=PT 2,∴4(m+3)2+82=4(m+1)2,解得:m=﹣6,∴﹣2m﹣6=6,此时,P(﹣6,6);②假设直线EF上存在点P,使点T恰好落在y轴上,如图3,连接PT,FT,则△PFM≌△PFT,∴PT=PM=2|m+1|,FT=FM=|m+1|,∴=2,作PH⊥y轴于H,则PH=|m|,由△TFC∽△PTH得,,∴HT=2CF=2,∵HT2+PH2=PT2,即22+m2=4(m+1)2,解得:m=﹣,m=0(不合题意,舍去),∴m=﹣时,﹣2m﹣6=﹣,∴P(﹣,﹣),综上所述:直线EF上存在点P(﹣6,6)或P(﹣,﹣)使点T恰好落在坐标轴上.25.平面直角坐标系xOy中,点P的坐标为(m+1,m﹣1).(1)试判断点P是否在一次函数y=x﹣2的图象上,并说明理由;(2)如图,一次函数y=﹣x+3的图象与x轴、y轴分别相交于点A、B,若点P 在△AOB的内部,求m的取值范围.【解答】解:(1)∵当x=m+1时,y=m+1﹣2=m﹣1,∴点P(m+1,m﹣1)在函数y=x﹣2图象上.(2)∵函数y=﹣x+3,∴A(6,0),B(0,3),∵点P在△AOB的内部,∴0<m+1<6,0<m﹣1<3,m﹣1<﹣(m+1)+3∴1<m<.26.A,B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发.图中l1,l2表示两人离A地的距离s(km)与时间t(h)的关系,请结合图象解答下列问题:(1)表示乙离A地的距离与时间关系的图象是l2(填l1或l2);甲的速度是30km/h,乙的速度是20km/h;(2)甲出发多少小时两人恰好相距5km?【解答】解:(1)由题意可知,乙的函数图象是l2,甲的速度是=30km/h,乙的速度是=20km/h.故答案为l2,30,20.(2)设甲出发x小时两人恰好相距5km.由题意30x+20(x﹣0.5)+5=60或30x+20(x﹣0.5)﹣5=60解得x=1.3或1.5,答:甲出发1.3小时或1.5小时两人恰好相距5km.27.江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾.“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y甲、y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示.(1)直接写出y甲,y乙关于x的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?【解答】解:(1)设y甲=kx,把(2000,1600)代入,得2000k=1600,解得k=0.8,所以y甲=0.8x;当0<x<2000时,设y乙=ax,把(2000,2000)代入,得2000a=2000,解得a=1,所以y乙=x;当x≥2000时,设y乙=mx+n,把(2000,2000),(4000,3400)代入,得,所以y乙=;(2)当0<x<2000时,0.8x<x,到甲商店购买更省钱;当x≥2000时,若到甲商店购买更省钱,则0.8x<0.7x+600,解得x<6000;若到乙商店购买更省钱,则0.8x>0.7x+600,解得x>6000;若到甲、乙两商店购买一样省钱,则0.8x=0.7x+600,解得x=6000;故当购买金额按原价小于6000元时,到甲商店购买更省钱;当购买金额按原价大于6000元时,到乙商店购买更省钱;当购买金额按原价等于6000元时,到甲、乙两商店购买花钱一样.28.如图,直角坐标系xOy中,A(0,5),直线x=﹣5与x轴交于点D,直线y=﹣x﹣与x轴及直线x=﹣5分别交于点C,E,点B,E关于x轴对称,连接AB.(1)求点C,E的坐标及直线AB的解析式;(2)设面积的和S=S△CDE +S四边形ABDO,求S的值;(3)在求(2)中S时,嘉琪有个想法:“将△CDE沿x轴翻折到△CDB的位置,而△CDB与四边形ABDO拼接后可看成△AOC,这样求S便转化为直接求△AOC 的面积不更快捷吗?”但大家经反复演算,发现S△AOC≠S,请通过计算解释他的想法错在哪里.【解答】解:(1)在直线y=﹣x﹣中,令y=0,则有0=﹣x﹣,∴x=﹣13,∴C(﹣13,0),令x=﹣5,则有y=﹣×(﹣5)﹣=﹣3,∴E(﹣5,﹣3),∵点B,E关于x轴对称,∴B(﹣5,3),∵A(0,5),∴设直线AB的解析式为y=kx+5,∴﹣5k+5=3,∴k=,∴直线AB的解析式为y=x+5;(2)由(1)知,E(﹣5,﹣3),∴DE=3,∵C(﹣13,0),∴CD=﹣5﹣(﹣13)=8,∴S△CDE=CD×DE=12,由题意知,OA=5,OD=5,BD=3,∴S四边形ABDO=(BD+OA)×OD=20,∴S=S△CDE +S四边形ABDO=12+20=32,(3)由(2)知,S=32,在△AOC中,OA=5,OC=13,=OA×OC==32.5,∴S△AOC,∴S≠S△AOC理由:由(1)知,直线AB的解析式为y=x+5,令y=0,则0=x+5,∴x=﹣≠﹣13,∴点C不在直线AB上,即:点A,B,C不在同一条直线上,∴S≠S.△AOC29.【操作发现】在计算器上输入一个正数,不断地按“”键求算术平方根,运算结果越来越接近1或都等于1.【提出问题】输入一个实数,不断地进行“乘常数k,再加上常数b”的运算,有什么规律?【分析问题】我们可用框图表示这种运算过程(如图a).也可用图象描述:如图1,在x轴上表示出x1,先在直线y=kx+b上确定点(x1,y1),再在直线y=x上确定纵坐标为y1的点(x2,y1),然后在x轴上确定对应的数x2,…,以此类推.【解决问题】研究输入实数x1时,随着运算次数n的不断增加,运算结果x n,怎样变化.(1)若k=2,b=﹣4,得到什么结论?可以输入特殊的数如3,4,5进行观察研究;(2)若k>1,又得到什么结论?请说明理由;(3)①若k=﹣,b=2,已在x轴上表示出x1(如图2所示),请在x轴上表示x2,x3,x4,并写出研究结论;②若输入实数x1时,运算结果x n互不相等,且越来越接近常数m,直接写出k 的取值范围及m的值(用含k,b的代数式表示)【解答】解:(1)若k=2,b=﹣4,y=2x﹣4,取x1=3,则x2=2,x3=0,x4=﹣4,…取x1=4,则x2x3=x4=4,…取x1=5,则x2=6,x3=8,x4=12,…由此发现:当x1<4时,随着运算次数n的增加,运算结果x n越来越小.当x1=4时,随着运算次数n的增加,运算结果x n的值保持不变,都等于4.当x1>4时,随着运算次数n的增加,运算结果x n越来越大.(2)当x1>时,随着运算次数n的增加,x n越来越大.当x1<时,随着运算次数n的增加,x n越来越小.当x1=时,随着运算次数n的增加,x n保持不变.理由:如图1中,直线y=kx+b与直线y=x的交点坐标为(,),当x1>时,对于同一个x的值,kx+b>x,∴y1>x1∵y1=x2,∴x1<x2,同理x2<x3<…<x n,∴当x1>时,随着运算次数n的增加,x n越来越大.同理,当x1<时,随着运算次数n的增加,x n越来越小.当x1=时,随着运算次数n的增加,x n保持不变.(3)①在数轴上表示的x1,x2,x3如图2所示.随着运算次数的增加,运算结果越来越接近.②由(2)可知:﹣1<k<1且k≠0,由消去y得到x=∴由①探究可知:m=.。

2022年中考真题汇编 一次函数应用题(一) ---路程问题(1)附答案与解析

2022年中考真题汇编 一次函数应用题(一) ---路程问题(1)附答案与解析
A.AF=5B.AB=4C.DE=3D.EF=8
二.简答题
1.(2022年江苏盐城)小丽从甲地匀速步行去乙地,小华骑自行车从乙地匀速前往甲地,同时出发,两人离甲地的距离 (m)与出发时间 (min)之间的函数关系如图所示.
(1)小丽步行的速度为__________m/min;
(2)当两人相遇时,求他们到甲地 距离.
A.2.7分钟B.2.8分钟C.3分钟D.3.2分钟
4.(2022年湖北随州)已知张强家、体育场、文具店在同一直线上.下面的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x表示时间,y表示张强离家的距离.则下列结论不正确的是()
A 张强从家到体育场用了15minB.体育场离文具店1.5km
(2)①0.8;②0.25;③10或116
(3)当 时, ;当 时, ;当 时,
(1)由图象可得,在前12分钟的速度为:1.2÷12=0.1km/min,
故当x=8时,离学生公寓的距离为8×0.1=0.8;
在 时,离学生公寓的距离不变,都是1.2km
故当x=50时,距离不变,都 1.2km;
在 时,离学生公寓的距离不变,都是2km,
(1))解:由函数图象可知小明在离家15分钟时到底体育馆,此时离家的距离为2.5km,
∴小明家离体育馆的距离为2.5km,小明跑步的平均速度为 ,
故答案为:2.5; ;
(2))解:由函数图象可知当 时, ,
当 时,此时y是关于x一次函数,设 ,
∴ ,解得 ,∴此时 ,
综上所述,
(3)解:当小明处在去体育馆的途中离家2km时,
解得,
∴ ,
由上可得,当 时,y关于x的函数解析式为 .

中考数学分类一次函数与二次函数试卷(含答案)

中考数学分类一次函数与二次函数试卷(含答案)

中考数学试题分类—次函数与二次函数一.一次函数的图象(共2小题)1.(2020•嘉兴)一次函数y=2x﹣1的图象大致是()A.B.C.D.2.(2019•杭州)已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A.B.C.D.二.一次函数的性质(共1小题)3.(2019•杭州)某函数满足当自变量x=1时,函数值y=0,当自变量x=0时,函数值y=1,写出一个满足条件的函数表达式.三.一次函数图象上点的坐标特征(共3小题)4.(2020•杭州)在平面直角坐标系中,已知函数y=ax+a(a≠0)的图象过点P(1,2),则该函数的图象可能是()A.B.C.D.5.(2020•湖州)已知在平面直角坐标系xOy中,直线y=2x+2和直线y=23x+2分别交x轴于点A和点B.则下列直线中,与x轴的交点不在线段AB上的直线是()A.y=x+2B.y=√2x+2C.y=4x+2D.y=2√33x+26.(2019•绍兴)若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于()A.﹣1B.0C.3D.4四.一次函数的应用(共10小题)7.(2019•金华)元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是.8.(2020•宁波)A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?9.(2020•衢州)2020年5月16日,“钱塘江诗路”航道全线开通.一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20km/h,游轮行驶的时间记为t(h),两艘轮船距离杭州的路程s(km)关于t(h)的图象如图2所示(游轮在停靠前后的行驶速度不变).(1)写出图2中C点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长.(2)若货轮比游轮早36分钟到达衢州.问:①货轮出发后几小时追上游轮?①游轮与货轮何时相距12km?10.(2020•绍兴)我国传统的计重工具﹣﹣秤的应用,方便了人们的生活.如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x(厘米)时,秤钩所挂物重为y(斤),则y是x的一次函数.下表中为若干次称重时所记录的一些数据.x(厘米)12471112y(斤)0.75 1.00 1.50 2.75 3.25 3.50(1)在上表x,y的数据中,发现有一对数据记录错误.在图2中,通过描点的方法,观察判断哪一对是错误的?(2)根据(1)的发现,问秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少?11.(2020•金华)某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.12.(2020•温州)某经销商3月份用18000元购进一批T恤衫售完后,4月份用39000元购进一批相同的T 恤衫,数量是3月份的2倍,但每件进价涨了10元.(1)4月份进了这批T恤衫多少件?(2)4月份,经销商将这批T恤衫平均分给甲、乙两家分店销售,每件标价180元.甲店按标价卖出a 件以后,剩余的按标价八折全部售出;乙店同样按标价卖出a件,然后将b件按标价九折售出,再将剩余的按标价七折全部售出,结果利润与甲店相同.①用含a的代数式表示b.①已知乙店按标价售出的数量不超过九折售出的数量,请你求出乙店利润的最大值.13.(2019•绍兴)如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)关于已行驶路程x(千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程.当0≤x≤150时,求1千瓦时的电量汽车能行驶的路程.(2)当150≤x≤200时,求y关于x的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.14.(2019•台州)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h=−310x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.15.(2019•宁波)某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车.小聪周末到该风景区游玩,上午7:40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林.离入口处的路程y(米)与时间x(分)的函数关系如图2所示.(1)求第一班车离入口处的路程y(米)与时间x(分)的函数表达式.(2)求第一班车从入口处到达塔林所需的时间.(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)16.(2019•湖州)某校的甲、乙两位老师同住一小区,该小区与学校相距2400米.甲从小区步行去学校,出发10分钟后乙再出发,乙从小区先骑公共自行车,途经学校又骑行若干米到达还车点后,立即步行走回学校.已知甲步行的速度比乙步行的速度每分钟快5米.设甲步行的时间为x (分),图1中线段OA 和折线B ﹣C ﹣D 分别表示甲、乙离开小区的路程y (米)与甲步行时间x (分)的函数关系的图象;图2表示甲、乙两人之间的距离s (米)与甲步行时间x (分)的函数关系的图象(不完整).根据图1和图2中所给信息,解答下列问题:(1)求甲步行的速度和乙出发时甲离开小区的路程;(2)求乙骑自行车的速度和乙到达还车点时甲、乙两人之间的距离;(3)在图2中,画出当25≤x ≤30时s 关于x 的函数的大致图象.(温馨提示:请画在答题卷相对应的图上)五.一次函数综合题(共2小题)17.(2019•温州)如图,在平面直角坐标系中,直线y =−12x +4分别交x 轴、y 轴于点B ,C ,正方形AOCD 的顶点D 在第二象限内,E 是BC 中点,OF ⊥DE 于点F ,连结OE .动点P 在AO 上从点A 向终点O 匀速运动,同时,动点Q 在直线BC 上从某一点Q 1向终点Q 2匀速运动,它们同时到达终点.(1)求点B 的坐标和OE 的长.(2)设点Q 2为(m ,n ),当n n =17tan ∠EOF 时,求点Q 2的坐标.(3)根据(2)的条件,当点P 运动到AO 中点时,点Q 恰好与点C 重合.①延长AD 交直线BC 于点Q 3,当点Q 在线段Q 2Q 3上时,设Q 3Q =s ,AP =t ,求s 关于t 的函数表达式.①当PQ 与△OEF 的一边平行时,求所有满足条件的AP 的长.18.(2019•衢州)定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满足x =n +n 3,y =n +n 3那么称点T 是点A ,B 的融合点. 例如:A (﹣1,8),B (4,﹣2),当点T (x ,y )满足x =−1+43=1,y =8+(−2)3=2时,则点T (1,2)是点A ,B 的融合点.(1)已知点A (﹣1,5),B (7,7),C (2,4),请说明其中一个点是另外两个点的融合点.(2)如图,点D (3,0),点E (t ,2t +3)是直线l 上任意一点,点T (x ,y )是点D ,E 的融合点. ①试确定y 与x 的关系式.①若直线ET 交x 轴于点H .当△DTH 为直角三角形时,求点E 的坐标.六.反比例函数的性质(共1小题)19.(2020•杭州)设函数y 1=n n ,y 2=−n n (k >0). (1)当2≤x ≤3时,函数y 1的最大值是a ,函数y 2的最小值是a ﹣4,求a 和k 的值.(2)设m ≠0,且m ≠﹣1,当x =m 时,y 1=p ;当x =m +1时,y 1=q .圆圆说:“p 一定大于q ”.你认为圆圆的说法正确吗?为什么?七.反比例函数系数k 的几何意义(共3小题)20.(2020•温州)点P ,Q ,R 在反比例函数y =n n (常数k >0,x >0)图象上的位置如图所示,分别过这三个点作x 轴、y 轴的平行线.图中所构成的阴影部分面积从左到右依次为S 1,S 2,S 3.若OE =ED =DC ,S 1+S 3=27,则S 2的值为 .21.(2020•湖州)如图,已知在平面直角坐标系xOy 中,Rt △OAB 的直角顶点B 在x 轴的正半轴上,点A在第一象限,反比例函数y =n n (x >0)的图象经过OA 的中点C .交AB 于点D ,连结CD .若△ACD 的面积是2,则k 的值是 .22.(2019•衢州)如图,在平面直角坐标系中,O 为坐标原点,①ABCD 的边AB 在x 轴上,顶点D 在y 轴的正半轴上,点C 在第一象限,将△AOD 沿y 轴翻折,使点A 落在x 轴上的点E 处,点B 恰好为OE 的中点,DE 与BC 交于点F .若y =n n (k ≠0)图象经过点C ,且S △BEF =1,则k 的值为 .八.反比例函数图象上点的坐标特征(共3小题)23.(2020•金华)已知点(﹣2,a),(2,b),(3,c)在函数y=n n(k>0)的图象上,则下列判断正确的是()A.a<b<c B.b<a<c C.a<c<b D.c<b<a24.(2020•衢州)如图,将一把矩形直尺ABCD和一块含30°角的三角板EFG摆放在平面直角坐标系中,AB在x轴上,点G与点A重合,点F在AD上,三角板的直角边EF交BC于点M,反比例函数y=n n(x >0)的图象恰好经过点F,M.若直尺的宽CD=3,三角板的斜边FG=8√3,则k=.25.(2019•绍兴)如图,矩形ABCD的两边分别与坐标轴平行,顶点A,C都在双曲线y=n n(常数k>0,x>0)上,若顶点D的坐标为(5,3),则直线BD的函数表达式是.九.待定系数法求反比例函数解析式(共1小题)26.(2019•舟山)如图,在直角坐标系中,已知点B(4,0),等边三角形OAB的顶点A在反比例函数y=n n的图象上.(1)求反比例函数的表达式.(2)把△OAB向右平移a个单位长度,对应得到△O'A'B'当这个函数图象经过△O'A'B'一边的中点时,求a的值.一十.反比例函数与一次函数的交点问题(共3小题)27.(2020•宁波)如图,经过原点O的直线与反比例函数y=n n(a>0)的图象交于A,D两点(点A在第一象限),点B,C,E在反比例函数y=nn(b<0)的图象上,AB∥y轴,AE∥CD∥x轴,五边形ABCDE的面积为56,四边形ABCD 的面积为32,则a ﹣b 的值为 ,n n 的值为 . 28.(2019•宁波)如图,过原点的直线与反比例函数y =n n (k >0)的图象交于A ,B 两点,点A 在第一象限.点C 在x 轴正半轴上,连结AC 交反比例函数图象于点D .AE 为∠BAC 的平分线,过点B 作AE 的垂线,垂足为E ,连结DE .若AC =3DC ,△ADE 的面积为8,则k 的值为 .29.(2019•湖州)如图,已知在平面直角坐标系xOy 中,直线y =12x ﹣1分别交x 轴,y 轴于点A 和点B ,分别交反比例函数y 1=n n (k >0,x >0),y 2=2n n (x <0)的图象于点C 和点D ,过点C 作CE ⊥x 轴于点E ,连结OC ,OD .若△COE 的面积与△DOB 的面积相等,则k 的值是 .一十一.反比例函数的应用(共3小题)30.(2019•温州)验光师测得一组关于近视眼镜的度数y (度)与镜片焦距x (米)的对应数据如下表,根据表中数据,可得y 关于x 的函数表达式为( )近视眼镜的度数y (度)200 250 400 500 1000 镜片焦距x(米)0.50 0.40 0.25 0.20 0.10 A .y =100n B .y =n 100 C .y =400n D .y =n 40031.(2020•台州)小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15次时,完成一次训练所需要的时间y(单位:秒)与训练次数x(单位:次)之间满足如图所示的反比例函数关系.完成第3次训练所需时间为400秒.(1)求y与x之间的函数关系式;(2)当x的值为6,8,10时,对应的函数值分别为y1,y2,y3,比较(y1﹣y2)与(y2﹣y3)的大小:y1﹣y2y2﹣y3.32.(2019•杭州)方方驾驶小汽车匀速地从A地行驶到B地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v关于t的函数表达式;(2)方方上午8点驾驶小汽车从A地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v的范围.①方方能否在当天11点30分前到达B地?说明理由.参考答案与试题解析一.一次函数的图象(共2小题)1.【解答】解:由题意知,k=2>0,b=﹣1<0时,函数图象经过一、三、四象限.故选:B.2.【解答】解:A、由图可知:直线y1=ax+b,a>0,b>0.∴直线y2=bx+a经过一、二、三象限,故A正确;B、由图可知:直线y1=ax+b,a<0,b>0.∴直线y2=bx+a经过一、四、三象限,故B错误;C 、由图可知:直线y 1=ax +b ,a <0,b >0.∴直线y 2=bx +a 经过一、二、四象限,交点不对,故C 错误; D 、由图可知:直线y 1=ax +b ,a <0,b <0,∴直线y 2=bx +a 经过二、三、四象限,故D 错误.故选:A .二.一次函数的性质(共1小题)3.【解答】解:设该函数的解析式为y =kx +b ,∵函数满足当自变量x =1时,函数值y =0,当自变量x =0时,函数值y =1, ∴{n +n =0n =1 解得:{n =−1n =1, 所以函数的解析式为y =﹣x +1,故答案为:y =﹣x +1(答案不唯一).三.一次函数图象上点的坐标特征(共3小题)4.【解答】解:∵函数y =ax +a (a ≠0)的图象过点P (1,2),∴2=a +a ,解得a =1,∴y =x +1,∴直线交y 轴的正半轴于点(0,1),且过点(1,2),故选:A .5.【解答】解:∵直线y =2x +2和直线y =23x +2分别交x 轴于点A 和点B . ∴A (﹣1,0),B (﹣3,0)A 、y =x +2与x 轴的交点为(﹣2,0);故直线y =x +2与x 轴的交点在线段AB 上;B 、y =√2x +2与x 轴的交点为(−√2,0);故直线y =√2x +2与x 轴的交点在线段AB 上;C 、y =4x +2与x 轴的交点为(−12,0);故直线y =4x +2与x 轴的交点不在线段AB 上;D 、y =2√33x +2与x 轴的交点为(−√3,0);故直线y =2√33x +2与x 轴的交点在线段AB 上; 故选:C .6.【解答】解:设经过(1,4),(2,7)两点的直线解析式为y =kx +b , ∴{4=n +n 7=2n +n ∴{n =3n =1, ∴y =3x +1,将点(a ,10)代入解析式,则a =3;故选:C .四.一次函数的应用(共10小题)7.【解答】解:令150t =240(t ﹣12),解得,t =32,则150t =150×32=4800,∴点P 的坐标为(32,4800),故答案为:(32,4800).8.【解答】解:(1)设函数表达式为y =kx +b (k ≠0),把(1.6,0),(2.6,80)代入y =kx +b ,得{0=1.6n +n 80=2.6n +n , 解得:{n =80n =−128, ∴y 关于x 的函数表达式为y =80x ﹣128;由图可知200﹣80=120(千米),120÷80=1.5(小时),1.6+1.5=3.1(小时),∴x 的取值范围是1.6≤x ≤3.1.∴货车乙在遇到货车甲前,它离开出发地的路程y 关于x 的函数表达式为y =80x ﹣128(1.6≤x ≤3.1);(2)当y =200﹣80=120时,120=80x ﹣128,解得x =3.1,由图可知,甲的速度为801.6=50(千米/小时),货车甲正常到达B 地的时间为200÷50=4(小时),18÷60=0.3(小时),4+1=5(小时),5﹣3.1﹣0.3=1.6(小时),设货车乙返回B 地的车速为v 千米/小时,∴1.6v ≥120,解得v ≥75.答:货车乙返回B 地的车速至少为75千米/小时.9.【解答】解:(1)C 点横坐标的实际意义是游轮从杭州出发前往衢州共用了23h .∴游轮在“七里扬帆”停靠的时长=23﹣(420÷20)=23﹣21=2(h ).(2)①280÷20=14h ,∴点A (14,280),点B (16,280),∵36÷60=0.6(h ),23﹣0.6=22.4,∴点E (22.4,420),设BC 的解析式为s =20t +b ,把B (16,280)代入s =20t +b ,可得b =﹣40,∴s =20t ﹣40(16≤t ≤23),同理由D (14,0),E (22.4,420)可得DE 的解析式为s =50t ﹣700(14≤t ≤22.4),由题意:20t ﹣40=50t ﹣700,解得t =22,∵22﹣14=8(h ),∴货轮出发后8小时追上游轮.①相遇之前相距12km 时,20t ﹣40﹣(50t ﹣700)=12,解得t =21.6.相遇之后相距12km 时,50t ﹣700﹣(20t ﹣40)=12,解得t =22.4,当游轮在刚离开杭州12km 时,此时根据图象可知货轮就在杭州,游轮距离杭州12km ,所以此时两船应该也是想距12km ,即在0.6h 的时候,两船也相距12km∴0.6h 或21.6h 或22.4h 时游轮与货轮相距12km .10.【解答】解:(1)观察图象可知:x =7,y =2.75这组数据错误.(2)设y =kx +b ,把x =1,y =0.75,x =2,y =1代入可得{n +n =0.752n +n =1, 解得{n =14n =12, ∴y =14x +12, 当x =16时,y =4.5,答:秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤.11.【解答】解:(1)由题意得,高度增加2百米,则气温降低2×0.6=1.2(℃),∴13.2﹣1.2=12(℃),∴高度为5百米时的气温大约是12℃;(2)设T 关于h 的函数表达式为T =kh +b ,则:{3n +n =13.25n +n =12, 解得{n =−0.6n =15, ∴T 关于h 的函数表达式为T =﹣0.6h +15(h >0);(3)当T =6时,6=﹣0.6h +15,解得h =15.∴该山峰的高度大约为15百米,即1500米.12.【解答】解:(1)设3月份购进x 件T 恤衫,18000n +10=390002n ,解得,x =150,经检验,x =150是原分式方程的解,则2x =300,答:4月份进了这批T 恤衫300件;(2)①每件T 恤衫的进价为:39000÷300=130(元),(180﹣130)a +(180×0.8﹣130)(150﹣a )=(180﹣130)a +(180×0.9﹣130)b +(180×0.7﹣130)(150﹣a ﹣b )化简,得b =150−n 2; ①设乙店的利润为w 元,w =(180﹣130)a +(180×0.9﹣130)b +(180×0.7﹣130)(150﹣a ﹣b )=54a +36b ﹣600=54a +36×150−n 2−600=36a +2100, ∵乙店按标价售出的数量不超过九折售出的数量, ∴a ≤b , 即a ≤150−n 2,解得,a ≤50,∴当a =50时,w 取得最大值,此时w =3900,答:乙店利润的最大值是3900元.13.【解答】解:(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米. 1千瓦时的电量汽车能行驶的路程为:15060−35=6千米;(2)设y =kx +b (k ≠0),把点(150,35),(200,10)代入,得{150n +n =35200n +n =10, ∴{n =−0.5n =110, ∴y =﹣0.5x +110,当x =180时,y =﹣0.5×180+110=20,答:当150≤x ≤200时,函数表达式为y =﹣0.5x +110,当汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时.14.【解答】解:(1)设y 关于x 的函数解析式是y =kx +b ,{n =615n +n =3,解得,{n =−15n =6, 即y 关于x 的函数解析式是y =−15x +6;(2)当h =0时,0=−310x +6,得x =20, 当y =0时,0=−15x +6,得x =30,∵20<30,∴甲先到达地面.15.【解答】解:(1)由题意得,可设函数表达式为:y =kx +b (k ≠0), 把(20,0),(38,2700)代入y =kx +b ,得{0=20n +n 2700=38n +n ,解得{n =150n =−3000, ∴第一班车离入口处的路程y (米)与时间x (分)的函数表达为y =150x ﹣3000(20≤x ≤38);(2)把y =1500代入y =150x ﹣3000,解得x =30,30﹣20=10(分),∴第一班车从入口处到达塔林所需时间10分钟;(3)设小聪坐上了第n 班车,则30﹣25+10(n ﹣1)≥40,解得n ≥4.5,∴小聪坐上了第5班车,等车的时间为5分钟,坐班车所需时间为:1200÷150=8(分),步行所需时间:1200÷(1500÷25)=20(分),20﹣(8+5)=7(分),∴比他在塔林游玩结束后立即步行到草甸提早了7分钟.16.【解答】解:(1)由图可得,甲步行的速度为:2400÷30=80(米/分),乙出发时甲离开小区的路程是10×80=800(米),答:甲步行的速度是80米/分,乙出发时甲离开小区的路程是800米;(2)设直线OA 的解析式为y =kx ,30k =2400,得k =80,∴直线OA 的解析式为y =80x ,当x =18时,y =80×18=1440,则乙骑自行车的速度为:1440÷(18﹣10)=180(米/分),∵乙骑自行车的时间为:25﹣10=15(分钟),∴乙骑自行车的路程为:180×15=2700(米),当x =25时,甲走过的路程为:80×25=2000(米),∴乙到达还车点时,甲乙两人之间的距离为:2700﹣2000=700(米),答:乙骑自行车的速度是180米/分,乙到达还车点时甲、乙两人之间的距离是700米;(3)乙步行的速度为:80﹣5=75(米/分),乙到达学校用的时间为:25+(2700﹣2400)÷75=29(分),当25≤x ≤30时s 关于x 的函数的大致图象如右图所示.五.一次函数综合题(共2小题)17.【解答】解:(1)令y =0,则−12x +4=0,∴x =8,∴B (8,0),∵C (0,4),∴OC =4,OB =8,在Rt △BOC 中,BC =√82+42=4√5,又∵E 为BC 中点,∴OE =12BC =2√5; (2)如图1,作EM ⊥OC 于M ,则EM ∥CD ,∵E 是BC 的中点∴M 是OC 的中点∴EM =12OB =4,OE =12BC =2√5∵∠CDN =∠NEM ,∠CND =∠MNE∴△CDN ∽△MEN ,∴nn nn =nn nn =1,∴CN =MN =1,∴EN =√12+42=√17,∵S △ONE =12EN •OF =12ON •EM ,∴OF =3×4√17=1217√17,由勾股定理得:EF =√nn 2−nn 2=(2√5)2−(121717)2=1417√17,∴tan ∠EOF =nn nn =14√171712√1717=76, ∴nn =17×76=16, ∵n =−12m +4, ∴m =6,n =1,∴Q 2(6,1);(3)①∵动点P 、Q 同时作匀速直线运动,∴s 关于t 成一次函数关系,设s =kt +b ,∵当点P 运动到AO 中点时,点Q 恰好与点C 重合,∴t =2时,CD =4,DQ 3=2, ∴s =Q 3C =√22+42=2√5,∵Q 3(﹣4,6),Q 2(6,1),∴t =4时,s =√(6+4)2+(6−1)2=5√5,将{n =2n =2√5和{n =4n =5√5代入得{2n +n =2√54n +n =5√5,解得:{n =32√5n =−√5, ∴s =3√52n −√5,∵s ≥0,t ≥0,且32√5>0, ∴s 随t 的增大而增大, 当s ≥0时,3√52n −√5≥0,即t ≥23,当t =23时,Q 3与Q 重合,∵点Q 在线段Q 2Q 3上,综上,s 关于t 的函数表达式为:s =3√52n −√5(23≤t ≤4); ①(i )当PQ ∥OE 时,如图2,∠QPB =∠EOB =∠OBE ,作QH ⊥x 轴于点H ,则PH =BH =12PB , Rt △ABQ 3中,AQ 3=6,AB =4+8=12,∴BQ 3=√62+122=6√5, ∵BQ =6√5−s =6√5−3√52t +√5=7√5−3√52t ,∵cos ∠QBH =nn nn 3=nn nn =1265=25√5,∴BH =14﹣3t ,∴PB =28﹣6t , ∴t +28﹣6t =12,t =165;(ii )当PQ ∥OF 时,如图3,过点Q 作QG ⊥AQ 3于点G ,过点P 作PH ⊥GQ 于点H ,由△Q 3QG ∽△CBO 得:Q 3G :QG :Q 3Q =1:2:√5,∵Q 3Q =s =3√52t −√5,∴Q 3G =32t ﹣1,GQ =3t ﹣2, ∴PH =AG =AQ 3﹣Q 3G =6﹣(32t ﹣1)=7−32t ,∴QH =QG ﹣AP =3t ﹣2﹣t =2t ﹣2,∵∠HPQ =∠CDN ,∴tan ∠HPQ =tan ∠CDN =14,∴2t ﹣2=14(7−32n ),t =3019, (iii )由图形可知PQ 不可能与EF 平行,综上,当PQ 与△OEF 的一边平行时,AP 的长为165或3019. 18.【解答】解:(1)x =13(﹣1+7)=2,y =13(5+7)=4, 故点C 是点A 、B 的融合点;(2)①由题意得:x =13(t +3),y =13(2t +3),则t =3x ﹣3,则y =13(6x ﹣6+3)=2x ﹣1;①当∠DHT =90°时,如图1所示,点E (t ,2t +3),则T (t ,2t ﹣1),则点D (3,0),由点T 是点D ,E 的融合点得:t =n +33,2t ﹣1=2n +33, 解得:t =32,即点E (32,6);当∠TDH =90°时,如图2所示,则点T (3,5),由点T 是点D ,E 的融合点得:点E (6,15);当∠HTD =90°时,如图3所示,过点T 作x 轴的平行线交过点D 与y 轴平行的直线于点M ,交过点E 与y 轴的平行线于点N ,则∠MDT =∠NTE ,则tan ∠MDT =tan ∠NTE ,D (3,0),点E (t ,2t +3),则点T (n +33,2n +33)则MT =3−n +33=6−n 3,MD =2n +33,NE =2n +33−2t ﹣3=−2(2n +3)3,NT =n +33−t =3−2n 3, 由tan ∠MDT =tan ∠NTE得:6−n 32n +33=2(2n +3)33−2n 3, 解得:方程无解,故∠HTD 不可能为90°. 故点E (32,6)或(6,15). 六.反比例函数的性质(共1小题)19.【解答】解:(1)∵k >0,2≤x ≤3,∴y 1随x 的增大而减小,y 2随x 的增大而增大,∴当x =2时,y 1最大值为n 2=n ,①;当x =2时,y 2最小值为−n 2=a ﹣4,①; 由①,①得:a =2,k =4;(2)圆圆的说法不正确,理由如下:设m =m 0,且﹣1<m 0<0,则m 0<0,m 0+1>0,∴当x =m 0时,p =y 1=n n 0<0, 当x =m 0+1时,q =y 1=n n 0+1>0, ∴p <0<q ,∴圆圆的说法不正确.七.反比例函数系数k 的几何意义(共3小题)20.【解答】解:∵CD =DE =OE ,∴可以假设CD =DE =OE =a ,则P (n 3n ,3a ),Q (n 2n ,2a ),R (n n ,a ), ∴CP =n 3n ,DQ =n 2n ,ER =n n ,∴OG =AG ,OF =2FG ,OF =23GA , ∴S 1=23S 3=2S 2, ∵S 1+S 3=27,∴S 3=815,S 1=545,S 2=275, 故答案为275.21.【解答】解:连接OD ,过C 作CE ∥AB ,交x 轴于E , ∵∠ABO =90°,反比例函数y =n n (x >0)的图象经过OA 的中点C ,∴S △COE =S △BOD =12n ,S △ACD =S △OCD =2,∵CE ∥AB ,∴△OCE ∽△OAB ,∴n △nnnn △nnn=14, ∴4S △OCE =S △OAB ,∴4×12k =2+2+12k ,∴k =83, 故答案为:83.22.【解答】解:连接OC ,BD ,∵将△AOD 沿y 轴翻折,使点A 落在x 轴上的点E 处,∴OA =OE ,∵点B 恰好为OE 的中点,∴OE =2OB ,∴OA =2OB ,设OB =BE =x ,则OA =2x ,∴AB =3x ,∵四边形ABCD 是平行四边形,∴CD =AB =3x ,∵CD ∥AB ,∴△CDF ∽△BEF ,∴nn nn =nn nn =n 3n =13, ∵S △BEF =1,∴S △BDF =3,S △CDF =9,∴S △BCD =12,∴S △CDO =S △BDC =12,∴k 的值=2S △CDO =24.八.反比例函数图象上点的坐标特征(共3小题)23.【解答】解:∵k >0,∴函数y =n n (k >0)的图象分布在第一、三象限,在每一象限,y 随x 的增大而减小, ∵﹣2<0<2<3,∴b >c >0,a <0,∴a <c <b .故选:C .24.【解答】解:过点M 作MN ⊥AD ,垂足为N ,则MN =CD =3, 在Rt △FMN 中,∠MFN =30°,∴FN =√3MN =3√3,∴AN =MB =8√3−3√3=5√3,设OA =x ,则OB =x +3,∴F (x ,8√3),M (x +3,5√3),又∵点F 、M 都在反比例函数的图象上,∴8√3x =(x +3)×5√3,解得,x =5,∴F (5,8√3),∴k =5×8√3=40√3.故答案为:40√3.25.【解答】解:∵D (5,3),∴A (n 3,3),C (5,n 5),∴B (n 3,n 5),设直线BD 的解析式为y =mx +n ,把D (5,3),B (n 3,n 5)代入得{5n +n =3n 3n +n =n 5,解得{n =35n =0, ∴直线BD 的解析式为y =35x . 故答案为y =35x .九.待定系数法求反比例函数解析式(共1小题)26.【解答】解:(1)过点A 作AC ⊥OB 于点C ,∵△OAB 是等边三角形,∴∠AOB =60°,OC =12OB ,∵B (4,0),∴OB =OA =4,∴OC =2,AC =2√3. 把点A (2,2√3)代入y =n n ,得k =4√3.∴反比例函数的解析式为y =4√3n ;(2)分两种情况讨论:①点D 是A ′B ′的中点,过点D 作DE ⊥x 轴于点E . 由题意得A ′B ′=4,∠A ′B ′E =60°,在Rt △DEB ′中,B ′D =2,DE =√3,B ′E =1.∴O ′E =3,把y =√3代入y =4√3n ,得x =4,∴OE =4,∴a =OO ′=1;①如图3,点F 是A ′O ′的中点,过点F 作FH ⊥x 轴于点H . 由题意得A ′O ′=4,∠A ′O ′B ′=60°,在Rt △FO ′H 中,FH =√3,O ′H =1.把y =√3代入y =4√3n ,得x =4,∴OH =4,∴a =OO ′=3,综上所述,a 的值为1或3.一十.反比例函数与一次函数的交点问题(共3小题)27.【解答】解:如图,连接AC ,OE ,OC ,OB ,延长AB 交DC 的延长线于T ,设AB 交x 轴于K .由题意A ,D 关于原点对称,∴A ,D 的纵坐标的绝对值相等,∵AE ∥CD ,∴E ,C 的纵坐标的绝对值相等,∵E ,C 在反比例函数y =n n 的图象上,∴E ,C 关于原点对称,∴E ,O ,C 共线,∵OE =OC ,OA =OD ,∴四边形ACDE 是平行四边形,∴S △ADE =S △ADC =S 五边形ABCDE ﹣S 四边形ABCD =56﹣32=24,∴S △AOE =S △DEO =12,∴12a −12b =12,∴a ﹣b =24,∵S △AOC =S △AOB =12,∴BC ∥AD ,∴nn nn =nn nn ,∵S △ACB =32﹣24=8,∴S △ADC :S △ABC =24:8=3:1,∴BC :AD =1:3,∴TB :TA =1:3,设BT =m ,则AT =3m ,AK =TK =1.5m ,BK =0.5m ,∴AK :BK =3:1,∴n △nnn n △nnn =12n −12n =3, ∴n n =−3,即n n =−13, 故答案为24,−13. 28.【解答】解:连接OE ,CE ,过点A 作AF ⊥x 轴,过点D 作DH ⊥x 轴,过点D 作DG ⊥AF , ∵过原点的直线与反比例函数y =n n (k >0)的图象交于A ,B 两点,∴A 与B 关于原点对称,∴O 是AB 的中点,∵BE ⊥AE ,∴OE =OA ,∴∠OAE =∠AEO ,∵AE 为∠BAC 的平分线,∴∠DAE =∠AEO ,∴AD ∥OE ,∴S △ACE =S △AOC ,∵AC =3DC ,△ADE 的面积为8,∴S △ACE =S △AOC =12,设点A (m ,n n ),∵AC =3DC ,DH ∥AF ,∴3DH =AF ,∴D (3m ,n 3n ),∵CH ∥GD ,AG ∥DH ,∴△DHC ∽△AGD ,∴S △HDC =14S △ADG ,∵S △AOC =S △AOF +S梯形AFHD +S △HDC =12k +12×(DH +AF )×FH +S △HDC =12k +12×4n 3n ×2m +12×14×2n 3n ×2n =12k +4n 3+n 6=12,∴2k =12,∴k =6;故答案为6;(另解)连结OE ,由题意可知OE ∥AC ,∴S △OAD =S △EAD =8,易知△OAD 的面积=梯形AFHD 的面积,设A 的纵坐标为3a ,则D 的纵坐标为a ,∴(3a +a )(n n −n 3n )=16,解得k =6.29.【解答】解:令x =0,得y =12x ﹣1=﹣1, ∴B (0,﹣1),∴OB =1,把y =12x ﹣1代入y 2=2n n (x <0)中得,12x ﹣1=2n n (x <0), 解得,x =1−√4n +1,∴n n =1−√4n +1, ∴n △nnn =12nn ⋅|n n |=12√4n +1−12, ∵CE ⊥x 轴, ∴n △nnn =12n ,∵△COE 的面积与△DOB 的面积相等,∴12√4n +1−12=12n ,∴k =2,或k =0(舍去).经检验,k =2是原方程的解.故答案为:2.一十一.反比例函数的应用(共3小题)30.【解答】解:由表格中数据可得:xy =100,故y 关于x 的函数表达式为:y =100n . 故选:A .31.【解答】解:(1)设y 与x 之间的函数关系式为:y =n n (k ≠0,x >0), 把(3,400)代入y =n n 得,400=n 3, 解得:k =1200, ∴y 与x 之间的函数关系式为y =1200n (x >0); (2)把x =6,8,10分别代入y =1200n 得,y 1=12006=200,y 2=12008=150,y 3=120010=120, ∵y 1﹣y 2=200﹣150=50,y 2﹣y 3=150﹣120=30,∵50>30,∴y 1﹣y 2>y 2﹣y 3,故答案为:>.32.【解答】解:(1)∵vt =480,且全程速度限定为不超过120千米/小时, ∴v 关于t 的函数表达式为:v =480n ,(t ≥4). (2)①8点至12点48分时间长为245小时,8点至14点时间长为6小时 将t =6代入v =480n 得v =80;将t =245代入v =480n 得v =100. ∴小汽车行驶速度v 的范围为:80≤v ≤100.①方方不能在当天11点30分前到达B 地.理由如下:8点至11点30分时间长为72小时,将t =72代入v =480n 得v =9607>120千米/小时,超速了. 故方方不能在当天11点30分前到达B 地.。

《一次函数》专项练习和中考真题(含答案解析及点睛)

《一次函数》专项练习和中考真题(含答案解析及点睛)

《1.等腰三角形底角与顶角之间的函数关系A .正比例函数 B .一次函数【答案】B【分析】根据一次函数的定义,可得答案【解析】设等腰三角形的底角为y ,顶角为所以,y=﹣12x+90°,即等腰三角形底角与【点睛】本题考查了实际问题与一次函数2.已知y 关于x 成正比例,且当x 时A .3 B .3-【答案】B【分析】先利用待定系数法求出y =【详解】设y kx =,Q 当2x =时,3y x ∴=-,∴当1x =时,3y =-【点睛】本题考查了待定系数法求正比例函点的坐标代入求出k 即可.3. 已知函数y =kx +b 的部分函数值如表所示A .x =2 B .x =3 C 【答案】A【解析】∵当x =0时,y =1,当x =1,y 当y =–3时,–2x +1=–3,解得:x =2,4.如图,直线y=kx+3经过点(2,0,A .x >2B .x <2 《一次函数》专项练习数关系是( ) C .反比例函数D .二次函数答案.顶角为x ,由题意,得x+2y=180, 底角与顶角之间的函数关系是一次函数关系,故选函数,根据题意正确列出函数关系式是解题的关键2=时,6y =-,则当1x =时,y 的值为 C .12D .12-3x -,然后计算1x =对应的函数值. 6y =-,26k ∴=-,解得3k =-,13⨯=-.故选B .比例函数的解析式:设正比例函数解析式为y kx k =表所示,则关于x 的方程kx +b +3=0的解是x … –2 –1 01… y…531 –1….x =–2 D .x =–3 =–1,∴,解得:,∴y =–,故关于x 的方程kx +b +3=0的解是x =2,故选A ),则关于x 的不等式kx+3>0的解集是( )C .x≥2 D .x≤211b k b =+=-⎧⎨⎩21k b =-=⎧⎨⎩故选B . 关键. ()0≠,然后把一个已知2x +1,.【答案】B【分析】直接利用函数图象判断不等式【解析】由一次函数图象可知:关于x的不【点睛】本题考查了一次函数的图象与性质等式之间的内在联系.5.如图,在平面直角坐标系中,直线l与直线l1在第一象限交于点C.若∠BOCAB【答案】B【分析】过C作CD⊥OA于D,利用直线3.依据CD∥BO,可得OD13=AOk的值.【解析】如图,过C作CD⊥OA于D.即A(,0),B(0,1),∴Rt△∵∠BOC=∠BCO,∴CB=BO=1,∵CD∥BO,∴OD13=AO=,得:23=,即k =B式kx+3>0的解集在x轴上方,进而得出结果.的不等式kx+3>0的解集是x<2;故选B.与性质和一元一次不等式及其解法,解题的关键是掌1:y=x+1与x轴,y轴分别交于点A和点BOC=∠BCO,则k的值为( )C D.直线l1:y=+1,即可得到A(,0),B(0=CD23=BO23=,进而得到C23,),.直线l1:y=+1中,令x=0,则y=1,令AOB中,AB==3.AC=2.CD23=BO23=,即C23,),把C23,.键是掌握一次函数与一元一次不B,直线l2:y=kx(k≠0),1),AB==,代入直线l2:y=kx,可得令y=0,则x=,)代入直线l2:y=kx,可【点睛】本题考查了两直线相交或平行问题组成的二元一次方程组的解.6.已知点A (-5,a ),B (4,b )在直线y =-3x 【答案】>【分析】先根据一次函数的解析式判断出函【解析】∵直线y=-3x+2中,k=-3<0,∵-5<4,∴a >b ,故答案为>.【点睛】本题考查了一次函数的性质,根据如果k>0,直线就从左往右上升,y 随7.如图,四边形ABCD 的顶点坐标分别ABCD 分成面积相等的两部分时,直线A .116105y x =+ B .23y =【答案】D【分析】由已知点可求四边形ABCD 分成y=-x+3,设过B 的直线l 为y=kx+b ,并求1125173121k k k k --⎛⎫⎛⎫=⨯-⨯+ ⎪⎪+⎝⎭⎝⎭,即可【解析】解:由()()4,0,2,1,A B ---∴四边形ABCD 分成面积(12AC =⨯设过B 的直线l 为y kx b =+,将点B 代入∴直线CD 与该直线的交点为45,k k -⎛+⎝∴1125173121k k k k --⎛⎫⎛=⨯-⨯+ ⎪ +⎝⎭⎝,∴直线解析式为5342y x =+;故选:【点睛】本题考查一次函数的解析式求法式的方法是解题的关键.行问题,两条直线的交点坐标,就是由这两条直线相+2上,则a ________b .(填“>”“<”或“=”号 断出函数的增减性,再比较出-5与4的大小即可解答,∴此函数是减函数, 根据题意判断出一次函数的增减性是解答此题的关x 的增大而增大,如果k<0,直线就从左往右下降分别()()()()4,0,2,1,3,0,0,3A B C D ---,当过点直线l 所表示的函数表达式为( ) 13x + C .1y x =+ D .54y x =+分成面积()113741422B AC y =⨯⨯+=⨯⨯=;并求出两条直线的交点,直线l 与x 轴的交点坐标即可求k 。

2022年中考数学真题分类汇编:一次函数

2022年中考数学真题分类汇编:一次函数

2022年中考数学真题分类汇编:一次函数一、单选题(共15题;共45分)1.(3分)(2022·北部湾)已知反比例函数y=b x(b≠0)的图象如图所示,则一次函数y=cx−a(c≠0)和二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.【答案】D【解析】【解答】解:∵反比例函数y=bx(b≠0)的图象在第一和第三象限内,∴b>0,若a<0,则- b2a>0,所以二次函数开口向下,对称轴在y轴右侧,故A,B,C,D选项全不符合;当a>0,则- b2a<0时,所以二次函数开口向上,对称轴在y轴左侧,故只有C、D两选项可能符合题意,由C、D两选图象知,c<0,又∵a>0,则-a<0,当c<0,a>0时,一次函数y=cx-a图象经过第二、第三、第四象限,故只有D选项符合题意.故答案为:D.【分析】根据反比例函数图象所在的象限可得b>0,若a>0,则-b 2a <0时,二次函数开口向上,对称轴在y 轴左侧,据此排除A 、B ;若a>0,c<0,一次函数图象经过二、三、四象限,据此判断C 、D.2.(3分)(2022·鄂州)数形结合是解决数学问题常用的思想方法.如图,一次函数y =kx+b (k 、b 为常数,且k <0)的图象与直线y =13x 都经过点A (3,1),当kx+b <13x 时,x 的取值范围是( )A .x >3B .x <3C .x <1D .x >1【答案】A【解析】【解答】解:由函数图象可知不等式kx+b <13x 的解集即为一次函数图象在正比例函数图象下方的自变量的取值范围,∴当kx+b <13x 时,x 的取值范围是x >3.故答案为:A.【分析】根据图象,找出一次函数y=kx+b 的图象在直线 y =13x 的图象下方部分所对应的x 的范围即可.3.(3分)(2022·绥化)小王同学从家出发,步行到离家a 米的公园晨练,4分钟后爸爸也从家出发沿着同一路线骑自行车到公园晨练,爸爸到达公园后立即以原速折返回到家中,两人离家的距离y (单位:米)与出发时间x (单位:分钟)的函数关系如图所示,则两人先后两次相遇的时间间隔为( )A .2.7分钟B .2.8分钟C .3分钟D .3.2分钟【答案】C【解析】【解答】解: 如图:根据题意可得A (8,a ),D (12,a ),E (4,0),F (12,0)设AE 的解析式为y=kx+b ,则{0=4k +b a =8k +b ,解得{k =a 4b =−a ∴直线AE 的解析式为y=a4x-3a同理:直线AF 的解析式为:y=-a 4x+3a ,直线OD 的解析式为:y=a12x 联立{y =a 12x y =a 4x −a ,解得{x =6y =a 2联立{y =a12xy =−a 4x +3a,解得{x =9y =3a 4 两人先后两次相遇的时间间隔为9-6=3min .故答案为C .【分析】先求出直线AE 和直线OD 的解析式,再联立方程组{y =a12x y =a 4x −a 求出{x =6y =a 2和{y =a12xy =−a 4x +3a 求出{x =9y =3a 4,最后作差即可得到答案。

中考数学专题复习《一次函数几何分类专题(平移问题)》测试卷-附带答案

中考数学专题复习《一次函数几何分类专题(平移问题)》测试卷-附带答案

中考数学专题复习《一次函数几何分类专题(平移问题)》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一 单选题1.将直线22y x =-向上平移3个单位长度 所得直线经过点()6,a - 则a 的值为( ) A .11- B .8- C .7 D .132.在平面直角坐标系中 已知()0,2A ()0,4B 若把直线2y x =-向上平移k 个单位长度后与线段AB 有交点 则k 的取值范围是( )A .46k ≤≤B .46k <≤C .35k ≤≤D .13k ≤≤3.将直线y =3x ﹣1向上平移2个单位长度 平移后的直线所对应的函数解析式为( ) A .y =3x +5 B .y =3x ﹣3 C .y =3x +1 D .y =3x +34.如图 直线13y x =-与双曲线(0,0)k y k x x =<<交于点A 将直线13y x =-向上平移2个单位长度后 与y 轴交于点C 与双曲线交于点B 若3OA BC = 则k 的值为( )A .274-B .7-C .658-D .2716- 5.在平面直角坐标系中 将函数21y x =-的图象向左平移1个单位长度 则平移后的图象与y 轴的交点坐标为( )A .()0,2B .()0,2-C .()0,1D .()0,1-6.在平面直角坐标系中 将函数1y x =-的图象向下平移4个单位 平移后的图象与函数2y x b =-+的图象的交点恰好在第四象限 则b 的最大整数值为( )A .8B .9C .10D .11 7.如图 直线122y x =-与x 轴交于点A 以OA 为斜边在x 轴上方作等腰直角三角形OAB 将直线沿x 轴向左平移 当点B 落在平移后的直线上时 则直线平移的距离是( )A .6B .5C .4D .38.在平面直角坐标系中 将直线1l :22y x =--平移后得到直线2l :24y x =-+ 则下列平移作法正确的是( )A .将1l 向左平移3个单位长度B .将1l 向右平移6个单位长度C .将1l 向上平移2个单位长度D .将1l 向上平移6个单位长度二 填空题9.如果将一次函数y x r =- 的图象沿y 轴向上平移1个单位 那么平移后所得图象的函数解析式为 .10.把函数21y x =+的图象沿y 轴向下平移5个单位后所得图象与y 轴的交点坐标是 . 11.一次函数21y x =+向下平移2个单位长度 得到新的一次函数表达式是 一次函数21y x =+经过平移过程 (填向上或向下平移几个单位长度)得到一个正比例函数. 12.在平面直角坐标系中 ABCO 的边OC 落在x 轴的正半轴上 且点()()5,0,8,4C B 直线21y x =+以每秒1个单位的速度向下平移 经过 秒 该直线平分ABCO 的面积.13.如图 点()2,2A 在双曲线(0)k y x x=>上 将直线OA 向上平移若干个单位长度交y 轴于点B 交双曲线于点C .若2BC = 则点C 的坐标是 .三解答题14.在平面直角坐标系xOy中已知点C(m+2 3m﹣1)直线l经过点A(2 2)B(1 3).(1)求直线l的解析式(2)若A B C三点共线求m的值(3)若将直线l先沿y轴向上平移2个单位再沿x轴向右平移3个单位后经过点C求点C 的坐标.15.如图将直线AO向上平移1个单位得到一个一次函数的图象1l.l的表达式(1)求直线1(2)求直线1l 与x 轴 y 轴的交点的坐标.16.已知正比例函数的图像如图所示.(1)求此正比例函数的解析式(2)若一次函数图像是由(1)中的正比例函数的图像平移得到的 且经过点()1,2 求此一次函数的解析式.17.已知直线12:l y kx +=经过点A 将直线1l 向右平移4个单位后 得到的直线2l 与y 轴相交于点B 且经过点()23C ,点P 为x 轴正半轴上的一个动点.(1)请求出直线1l 与2l 的函数表达式(2)当四边形ABCP 的周长最小时 求四边形ABCP 的面积(3)在直线l 2上是否存在一点Q 使得以A C P Q 为顶点的四边形是平行四边形?若存在 若不存在 请说明理由.18.如图 在平面直角坐标系中 直线1l :32y x m =+与直线2l 交于点()2,3A - 直线2l 与x 轴交于点()4,0C 与y 轴交于点B 将直线2l 向下平移5个单位长度得到直线3l 3l 与y 轴交于点D 与1l 交于点E 连接AD .(1)求直线2l 的解析式(2)求△ADE 的面积参考答案:1.A2.A3.C4.D5.C6.B7.A8.D9.1y x r =-+10.()0,4-11. 21y x =- 向下平移一个单位 12.713. 14.(1)直线l 的解析式为4y x =-+ (2)34m =(3)()4,515.(1)21y x =+(2)直线1l 与x 轴 y 轴的交点分别为1,02⎛⎫- ⎪⎝⎭ ()0,116.(1)正比例函数的解析式为:2y x =-(2)一次函数的解析式为:24y x =-+.17.(1)直线1l 函数表达式为122y x =-+ 2l 函数表达式为142y x =-+ (2)225(3)存在 Q 的坐标为(2),5-或((10,1)-或(6,1)18.(1)122y x =-+ (2)454。

2021年全国各省市数学中考分类汇编一次函数含答案

2021年全国各省市数学中考分类汇编一次函数含答案

2021年全国各省市数学中考分类汇编一次函数含答案一、选择题1. (2021·安徽省)某品牌鞋子的长度y cm 与鞋子的“码”数x 之间满足一次函数关系.若22码鞋子的长度为16cm ,44码鞋子的长度为27cm ,则38码鞋子的长度为( )A. 23cmB. 24cmC. 25cmD. 26cm2. (2021·辽宁省丹东市)若实数k 、b 是一元二次方程(x +3)(x -1)=0的两个根,且k <b ,则一次函数y =kx +b 的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. (2021·湖南省娄底市)如图,直线y =x +b 和y =kx +4与x 轴分别相交于点A (-4,0),点B (2,0),则{x +b >0kx +4>0解集为( )A. −4<x <2B. x <−4C. x >2D. x <−4或x >24. (2021·江苏省扬州市)如图,一次函数y =x +√2的图象与x 轴、y 轴分别交于点A ,B ,把直线AB 绕点B 顺时针旋转30°交x 轴于点C ,则线段AC 长为( )A. √6+√2B. 3√2C. 2+√3D. √3+√25. (2021·天津市)已知函数y =kx (k ≠0)的图象经过第二、四象限,(-2,y 1)、(1,y 2)、(2,y 3)是函数y =(k -3)x -1图象上的三个点,则y 1、y 2、y 3的大小关系是( )A. y 2<y 3<y 1B. y 1<y 2<y 3C. y 3<y 1<y 2D. y 3<y 2<y 16.(2021·内蒙古自治区包头市)已知二次函数y=ax2-bx+c(a≠0)的图象经过第一象限的点(1,-b),则一次函数y=bx-ac的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.(2021·福建省)如图,一次函数y=kx+b(k>0)的图象过点(-1,0),则不等式k(x-1)+b>0的解集是()A. x>−2B. x>−1C. x>0D. x>18.(2021·贵州省黔东南苗族侗族自治州)已知直线y=-x+1与x轴、y轴分别交于A、B两点,点P是第一象限内的点,若△PAB为等腰直角三角形,则点P的坐标为()A. (1,1)B. (1,1)或(1,2)C. (1,1)或(1,2)或(2,1)D. (0,0)或(1,1)或(1,2)或(2,1)9.(2021·辽宁省营口市)已知一次函数y=kx-k过点(-1,4),则下列结论正确的是()A. y随x增大而增大B. k=2C. 直线过点(1,0)D. 与坐标轴围成的三角形面积为210.(2021·内蒙古自治区赤峰市)点P(a,b)在函数y=4x+3的图象上,则代数式8a-2b+1的值等于()A. 5B. −5C. 7D. −611.(2021·广东省)直线y=x+a不经过第二象限,则关于x的方程ax2+2x+1=0实数解的个数是()A. 0个B. 1个C. 2个D. 1个或2个12.(2021·广东省)一次函数y=-3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),则()A.y1<y2<y3B. y3<y2<y1C. y2<y1<y3D. y3<y1<y213.(2021·内蒙古自治区赤峰市)甲、乙两人在一条长400米的直线跑道上同起点、同终点、同方向匀速跑步,先到终点的人原地休息.已知甲先出发3秒,在跑步过程中,甲、乙两人间的距离y(米)与乙出发的时间x(秒)之间的函数关系如图所示,则下列结论正确的个数是()①乙的速度为5米/秒;②离开起点后,甲、乙两人第一次相遇时,距离起点12米;③甲、乙两人之间的距离超过32米的时间范围是44<x<89;④乙到达终点时,甲距离终点还有68米.A. 4B. 3C. 2D. 114.(2021·江苏省苏州市)已知点A(√2,m),B(32,n)在一次函数y=2x+1的图象上,则m与n的大小关系是()A. m>nB. m=nC. m<nD. 无法确定15.(2021·湖北省武汉市)一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,且往返速度的大小不变,两车离甲地的距离y(单位:km)与慢车行驶时间t(单位:h)的函数关系如图,则两车先后两次相遇的间隔时间是()A.53ℎ B. 32ℎ C. 75ℎ D. 43ℎ二、填空题16. (2021·辽宁省阜新市)育红学校七年级学生步行到郊外旅行.七(1)班出发1h 后,七(2)班才出发,同时七(2)班派一名联络员骑自行车在两班队伍之间进行联络,联络员和七(1)班的距离s (km )与七(2)班行进时间t (h )的函数关系图象如图所示.若已知联络员用了23h 第一次返回到自己班级,则七(2)班需要______h 才能追上七(1)班.17. (2021·江苏省南通市)下表中记录了一次试验中时间和温度的数据.时间/分钟 0 5 10 15 20 25 温度/℃ 10 25 40 55 70 85若温度的变化是均匀的,则14分钟时的温度是______ ℃. 18. (2021·广西壮族自治区桂林市)如图,与图中直线y =-x +1关于x 轴对称的直线的函数表达式是______ .19. (2021·广西壮族自治区梧州市)如图,在同一平面直角坐标系中,直线l 1:y =14x +12与直线l 2:y =kx +3相交于点A ,则方程组{y =14x +12y =kx +3的解为______ .20. (2021·贵州省毕节市)将直线y =-3x 向下平移2个单位长度,平移后直线的解析式为______ .21. (2021·湖北省黄石市)将直线y =-x +1向左平移m (m >0)个单位后,经过点(1,-3),则m 的值为______ .22.(2021·江苏省无锡市)请写出一个函数表达式,使其图象在第二、四象限且关于原点对称:______ .23.(2021·四川省眉山市)一次函数y=(2a+3)x+2的值随x值的增大而减少,则常数a的取值范围是______ .24.(2021·山东省威海市)已知点A为直线y=-2x上一点,过点A作AB∥x轴,交双曲线y=4于点B.若点A与点B关于y轴对称,则点A的坐标为______ .x25.(2021·广西壮族自治区贺州市)如图,一次函数y=x+4与坐标轴分别交于A,B两点,点P,C分别是线段AB,OB上的点,且∠OPC=45°,PC=PO,则点P的标为______ .三、解答题26.(2021·湖南省郴州市)某商店从厂家以每件2元的价格购进一批商品,在市场试销中发现,此商品的月销售量y(单位:万件)与销售单价x(单位元)之间有如下表所示关系:x… 4.0 5.0 5.5 6.57.5…y…8.0 6.0 5.0 3.0 1.0…(1)根据表中的数据,在如图中描出实数对(x,y)所对应的点,并画出y关于x 的函数图象;(2)根据画出的函数图象,求出y关于x的函数表达式;(3)设经营此商品的月销售利润为P(单位:万元),①写出P关于x的函数表达式;②该商店计划从这批商品获得的月销售利润为10万元(不计其它成本),若物价局限定商品的销售单价不得超过进价的200%,则此时的销售单价应定为多少元?27.(2021·山东省)在2018春季环境整治活动中,某社区计划对面积为1600m2的区域进行绿化.经投标,由甲、乙两个工程队来完成,若甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用5天.(1)求甲、乙两工程队每天能完成绿化的面积;(2)设甲工程队施工x天,乙工程队施工y天,刚好完成绿化任务,求y关于x 的函数关系式;(3)若甲队每天绿化费用是0.6万元,乙队每天绿化费用为0.25万元,且甲乙两队施工的总天数不超过25天,则如何安排甲乙两队施工的天数,使施工总费用最低?并求出最低费用.28.(2021·黑龙江省牡丹江市)在一条笔直的道路上依次有A,B,C三地,男男从A地跑步到C地,同时乐乐从B地跑步到A地,休息1分钟后接到通知,要求乐乐比男男早1分钟到达C地,两人均匀速运动,如图是男男跑步时间t(分钟)与两人距A地路程s(米)之间的函数图象.(1)a= ______ ,乐乐去A地的速度为______ ;(2)结合图象,求出乐乐从A地到C地的函数解析式(写出自变量的取值范围);(3)请直接写出两人距B地的距离相等的时间.29.(2021·贵州省毕节市)某中学计划暑假期间安排2名老师带领部分学生参加红色旅游.甲、乙两家旅行社的服务质量相同,且报价都是每人1000元.经协商,甲旅行社的优惠条件是:老师、学生都按八折收费;乙旅行社的优惠条件是:两位老师全额收费,学生都按七五折收费.(1)设参加这次红色旅游的老师学生共有x名,y甲,y乙(单位:元)分别表示选择甲、乙两家旅行社所需的费用,求y甲,y乙关于x的函数解析式;(2)该校选择哪家旅行社支付的旅游费用较少?30.(2021·福建省)某公司经营某种农产品,零售一箱该农产品的利润是70元,批发一箱该农产品的利润是40元.(1)已知该公司某月卖出100箱这种农产品共获利润4600元,问:该公司当月零售、批发这种农产品的箱数分别是多少?(2)经营性质规定,该公司零售的数量不能多于总数量的30%.现该公司要经营1000箱这种农产品,问:应如何规划零售和批发的数量,才能使总利润最大?最大总利润是多少?31.(2021·黑龙江省)A,B,C三地在同一条公路上,C地在A,B两地之间,且到A,B两地的路程相等.甲、乙两车分别从A,B两地出发,匀速行驶.甲车到达C地并停留1小时后以原速继续前往B地,到达B地后立即调头(调头时间忽略不计),并按原路原速返回C地停止行驶,乙车经C地到达A地停止行驶.在两车行驶的过程中,甲、乙两车距C地的路程y(单位:千米)与所用的时间x(单位:小时)之间的函数图象如图所示,请结合图象信息解答下列问题:(1)直接写出A,B两地的路程和甲车的速度;(2)求乙车从C地到A地的过程中y与x的函数关系式(不用写自变量的取值范围);(3)出发后几小时,两车在途中距C地的路程之和为180千米?请直接写出答案.32.(2021·四川省雅安市)某药店选购了一批消毒液,进价为每瓶10元,在销售过程中发现,每天销售量y(瓶)与每瓶售价x(元)之间存在一次函数关系(其中10≤x≤21,且x为整数).当每瓶消毒液售价为12元时,每天销售量为90瓶;当每瓶消毒液售价为15元时,每天销售量为75瓶.(1)求y与x之间的函数关系式;(2)设该药店销售该消毒液每天的销售利润为w元,当每瓶消毒液售价为多少元时,药店销售该消毒液每天销售利润最大,最大利润是多少元?33.(2021·黑龙江省大庆市)如图①是甲,乙两个圆柱形水槽的横截面示意图,乙槽中有一圆柱形实心铁块立放其中(圆柱形实心铁块的下底面完全落在乙槽底面上),现将甲槽中的水匀速注入乙槽,甲,乙两个水槽中水的深度y(cm)与注水时间x(min)之间的关系如图②所示,根据图象解答下列问题:(1)图②中折线EDC表示______ 槽中水的深度与注入时间之间的关系;线段AB 表示______ 槽中水的深度与注入时间之间的关系;铁块的高度为______ cm.(2)注入多长时间,甲、乙两个水槽中水的深度相同?(请写出必要的计算过程)34.(2021·黑龙江省绥化市)小刚和小亮两人沿着直线跑道都从甲地出发,沿着同一方向到达乙地,甲乙两地之间的距离是720米,先到乙地的人原地休息.已知小刚先从甲地出发4秒后,小亮从甲地出发,两人均保持匀速前行第一次相遇后,保持原速跑一段时间,小刚突然加速,速度比原来增加了2米/秒,并保持这一速度跑到乙地(小刚加速过程忽略不计).小刚与小亮两人的距离S(米)与小亮出发时间t(秒)之间的函数图象,如图所示.根据所给信息解决以下问题.(1)m= ______ ,n= ______ ;(2)求CD和EF所在直线的解析式;(3)直接写出t为何值时,两人相距30米.35.(2021·黑龙江省齐齐哈尔市)在一条笔直的公路上依次有A、C、B三地,甲、乙两人同时出发,甲从A地骑自行车匀速去B地,途经C地时因事停留1分钟,继续按原速骑行至B地,甲到达B地后,立即按原路原速返回A地;乙步行匀速从B 地至A地.甲、乙两人距A地的距离y(米)与时间x(分)之间的函数关系如图所示,请结合图象解答下列问题:(1)甲的骑行速度为______ 米/分,点M的坐标为______ ;(2)求甲返回时距A地的距离y(米)与时间x(分)之间的函数解析式(不需要写出自变量的取值范围);(3)请直接写出两人出发后,在甲返回到A地之前,______ 分钟时两人距C地的距离相等.36.(2021·黑龙江省双鸭山市)一辆货车从甲地到乙地,一辆轿车从乙地到甲地,两车沿同一条公路分别从甲、乙两地同时出发,匀速行驶.已知轿车比货车每小时多行驶20km.两车相遇后休息一段时间,再同时继续行驶.两车之间的距离y(km)与货车行驶时间x(h)之间的函数图象如图所示的折线AB-BC-CD-DE,结合图象回答下列问题:(1)甲、乙两地之间的距离是______ km;(2)求两车的速度分别是多少km/h?(3)求线段CD的函数关系式.直接写出货车出发多长时间,与轿车相距20km?37.(2021·吉林省长春市)《九章算术》中记载,浮箭漏(图①)出现于汉武帝时期,它由供水壶和箭壶组成,箭壶内装有箭尺,水匀速地从供水壶流到箭壶,箭壶中的水位逐渐上升,箭尺匀速上浮,可通过读取箭尺读数计算时间.某学校STEAM小组仿制了一套浮箭漏,并从函数角度进行了如下实验探究:【实验观察】实验小组通过观察,每2小时记录一次箭尺读数,得到如表:供水时间x(小时)02468箭尺读数y(厘米)618304254【探索发现】①建立平面直角坐标系,如图②,横轴表示供水时间x.纵轴表示箭尺读数y,描出以表格中数据为坐标的各点.②观察上述各点的分布规律,判断它们是否在同一条直线上,如果在同一条直线上,求出这条直线所对应的函数表达式,如果不在同一条直线上,说明理由.【结论应用】应用上述发现的规律估算:①供水时间达到12小时时,箭尺的读数为多少厘米?②如果本次实验记录的开始时间是上午8:00,那当箭尺读数为90厘米时是几点钟?(箭尺最大读数为100厘米)38.(2021·山东省聊城市)为迎接建党一百周年,我市计划用两种花卉对某广场进行美化.已知用600元购买A种花卉与用900元购买B种花卉的数量相等,且B种花卉每盆比A种花卉多0.5元.(1)A,B两种花卉每盆各多少元?(2)计划购买A,B两种花卉共6000盆,其中A种花卉的数量不超过B种花卉数,求购买A种花卉多少盆时,购买这批花卉总费用最低,最低费用是多少元?量的1339.(2021·江苏省南京市)甲、乙两人沿同一直道从A地去B地.甲比乙早1min出发,乙的速度是甲的2倍.在整个行程中,甲离A地的距离y1(单位:m)与时间x(单位:min)之间的函数关系如图所示.(1)在图中画出乙离A地的距离y2(单位:m)与时间x之间的函数图象;(2)若甲比乙晚5min到达B地,求甲整个行程所用的时间.40.(2021·江苏省宿迁市)一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,两车在途中相遇时,快车恰巧出现故障,慢车继续驶往甲地,快车维修好后按原速继续行驶乙地,两车到达各地终点后停止,两车之间的距离s (km)与慢车行驶的时间t(h)之间的关系如图:(1)快车的速度为______ km/h,C点的坐标为______ .(2)慢车出发多少小时后,两车相距200km.参考答案1.B2.C3.A4.A5.A6.C7.C8.C9.C10.B11.D12.B13.C14.C15.B16.217.5218.y =x -119.{x =2y =120.y =-3x -221.-322.y =-1x 答案不唯一 23.a <-3224.(√2,-2√2)或(-√2,2√2)25.(-2√2,4-2√2)26.解:(1)(2)根据图象设y =kx +b ,把(4.0,8.0)和(5.0,6.0)代入上式,得{8.0=4.0k +b 6.0=5.0k +b, 解得{k =−2b =16, ∴y =-2x +16,∵y ≥0,∴-2x +16≥0,解得x ≤8,∴y 关于x 的函数表达式为y =-2x +16(x ≤8);(3)①P =(x -2)y=(x -2)(-2x +16)=-2x ²+20x -32,即P 与x 的函数表达式为:P =-2x ²+20x -32(x ≤8); ②∵物价局限定商品的销售单价不得超过进价的200%,∴x ≤2×200%,即x ≤4,由题意得P =10,∴-2x ²+20x -32=10, 解得x 1=3,x 2=7,∵x ≤4,∴此时销售单价为3元.27.解:(1)设乙队每天能完成绿化面积为am 2,则甲队每天能完成绿化面积为2am 2 根据题意得:400a −4002a=5 解得a =40经检验,a =40为原方程的解则甲队每天能完成绿化面积为80m 2答:甲、乙两工程队每天能完成绿化的面积分别为80m 2、40m 2(2)由(1)得80x +40y =1600整理的:y=-2x+40(3)由已知y+x≤25∴-2x+40+x≤25解得x≥15总费用W=0.6x+0.25y=0.6x+0.25(-2x+40)=0.1x+10∵k=0.1>0∴W随x的增大而增大∴当x=15时,W最低=1.5+10=11.528.2 200米/分钟29.解:(1)y甲=0.8×1000x=800x,y乙=2×1000+0.75×1000×(x-2)=750x+500;(2)①y甲<y乙,800x<750x+500,解得x<10,②y甲=y乙,800x=750x+500,解得x=10,③y甲>y乙,800x>750x+500,解得x>10,答:当老师学生数超10人时,选择乙旅行社支付的旅游费用较少;当老师学生数为10人时,两旅行社支付的旅游费用相同;当老师学生数少于10人时,选择甲旅行社支付的旅游费用较少.30.解:(1)设该公司当月零售这种农产品x箱,则批发这种农产品(100-x)箱,依题意得70x+40(100-x)=4600,解得:x=20,100-20=80(箱),答:该公司当月零售这种农产品20箱,批发这种农产品80箱;(2)设该公司当月零售这种农产品m 箱,则批发这种农产品(1000-m )箱,依题意得 m ≤1000×30%,解得m ≤300,设该公司获得利润为y 元,依题意得y =70m +40(1000-m ),即y =30m +40000,∵30>0,y 随着m 的增大而增大,∴当m =300时,y 取最大值,此时y =30×300+40000=49000(元), ∴批发这种农产品的数量为10000-m =700(箱),答:该公司零售、批发这种农产品的箱数分别是300箱,700箱时,获得最大利润为49000元.31.解:(1)当0h 时,甲车和乙车距C 地为180km ,∴两地的路程为:180+180=360km ,设甲车经过180km 用了x h ,则:x +x +x +1=5.5,∴x =1.5,则甲车速度为:180÷1.5=120(km /h ); (2)设乙车从C 地到A 地的过程中y 与x 的函数关系式为:y =kx +b (k ≠0), 将(3,0),(6,180)代入y =kx +b (k ≠0),得:{3k +b =06k +b =180, 解得:{k =60b =−180, ∴乙车从C 地到A 地的过程中y 与x 的函数关系式为:y =60x -180;(3)由图可知,分别在3个时间段可能两车在途中距C 地路程之和为180km , ①甲车从A 地到C 地,乙车从B 到C ,-120x +180+60x +180=180,解得:x =1;②甲车从C 到B ,乙车从C 到A ,-120x -300+60x -180=180,记得:x =113;③甲车从B 到C ,乙车从C 到A ,-120x +660+60x -180=180,解得:x =5.总上所述:分别在1h ,113h ,5h 这三个时间点,两车在途中距C 地的路程之和为180km .32.解:(1)设y 与x 之间的函数关系式为y =kx +b (k ≠0),将(12,90),(15,75)代入y =kx +b ,{12k +b =9015k +b =75,解得:{k =−5b =150, ∴y 与x 之间的函数关系式为y =-5x +150(10≤x ≤21,且x 为整数).(2)依题意得:w =(x -10)(-5x +150)=-5x 2+200x -1500=-5(x -20)2+500. ∵-5<0,∴当x =20时,w 取得最大值,最大值为500.答:当每瓶消毒液售价为20元时,药店销售该消毒液每天销售利润最大,最大利润是500元.33.乙 甲 1634.16160335.240 (6,1200) 4或6或836.18037.解:【探索发现】①如图②,②观察上述各点的分布规律,可得它们是否在同一条直线上,设这条直线所对应的函数表达式为y =kx +b ,则{b =62k +b =18, 解得:{k =6b =6, ∴y =6x +6;结论应用】应用上述发现的规律估算:①x =12时,y =6×12+6=78, ∴供水时间达到12小时时,箭尺的读数为78厘米;②y =90时,6x +6=90,解得:x =14,∴供水时间为14小时,∵本次实验记录的开始时间是上午8:00,8:00+14=22:00,∴当箭尺读数为90厘米时是22点钟.38.解:(1)设A 种花卉每盆x 元,B 种花卉每盆(x +0.5)元,根据题意,得:600x =900x+0.5, 解这个方程,得:x =1,经检验,x =1是原方程的解,并符合题意,此时,x +0.5=1+0.5=1.5(元),∴A 种花卉每盆1元,B 种花卉每盆1.5元,答:A 种花卉每盆1元,B 种花卉每盆1.5元;(2)设购买A 种花卉t 盆,购买这批花卉的总费用为w 元,由题意,得:w =t +1.5(6000-t )=-0.5t +9000,∵t≤1(6000-t),3解得:t≤1500,∵w是t的一次函数,k=-0.5<0,∴w随t的增大而减小,∴当t=1500时,w最小,w min=-0.5×1500+9000=8250(元),∴购买A种花卉1500盆时购买这批花卉总费用最低,最低费用是8250元.答:购买A种花卉1500盆时购买这批花卉总费用最低,最低费用是8250元.39.解:(1)如图:(2)设甲的速度是v m/min,乙整个行程所用的时间为t min,由题意得:2v•t=(t+1+5)v,解得:t=6,6+1+5=12(min),答:甲整个行程所用的时间为12min.40.100 (8,480)。

一次函数-三年中考数学真题分项汇编(解析版)

一次函数-三年中考数学真题分项汇编(解析版)

一次函数一、单选题1.(2020年浙江舟山)一次函数21y x =-的图象大致是( )A .B .C .D .【答案】B【解析】【分析】根据一次函数的性质,直接判断即可.【详解】对于一次函数21y x =-,∵20k =>,10b =-<,∵函数的图象经过第一、三、四象限.故选B .【点睛】本题主要考查一次函数的图象和性质,掌握一次函数的系数和图象所经过的象限之间的关系是解题的关键.2.(2022年浙江绍兴)已知112233()()()x y x y x y ,,,,,为直线23y x =-+上的三个点,且123x x x <<,则以下判断正确的是( ).A .若120x x >,则130y y >B .若130x x <,则120y y >C .若230x x >,则130y y >D .若230x x <,则120y y > 【答案】D【解析】【分析】根据一次函数的性质和各个选项中的条件,可以判断是否正确,从而可以解答本题.【详解】解:∵直线y=−2x+3∵y随x增大而减小,当y=0时,x=1.5∵(x1,y1),(x2,y2),(x3,y3)为直线y=−2x+3上的三个点,且x1<x2<x3∵若x1x2>0,则x1,x2同号,但不能确定y1y3的正负,故选项A不符合题意;若x1x3<0,则x1,x3异号,但不能确定y1y2的正负,故选项B不符合题意;若x2x3>0,则x2,x3同号,但不能确定y1y3的正负,故选项C不符合题意;若x2x3<0,则x2,x3异号,则x1,x2同时为负,故y1,y2同时为正,故y1y2>0,故选项D符合题意.故选:D.【点睛】本题考查一次函数图象上点的坐标特征,解题的关键是明确题意,利用一次函数的性质解答.3.(2020年浙江杭州)在平面直角坐标系中,已知函数y=ax+a(a≠0)的图象过点P(1,2),则该函数的图象可能是()A.B.C.D.【答案】A【解析】【分析】求得解析式即可判断.【详解】解:∵函数y=ax+a(a≠0)的图象过点P(1,2),∵2=a+a,解得a=1,∵y=x+1,∵直线交y轴的正半轴,且过点(1,2),故选:A.【点睛】此题考查一次函数表达式及图像的相关知识.4.(2022年浙江温州)小聪某次从家出发去公园游玩的行程如图所示,他离家的路程为s米,所经过的时间为t分钟,下列选项中的图像,能近似刻画s与t之间关系的是()A.B.C.D.【答案】A【解析】【分析】分别对每段时间的路程与时间的变化情况进行分析,画出路程与时间图像,再与选项对比判断即可.【详解】解:对各段时间与路程的关系进行分析如下:从家到凉亭,用时10分种,路程600米,s从0增加到600米,t从0到10分,对应图像为在凉亭休息10分钟,t从10分到20分,s保持600米不变,对应图像为从凉亭到公园,用时间10分钟,路程600米,t从20分到30分,s从600米增加到1200米,对应图像为故选:A.【点睛】本题考查了一次折线图像与实际结合的问题,注意正确理解每段时间与路程的变化情况是解题关键.5.(浙江衢州2021年)已知A,B两地相距60km,甲、乙两人沿同一条公路从A地出发到B地,甲骑自行车匀速行驶3h到达,乙骑摩托车.比甲迟1h出发,行至30km处追上甲,停留半小时后继续以原速行驶.他们离开A地的路程y与甲行驶时间x的函数图象如图所示.当乙再次追上甲时距离B地()A.15km B.16km C.44km D.45km【答案】A【解析】【分析】根据图象信息和已知条件,用待定系数法求出y 20x =甲,6060y x 乙312x ⎛⎫≤≤ ⎪⎝⎭,6090y x 乙(522x ≤≤),再根据追上时路程相等,求出答案.【详解】解:设y kx =甲,将(3,60)代入表达式,得:603k =,解得:20k =,则y 20x =甲,当y =30km 时,求得x =32h , 设11+y k x b 乙312x ⎛⎫≤≤ ⎪⎝⎭,将(1,0),3302⎛⎫ ⎪⎝⎭,,代入表达式,得: 1111 03302k b k b +=⎧⎪⎨+=⎪⎩,得:11 60 60b k =-⎧⎨=⎩, ∴6060y x 乙312x ⎛⎫≤≤ ⎪⎝⎭, ∵60/V km h =乙,1T h =乙,∵乙在途中休息了半小时,到达B 地时用半小时,∵当522x ≤≤时,设22+y k x b 乙,将(2,30),5(,60)2代入表达式,得到: 22222?305602k b k b +=⎧⎪⎨+=⎪⎩,得:22 90 60b k =-⎧⎨=⎩, ∴6090y x 乙(522x ≤≤), 则当y y =甲乙时,206090x x =-,解得:94x =, ∵45y y km ==甲乙,∴当乙再次追上甲时距离A 地45km所以乙再次追上甲时距离B 地15.km故选:A .【点睛】本题主要考查了利用一次函数图像解决实际问题,关键在于理解题意,明白追击问题中追上就是路程相等,再利用待定系数法求出函数表达式,最后进行求解.6.(浙江嘉兴2021年)已知点(),P a b 在直线34y x =--上,且250a b -≤,则下列不等式一定成立的是( ) A .52a b ≤ B .52a b ≥ C .25b a ≥ D .25b a ≤ 【答案】D【解析】【分析】 根据点(),P a b 在直线34y x =--上,且250a b -≤,先算出a 的范围,再对不等式250a b -≤变形整理时,需要注意不等号方向的变化.【详解】解:点(),P a b 在直线34y x =--上,34b a ∴=--,将上式代入250a b -≤中,得:25(34)0a a -⨯--≤,解得:2017a ≤-, 由250ab -≤,得:25a b ≤, 202,175b a a ≤-∴≤(两边同时乘上一个负数,不等号的方向要发生改变), 故选:D .【点睛】本题考查了解一元一次不等式,解题的关键是:要注意在变形的时候,不等号的方向的变化情况. 7.(2022·浙江金华)如图是城某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,2)-,下列各地点中,离原点最近的是( )A .超B .医院C .体育场D .学校【答案】A【解析】【分析】根据学校和体育场的坐标建立直角坐标系,利用勾股定理求出各点到原点的距离,由此得到答案.【详解】解:根据学校和体育场的坐标建立直角坐标系,22215+223110+223110+224225+=故选:A.【点睛】此题考查了根据点坐标确定原点,勾股定理,正确理解点坐标得到原点的位置及正确展望勾股定理的计算是解题的关键.8.(2020年浙江湖州)已知在平面直角坐标系xOy中,直线y=2x+2和直线y=23x+2分别交x轴于点A和点B.则下列直线中,与x轴的交点不在线段AB上的直线是()A.y=x+2B.y2x+2C.y=4x+2D.y23x+2【答案】C【解析】【分析】分别求出点A、B坐标,再根据各选项解析式求出与x轴交点坐标,判断即可.【详解】解:∵直线y=2x+2和直线y=23x+2分别交x轴于点A和点B.∵A(﹣1,0),B(﹣3,0)A.y=x+2与x轴的交点为(﹣2,0);故直线y=x+2与x轴的交点在线段AB上;B.y2+2与x20);故直线y2+2与x轴的交点在线段AB上;C.y=4x+2与x轴的交点为(﹣12,0);故直线y=4x+2与x轴的交点不在线段AB上;D. y 23+2与x 30);故直线y 23+2与x 轴的交点在线段AB 上; 故选:C【点睛】本题考查了求直线与坐标轴的交点,注意求直线与x 轴交点坐标,即把y =0代入函数解析式.9.(2022年浙江舟山)已知点(,)A a b ,(4,)B c 在直线3y kx =+(k 为常数,0k ≠)上,若ab 的最大值为9,则c 的值为( )A .52B .2C .32D .1【答案】B【解析】【分析】把(,)A a b 代入3y kx =+后表示出ab ,再根据ab 最大值求出k ,最后把(4,)B c 代入3y kx =+即可.【详解】把(,)A a b 代入3y kx =+得:3b ka =+∵2239(3)3()24ab a ka ka a k a k k =+=+=+- ∵ab 的最大值为9∵0k <,且当32a k=-时,ab 有最大值,此时994ab k =-= 解得14k =- ∵直线解析式为134=-+y x 把(4,)B c 代入134=-+y x 得14324c =-⨯+= 故选:B .【点睛】本题考查一次函数上点的特点、二次函数最值,解题的关键是根据ab 的最大值为9求出k 的值. 10.(2020年浙江台州)如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v (单位:m/s )与运动时间t (单位:s )的函数图象如图2,则该小球的运动路程y (单位:m )与运动时间t (单位:s )之间的函数图象大致是( )A .B .C .D .【答案】C【解析】【分析】由图2知小球速度先是逐渐增大,后来逐渐减小,则随着时间的增加,小球刚开始路程增加较快,后来增加较慢,由此得出正处答案.【详解】由图2知小球速度不断变化,因此判定小球运动速度v 与运动时间t 之间的函数关系是()()11112222000v k t k v k t b k b ⎧=>⎪⎨=+⎪⎩,(1t 为前半程时间,2t 为后半程时间), ∵前半程路程函数表达式为:2111y k t =,后半程路程为2222222=+=v k t t bt y ,∵2100,><k k ,即前半段图像开口向上,后半段开口向下∵C 项图像满足此关系式,故答案为:C .【点睛】此题考查根据函数式判断函数图像的大致位置.11.(2022·浙江台州)吴老师家、公园、学校依次在同一条直线上,家到公园、公园到学校的距离分别为400m ,600m .他从家出发匀速步行8min 到公园后,停留4min ,然后匀速步行6min 到学校,设吴老师离公园的距离为y (单位:m ),所用时间为x (单位:min ),则下列表示y 与x之间函数关系的图象中,正确的是( )A .B .C .D .【答案】C【解析】【分析】根据吴老师离公园的距离以及所用时间可判断.【详解】解:吴老师家出发匀速步行8min 到公园,表示从(0,400)运动到(8,0);在公园,停留4min ,然后匀速步行6min 到学校,表示从(12,0)运动到(18,600);故选:C .【点睛】本题考查函数的图象,解题的关键是正确理解函数图象表示的意义,明白各个过程对应的函数图象. 12.(2022年浙江杭州)如图,在平面直角坐标系中,已知点P (0,2),点A (4,2).以点P 为旋转中心,把点A 按逆时针方向旋转60°,得点B .在13M ⎛⎫ ⎪ ⎪⎝⎭,()23,1M -,()31,4M ,4112,2M ⎛⎫ ⎪⎝⎭四个点中,直线PB 经过的点是( )A .1MB .2MC .3MD .4M【答案】B【解析】【分析】根据含30°角的直角三角形的性质可得B(2,3,利用待定系数法可得直线PB的解析式,依次将M1,M2,M3,M4四个点的一个坐标代入y3+2中可解答.【详解】解:∵点A(4,2),点P(0,2),∵P A∵y轴,P A=4,由旋转得:∵APB=60°,AP=PB=4,如图,过点B作BC∵y轴于C,∵∵BPC=30°,∵BC=2,PC3∵B(2,3,设直线PB的解析式为:y=kx+b,则22232k bb⎧+=+⎪⎨=⎪⎩∵32 kb⎧=⎪⎨=⎪⎩∵直线PB的解析式为:y3+2,当y=03+2=0,x=23,∵点M1(30)不在直线PB上,当x=3y=-3+2=1,∵M2(3-1)在直线PB上,当x=1时,y3,∵M3(1,4)不在直线PB上,当x=2时,y3,∵M4(2,112)不在直线PB上.故选:B.【点睛】本题考查的是图形旋转变换,待定系数法求一次函数的解析式,确定点B的坐标是解本题的关键.二、填空题13.(2020年浙江金华、丽水)点P(m,2)在第二象限内,则m的值可以是(写出一个即可)______.【答案】-1(答案不唯一,负数即可)【解析】【分析】根据第二象限的点符号是“-,+”,m取负数即可.【详解】∵点P(m,2)在第二象限内,∵0m<,m取负数即可,如m=-1,故答案为:-1(答案不唯一,负数即可).【点睛】本题考查了已知点所在象限求参数,属于基础题,掌握第二象限点坐标的符号是“-,+”是解题的关键.14.(2022年浙江杭州)已知一次函数y=3x-1与y=kx(k是常数,k≠0)的图象的交点坐标是(1,2),则方程组31x ykx y-=⎧⎨-=⎩的解是_________.【答案】12 xy=⎧⎨=⎩【解析】【分析】根据一次函数的交点坐标即可确定以两个一次函数解析式组成的二元一次方程组的解.【详解】解:∵一次函数y =3x -1与y =kx (k 是常数,k ≠0)的图象的交点坐标是(1,2),∵联立y =3x -1与y =kx 的方程组31y x y kx =-⎧⎨=⎩的解为:12x y =⎧⎨=⎩, 即310x y kx y -=⎧⎨-=⎩的解为:12x y =⎧⎨=⎩, 故答案为:12x y =⎧⎨=⎩. 【点睛】本题考查了一次函数与二元一次方程组,熟练掌握一次函数的交点坐标与二元一次方程组的解的关系是解题的关键.15.(2022年浙江丽水)三个能够重合的正六边形的位置如图.已知B 点的坐标是(3,3),则A 点的坐标是___________.【答案】3,3A【解析】【分析】 如图,延长正六边形的边BM 与x 轴交于点E ,过A 作AN x ⊥轴于N ,连接AO ,BO ,证明,BOEAON 可得,,A O B 三点共线,可得,A B 关于O 对称,从而可得答案.【详解】解:如图,延长正六边形的边BM 与x 轴交于点E ,过A 作AN x ⊥轴于N ,连接AO ,BO ,∴三个正六边形,O为原点,,120,BM MO OH AH BMO OHA,BMO OHA≌,OB OA11209030,18012030,2MOE BMO MOB60,90,BOE BEO同理:120303060,906030,AON OAN,BOE AON,,A O B∴三点共线,,A B∴关于O对称,3,3.A故答案为:3,3.A【点睛】本题考查的是坐标与图形的性质,全等三角形的判定与性质,关于原点成中心对称的两个点的坐标特点,正多边形的性质,熟练的应用正多边形的性质解题是解本题的关键.16.(浙江宁波2021年中考数学试卷)在平面直角坐标系中,对于不在坐标轴上的任意一点(),A x y,我们把点11,Bx y⎛⎫⎪⎝⎭称为点A的“倒数点”.如图,矩形OCDE的顶点C为()3,0,顶点E在y轴上,函数()2=>y xx的图象与DE交于点A.若点B是点A的“倒数点”,且点B在矩形OCDE的一边上,则OBC的面积为_________.【答案】14或32 【解析】【分析】根据题意,点B 不可能在坐标轴上,可对点B 进行讨论分析:∵当点B 在边DE 上时;∵当点B 在边CD 上时;分别求出点B 的坐标,然后求出OBC 的面积即可.【详解】 解:根据题意,∵点11,B x y ⎛⎫ ⎪⎝⎭称为点(),A x y 的“倒数点”, ∵0x ≠,0y ≠,∵点B 不可能在坐标轴上; ∵点A 在函数()20=>y x x的图像上, 设点A 为2(,)x x ,则点B 为1(,)2x x , ∵点C 为()3,0,∵3OC =,∵当点B 在边DE 上时;点A 与点B 都在边DE 上,∵点A 与点B 的纵坐标相同,即22x x =,解得:2x =, 经检验,2x =是原分式方程的解; ∵点B 为1(,1)2, ∵OBC 的面积为:133122S =⨯⨯=; ∵当点B 在边CD 上时;点B与点C的横坐标相同,∵13x=,解得:13x=,经检验,13x=是原分式方程的解;∵点B为1 (3,)6,∵OBC的面积为:1113264S=⨯⨯=;故答案为:14或32.【点睛】本题考查了反比例函数的图像和性质,矩形的性质,解分式方程,坐标与图形等知识,解题的关键是熟练掌握反比例函数的性质,运用分类讨论的思想进行分析.三、解答题(共0分)17.(浙江嘉兴2021年)根据数学家凯勒的“百米赛跑数学模型”,前30米称为“加速期”,30米~80米为“中途期”(m/s)与路程()mx之间的观测数据(1)y是关于x的函数吗?为什么?(2)“加速期”结束时,小斌的速度为多少?(3)根据如图提供的信息,给小斌提一条训练建议.【答案】(1)y是x的函数,理由见解析;(2)“加速期”结束时,小斌的速度为10.4m/s;(3)答案不唯一.例如:根据图象信息,小斌在80米左右时速度下降明显,建议增加耐力训练,提高成绩.【分析】(1)根据函数的概念进行解答;(2)通过识图读取相关信息;(3)根据图像信息进行解答.【详解】解:(1)y 是x 的函数.在这个变化过程中,对于x 的每一个确定的值,y 都有唯一确定的值与之对应.(2)“加速期”结束时,小斌的速度为10.4m/s .(3)答案不唯一.例如:根据图象信息,小斌在80米左右时速度下降明显,建议增加耐力训练,提高成绩.【点睛】本题考查通过函数图像读取信息,理解函数的概念,准确识图是解题关键.18.(2022年浙江丽水)因疫情防控需婴,一辆货车先从甲地出发运送防疫物资到乙地,稍后一辆轿车从甲地急送防疫专家到乙地.已知甲、乙两地的路程是330km ,货车行驶时的速度是60km/h .两车离甲地的路程(km)s 与时间(h)t 的函数图象如图.(1)求出a 的值;(2)求轿车离甲地的路程(km)s 与时间(h)t 的函数表达式;(3)问轿车比货车早多少时间到达乙地?【答案】(1)1.5(2)s =100t -150 (3)1.2【解析】(1)根据货车行驶的路程和速度求出a 的值;(2)将(a ,0)和(3,150)代入s =kt +b 中,待定系数法解出k 和b 的值即可;(3)求出汽车和货车到达乙地的时间,作差即可求得答案.(1)由图中可知,货车a 小时走了90km ,∵a =9060 1.5÷=;(2)设轿车离甲地的路程(km)s 与时间(h)t 的函数表达式为s =kt +b ,将(1.5,0)和(3,150)代入得,1.503150k b k b +=⎧⎨+=⎩, 解得,100150k b =⎧⎨=-⎩, ∵轿车离甲地的路程(km)s 与时间(h)t 的函数表达式为s =100t -150;(3)将s =330代入s =100t -150,解得t =4.8,两车相遇后,货车还需继续行驶:()330150603-÷=h ,到达乙地一共:3+3=6h ,6-4.8=1.2h ,∵轿车比货车早1.2h 时间到达乙地.【点睛】本题考查了一次函数的应用,主要利用待定系数法求函数解析式,路程、速度、时间三者之间的关系,从图中准确获取信息是解题的关键.19.(浙江丽水2021年)李师傅将容量为60升的货车油箱加满后,从工厂出发运送一批物资到某地.行驶过程中,货车离目的地的路程s (千米)与行驶时间t (小时)的关系如图所示(中途休息、加油的时间不计.当油箱中剩余油量为10升时,货车会自动显示加油提醒.设货车平均耗油量为0.1升/千米,请根据图象解答下列问题:(1)直接写出工厂离目的地的路程;(2)求s 关于t 的函数表达式;(3)当货车显示加油提醒后,问行驶时间t 在怎样的范围内货车应进站加油?【答案】(1)工厂离目的地的路程为880千米;(2)80880(011)s t t =-+≤≤;(3)251542t <<. 【解析】【分析】(1)根据图象直接得出结论即可;(2)根据图象,利用待定系数法求解函数表达式即可;再求出油量为(3)分别求出余油量为10升和0升时行驶的路程,根据函数表达式求出此时的t 值,即可求得t 的范围.【详解】解:(1)由图象,得0=t 时,880s =,答:工厂离目的地的路程为880千米.(2)设(0)s kt b k =+≠,将0880t s ==,和4,560t s ==分别代入表达式, 得880,5604.b k b =⎧⎨=+⎩,解得80880k b =-⎧⎨=⎩, ∵s 关于t 的函数表达式为80880(011)s t t =-+≤≤.(3)当油箱中剩余油量为10升时,880(6010)0.1380s =--÷=(千米),38080880t ∴=-+,解得254t =(小时). 当油箱中剩余油量为0升时,880600.1280s =-÷=(千米),28080880t ∴=-+,解得152t =(小时). 800,k s =-<∴随t 的增大而减小,t ∴的取值范围是251542t <<. 【点睛】 本题考查一次函数的应用,解答的关键是理解题意,能从函数图象上提取有效信息解决问题.20.(2022年浙江湖州)某校组织学生从学校出发,乘坐大巴前往基地进行研学活动.大巴出发1小时后,学校因事派人乘坐轿车沿相同路线追赶.已知大巴行驶的速度是40千米/小时,轿车行驶的速度是60千米/小时.(1)求轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?(2)如图,图中OB ,AB 分别表示大巴、轿车离开学校的路程s (千米)与大巴行驶的时间t (小时)的函数关系的图象.试求点B 的坐标和AB 所在直线的解析式;(3)假设大巴出发a 小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a 的值.【答案】(1)轿车出发后2小时追上大巴,此时,两车与学校相距120千米(2)点B 的坐标是()3,120,s =60t -60(3)34小时 【解析】【分析】(1)设轿车行驶的时间为x 小时,则大巴行驶的时间为()1x +小时,根据路程两车行驶的路程相等得到()60401x x =+即可求解;(2)由(1)中轿车行驶的时间求出点B 的坐标是()3,120,进而求出直线AB 的解析式;(3)根据大巴车行驶路程与小轿车行驶路程相等即可得到()40 1.560 1.5a +=⨯,进而求出a 的值(1)解:设轿车行驶的时间为x 小时,则大巴行驶的时间为()1x +小时.根据题意,得:()60401x x =+, 解得x =2.则60602120x =⨯=千米,∵轿车出发后2小时追上大巴,此时,两车与学校相距120千米. (2)解:∵轿车追上大巴时,大巴行驶了3小时, ∵点B 的坐标是()3,120. 由题意,得点A 的坐标为()1,0. 设AB 所在直线的解析式为s kt b =+,则:3120,0,k b k b +=⎧⎨+=⎩解得k =60,b =-60.∵AB 所在直线的解析式为s =60t -60. (3)解:由题意,得()40 1.560 1.5a +=⨯, 解得:34a =, 故a 的值为34小时.【点睛】本题考查了一次函数的实际应用、待定系数法求一次函数的解析式,解题的关键是读懂题意,明确图像中横坐标与纵坐标代表的含义.21.(浙江台州2021年)电子体重科读数直观又便于携带,为人们带来了方便.某综合实践活动小组设计了简易电子体重秤:制作一个装有踏板(踏板质量忽略不计)的可变电阻R 1, R 1与踏板上人的质量m 之间的函数关系式为R 1=km +b (其中k ,b 为常数,0≤m ≤120),其图象如图1所示;图2的电路中,电源电压恒为8伏,定值电阻R 0的阻值为30欧,接通开关,人站上踏板,电压表显示的读数为U 0 ,该读数可以换算为人的质量m , 温馨提示:∵导体两端的电压U ,导体的电阻R ,通过导体的电流I ,满足关系式I =UR;∵串联电路中电流处处相等,各电阻两端的电压之和等于总电压.(1)求k ,b 的值;(2)求R 1关于U 0的函数解析式; (3)用含U 0的代数式表示m ;(4)若电压表量程为0~6伏,为保护电压表,请确定该电子体重秤可称的最大质量.【答案】(1)2402b k =⎧⎨=-⎩;(2)1024030R U =-;I (3)0120135m U =-;(4)该电子体重秤可称的最大质量为115千克. 【解析】 【分析】(1)根据待定系数法,即可求解;(2)根据“串联电路中电流处处相等,各电阻两端的电压之和等于总电压”,列出等式,进而即可求解; (3)由R 1=12-m +240,1024030R U =-,即可得到答案; (4)把06U =时,代入0480540m U =-,进而即可得到答案.【详解】解:(1)把(0,240),(120,0)代入R 1=km +b ,得2400120bk b =⎧⎨=+⎩,解得:2402b k =⎧⎨=-⎩;(2)∵001830U U R -=, ∵1024030R U =-; (3)由(1)可知:2402b k =⎧⎨=-⎩,∵R 1=2-m +240, 又∵1024030R U =-, ∵024030U -=2-m +240,即:0120135m U =-; (4)∵电压表量程为0~6伏, ∵当06U =时,1201351156m =-= 答:该电子体重秤可称的最大质量为115千克. 【点睛】本题主要考查一次函数与反比例函数的实际应用,熟练掌握待定系数法,是解题的关键.22.(浙江衢州2020年)2020年5月16日,“钱塘江诗路”航道全线开通,一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20km/h ,游轮行驶的时间记为t (h ),两艘轮船距离杭州的路程s (km )关于t (h )的图象如图2所示(游轮在停靠前后的行驶速度不变).(1)写出图2中C 点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长. (2)若货轮比游轮早36分钟到达衢州.问: ∵货轮出发后几小时追上游轮? ∵游轮与货轮何时相距12km ?【答案】(1)C 点横坐标的实际意义是从杭州出发前往衢州共用了23h ;游轮在“七里扬帆”停靠的时长为2h ; (2)∵货轮出发后8小时追上游轮;∵0.6h 或21.6h 或22.4h 时游轮与货轮何时相距12km 【解析】 【分析】(1)根据图中信息解答即可.(2)∵求出B ,C ,D ,E的坐标,利用待定系数法求解即可;∵分相遇前与相遇后两种情形分别构建方程求解即可.(1)解:由题意知,C 点横坐标的实际意义是游轮从杭州出发前往衢州共用了23h ; ∵游轮在“七里扬帆”停靠的时长23(42020)2=-÷=(h ). (2)解:∵∵2802014÷=h , ∵A (14,280),B (16,280), ∵36600.6÷=(h ), ∵230.622.4-=, ∵E (22.4,420),设BC 的解析式为20s t b =+,把B (16,280)代入20s t b =+,解得40b =-, ∵()20401623s t t =-≤≤,同理,由D (14,0),E (22,4,420)可得DE 的解析式为()507001422.4s t t =-≤≤, 由题意可得:204050700t t -=-, 解得22t =, ∵22148-=(h ),∵货轮出发后8小时追上游轮. ∵分相遇前与相遇后两种情况求解:相遇之前相距12km 时,则2045070012t t ---=(),解得21.6t =; 相遇之后相距12km 时,则50700204012t ---=(),解得22.4t =;当游轮在刚离开杭州12km 时,此时根据图象可知货轮就在杭州,游轮距离杭州12km , 所以此时两船应该也是相距12km ,即在0.6h 的时候,两船也相距12km. ∵当t 为0.6h 或21.6h 或22.4h 时,游轮与货轮何时相距12km . 【点睛】本题考查一次函数的应用.解题的关键在于从图象中获取正确的信息.23.(浙江绍兴2021年)I 号无人机从海拔10m 处出发,以10m/min 的速度匀速上升,II 号无人机从海拔30m 处同时出发,以a (m/min )的速度匀速上升,经过5min 两架无人机位于同一海拔高度b (m ).无人机海拔高度y (m )与时间x (min )的关系如图.两架无人机都上升了15min .(1)求b 的值及II 号无人机海拔高度y (m )与时间x (min )的关系式. (2)问无人机上升了多少时间,I 号无人机比II 号无人机高28米.【答案】(1)630(015)y x x =+;(2)无人机上升12min ,I 号无人机比II 号无人机高28米 【解析】 【分析】(1)直接利用I 号无人机从海拔10m 处出发,以10m /min 的速度匀速上升,求出其5分钟后的高度即可; (2)将I 号无人机的高度表达式减去II 号无人机高度表达式,令其值为28,求解即可. 【详解】解:(1)1010560b =+⨯=. 设y kx b =+,将(0,30),(5,60)代入得:630(015)y x x =+,∵60b =;()630015y x x =+.(2)令(1010)(630)28x x +-+=, 解得1215x =<,满足题意;∴无人机上升12min ,I 号无人机比II 号无人机高28米.【点睛】本题考查了一次函数的实际应用,涉及到了求一次函数的表达式,两个一次函数值之间的比较等内容,解决本题的关键是读懂题意,与图形建立关联,能建立高度的表达式等,本题着重于对函数概念的理解与应用,考查了学生的基本功.24.(2022年浙江绍兴)一个深为6米的水池积存着少量水,现在打开水阀进水,下表记录了2小时内5个时刻的水位高度,其中x 表示进水用时(单位:小时),y 表示水位高度(单位:米).x 0 0.5 1 1.5 2 y 11.522.53为了描述水池水位高度与进水用时的关系,现有以下三种函数模型供选择:y kx b =+(0k ≠),y =ax 2+bx +c (0a ≠),ky x=(0k ≠). (1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图象.(2)当水位高度达到5米时,求进水用时x . 【答案】(1)y =x +1(0≤x ≤5),图见解析 (2)4小时 【解析】 【分析】(1)观察表格数据,y 的增长量是固定的,故符合一次函数模型,建立模型待定系数法求解析式,画出函数图象即可求解;(2)根据5y =,代入解析式求得x 的值即可求解.(1)(1)选择y =kx +b ,将(0,1),(1,2)代入,得12b k b =⎧⎨+=⎩,,解得11.k b =⎧⎨=⎩, ∵y =x +1(0≤x ≤5).(2)当y =5时,x +1=5, ∵x =4.答:当水位高度达到5米时,进水用时x 为4小时. 【点睛】本题考查了一次函数的性质,画一次函数图象,求一次函数的解析式,根据题意建立模型是解题的关键. 25.(浙江杭州2021年)在直角坐标系中,设函数11k y x=(1k 是常数,10k >,0x >)与函数22y k x =(2k 是常数,20k ≠)的图象交于点A ,点A 关于y 轴的对称点为点B .(1)若点B 的坐标为()1,2-, ∵求1k ,2k 的值.∵当12y y <时,直接写出x 的取值范围. (2)若点B 在函数33k y x=(3k 是常数,30k ≠)的图象上,求13k k +的值. 【答案】(1)∵12k =,22k =;∵1x >;(2)0 【解析】 【分析】(1)∵根据点A 关于y 轴的对称点为点B ,可求得点A 的坐标是()1,2,再将点A 的坐标分别代入反比例函数、正比例函数的解析式中,即可求得12k =,22k =;∵观察图象可解题; (2)将点B 代入33k y x=,解得3k 的值即可解题. 【详解】解(1)∵由题意得,点A 的坐标是()1,2, 因为函数11k y x=的图象过点A , 所以12k =, 同理22k =.∵由图象可知,当12y y <时,反比例函数的图象位于正比例函数图象的下方, 即当12y y <时,1x >.(2)设点A 的坐标是()00,x y ,则点B 的坐标是()00,x y -, 所以100k x y =,300k x y =-,所以310k k +=. 【点睛】本题考查关于y 轴对称的点的特征、待定系数法求反比例函数、正比例函数的解析式等知识,是重要考点,难度较易,掌握相关知识是解题关键.26.(浙江宁波2021年)某通讯公司就手机流量套餐推出三种方案,如下表:A 方案B 方案C 方案 每月基本费用(元)2056 266 每月免费使用流量(兆) 1024 m 无限 超出后每兆收费(元) nnA ,B ,C 三种方案每月所需的费用y (元)与每月使用的流量x (兆)之间的函数关系如图所示. (1)请直接写出m ,n 的值.(2)在A 方案中,当每月使用的流量不少于1024兆时,求每月所需的费用y (元)与每月使用的流量x (兆)之间的函数关系式.(3)在这三种方案中,当每月使用的流量超过多少兆时,选择C 方案最划算?【答案】(1)3072,0.3m n ==;(2)()0.3287.21024y x x =-≥;(3)当每月使用的流量超过3772兆时,选择C 方案最划算 【解析】 【分析】(1)m 的值可以从图象上直接读取,n 的值可以根据方案A 和方案B 的费用差和流量差相除求得; (2)直接运用待定系数法求解即可;(3)计算出方案C 的图象与方案B 的图象的交点表示的数值即可求解. 【详解】解:(1)3072,m = 56200.311441024n -==-.(2)设函数表达式为(0)y kx b k =+≠, 把()1024,20,()1144,56代入y kx b =+,得201024561144k bk b=+⎧⎨=+⎩, 解得0.3287.2k b =⎧⎨=-⎩,∵y 关于x 的函数表达式()0.3287.21024y x x =-≥. (注:x 的取值范围对考生不作要求) (3)307226656)0.37(372+-÷=(兆).由图象得,当每月使用的流量超过3772兆时,选择C 方案最划算. 【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.27.(浙江温州2021年)某公司生产的一种营养品信息如下表.已知甲食材每千克的进价是乙食材的2倍,用80元购买的甲食材比用20元购买的乙食材多1千克.营养品信息表营养成分每千克含铁42毫克配料表原料每千克含铁 甲食材 50毫克 乙食材10毫克 规格 每包食材含量每包单价 A 包装1千克45元。

2024年深圳市中考数学模拟题汇编:一次函数(附答案解析)

2024年深圳市中考数学模拟题汇编:一次函数(附答案解析)

2024年深圳市中考数学模拟题汇编:一次函数一.选择题(共10小题)1.一次函数y1=ax+b与y2=bx+a,它们在同一坐标系中的图象可能是()A.B.C.D.2.甲乙两车从A城出发匀速驶向B城,在整个行驶过程中,两车离开A城的距离y(km)与甲车行驶的时间t(h)之间的函数关系如图,则下列结论错误的是()①A、B两城相距300千米②甲车比乙车早出发1小时,却晚到1小时③相遇时乙车行驶了2.5小时④当甲乙两车相距50千米时,t的值为54或56或156或254A.①②B.②③C.①④D.③④3.关于x的一次函数=12+2,下列说法正确的是()A.图象不经过第二象限B.图象与y轴的交点坐标是(2,0)C.点A(3,y1)和点B(﹣2,y2)都在该函数图象上,则y1>y2 D.图象沿y轴方向向上平移2个单位长度得到=12函数的图象4.函数①y=kx+b;②y=2x;③=−3;④=13+3;⑤y=x2﹣2x+1.是一次函数的有()A.1个B.2个C.3个D.4个5.已知一次函数y=kx+b的图象如图所示,则k,b的取值范围是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0 6.如图,一次函数y=2x和y=ax+4的图象相交于点A(m,3),则方程ax+4=0的解为()A.x=6B.x=3C.x=﹣6D.x=﹣37.如图,点A的坐标为(﹣1,0),直线y=x﹣2与x轴交于点C,与y轴交于点D,点B 在直线y=x﹣2上运动.当线段AB最短时,求点B的坐标()A.(12,−32)B.(1,﹣1)C.(13,−53)D.(0,﹣2)8.已知点(m,n)在第二象限,则直线y=nx+m图象大致是下列的()A.B.C.D.9.对于函数y=﹣2x+3的图象,下列结论错误的是()A.图象必经过点(1,1)B.图象经过第一、二、四象限C.与x轴的交点为(0,3)D.若两点A(1,y1),B(3,y2)在该函数图象上,则y1>y210.函数y=﹣2x+1图象上有两点A(1,y1),B(3,y2),则y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.无法确定二.填空题(共5小题)11.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后1.5小时追上甲年;④当甲、乙两车相距50千米时,=54或154,其中正确的结论序号为.12.已知点A(1,a)和点B(﹣2,b)是一次函数y=−12x+c图象上的两点,则a b.(填“>”、“<”或“=”)13.若点(a,b)在函数y=3x﹣2的图象上,则2b﹣6a+2的值是.14.如图是一支温度计的示意图,图中左边是用摄氏温度表示的温度值,右边是用华氏温度表示的温度值,该表是这两个温度值之间的部分对应关系:摄氏温度值x /℃01020304050华氏温度值y /℉32506886104122根据以上信息,可以得到y 与x 之间的关系式为.15.一水池现蓄水20m 3,用水管以16m 3/h 的速度向水池中注水,则水池蓄水量y (m 3)与注水时间x (h )之间的函数关系式是.三.解答题(共5小题)16.世界上大部分国家都使用摄氏温度(℃),但仍有一些国家和地区使用华氏温度(℉).两种计量之间有如下对应:摄氏温度x (℃)01020304050华氏温度y (℉)32506886104122(1)在平面直角坐标系中描出相应的点.(2)观察这些点发现,这些点是否在一条直线上,如果在一条直线上,求这条直线所对应的函数表达式.(3)求华氏0度时所对应的摄氏温度.(4)华氏温度的值与所对应的摄氏温度的值有相等的可能吗?如果有;请求出此时的摄氏温度;如果没有,请说明理由.17.因为一次函数y=kx+b与y=﹣kx+b(k≠0)的图象关于y轴对称,所以我们定义:函数y=kx+b与y=﹣kx+b(k≠0)互为“镜子”函数.(1)请直接写出函数y=3x﹣2的“镜子”函数:;(2)如果一对“镜子”函数y=kx+b与y=﹣kx+b(k≠0)的图象交于点A,且与x轴交于B、C两点,如图所示,若△ABC是等腰直角三角形,∠BAC=90°,且它的面积是16,求这对“镜子”函数的解析式.18.如图,在平面直角坐标系中,直线OA的表达式为y=3x,直线BC的表达式为y=ax+4,A(m,3)是直线OA与直线BC的交点.(1)求点A的坐标;(2)求△AOB的面积.19.综合与探究:定义:一次函数y=kx+b(k≠0)的相垂函数是=−1−2,如:一次函数y=2x+4的相垂函数是=−12−1.(1)一次函数y=x﹣2的相垂函数是;(2)请在平面直角坐标系中画出一次函数=−12+1的图象及其相垂函数的图象;(3)在(2)的条件下,P是一次函数=−12+1的图象上的一个动点,过点P作直线PQ平行于y轴,且交其相垂函数的图象于点Q,当线段PQ=3时,求点P的坐标.20.已知在平面直角坐标系中A(2,﹣1)、B(0,3),线段AB与x轴交于点C,经过点B 的直线y=﹣x+b与x轴交于点D.(1)求点C、D的坐标;(2)连接AD、BD、DA,求△ABD的面积;(3)点P在x轴上且在点D的右侧,如果∠APB=45°,求点P的坐标.2024年深圳市中考数学模拟题汇编:一次函数参考答案与试题解析一.选择题(共10小题)1.一次函数y1=ax+b与y2=bx+a,它们在同一坐标系中的图象可能是()A.B.C.D.【考点】一次函数的性质;一次函数的图象.【专题】一次函数及其应用.【答案】C【分析】对选项中的y1,y2分别对应的a,b的值进行分析可得答案.【解答】解:A、y1=ax+b:a>0,b<0;y2=bx+a:a<0,b<0;故此选项中的图象不可能存在;B、y1=ax+b:a>0,b>0;y2=bx+a:b<0,a>0;故此选项的图象不可能存在;C、y1=ax+b:a>0,b<0;y2=bx+a:b<0,a>0;故此选项的图象可能存在;D、y1=ax+b:a<0,b>0;y2=bx+a:b<0,a<0;故此选项的图象不可能存在;故选:C.【点评】本题考查了一次函数的图形,熟知一次函数y=ax+b(a≠0)中:a>0,y随x增大而增大;a<0,y随x增大而减小;b>0,函数图象与y轴交于正半轴;b<0,函数图象与y轴交于负半轴;是解本题的关键.2.甲乙两车从A城出发匀速驶向B城,在整个行驶过程中,两车离开A城的距离y(km)与甲车行驶的时间t(h)之间的函数关系如图,则下列结论错误的是()①A、B两城相距300千米②甲车比乙车早出发1小时,却晚到1小时③相遇时乙车行驶了2.5小时④当甲乙两车相距50千米时,t的值为54或56或156或254A.①②B.②③C.①④D.③④【考点】一次函数的应用.【专题】一次函数及其应用;应用意识.【答案】D【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y 与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;=kt,设甲车离开A城的距离y与t的关系式为y甲把(5,300)代入可求得k=60,=60t,∴y甲设乙车离开A城的距离y与t的关系式为y=mt+n,乙把(1,0)和(4,300)代入可得+=04+=300,解得=100=−100,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③错误;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=54,当100﹣40t=﹣50时,可解得t=154,又当t=56时,y甲=50,此时乙还没出发,当t=256时,乙到达B城,y甲=250;综上可知当t的值为56或54或154或256时,两车相距50千米,∴④错误;综上可知正确的有③④共三个,故选:D.【点评】本题考查了一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.3.关于x的一次函数=12+2,下列说法正确的是()A.图象不经过第二象限B.图象与y轴的交点坐标是(2,0)C.点A(3,y1)和点B(﹣2,y2)都在该函数图象上,则y1>y2 D.图象沿y轴方向向上平移2个单位长度得到=12函数的图象【考点】一次函数图象与几何变换;正比例函数的图象;一次函数的性质.【专题】一次函数及其应用;运算能力.【答案】C【分析】根据一次函数的图象和性质,一次函数图象平移规律:“上加下减”分别判断即可.【解答】解:在一次函数=12+2中,k=12>0,b=2>0,∴一次函数图象经过第一、二、三象限,不经过第四象限,故A选项不符合题意;当x=0时,=12+2=2,∴一次函数图象与y轴的交点坐标为(0,2),故B选项不符合题意;∵k=12>0,∴y随着x增大而增大,∵点A(3,y1)和点B(﹣2,y2)都在该函数图象上,3>﹣2,∴y1>y2,故C选项符合题意;图象沿y轴方向向上平移2个单位长度得到=12+4函数的图象,故D选项不符合题意,故选:C.【点评】本题考查了一次函数的图象和性质,一次函数图形与几何变换,一次函数图象上点的坐标特征等,熟练掌握这些知识是解题的关键.4.函数①y=kx+b;②y=2x;③=−3;④=13+3;⑤y=x2﹣2x+1.是一次函数的有()A.1个B.2个C.3个D.4个【考点】一次函数的定义.【专题】一次函数及其应用;模型思想.【答案】B【分析】根据一次函数的定义对各函数进行逐一分析即可.【解答】解:①y=kx+b,当k=0时,不是一次函数;②y=2x是一次函数;③=−3不是一次函数;④=13+3是一次函数;⑤y=x2﹣2x+1不是一次函数;所以是一次函数的有2个.故选:B.【点评】本题考查的是一次函数的定义,熟知一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数是解答此题的关键.5.已知一次函数y=kx+b的图象如图所示,则k,b的取值范围是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0【考点】一次函数图象与系数的关系.【专题】常规题型;几何直观.【答案】B【分析】本题考查一次函数的系数k,b对图象的影响.一次函数图象经过第一、三、四象限,则k>0,b<0.【解答】解:由图可知该一次函数图象经过第一、三、四象限,则k>0,b<0.故答案为B.【点评】本题考查了一次函数的系数k,b对图象的影响,这属于常考的基础题型.要理解k>0时,图象过一、三象限,k<0时,图象过二、四象限;b是图象与y轴交点的纵坐标,这样就可以很容易找出正确答案.6.如图,一次函数y=2x和y=ax+4的图象相交于点A(m,3),则方程ax+4=0的解为()A.x=6B.x=3C.x=﹣6D.x=﹣3【考点】一次函数与一元一次方程.【专题】一次函数及其应用;推理能力.【答案】A【分析】可先求得A点坐标,再结合函数图象可知方程的解即为两函数图象的交点横坐标,进而得出a的值,把a的值代入方程ax+4=0,求出x的值即可.【解答】解:∵A点在直线y=2x上,∴3=2m,解得m=32,∴A点坐标为(32,3),∵y=ax+4,∴32a+4=3,解得a=−23,∴方程ax+4=0可化为−23x+4=0,解得x=6.故选:A.【点评】本题主要考查的是一次函数与一元一次方程,掌握函数图象的交点即为对应方程组的解是解题的关键.7.如图,点A的坐标为(﹣1,0),直线y=x﹣2与x轴交于点C,与y轴交于点D,点B 在直线y=x﹣2上运动.当线段AB最短时,求点B的坐标()A.(12,−32)B.(1,﹣1)C.(13,−53)D.(0,﹣2)【考点】一次函数图象上点的坐标特征;垂线段最短.【专题】一次函数及其应用;运算能力.【答案】A【分析】当线段AB最短时,AB⊥BC,求出直线AB的解析式为:y=﹣x﹣1,联立方程组求出点的坐标.【解答】解:当线段AB最短时,AB⊥BC,∵直线BC为y=x﹣2,∴设直线AB的解析式为:y=﹣x+b,∵点A的坐标为(﹣1,0),∴0=1+b,∴b=﹣1,∴直线AB的解析式为y=﹣x﹣1解=−−1=−2,得=12=−32,∴B(12,−32).故选:A.【点评】本题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征,垂线段最短,解方程组求直线的交点坐标,关键是明确线段AB最短时,是AB垂直于CD.8.已知点(m,n)在第二象限,则直线y=nx+m图象大致是下列的()A.B.C.D.【考点】一次函数图象与系数的关系.【答案】A【分析】根据点在第二象限可得出m<0、n>0,结合一次函数图象与系数的关系可得出直线y=nx+m在一、三、四象限,此题得解.【解答】解:∵点(m,n)在第二象限,∴m<0,n>0,∴直线y=nx+m在一、三、四象限.【点评】本题考查了一次函数图象与系数的关系,牢记“k>0,b<0⇔y=kx+b的图象在一、三、四象限”是解题的关键.9.对于函数y=﹣2x+3的图象,下列结论错误的是()A.图象必经过点(1,1)B.图象经过第一、二、四象限C.与x轴的交点为(0,3)D.若两点A(1,y1),B(3,y2)在该函数图象上,则y1>y2【考点】一次函数图象上点的坐标特征;一次函数的性质;一次函数图象与系数的关系.【专题】一次函数及其应用;运算能力;推理能力.【答案】C【分析】A.利用一次函数图象上点的坐标特征,可得出一次函数y=﹣2x+3的图象必过点(1,1);B.由k=﹣2<0,b=3>0,利用一次函数图象与系数的关系,可得出一次函数y=﹣2x+3的图象经过第一、二、四象限;C.利用x轴上一次函数图象上点的坐标特征,可得出一次函数y=﹣2x+3的图象与x轴的交点为(32,0);D.由k=﹣2<0,可得出y随x的增大而减小,结合1<3,可得出y1>y2.【解答】解:A.当x=1时,y=﹣2×1+3=1,∴一次函数y=﹣2x+3的图象必过点(1,1),选项A不符合题意;B.∵k=﹣2<0,b=3>0,∴一次函数y=﹣2x+3的图象经过第一、二、四象限,选项B不符合题意;C.当y=0时,﹣2x+3=0,解得:x=32,∴一次函数y=﹣2x+3的图象与x轴的交点为(32,0),选项C符合题意;D.∵k=﹣2<0,∴y随x的增大而减小,又∵点A(1,y1),B(3,y2)在一次函数y=﹣2x+3的图象上,且1<3,∴y1>y2,选项D不符合题意.【点评】本题考查了一次函数图象上点的坐标特征、一次函数图象与系数的关系以及一次函数的性质,逐一分析各结论的正误是解题的关键.10.函数y=﹣2x+1图象上有两点A(1,y1),B(3,y2),则y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.无法确定【考点】一次函数图象上点的坐标特征.【专题】一次函数及其应用;模型思想.【答案】A【分析】根据k=﹣2<0得出函数值y随x的增大而减小,再根据1<3,即可比较y1与y2的大小关系.【解答】解:∵﹣2<0,∴y随x的增大而减小,∵1<3,∴y1>y2,故选:A.【点评】本题考查了一次函数图象上点的坐标特征,熟练掌握一次函数的增减性是解题的关键.二.填空题(共5小题)11.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后1.5小时追上甲年;④当甲、乙两车相距50千米时,=54或154,其中正确的结论序号为①②③.【考点】一次函数的应用.【专题】一次函数及其应用;推理能力.【答案】①②③.【分析】由图象可知A,B两城相距300千米,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,即①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入得,5k=300,进行计算得y甲=60t,设甲车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0),(4,300)代入,进行计算得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即③正确;令|y甲﹣y乙|=50,计算得,此时y甲=250,乙已到达B城,即当=54或=154或=56或=256时,两车相距50千米,即④错误,综上,即可得.【解答】解:由图象可知A,B两城相距300千米,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入得,5k=300,k=60,∴y甲=60t,设甲车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0),(4,300)代入得,+=04+=300,解得=100=−100,∴y乙=100t﹣100,令y甲=y乙,得60t=100t﹣100,t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③正确;令|y甲﹣y乙|=50,得|60t﹣100t+100|=50,即|100﹣40t|=50,100﹣40t=50,100﹣40t=﹣50,解得,=54,=154,60t=50,=56,此时y=50,乙还没有出发,甲60t=250,=256,=250,乙已到达B城,此时y甲即当=54或=154或=56或=256时,两车相距50千米,∴④错误,综上,①②③正确,故答案为:①②③.【点评】本题考查了一次函数的应用,解题的关键是掌握一次函数的应用,从图象上获取相应的信息.12.已知点A(1,a)和点B(﹣2,b)是一次函数y=−12x+c图象上的两点,则a<b.(填“>”、“<”或“=”)【考点】一次函数图象上点的坐标特征.【专题】一次函数及其应用;运算能力.【答案】<.【分析】把A(1,a),B(﹣2,b)代入一次函数y=−12x+c得两个二元一次方程,把两个方程相减,求出a﹣b的值,进行判断即可.【解答】解:把A(1,a),B(﹣2,b)代入一次函数y=−12x+c得:−12+=s1+=t,①﹣②得:−=−32<0,∴a<b,故答案为:<.【点评】本题主要考查了一次函数图象上点的坐标特征,解题关键是熟练掌握比较两数大小的几种常用方法.13.若点(a,b)在函数y=3x﹣2的图象上,则2b﹣6a+2的值是﹣2.【考点】一次函数图象上点的坐标特征.【专题】一次函数及其应用;推理能力.【答案】﹣2.【分析】把点(a,b)代入函数解析式,得b=3a﹣2,变形得3a﹣b=2,然后把所求代数式变形为﹣2(3a﹣b)+2,整体代入计算即可求解.【解答】解:把点(a,b)代入y=3x﹣2,得b=3a﹣2,则3a﹣b=2,∴2b﹣6a+2=﹣2(3a﹣b)+2=﹣2,故答案为:﹣2.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点坐标一定适合此函数的解析式是解答此题的关键.14.如图是一支温度计的示意图,图中左边是用摄氏温度表示的温度值,右边是用华氏温度表示的温度值,该表是这两个温度值之间的部分对应关系:摄氏温度值x/℃010********华氏温度值y/℉32506886104122根据以上信息,可以得到y与x之间的关系式为y=1.8x+32.【考点】一次函数的应用.【专题】一次函数及其应用;运算能力.【答案】见试题解答内容【分析】根据表格中的数据可以得到摄氏温度每升高10℃,华氏温度升高18℉,则y与x成一次函数关系,然后设出y与x的函数解析式,再根据表格中的数据求出k和b的值即可.【解答】解:由表格可知,摄氏温度每升高10℃,华氏温度升高18℉,则y与x成一次函数关系,设y=kx+b,=3210+=50,解得=1.8=32,即y与x的函数关系式为y=1.8x+32,故答案为:y=1.8x+32.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式.15.一水池现蓄水20m3,用水管以16m3/h的速度向水池中注水,则水池蓄水量y(m3)与注水时间x(h)之间的函数关系式是y=20+16x.【考点】一次函数的应用.【专题】一次函数及其应用;符号意识;模型思想.【答案】y=20+16x.【分析】根据“水池蓄水量=现蓄水量+注水量”列关系式即可.【解答】解:∵水池现蓄水20m3,用水管以16m/h的速度向水池中注水,∴水池蓄水量y(m3)与注水时间x(h)之间的函数关系式是:y=20+16x.故答案为:y=20+16x.【点评】本题考查一次函数的应用,理解题意,弄清数量关系是解题的关键.三.解答题(共5小题)16.世界上大部分国家都使用摄氏温度(℃),但仍有一些国家和地区使用华氏温度(℉).两种计量之间有如下对应:010********摄氏温度x(℃)32506886104122华氏温度y(℉)(1)在平面直角坐标系中描出相应的点.(2)观察这些点发现,这些点是否在一条直线上,如果在一条直线上,求这条直线所对应的函数表达式.(3)求华氏0度时所对应的摄氏温度.(4)华氏温度的值与所对应的摄氏温度的值有相等的可能吗?如果有;请求出此时的摄氏温度;如果没有,请说明理由.【考点】一次函数的应用.【专题】一次函数及其应用;数感;运算能力;应用意识.【答案】见试题解答内容【分析】(1)根据表中数据描点即可;(2)利用待定系数法求解即可;(3)令y=0,求出x的值即可;(4)x=1.8x+32,解方程即可.【解答】解:(1)如图,(2)这些点在一条直线上.设这条直线所对应的的函数表达式为y=kx+b(k≠0).将(0,32)、(10,50)代入,得32=50=10+,解得=1.8=32,∴这条直线所对应的函数表达式为:y=1.8x+32;(3)令y=0,得1.8x+32=0.解得x=−1609,∴华氏0度时所对应的摄氏温度为−1609℃;(4)有相等的可能,令x=1.8x+32.解得x=﹣40,所以华氏温度的值与所对应的摄氏温度的值相等时,摄氏温度为﹣40℃.【点评】本题主要考查了待定系数法求一次函数解析式,由函数求自变量的值的运用,解答时求出函数的解析式是解题的关键.17.因为一次函数y=kx+b与y=﹣kx+b(k≠0)的图象关于y轴对称,所以我们定义:函数y=kx+b与y=﹣kx+b(k≠0)互为“镜子”函数.(1)请直接写出函数y=3x﹣2的“镜子”函数:y=﹣3x﹣2;(2)如果一对“镜子”函数y=kx+b与y=﹣kx+b(k≠0)的图象交于点A,且与x轴交于B、C两点,如图所示,若△ABC是等腰直角三角形,∠BAC=90°,且它的面积是16,求这对“镜子”函数的解析式.【考点】一次函数图象与几何变换.【专题】新定义.【答案】见试题解答内容【分析】(1)直接利用“镜子”函数的定义得出答案;(2)利用等腰直角三角形的性质得出AO=BO=CO,进而得出各点坐标,即可得出函数解析式.【解答】解:(1)根据题意可得:函数y=3x﹣2的“镜子”函数:y=﹣3x﹣2;故答案为:y=﹣3x﹣2;(2)∵△ABC是等腰直角三角形,AO⊥BC,∴AO=BO=CO,∴设AO=BO=CO=x,根据题意可得:12x×2x=16,解得:x=4,则B(﹣4,0),C(4,0),A(0,4),将B,A分别代入y=kx+b得:−4+=0=4,解得:=1=4,故其函数解析式为:y=x+4,故其“镜子”函数为:y=﹣x+4.【点评】此题主要考查了待定系数法求一次函数解析式以及等腰直角三角形的性质,得出各点坐标是解题关键.18.如图,在平面直角坐标系中,直线OA的表达式为y=3x,直线BC的表达式为y=ax+4,A(m,3)是直线OA与直线BC的交点.(1)求点A的坐标;(2)求△AOB的面积.【考点】两条直线相交或平行问题;一次函数的性质.【专题】一次函数及其应用;运算能力.【答案】(1)A(1,3);(2)6.【分析】(1)首先把A点坐标代入直线OA的解析式y=3x可得m的值,进而可得A点坐标,;(2)再把A点坐标代入直线BC的解析式可得a的值,进一步求出B点坐标,再利用三角形面积公式算出面积即可.【解答】解:(1)∵直线OA过点A(m,3),∴3=3m,m=1,∴A(1,3);(2)∵直线BC经过点A(1,3),∴3=a+4,∴a=﹣1,∴直线BC的解析式为y=﹣x+4,当y=0时,x=4,∴B(4,0),∴BO=4,∴△AOB的面积为:12×4×3=6.【点评】此题主要考查了正比例函数和一次函数的性质,关键是掌握凡是函数图象经过的点,必能满足解析式.19.综合与探究:定义:一次函数y=kx+b(k≠0)的相垂函数是=−1−2,如:一次函数y=2x+4的相垂函数是=−12−1.(1)一次函数y=x﹣2的相垂函数是y=﹣x+2;(2)请在平面直角坐标系中画出一次函数=−12+1的图象及其相垂函数的图象;(3)在(2)的条件下,P是一次函数=−12+1的图象上的一个动点,过点P作直线PQ平行于y轴,且交其相垂函数的图象于点Q,当线段PQ=3时,求点P的坐标.【考点】一次函数综合题.【专题】作图题;代数几何综合题;新定义;分类讨论;推理能力.【答案】(1)y=﹣x+2;(2)相垂函数为:y=2x﹣4,函数图象见解答;(3)点P的坐标为:(165,−35)或(45,35).【分析】(1)由相垂函数的定义即可求解;(2)根据新定义得=−12+1的相垂函数为:y=2x﹣4,即可求解;(3)设点P(x,−12x+1),则点Q(x,2x﹣4),则PQ=|(−12x+1)﹣(2x﹣4)|=3,即可求解.【解答】解:(1)由题意得,相垂函数是:y=﹣x+2,故答案为:y=﹣x+2;(2)根据新定义得到=−12+1的相垂函数为:y=2x﹣4,对于=−12+1,当x=0时,y=1,当y=0时,x=2;对于y=2x﹣4,当x=0时,y=﹣4,当y=0时,x=2,将上述4个点描点绘制函数图象如下:(3)设点P(x,−12x+1),则点Q(x,2x﹣4),则PQ=|(−12x+1)﹣(2x﹣4)|=3,解得:x=165或45,即点P的坐标为:(165,−35)或(45,35).【点评】本题为一次函数综合题,涉及到新定义、线段长度的计算、函数作图等,理解新定义是解题的关键.20.已知在平面直角坐标系中A(2,﹣1)、B(0,3),线段AB与x轴交于点C,经过点B 的直线y=﹣x+b与x轴交于点D.(1)求点C、D的坐标;(2)连接AD、BD、DA,求△ABD的面积;(3)点P在x轴上且在点D的右侧,如果∠APB=45°,求点P的坐标.【考点】一次函数综合题.【专题】代数几何综合题;图形的相似;推理能力.【答案】(1)点D(3,0),点o32,0);(2)3;(3)点P的坐标为:(3+6,0).【分析】(1)由待定系数法求出函数表达式,进而求解;(2)证明△ABD为直角三角形,即可求解;(3)证明△PDB∽△ADP,得到PD2=AD•BD=2×32=6,即可求解.【解答】解:(1)将点B的坐标代入y=﹣x+b得:0=﹣3+b,则b=3,则直线BC的表达式为:y=﹣x+3,则点D(3,0);设直线AB的表达式为:y=kx+3,将点A的坐标代入上式得:﹣1=2k+3,则k=﹣2,则直线AB解析式:y=﹣2x+3,令y=﹣2x+3=0,则x=32,故点o32,0);(2)由点A、B、D的坐标得:A=(3−2)2+(0+1)2=2,A=(0−3)2+(3−0)2=32,B=(2−0)2+(3+1)2=25,则AB2=BD2+AD2,则△ABD为直角三角形,则△ABD的面积=12×AD•BD=12×2×32=3;(3)由点B、D的坐标知,∠BDC=45°=∠DBP+∠BPD,而∠BPA=45°=∠BPD+∠DPA,则∠DPA=∠DBP,∵∠BDP=∠ADP=135°,∴△PDB∽△ADP,则PD2=AD•BD=2×32=6,则PD=6,则点P的坐标为:(3+6,0).【点评】本题考查的是一次函数综合运用,涉及到三角形相似、勾股定理的运用、面积的计算等,综合性强,难度适中.。

2022年全国中考数学真题分类汇编专题6:一次函数

2022年全国中考数学真题分类汇编专题6:一次函数

B 地路程 y(米)与时间 x(分钟)之间的函数图象.
请解答下列问题:
(1)填空:甲的速度为
米/分钟,乙的速度为
米/分钟;
(2)求图象中线段 FG 所在直线表示的 y(米)与时间 x(分钟)之间的函数解析式,并
写出自变量 x 的取值范围;
(3)出发多少分钟后,甲乙两人之间的路程相距 600 米?请直接写出答案.
续驶向景点,乙大巴全程匀速驶向景点.两辆大巴的行程 s(km)随时间 t(h)变化的
图象(全程)如图所示.依据图中信息,下列说法错误的是( )
A.甲大巴比乙大巴先到达景点 B.甲大巴中途停留了 0.5h C.甲大巴停留后用 1.5h 追上乙大巴 D.甲大巴停留前的平均速度是 60km/h 16.龟兔赛跑之后,输了比赛的兔子决定和乌龟再赛一场.图中的函数图象表示了龟兔再次 赛跑的过程(x 表示兔子和乌龟从起点出发所走的时间,y1,y2 分别表示兔子与乌龟所走 的路程).下列说法错误的是( )
其中 P0 为青海湖水面大气压强,k 为常数且 k≠0.根据图中信息分析(结果保留一位小
数),下列结论正确的是( )
A.青海湖水深 16.4m 处的压强为 188.6cmHg
第 2 页 共 17 页
B.青海湖水面大气压强为 76.0cmHg C.函数解析式 P=kh+P0 中自变量 h 的取值范围是 h≥0 D.P 与 h 的函数解析式为 P=9.8×105h+76 9.如图,在同一平面直角坐标系中,一次函数 y=k1x+b1 与 y=k2x+b2 的图象分别为直线 l1 和直线 l2,下列结论正确的是( )
A.若 x1x2>0,则 y1y3>0
B.若 x1x3<0,则 y1y2>0

2021年全国各省市数学中考真题分类汇编《一次函数》填空(含答案解析)

2021年全国各省市数学中考真题分类汇编《一次函数》填空(含答案解析)

2021年全国各省市数学中考真题分类汇编:一次函数填空1.(2021•阜新)育红学校七年级学生步行到郊外旅行.七(1)班出发1h后,七(2)班才出发,同时七(2)班派一名联络员骑自行车在两班队伍之间进行联络,联络员和七(1)班的距离s(km)与七(2)班行进时间t(h)的函数关系图象如图所示.若已知联络员用了h第一次返回到自己班级,则七(2)班需要h才能追上七(1)班.2.(2021•南通)下表中记录了一次试验中时间和温度的数据.时间/分钟0 5 10 15 20 25温度/℃10 25 40 55 70 85 若温度的变化是均匀的,则14分钟时的温度是℃.3.(2021•梧州)如图,在同一平面直角坐标系中,直线l1:y=x+与直线l2:y=kx+3相交于点A,则方程组的解为.4.(2021•桂林)如图,与图中直线y=﹣x+1关于x轴对称的直线的函数表达式是.5.(2021•毕节市)将直线y=﹣3x向下平移2个单位长度,平移后直线的解析式为.6.(2021•梧州)如图,直线l的函数表达式为y=x﹣1,在直线l上顺次取点A1(2,1),A2(3,2),A3(4,3),A4(5,4),…,A n(n+1,n),构成形如“”的图形的阴影部分面积分别表示为S1,S2,S3,…,S n,则S2021=.7.(2021•毕节市)如图,在平面直角坐标系中,点N1(1,1)在直线l:y=x上,过点N1作N1M1⊥l,交x轴于点M1;过点M1作M1N2⊥x轴,交直线于N2;过点N2作N 2M2⊥l,交x轴于点M2;过点M2作M2N3⊥x轴,交直线l于点N3;…,按此作法进行下去,则点M2021的坐标为.8.(2021•黄石)将直线y=﹣x+1向左平移m(m>0)个单位后,经过点(1,﹣3),则m的值为.9.(2021•贺州)如图,一次函数y=x+4与坐标轴分别交于A,B两点,点P,C分别是线段AB,OB上的点,且∠OPC=45°,PC=PO,则点P的坐标为.10.(2021•河南)请写出一个图象经过原点的函数的解析式.11.(2021•上海)已知函数y=kx经过二、四象限,且函数不经过(﹣1,1),请写出一个符合条件的函数解析式.12.(2021•天津)将直线y=﹣6x向下平移2个单位长度,平移后直线的解析式为.13.(2021•广安)如图,在平面直角坐标系中,AB⊥y轴,垂足为B,将△ABO绕点A 逆时针旋转到△AB1O1的位置,使点B的对应点B1落在直线y=﹣x上,再将△AB1O1绕点B1逆时针旋转到△A1B1O2的位置,使点O1的对应点O2也落在直线y=﹣x上,以此进行下去…若点B的坐标为(0,3),则点B21的纵坐标为.14.(2021•眉山)一次函数y=(2a+3)x+2的值随x值的增大而减少,则常数a的取值范围是.15.(2021•泰安)如图,点B1在直线l:y=x上,点B1的横坐标为2,过点B1作B 1A1⊥l,交x轴于点A1,以A1B1为边,向右作正方形A1B1B2C1,延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2,延长B3C2交x轴于点A3;以A3B3为边,向右作正方形A3B3B4C3,延长B4C3交x轴于点A4;…;照这个规律进行下去,则第n个正方形A n B n B n+1∁n的边长为(结果用含正整数n的代数式表示).16.(2021•成都)在正比例函数y=kx中,y的值随着x值的增大而增大,则点P(3,k)在第象限.17.(2021•自贡)当自变量﹣1≤x≤3时,函数y=|x﹣k|(k为常数)的最小值为k+3,则满足条件的k的值为.参考答案1.【解答】解:由图可知:七(1)班的速度为4÷1=4(km/h),联络员的速度为:4×(1+)÷=12(km/h),设七(2)班的速度为xkm/h,则12×+x=2×[4×﹣4×(﹣)],解得x=6,即七(2)班的速度为6km/h,设七(2)班需要ah才能追上七(1)班,则6a=4(a+1),解得a=2,故答案为:2.2.【解答】解:根据表格中的数据可知温度T随时间t的增加而上升,且每分钟上升3℃,则关系式为:T=3t+10,当t=14min时,T=3×14+10=52(℃).故14min时的温度是52℃.故答案为:52.3.【解答】解:∵直线l1:y=x+与直线l2:y=kx+3相交于点A(2,1),∴关于x、y的方程组的解为,故答案为:.4.【解答】解:∵关于x轴对称的点横坐标不变纵坐标互为相反数,∴直线y=﹣x+1关于x轴对称的直线的函数表达式是﹣y=﹣x+1,即y=x﹣1.故答案为y=x﹣1.5.【解答】解:由题意得:平移后的解析式为:y=﹣3x﹣2.故答案为:y=﹣3x﹣2.6.【解答】解:由题意得:S1=2×3﹣2×1=4=2×(1+1),S=4×3﹣2×3=6=2×(2+1),2S=5×4﹣4×3=8=2×(3+1),3S=6×5﹣5×4=10=2×(4+1),4⋯∴S n=2(n+1),∴S2021=2×(2021+1)=4044.故答案为:4044.7.【解答】解:如图1,过N1作N1E⊥x轴于E,过N1作N1F⊥y轴于F,∵N1(1,1),∴N1E=N1F=1,∴∠N1OM1=45°,∴∠N1OM=∠N1M1O=45°,∴△N1OM1是等腰直角三角形,∴N1E=OE=EM1=1,∴OM1=2,∴M1(2,0),同理,△M2ON2是等腰直角三角形,∴OM2=2OM1=4,∴M2(4,0),同理,OM3=2OM2=22OM1=23,∴,∴,∴M4(24,0),依次类推,故M2021(22021,0),故答案为:(22021,0).8.【解答】解:将直线y=﹣x+1向左平移m(m>0)个单位后所得直线为:y=﹣(x+m)+1.将点(1,﹣3)代入,得﹣3=﹣1+1﹣m.解得m=3.故答案是:3.9.【解答】解:∵一次函数y=x+4与坐标轴交于A、B两点,y=x+4中,令x=0,则y=4;令y=0,则x=﹣4,∴AO=BO=4,∴△AOB是等腰直角三角形,∴∠ABO=45°,过P作PD⊥OC于D,则△BDP是等腰直角三角形,∵∠PBC=∠CPO=∠OAP=45°,∴∠PCB+∠BPC=135°=∠OPA+∠BPC,∴∠PCB=∠OPA,在△PCB和△OPA中,,∴△PCB≌△OPA(AAS),∴AO=BP=4,∴Rt△BDP中,BD=PD==2,∴OD=OB﹣BD=4﹣2,∵PD=BD=2,∴P(﹣2,4﹣2),故答案为(﹣2,4﹣2).10.【解答】解:依题意,正比例函数的图象经过原点,如y=x(答案不唯一).故答案为:y=x(答案不唯一).11.【解答】解:∵函数y=kx经过二、四象限,∴k<0.若函数y=kx经过(﹣1,1),则1=﹣k,即k=﹣1,故函数y=kx经过二、四象限,且函数不经过(﹣1,1)时,k<0且k≠﹣1,∴函数解析式为y=﹣2x,故答案为y=﹣2x.12.【解答】解:将直线y=﹣6x向下平移2个单位长度,平移后直线的解析式为y=﹣6x﹣2,故答案为:y=﹣6x﹣2.13.【解答】解:∵AB⊥y轴,点B(0,3),∴OB=3,则点A的纵坐标为3,代入,得:,得:x=﹣4,即A(﹣4,3),∴OB=3,AB=4,OA==5,由旋转可知:OB=O1B1=O2B2=...=3,OA=O1A=O2A1=…=5,AB=AB1=A1B1=A2B2=…=4,∴OB1=OA+AB1=4+5=9,B1B3=3+4+5=12,∴OB21=OB1+B1B21=9+(21﹣1)÷2×12=129,设B21(a,),则OB21=,解得:a=或(舍),则,即点B21的纵坐标为,故答案为:.14.【解答】解:∵一次函数y=(2a+3)x+2的值随x值的增大而减少,∴2a+3<0,解得a<﹣.故答案为:a<﹣.15.【解答】解:设直线y=x与x轴夹角为α,过B1作B1H⊥x轴于H,如图:∵点B1的横坐标为2,点B1在直线l:y=x上,令x=2得y=1,∴OH=2,B1H=1,OB1==,∴tanα==,Rt△A1B1O中,A1B1=OB1•tanα=,即第1个正方形边长是,∴OB2=OB1+B1B2=+=×3,Rt△A2B2O中,A2B2=OB2•tanα=×3×=×,即第2个正方形边长是×,∴OB3=OB2+B2B3=×3+×=×,Rt△A3B3O中,A3B3=OB3•tanα=××=×,即第3个正方形边长是×=×()2,∴OB4=OB3+B3B4=×+×=×,Rt△A4B4O中,A4B4=OB4•tanα==××=×,即第4个正方形边长是×=×()3,......观察规律可知:第n个正方形边长是×()n﹣1,故答案为:×()n﹣1.16.【解答】解:∵在正比例函数y=kx中,y的值随着x值的增大而增大,∴k>0,∴点P(3,k)在第一象限.故答案为:一.17.【解答】解:当x≥k时,函数y=|x﹣k|=x﹣k,此时y随x的增大而增大,而﹣1≤x≤3时,函数的最小值为k+3,∴x=﹣1时取得最小值,即有﹣1﹣k=k+3,解得k=﹣2,(此时﹣1≤x≤3,x≥k成立),当x<k时,函数y=|x﹣k|=﹣x+k,此时y随x的增大而减小,而﹣1≤x≤3时,函数的最小值为k+3,∴x=3时取得最小值,即有﹣3+k=k+3,此时无解,故答案为:﹣2.。

山东省各地市2023-中考数学真题分类汇编-03解答题(较难题)知识点分类

山东省各地市2023-中考数学真题分类汇编-03解答题(较难题)知识点分类

山东省各地市2023-中考数学真题分类汇编-03解答题(较难题)知识点分类一.一次函数的应用(共1小题)1.(2023•日照)要制作200个A,B两种规格的顶部无盖木盒,A种规格是长、宽、高都为20cm的正方体无盖木盒,B种规格是长、宽、高各为20cm,20cm,10cm的长方体无盖木盒,如图1.现有200张规格为40cm×40cm的木板材,对该种木板材有甲、乙两种切割方式,如图2.切割、拼接等板材损耗忽略不计.(1)设制作A种木盒x个,则制作B种木盒 个;若使用甲种方式切割的木板材y张,则使用乙种方式切割的木板材 张;(2)该200张木板材恰好能做成200个A和B两种规格的无盖木盒,请分别求出A,B 木盒的个数和使用甲,乙两种方式切割的木板材张数;(3)包括材质等成本在内,用甲种切割方式的木板材每张成本5元,用乙种切割方式的木板材每张成本8元.根据市场调研,A种木盒的销售单价定为a元,B种木盒的销售单价定为(20﹣a)元,两种木盒的销售单价均不能低于7元,不超过18元.在(2)的条件下,两种木盒的销售单价分别定为多少元时,这批木盒的销售利润最大,并求出最大利润.二.二次函数综合题(共5小题)2.(2023•淄博)如图,一条抛物线y=ax2+bx经过△OAB的三个顶点,其中O为坐标原点,点A(3,﹣3),点B在第一象限内,对称轴是直线x=,且△OAB的面积为18.(1)求该抛物线对应的函数表达式;(2)求点B的坐标;(3)设C为线段AB的中点,P为直线OB上的一个动点,连接AP,CP,将△ACP沿CP翻折,点A的对应点为A1.问是否存在点P,使得以A1,P,C,B为顶点的四边形是平行四边形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.3.(2023•东营)如图,抛物线过点O(0,0),E(10,0),矩形ABCD的边AB在线段OE 上(点B在点A的左侧),点C,D在抛物线上.设B(t,0),当t=2时,BC=4.(1)求抛物线的函数表达式;(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线,当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形ABCD的面积时,求抛物线平移的距离.4.(2023•枣庄)如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,3)两点,并交x轴于另一点B,点M是抛物线的顶点,直线AM与y轴交于点D.(1)求该抛物线的表达式;(2)若点H是x轴上一动点,分别连接MH,DH,求MH+DH的最小值;(3)若点P是抛物线上一动点,问在对称轴上是否存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.5.(2023•日照)在平面直角坐标系xOy内,抛物线y=﹣ax2+5ax+2(a>0)交y轴于点C,过点C作x轴的平行线交该抛物线于点D.(1)求点C,D的坐标;(2)当时,如图1,该抛物线与x轴交于A,B两点(点A在点B的左侧),点P 为直线AD上方抛物线上一点,将直线PD沿直线AD翻折,交x轴于点M(4,0),求点P的坐标;(3)坐标平面内有两点E(,a+1),F(5,a+1),以线段EF为边向上作正方形EFGH.①若a=1,求正方形EFGH的边与抛物线的所有交点坐标;②当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为时,求a的值.6.(2023•聊城)如图①,抛物线y=ax2+bx﹣9与x轴交于点A(﹣3,0),B(6,0),与y 轴交于点C,连接AC,BC.点P是x轴上任意一点.(1)求抛物线的表达式;(2)点Q在抛物线上,若以点A,C,P,Q为顶点,AC为一边的四边形为平行四边形时,求点Q的坐标;(3)如图②,当点P(m,0)从点A出发沿x轴向点B运动时(点P与点A,B不重合),自点P分别作PE∥BC,交AC于点E,作PD⊥BC,垂足为点D.当m为何值时,△PED面积最大,并求出最大值.三.三角形综合题(共1小题)7.(2023•临沂)如图,∠A=90°,AB=AC,BD⊥AB,BC=AB+BD.(1)写出AB与BD的数量关系.(2)延长BC到E,使CE=BC,延长DC到F,使CF=DC,连接EF.求证:EF⊥AB.(3)在(2)的条件下,作∠ACE的平分线,交AF于点H,求证:AH=FH.四.四边形综合题(共2小题)8.(2023•淄博)在数学综合与实践活动课上,小红以“矩形的旋转”为主题开展探究活动.(1)操作判断小红将两个完全相同的矩形纸片ABCD和CEFG拼成“L”形图案,如图①.试判断:△ACF的形状为 .(2)深入探究小红在保持矩形ABCD不动的条件下,将矩形CEFG绕点C旋转,若AB=2,AD=4.探究一:当点F恰好落在AD的延长线上时,设CG与DF相交于点M,如图②.求△CMF 的面积.探究二:连接AE,取AE的中点H,连接DH,如图③.求线段DH长度的最大值和最小值.9.(2023•东营)(1)用数学的眼光观察如图①,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是AB的中点,N是DC的中点.求证:∠PMN=∠PNM.(2)用数学的思维思考如图②,延长图①中的线段AD交MN的延长线于点E,延长线段BC交MN的延长线于点F.求证:∠AEM=∠F.(3)用数学的语言表达如图③,在△ABC中,AC<AB,点D在AC上,AD=BC,M是AB的中点,N是DC 的中点,连接MN并延长,与BC的延长线交于点G,连接GD.若∠ANM=60°,试判断△CGD的形状,并进行证明.五.圆的综合题(共3小题)10.(2023•枣庄)如图,AB为⊙O的直径,点C是的中点,过点C做射线BD的垂线,垂足为E.(1)求证:CE是⊙O的切线;(2)若BE=3,AB=4,求BC的长;(3)在(2)的条件下,求阴影部分的面积(用含有π的式子表示).11.(2023•日照)在探究“四点共圆的条件”的数学活动课上,小霞小组通过探究得出:在平面内,一组对角互补的四边形的四个顶点共圆.请应用此结论,解决以下问题:如图1,△ABC中,AB=AC,∠BAC=α(60°<α<180°).点D是BC边上的一动点(点D不与B,C重合),将线段AD绕点A顺时针旋转α到线段AE,连接BE.(1)求证:A,E,B,D四点共圆;(2)如图2,当AD=CD时,⊙O是四边形AEBD的外接圆,求证:AC是⊙O的切线;(3)已知α=120°,BC=6,点M是边BC的中点,此时⊙P是四边形AEBD的外接圆,直接写出圆心P与点M距离的最小值.12.(2023•济宁)如图,已知AB是⊙O的直径,CD=CB,BE切⊙O于点B,过点C作CF⊥OE交BE于点F,EF=2BF.(1)如图1,连接BD,求证:△ADB≌△OBE;(2)如图2,N是AD上一点,在AB上取一点M,使∠MCN=60°,连接MN.请问:三条线段MN,BM,DN有怎样的数量关系?并证明你的结论.六.相似三角形的判定与性质(共1小题)13.(2023•泰安)如图,△ABC和△CDE均是等腰直角三角形,∠BAC=∠DCE=90°,点E在线段AC上,BC,DE相交于点F,连接BE,BD,作EH⊥BD,垂足为点H,交BC与点G.(1)若点H是BD的中点,求∠BED的度数;(2)求证:△EFG∽△BFD;(3)求证:=.七.相似形综合题(共2小题)14.(2023•济南)在矩形ABCD中,AB=2,AD=2,点E在边BC上,将射线AE绕点A逆时针旋转90°,交CD延长线于点G,以线段AE,AG为邻边作矩形AEFG.(1)如图1,连接BD,求∠BDC的度数和的值;(2)如图2,当点F在射线BD上时,求线段BE的长;(3)如图3,当EA=EC时,在平面内有一动点P,满足PE=EF,连接PA,PC,求PA+PC的最小值.15.(2023•菏泽)(1)如图1,在矩形ABCD中,点E,F分别在边DC,BC上,AE⊥DF,垂足为点G.求证:△ADE∽△DCF.【问题解决】(2)如图2,在正方形ABCD中,点E,F分别在边DC,BC上,AE=DF,延长BC到点H,使CH=DE,连接DH.求证:∠ADF=∠H.【类比迁移】(3)如图3,在菱形ABCD中,点E,F分别在边DC,BC上,AE=DF=11,DE=8,∠AED=60°,求CF的长.山东省各地市2023-中考数学真题分类汇编-03解答题(较难题)知识点分类参考答案与试题解析一.一次函数的应用(共1小题)1.(2023•日照)要制作200个A,B两种规格的顶部无盖木盒,A种规格是长、宽、高都为20cm的正方体无盖木盒,B种规格是长、宽、高各为20cm,20cm,10cm的长方体无盖木盒,如图1.现有200张规格为40cm×40cm的木板材,对该种木板材有甲、乙两种切割方式,如图2.切割、拼接等板材损耗忽略不计.(1)设制作A种木盒x个,则制作B种木盒 (200﹣x) 个;若使用甲种方式切割的木板材y张,则使用乙种方式切割的木板材 (200﹣y) 张;(2)该200张木板材恰好能做成200个A和B两种规格的无盖木盒,请分别求出A,B 木盒的个数和使用甲,乙两种方式切割的木板材张数;(3)包括材质等成本在内,用甲种切割方式的木板材每张成本5元,用乙种切割方式的木板材每张成本8元.根据市场调研,A种木盒的销售单价定为a元,B种木盒的销售单价定为(20﹣a)元,两种木盒的销售单价均不能低于7元,不超过18元.在(2)的条件下,两种木盒的销售单价分别定为多少元时,这批木盒的销售利润最大,并求出最大利润.【答案】(1)(200﹣x),(200﹣y);(2)制作A种木盒100个,B种木盒100个;使用甲种方式切割的木板150张,使用乙种方式切割的木板50张;(3)A种木盒的销售单价定为18元,B种木盒的销售单价定为11元时,这批木盒的销售利润最大,最大利润为1750元.【解答】解:(1)∵要制作200个A,B两种规格的顶部无盖木盒,制作A种木盒x个,故制作B种木盒(200﹣x)个;∵有200张规格为40cm×40cm的木板材,使用甲种方式切割的木板材y张,故使用乙种方式切割的木板材(200﹣y)张;故答案为:(200﹣x),(200﹣y);(2)使用甲种方式切割的木板材y张,则可切割出4y个长、宽均为20cm的木板,使用乙种方式切割的木板材(200﹣y)张,则可切割出8(200﹣y)个长为10cm、宽为20cm 的木板;设制作A种木盒x个,则需要长、宽均为20cm的木板5x个,制作B种木盒(200﹣x)个,则需要长、宽均为20cm的木板(200﹣x)个,需要长为10cm、宽为20cm的木板4(200﹣x)个;故,解得:,故制作A种木盒100个,制作B种木盒100个,使用甲种方式切割的木板150张,使用乙种方式切割的木板材50张;(3)∵用甲种切割方式的木板材每张成本5元,用乙种切割方式的木板材每张成本8元,且使用甲种方式切割的木板150张,使用乙种方式切割的木板材50张,故总成本为150×5+8×50=1150(元);∵两种木盒的销售单价均不能低于7元,不超过18元,∴,解得:7≤a≤18,设利润为w元,则w=100a+100(20﹣a)﹣1150,整理得:w=850+50a,∵50>0,∴w随a的增大而增大,故当a=18时,有最大值,最大值为850+50×18=1750(元),则此时B种木盒的销售单价定为20﹣×18=11(元),即A种木盒的销售单价定为18元,B种木盒的销售单价定为11元时,这批木盒的销售利润最大,最大利润为1750元.二.二次函数综合题(共5小题)2.(2023•淄博)如图,一条抛物线y=ax2+bx经过△OAB的三个顶点,其中O为坐标原点,点A(3,﹣3),点B在第一象限内,对称轴是直线x=,且△OAB的面积为18.(1)求该抛物线对应的函数表达式;(2)求点B的坐标;(3)设C为线段AB的中点,P为直线OB上的一个动点,连接AP,CP,将△ACP沿CP 翻折,点A的对应点为A1.问是否存在点P,使得以A1,P,C,B为顶点的四边形是平行四边形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)y=x2﹣3x;(2)(6,6);(3)存在,P点坐标为(,)或(﹣,﹣)或(+6,+6)或(﹣+6,﹣+6).【解答】解:(1)∵对称轴为直线x=,∴﹣=,∴b=﹣a①,将点A(3,﹣3)代入y=ax2+bx,∴9a+3b=﹣3②,联立①②可得,a=,b=﹣3,∴函数的解析式为y=x2﹣3x;(2)设B(m,m2﹣3m),如图1,过A点作EF⊥y轴交于E点,过B点作BF⊥EF交于F点,∴△OAB的面积=•m(m2﹣3m+3+3)﹣3×3﹣(m﹣3)(m2﹣3m+3)=18,解得m=6或m=﹣3(舍),∴B(6,6);(3)存在点P,使得以A1,P,C,B为顶点的四边形是平行四边形,理由如下:∵A(3,﹣3),B(6,6),∴C(,),设直线OB的解析式为y=kx,∴6k=6,解得k=1,∴直线OB的解析式为y=x,设P(t,t),如图2,当BP为平行四边形的对角线时,BC∥A1P,BC=A1P,∵AC=BC,∴AC=A1P,由对称性可知AC=A1C,AP=A1P,∴AP=AC,∴=,解得t=,∴P点坐标为(,)或(﹣,﹣);如图3,当BC为平行四边形的对角线时,BP∥A1C,BP=A1C,由对称性可知,AC=A1C,∴BP=AC,∴=,解得t=+6或t=﹣+6,∴P(+6,+6)或(﹣+6,﹣+6);综上所述:P点坐标为(,)或(﹣,﹣)或(+6,+6)或(﹣+6,﹣+6).3.(2023•东营)如图,抛物线过点O(0,0),E(10,0),矩形ABCD的边AB在线段OE 上(点B在点A的左侧),点C,D在抛物线上.设B(t,0),当t=2时,BC=4.(1)求抛物线的函数表达式;(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线,当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形ABCD的面积时,求抛物线平移的距离.【答案】(1)y=x2﹣x;(2)当t=1时,矩形ABCD的周长有最大值,最大值为;(3)抛物线向右平移的距离是4个单位.【解答】解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,BC=4,∴点C的坐标为(2,﹣4),∴将点C坐标代入解析式得2a(2﹣10)=﹣4,解得:a=,∴抛物线的函数表达式为y=x2﹣x;(2)由抛物线的对称性得AE=OB=t,∴AB=10﹣2t,当x=t时,点C的纵坐标为t2﹣t,∴矩形ABCD的周长=2(AB+BC)=2[(10﹣2t)+(﹣t2+t)]=﹣t2+t+20=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,矩形ABCD的周长有最大值,最大值为;(3)如图,连接AC,BD相交于点P,连接OC,取OC的中点Q,连接PQ,∵t=2,∴B(2,0),∴A(8,0),∵BC=4.∴C(2,﹣4),∵直线GH平分矩形ABCD的面积,∴直线GH过点P,由平移的性质可知,四边形OCHG是平行四边形,∴PQ=CH,∵四边形ABCD是矩形,∴点P是AC的中点,∴P(5,﹣2),∴PQ=OA,∵OA=8,CH=PQ=OA=4,∴抛物线向右平移的距离是4个单位4.(2023•枣庄)如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,3)两点,并交x轴于另一点B,点M是抛物线的顶点,直线AM与y轴交于点D.(1)求该抛物线的表达式;(2)若点H是x轴上一动点,分别连接MH,DH,求MH+DH的最小值;(3)若点P是抛物线上一动点,问在对称轴上是否存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.【答案】(1)y=﹣x2+2x+3;(2)MH+DH的最小值为;(3)对称轴上存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形,点Q的坐标为(1,3)或(1,1)或(1,5).【解答】解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,3)两点,∴,解得:,∴该抛物线的表达式为y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点M(1,4),设直线AM的解析式为y=kx+d,则,解得:,∴直线AM的解析式为y=2x+2,当x=0时,y=2,∴D(0,2),作点D关于x轴的对称点D′(0,﹣2),连接D′M,D′H,如图,则DH=D′H,∴MH+DH=MH+D′H≥D′M,即MH+DH的最小值为D′M,∵D′M==,∴MH+DH的最小值为;(3)对称轴上存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形.由(2)得:D(0,2),M(1,4),∵点P是抛物线上一动点,∴设P(m,﹣m2+2m+3),∵抛物线y=﹣x2+2x+3的对称轴为直线x=1,∴设Q(1,n),当DM、PQ为对角线时,DM、PQ的中点重合,∴,解得:,∴Q(1,3);当DP、MQ为对角线时,DP、MQ的中点重合,∴,解得:,∴Q(1,1);当DQ、PM为对角线时,DQ、PM的中点重合,∴,解得:,∴Q(1,5);综上所述,对称轴上存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形,点Q的坐标为(1,3)或(1,1)或(1,5).5.(2023•日照)在平面直角坐标系xOy内,抛物线y=﹣ax2+5ax+2(a>0)交y轴于点C,过点C作x轴的平行线交该抛物线于点D.(1)求点C,D的坐标;(2)当时,如图1,该抛物线与x轴交于A,B两点(点A在点B的左侧),点P 为直线AD上方抛物线上一点,将直线PD沿直线AD翻折,交x轴于点M(4,0),求点P的坐标;(3)坐标平面内有两点E(,a+1),F(5,a+1),以线段EF为边向上作正方形EFGH.①若a=1,求正方形EFGH的边与抛物线的所有交点坐标;②当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为时,求a的值.【答案】(1)C(0,2),D(5,2);(2);(3)①(1,6),(4,6),(5,2);②a=0.5.【解答】解:(1)在y=﹣ax2+5ax+2(a>0)中,当x=0时,y=2,∴C(0,2),∵抛物线解析式为y=﹣ax2+5ax+2(a>0),∴抛物线对称轴为直线,∵过点C作x轴的平行线交该抛物线于点D,∴C、D关于抛物线对称轴对称,∴D(5,2);(2)当时,抛物线解析式为,当y=0时,,解得x=﹣1或x=6,∴A(﹣1,0),如图,设DP上与点M关于直线AD对称的点为N(m,n),由轴对称的性质可得:AN=AM,DN=DM,,∴3m+n=12,∴n=12﹣3m∴m2+2m+1+144﹣72m+9m2=25,∴m2﹣7m+12=0,解得m=3或m=4(舍去),∴n=12﹣3m=3,∴N(3,3),设直线DP的解析式为y=kx+b1,∴,解得,∴直线DP的解析式为,联立,解得或,∴P(,);(3)①当a=1时,抛物线解析式为y=﹣x2+5x+2,E(1,2),F(5,2),∴EH=EF=FG=4,∴H(1,6),G(5,6),当x=1时,y=﹣12+5×1+2=6,∴抛物线y=﹣x2+5x+2 恰好经过H(1,6);∵抛物线对称轴为直线,由对称性可知抛物线经过(4,6),∴点(4,6)为抛物线与正方形的一个交点,又∵点F与点D重合,∴抛物线也经过点F(5,2);综上所述,正方形EFGH的边与抛物线的所有交点坐标为(1,6),(4,6),(5,2);②如图,当抛物线与GH、GF分别交于T、D时,∵当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为,∴点T的纵坐标为2+2.5=4.5,∴,∴a2+1.5a﹣1=0,解得a=﹣2(舍去)或a=0.5;如图,当抛物线与GH、EF分别交于T、S,∵当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为,∴,解得a=0.4(舍去,因为此时点F在点D下方)如图,当抛物线与EH、EF分别交于T、S,∵当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为,∴﹣a()2+5a•+2=a+1+2.5,解得或(舍去);当时,y=﹣ax2+5ax+2=6.25a+2,当时,6.25a+2>6+a﹣,∴不符合题意;综上所述,a=0.5.6.(2023•聊城)如图①,抛物线y=ax2+bx﹣9与x轴交于点A(﹣3,0),B(6,0),与y 轴交于点C,连接AC,BC.点P是x轴上任意一点.(1)求抛物线的表达式;(2)点Q在抛物线上,若以点A,C,P,Q为顶点,AC为一边的四边形为平行四边形时,求点Q的坐标;(3)如图②,当点P(m,0)从点A出发沿x轴向点B运动时(点P与点A,B不重合),自点P分别作PE∥BC,交AC于点E,作PD⊥BC,垂足为点D.当m为何值时,△PED面积最大,并求出最大值.【答案】(1)y=;(2)Q(3,﹣9)或(,9)或(,9);(3)当m=时,△PDE的面积最大值为:.【解答】解:(1)设抛物线的表达式为:y=a(x+3)(x﹣6),∴﹣9=a•3×(﹣6),∴a=,∴y=(x+3)(x﹣6)=;(2)如图1,抛物线的对称轴为:直线x==,由对称性可得Q1(3,﹣9),当y=9时,=9,∴x=,∴Q2(,9),Q3(,9),综上所述:Q(3,﹣9)或(,9)或(,9);(3)设△PED的面积为S,由题意得:AP=m+3,BP=6﹣m,OB=6,OC=9,AB=9.∴BC==3,∵sin∠PBD=,∴,∴PD=,∵PE∥BC,∴△APE∽△ABC,∠EPD=∠PDB=90°,∴,∴,∴PE=,∴S=PE•PD=(m+3)(6﹣m)=﹣,∴当m=时,S最大=,∴当m=时,△PDE的面积最大值为:.三.三角形综合题(共1小题)7.(2023•临沂)如图,∠A=90°,AB=AC,BD⊥AB,BC=AB+BD.(1)写出AB与BD的数量关系.(2)延长BC到E,使CE=BC,延长DC到F,使CF=DC,连接EF.求证:EF⊥AB.(3)在(2)的条件下,作∠ACE的平分线,交AF于点H,求证:AH=FH.【答案】(1)结论:AB=(+1)BD.理由见解析部分;(2)(3)证明见解析部分.【解答】(1)解:结论:AB=(+1)BD.理由:在BC上取一点T,使得BT=BD,连接DT,AT.设AB=AC=a,则BC=a.∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∵BD⊥AB,∴∠ABD=90°,∴∠DBT=45°,∵BD=BT,∴∠BDT=∠BTD=67.5°,∵BC=AB+BD=AC+BD=BT+AC,∴CT=CA=a,∴BD=BT=BC﹣CT=a﹣a,∴==+1,∴AB=(+1)BD;(2)证明:如图2中,在△BCD和△ECF中,,∴△BCD≌△ECF(SAS),∴∠CBD=∠E=45°,BD=EF,∴BD∥EF,∵BD⊥AB,∴EF⊥AB;(3)证明:延长CH交EF的延长线于点J.∵∠ACE=180°﹣∠ACB=135°,CH平分∠ACE,∴∠ACH=∠ECH=67.5°,∵∠ACB=∠E=45°,∴AC∥EJ,∴∠J=∠ACH=∠ECJ=67.5°,∴CE=EJ=CB,∵BC=BD+AB,EJ=EF+FJ,∴FJ=AB=AC,∵∠AHC=∠FHJ,∠ACH=∠J,∴△ACH≌△FJH(AAS),∴AH=FH.四.四边形综合题(共2小题)8.(2023•淄博)在数学综合与实践活动课上,小红以“矩形的旋转”为主题开展探究活动.(1)操作判断小红将两个完全相同的矩形纸片ABCD和CEFG拼成“L”形图案,如图①.试判断:△ACF的形状为 等腰直角三角形 .(2)深入探究小红在保持矩形ABCD不动的条件下,将矩形CEFG绕点C旋转,若AB=2,AD=4.探究一:当点F恰好落在AD的延长线上时,设CG与DF相交于点M,如图②.求△CMF 的面积.探究二:连接AE,取AE的中点H,连接DH,如图③.求线段DH长度的最大值和最小值.【答案】(1)等腰直角三角形;(2)探究一:;探究二:DH的最大值为+1,最小值为﹣1.【解答】解:(1)在Rt△ABC中,AC=,在Rt△CFG中,CF=,∵AB=GF,BC=CG,∴AC=CF,∴△ACF是等腰三角形,∵AB=GF,∠FGC=∠ABC=90°.BC=CG,∴△ABC≌△FGC(SAS),∴∠ACG=∠GFC,∵∠GCF+∠GFC=90°,∴∠ACG+∠GCF=90°,∴∠ACF=90°,∴△ACF是等腰直角三角形,故答案为:等腰直角三角形;(2)探究一:∵CD=GF,∠FMG=∠DMC,∠G=∠CDF=90°,∴△CDM≌△FGM(AAS),∴CM=MF,∵AC=CF,CD⊥AF,∴AD=DF,∵AB=CD=2,AD=DF=4,∴DM=4﹣CM,在Rt△CDM中,CM2=CD2+DM2,∴CM2=22+(4﹣CM)2,解得CM=,∴MF=,∴△CMF的面积=2×=;探究二:连接DE,取DE的中点P,连接HP,取AD、BC的中点为M、N,连接MN,MH,NH,∵H是AE的中点,∴MH∥DE,且MH=DE,∵CD=CE,∴CP⊥DE,DP=PE,∵MH∥DP,且MH=DP,∴四边形MHPD是平行四边形,∴MD=HP,MD∥HP,∵AD∥BC,MD=CN,∴HP∥CN,HP=CN,∴四边形HNCP是平行四边形,∴NH∥CP,∴∠MHN=90°,∴H点在以MN为直径的圆上,设MN的中点为T,∴DT==,∴DH的最大值为+1,最小值为﹣1.方法二:设AC的中点为T,连接HT,∵HT是△ACE的中位线,∴HT=CE=1,∴H在以T为圆心,1为半径的圆上,∵DT==,∴DH的最大值为+1,最小值为﹣1.9.(2023•东营)(1)用数学的眼光观察如图①,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是AB的中点,N是DC的中点.求证:∠PMN=∠PNM.(2)用数学的思维思考如图②,延长图①中的线段AD交MN的延长线于点E,延长线段BC交MN的延长线于点F.求证:∠AEM=∠F.(3)用数学的语言表达如图③,在△ABC中,AC<AB,点D在AC上,AD=BC,M是AB的中点,N是DC 的中点,连接MN并延长,与BC的延长线交于点G,连接GD.若∠ANM=60°,试判断△CGD的形状,并进行证明.【答案】(1)证明见解析;(2)证明见解析;(3)直角三角形,理由见解析.【解答】(1)证明:∵P是BD的中点,N是DC的中点,∴PN是△BCD的中位线,PM是△ABD的中位线,∴PN=BC,PM=AD,∵AD=BC,∴PM=PN,∴∠PMN=∠PNM;(2)证明:由(1)知,PN是△BDC的中位线,PM是△ABD的中位线,∴PN∥BC,PM∥AD,∴∠PNM=∠F,∠PMN=∠AEM,∵∠PNM=∠PMN,∴∠AEM=∠F;(3)解:△CGD是直角三角形,理由如下:如图③,取BD的中点P,连接PM、PN,∵N是CD的中点,M是AB的中点,∴PN是△BCD的中位线,PM是△ABD的中位线,∴PN ∥BC ,PN =BC ,PM ∥AD ,PM =AD ,∵AD =BC∴PM =PN ,∴∠PNM =∠PMN ,∵PM ∥AD ,∴∠PMN =∠ANM =60°,∴∠PNM =∠PMN =60°,∵PN ∥BC ,∴∠CGN =∠PNM =60°,又∵∠CNG =∠ANM =60°,∴△CGN 是等边三角形.∴CN =GN ,又∵CN =DN ,∴DN =GN ,∴∠NDG =∠NGD =CNG =30°,∴∠CGD =∠CGN +∠NGD =90°,∴△CGD 是直角三角形.五.圆的综合题(共3小题)10.(2023•枣庄)如图,AB 为⊙O 的直径,点C 是的中点,过点C 做射线BD 的垂线,垂足为E .(1)求证:CE 是⊙O 的切线;(2)若BE =3,AB =4,求BC 的长;(3)在(2)的条件下,求阴影部分的面积(用含有π的式子表示).【答案】(1)证明见解答.(2)BC的长为2.(3)阴影部分的面积为.【解答】(1)证明:如图,连接OC,∵点C是的中点,∴,∴∠ABC=∠EBC,∵OB=OC,∴∠ABC=∠OCB,∴∠EBC=∠OCB,∴OC∥BE,∵BE⊥CE,∴半径OC⊥CE,∴CE是⊙O的切线.(2)解:如图,连接AC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACB=∠CEB=90°,∵∠ABC=∠EBC,∴△ACB∽△CEB,∴,∴,∴.答:BC的长为2.(3)解:如图,连接OD、CD,∵AB=4,∴OC=OB=2,在Rt△BCE中,,∴,∴∠CBE=30°,∴∠COD=60°,∴∠AOC=60°,∵OC=OD,∴△COD是等边三角形,∴∠CDO=60°,∴∠CDO=∠AOC,∴CD∥AB,∴S△COD=S△CBD,∴.答:阴影部分的面积为.11.(2023•日照)在探究“四点共圆的条件”的数学活动课上,小霞小组通过探究得出:在平面内,一组对角互补的四边形的四个顶点共圆.请应用此结论,解决以下问题:如图1,△ABC中,AB=AC,∠BAC=α(60°<α<180°).点D是BC边上的一动点(点D不与B,C重合),将线段AD绕点A顺时针旋转α到线段AE,连接BE.(1)求证:A,E,B,D四点共圆;(2)如图2,当AD=CD时,⊙O是四边形AEBD的外接圆,求证:AC是⊙O的切线;(3)已知α=120°,BC=6,点M是边BC的中点,此时⊙P是四边形AEBD的外接圆,直接写出圆心P与点M距离的最小值.【答案】(1)证明见解析;(2)证明见解析,(3).【解答】(1)证明:由旋转的性质可得AE=AD,∠DAE=α,∴∠BAC=∠DAE,∴∠BAC﹣∠BAD=∠DAE﹣∠BAD,即∠BAE=∠CAD,又∵AB=AC,∴△ABE≌△ACD(SAS),∴∠AEB=∠ADC,∵∠ADC+∠ADB=180°,∴∠AEB+∠ADB=180°,∴A、B、D、E四点共圆;(2)证明:如图所示,连接OA,OD,∵AB=AC,AD=CD,∴∠ABC=∠ACB=∠DAC,∵⊙O是四边形AEBD的外接圆,∴∠AOD=2∠ABC,∴∠AOD=2∠ABC=2∠DAC,∵OA=OD,∴∠OAD=∠ODA,∵∠OAD+∠ODA+∠AOD=180°,∴2∠DAC+2∠OAD=180°,∴∠DAC+∠OAD=90°,即∠OAC=90°,∴OA⊥AC,又∵OA是⊙O的半径,∴AC是⊙O的切线;(3)解:如图所示,作线段AB的垂直平分线,分别交AB、BC于G、F,连接AM,PM,如图:∵AB=AC,∠BAC=120°,∴∠ABC=∠ACB=30°,∵点M是边BC的中点,∴,AM⊥BC,∴,,在Rt△BGF中,,∴FM=BM﹣BF=3﹣2=1,∵⊙P是四边形AEBD的外接圆,∴点P一定在AB的垂直平分线上,∴点P在直线GF上,∴当MP⊥GF时,PM有最小值,∴∠PFM=∠BFG=90°﹣∠ABC=60°,在Rt△MPF中,PM=MF•sin∠PFM=1×sin60°=,∴圆心P与点M距离的最小值为.12.(2023•济宁)如图,已知AB是⊙O的直径,CD=CB,BE切⊙O于点B,过点C作CF ⊥OE交BE于点F,EF=2BF.(1)如图1,连接BD,求证:△ADB≌△OBE;(2)如图2,N是AD上一点,在AB上取一点M,使∠MCN=60°,连接MN.请问:三条线段MN,BM,DN有怎样的数量关系?并证明你的结论.【答案】(1)证明过程见解答;(2)MN=BM+DN,理由见解答.【解答】(1)证明:∵CF⊥OE,OC是半径,∴CF是圆O的切线,∵BE是圆O的切线,∴BF=CF,∵EF=2BF,∴EF=2CF,sin E==,∴∠E=30°,∠EOB=60°,∵CD=CB,∴=,∴OC⊥BD,∵AB是直径,∴∠ADB=90°=∠EBO,∵∠E+∠EBD=90°,∠ABD+∠EBD=90°,∴∠E=∠ABD=30°,∴AD=BO=AB,∴△ABD≌△OEB(AAS);(2)解:MN=BM+DN,理由如下:延长ND至H使得DH=BM,连接CH,BD,如图2所示,∵∠CBM+∠NDC=180°,∠HDC+∠NDC=180°,∴∠HDC=∠MBC,∵CD=CB,DH=BM,∴△HDC≌△MBC(SAS),∴∠BCM=∠DCH,CM=CH,由(1)可得∠ABD=30°,∵AB是直径,∴∠ADB=90°,∴∠DCB=180°﹣∠A=120°,∵∠MCN=60°,∴∠BCM+∠NCD=120°﹣∠NCM=120°﹣60°=60°,∴∠DCH+∠NCD=∠NCH=60°,∴∠NCH=∠NCM,∵NC=NC,∴△CNH≌△CNM(SAS),∴NH=MN,∴MN=DN+DH=DN+BM,∴MN=BM+DN.六.相似三角形的判定与性质(共1小题)13.(2023•泰安)如图,△ABC和△CDE均是等腰直角三角形,∠BAC=∠DCE=90°,点E在线段AC上,BC,DE相交于点F,连接BE,BD,作EH⊥BD,垂足为点H,交BC与点G.(1)若点H是BD的中点,求∠BED的度数;(2)求证:△EFG∽△BFD;(3)求证:=.【答案】(1)60°;(2)证明过程详见解答;(3)证明过程详见解答.【解答】(1)解:∵△ABC、△CDE是两个等腰直角三角形,∴∠ACB=∠ABC=45°,∠CED=∠CDE=45°,∴∠CFE=180°﹣∠ACB﹣∠CED=90°,∴EF=DF=DE,∵BH=DH,EH⊥BD,∴BE=DE,∴EF=BE,∴cos∠BED=,∴∠BED=60°;(2)证明:由(1)得:∠CFE=90°,∴CF⊥DE,∴∠BFD=∠EFG=∠BHE=90°,∵∠BGH=∠EGF,∴∠DBF=∠FEG,∴△EFG∽△BFD;(3)证明:如图,作BQ∥AC,交EH的延长线于点Q,∴△BGQ∽△CGE,∴,∠Q=∠CEH,∠QBE=∠AEB,∴,设∠DBF=DEH=α,由(1)知:BC是DE的垂直平分线,∴BE=BD,∴∠EBF=∠DBF=α,∴∠AEB=∠ACB+∠EBF=45°+α,∠CEH=∠CED+∠FEG=45°+α,∴∠AEB=∠CEH,∴∠Q=∠QBE,∴BE=EQ,∴=.七.相似形综合题(共2小题)14.(2023•济南)在矩形ABCD中,AB=2,AD=2,点E在边BC上,将射线AE绕点A逆时针旋转90°,交CD延长线于点G,以线段AE,AG为邻边作矩形AEFG.(1)如图1,连接BD,求∠BDC的度数和的值;(2)如图2,当点F在射线BD上时,求线段BE的长;(3)如图3,当EA=EC时,在平面内有一动点P,满足PE=EF,连接PA,PC,求PA+PC 的最小值.【答案】(1)∠BDC=60°,;(2);(3)4.【解答】解:(1)∵矩形ABCD中,AB=2,,∴∠C=90°,CD=AB=2,,∴,∴∠BDC=60°,∵∠ABE=∠BAD=∠EAG=∠ADG=90°,∴∠EAG﹣∠EAD=∠BAD﹣∠EAD,即∠DAG=∠BAE,∴△ADG∽△ABE,∴;(2)如图2,过点F作FM⊥CG于点M,∵∠ABE=∠AGF=∠ADG=90°,AE=GF,∴∠BAE=∠DAG=∠CGF,∠ABE=∠GMF=90°,∴△ABE≌△GMF(AAS),∴BE=MF,AB=GM=2,∴∠MDF=∠BDC=60°,FM⊥CG,∴,∴,设DM=x,则,∴DG=GM+MD=2+x,由(1)可知:,∴,解得x=1,∴;(3)如图3,连接AC,将△AEP绕点E顺时针旋转120°,EA与EC重合,得到△CEP',连接PP',矩形ABCD中,AD=BC=,AB=2,∴tan∠ACB==,∴∠ACB=30°,∴AC=2AB=4,∵EA=EC,∴∠EAC=∠ACE=30°,∠AEC=120°,∴∠ACG=∠GAC=90°﹣30°=60°,∴△AGC是等边三角形,AG=AC=4,∴PE=EF=AG=4,∵将△AEP绕点E顺时针旋转120°,EA与EC重合,得到△CEP',∴PA=P'C,∠PEP'=120°,EP=EP'=4,∴,∴当点P,C,P′三点共线时,PA+PC的值最小,此时为.15.(2023•菏泽)(1)如图1,在矩形ABCD中,点E,F分别在边DC,BC上,AE⊥DF,垂足为点G.求证:△ADE∽△DCF.【问题解决】(2)如图2,在正方形ABCD中,点E,F分别在边DC,BC上,AE=DF,延长BC到点H,使CH=DE,连接DH.求证:∠ADF=∠H.【类比迁移】(3)如图3,在菱形ABCD中,点E,F分别在边DC,BC上,AE=DF=11,DE=8,∠AED=60°,求CF的长.【答案】(1)证明见解析;(2)证明见解析;(3)3.【解答】(1)证明:∵四边形ABCD是矩形,∴∠C=∠ADE=90°,∴∠CDF+∠DFC=90°,∵AE⊥DF,∴∠DGE=90°,∴∠CDF+∠AED=90°,∴∠AED=∠DFC,∴△ADE∽△DCF;(2)证明:∵四边形ABCD是正方形,∴AD=DC,AD∥BC,∠ADE=∠DCF=90°,∵AE=DF,∴Rt△ADE≌Rt△DCF(HL),∴DE=CF,∵CH=DE,∴CF=CH,∵点H在BC的延长线上,∴∠DCH=∠DCF=90°,又∵DC=DC,∴△DCF≌△DCH(SAS),∴∠DFC=∠H,∵AD∥BC,∴∠ADF=∠DFC,∴∠ADF=∠H;(3)解:如图3,延长BC至点G,使CG=DE=8,连接DG,∵四边形ABCD是菱形,∴AD=DC,AD∥BC,∴∠ADE=∠DCG,∴△ADE≌△DCG(SAS),∴∠DGC=∠AED=60°,AE=DG,∵AE=DF,∴DG=DF,∴△DFG是等边三角形,∴FG=DF=11,∵CF+CG=FG,∴CF=FG﹣CG=11﹣8=3,即CF的长为3.。

中考数学试题分类汇编(一次函数)

中考数学试题分类汇编(一次函数)

中考数学试题分类汇编(一次函数)一、选择题1、(2007福建福州)已知一次函数(1)y a x b =-+的图象如图1所示,那么a 的取值范围是( )AA .1a >B .1a <C .0a >D .0a <2、(2007上海市)如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( )BA .0k >,0b >B .0k >,0b <C .0k <,0b >D .0k <,0b < 3、(2007陕西)如图2,一次函数图象经过点A ,且与正比例函数y x =-的 图象交于点B ,则该一次函数的表达式为( )B A .2y x =-+ B .2y x =+ C .2y x =-D .2y x =--4、(2007浙江湖州)将直线y =2x 向右平移2个单位所得的直线的解析式是( )。

CA 、y =2x +2B 、y =2x -2C 、y =2(x -2)D 、y =2(x +2)(C)x l =1,x 2=-2 (D)x l =2,x 2=-1 6、(2007四川乐山)已知一次函数y kx b =+的图象如图(6)所示,当1x <时,y 的取值范围是( )CA.20y -<< B.40y -<< C.2y <- D.4y <-7、(2007浙江金华)一次函数1y kx b =+与2y x a =+的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( )B A .0B .1C .2D .3二、填空题1、(2007福建晋江)若正比例函数kx y =(k ≠0)经过点(1-,2),则该正比例函数的解析式为=y ___________。

x 2-2、(2007广西南宁)随着海拔高度的升高,大气压强下降,空气中的含氧量也随之下降, 即含氧量3(g /m )y 与大气压强(kPa)x 成正比例函数关系.当36(kPa)x =时,3108(g /m )y =,请写出y 与x 的函数关系式3y x =3、(2007湖北孝感)如图,一次函数y ax b =+的图象经过A 、B 两点,则关于x 的不等式0ax b +<的解集是 . x <2三、解答题1、(2007甘肃白银等7市)某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表:若日销售量y 是销售价x 的一次函数.(1)求出日销售量y (件)与销售价x (元)的函数关系式;x (元) 15 20 25 … y (件)252015…xyO3 2y x a =+1y kx b =+第7题(第3题图)图1 Oxy图(6)0 2 -4 x yOxy A B1- y x =-2图2(2)求销售价定为30元时,每日的销售利润. 解:(1)设此一次函数解析式为.y kx b =+则1525,2020.k b k b +=⎧⎨+=⎩解得k =-1,b =40.即一次函数解析式为40y x =-+.(2)每日的销售量为y =-30+40=10件, 所获销售利润为(30-10)×10=200元2、(2007甘肃陇南) 如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题: (1)求整齐摆放在桌面上饭碗的高度y (cm )与饭碗数x (个)之间的一次函数解析式; (2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?解:(1)设y kx b =+.由图可知:当4x =时,10.5y =;当7x =时,15y =.把它们分别代入上式,得 10.54,157.k b k b =+⎧⎨=+⎩ ,解得 1.5k =, 4.5b =.∴ 一次函数的解析式是 1.5 4.5y x =+. (2)当4711x =+=时, 1.511 4.521y =⨯+=. 即把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是21cm .4、(2007浙江温州)为调动销售人员的积极性,A 、B 两公司采取如下工资支付方式:A 公司每月2000元基本工资,另加销售额的2%作为奖金;B 公司每月1600元基本工资,另加销售额的4%作为奖金。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数要点一:函数的概念及自变量取值范围的确定 一、选择题1、(2009·包头中考)函数2y x =+中,自变量x 的取值范围是( )A .2x >-B .2x -≥C .2x ≠-D .2x -≤2、(2009·成都中考)在函数131y x =-中,自变量x 的取值范围是( ) A .13x < B . 13x ≠- C . 13x ≠ D . 13x >3、(2009·广州中考)下列函数中,自变量x 的取值范围是x ≥3的是( )A .31-=x y B .31-=x y C .3-=x y D .3-=x y4、(2010·兰州中考)函数312-+-=x x y 中,自变量x 的取值范围是( ) A .x ≤2 B .x =3 C .x <2且x ≠3 D .x ≤2且x ≠3 5、(2008·孝感中考)下列曲线中,表示y 不是x 的函数是( )6、(2008·潍坊中考)某蓄水池的横断面示意图如下图,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出.下面的图象能大致表示水的深度h 和放水时间t 之间的关系的是( )h tOAht OBh t OChtODh二、填空题7、(2010·威海中考)在函数x y -=3中,自变量x 的取值范围是 . 8.(2009·哈尔滨中考)函数y =22x x -+的自变量x 的取值范围是 .9、(2009·桂林中考)在函数21y x =-中,自变量x 的取值范围是 .10、(2009·牡丹江中考)函数2y x =-中,自变量x 的取值范围是 . 11、(2009·大兴安岭中考)函数1-=x xy 中,自变量x 的取值范围是 . 12、(2009·上海中考)已知函数1()1f x x=-,那么(3)f = . 13、(2008·广安中考)如图,当输入5x =时,输出的y = .三、解答题14、(2008·杭州中考)如图,水以恒速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中。

(1)请分别找出与各容器对应的水的高度h 和时间t 的函数关系图象,用直线段连接起来;(2)当容器中的水恰好达到一半高度时,请在各函数关系图的t 轴上标出此时t 值对应点T 的位置.要点二、一次函数图象、性质及解析式 一、选择题1、(2009·陕西中考)若正比例函数的图像经过点(-1,2),则这个图像必经过点( )A .(1,2)B .(-1,-2)C .(2,-1)D .(1,-2)2、(2009·衢州中考)P 1(x 1,y 1),P 2(x 2,y 2)是正比例函数y = -x 图象上的两点,则下列判断正确的是( )A .y 1>y 2B .y 1<y 2C .当x 1<x 2时,y 1>y 2D .当x 1<x 2时,y 1<y 23、(2009·宁夏中考)一次函数23y x =-的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限4、 (2009·河北中考)如图所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( ).5、(2009·安徽中考)已知函数y kx b =+的图象如图,则2y kx b =+的图象可能是( )h tOht OhtOhtOA .B .C .D .(1)(2) (3)(4)二、填空题6、(2010·上海中考)将直线 y = 2 x ─ 4 向上平移5个单位后,所得直线的表达式是______________.7、(2009·漳州中考)已知一次函数21y x =+,则y 随x 的增大而_________(填“增大”或“减小”).8、(2009·钦州中考)一次函数的图象过点(0,2),且函数y 的值随自变量x 的增大而增大,请写出一个符合条件的函数解析式:_ _.9、(2009·湘西中考)一次函数3y x b =+的图象过坐标原点,则b 的值为 . 10、(2010·上海中考)一辆汽车在行驶过程中,路程 y (千米)与时间 x (小时)之间的函数关系如图所示 当0≤x≤1时,y 关于x 的函数解析式为 y = 60 x ,那么当 1≤x≤2时,y 关于x 的函数解析式为_____________.11、(2009·桂林中考)如图,是一个正比例函数的图像,把该图像向左平移一个单位长度,得到的函数图像的解析式为 .12、(2009·泰安中考)已知y 是x 的一次函数,下表给出了部分对应值,则m 的值是 .O 12160x/y/千米13、(2009·天津中考)已知一次函数的图象过点()35,与()49--,,则该函数的图象与y 轴交点的坐标为__________ _. 三、解答题14、(2010·台州中考)A ,B 两城相距600千米,甲、乙两车同时从A 城出发驶向B 城,甲车到达B 城后立即返回.如图是它们离A 城的距离y (千米)与行驶时间 x (小时)之间的函数图象.(1)求甲车行驶过程中y 与x 之间的函数解析式,并写出自变量x 的取值范围; (2)当它们行驶7了小时时,两车相遇,求乙车速度.15、(2009·白银中考)鞋子的“鞋码”和鞋长(cm )存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值:[注:“鞋码”是表示鞋子大小的一种号码]鞋长(cm )16192124鞋码(号)22283238(1)设鞋长为x ,“鞋码”为y ,试判断点(x ,y )在你学过的哪种函数的图象上 (2)求x 、y 之间的函数关系式;(3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少16、(2010·江西中考)已知直线经过点(1,2)和点(3,0),求这条直线的解析式.x/y616OFE C D17、(2008·北京中考)如图,已知直线3y kx =-经过点M ,求此直线与x 轴,y 轴的交点坐标.要点三、一次函数的应用 一、选择题1、(2009·宜昌中考)由于干旱,某水库的蓄水量随时间的增加而直线下降.若该水库的蓄水量V (万米3)与干旱的时间t (天)的关系如图所示,则下列说法正确的是( )./天t /万米3V 20040060080010001200O5040302010A .干旱开始后,蓄水量每天减少20万米3B .干旱开始后,蓄水量每天增加20万米3C .干旱开始时,蓄水量为200万米3D .干旱第50天时,蓄水量为1 200万米3.2、(2009·黄冈中考)小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是()A .12分钟B .15分钟C .25分钟D .27分钟【解析】选B.由题知走平路的时间为3分钟;上坡路路程为1千米,用时5分钟,则速度=0.2千米/分钟;下坡路路程为2千米,用时4分钟,则速度=0.5千米/分钟.回来的时间=2÷+1÷+3=15.3、(2009·黔东南中考)如图,在凯里一中学生耐力测试比赛中,甲、乙两学生测试的路程s(米)与时间t(秒)之间的函数关系的图象分别为折线OABC和线段OD,下列说法正确的是()A、乙比甲先到终点B、乙测试的速度随时间增加而增大C、比赛进行到秒时,两人出发后第一次相遇D、比赛全程甲的测试速度始终比乙的测试速度快【解析】选C.本题可以采用排除法,甲用时145秒,乙用时147秒,则甲先到;图象OD反映的是时间与路程的函数图象,可以看出其为匀速运动;从速度的角度分析甲在OA段、BC段的速度都应快于乙.4、(2009·成都中考)某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为( )O3050300900x(kg)y(元)(A)20kg (B)25kg (C)28kg (D)30kg【解析】选B.根据待定系数法求出解析式,然后求当y=0时,x的对应值即可.5、(2008·哈尔滨中考)小亮每天从家去学校上学行走的路程为900米,某天他从家去上学时以每分30米的速度行走了450米,为了不迟到他加快了速度,以每分45米的速度行走完剩下的路程,那么小亮行走过的路程S(米)与他行走的时间t(分)之间的函数关系用图象表示正确的是().答案:选D6、(2007·内江中考)小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图,请你根据图中的信息,若小明把100个纸杯整齐叠放在一起时,它的高度约是()(A)106cm (B)110cm (C)114cm (D)116cm 【解析】选A.设函数解析式为y=kx+b,则39814k bk b+=⎧⎨+=⎩.解得16kb=⎧⎨=⎩.y=x+6.当x=100时,y=106二、填空题7、(2009·恩施州中考)我市某出租车公司收费标准如图所示,如果小明只有19元钱,那么他乘此出租车最远能到达公里处.答案:118、(2008·荆门中考)如图,l1反映了某公司的销售收入与销量的关系,l2 反映了该公司产品的销售成本与销量的关系,当该公司赢利(收入大于成本)时,销售量必须____________.答案:大于4三、解答题9、(2010·毕节中考)某物流公司的快递车和货车每天往返于A、B两地,快递车比货车多往返一趟.下图表示快递车距离A地的路程y(单位:千米)与所用时间x(单位:时)的函数图象.已知货车比快递车早1小时出发,到达B地后用2小时装卸货物,然后按原路、原速返回,结果比快递车最后一次返回A地晚1小时.(1) 请在下图中画出货车距离A地的路程y(千米)与所用时间x(时)的函数图象;(3分)(2) 求两车在途中相遇的次数(直接写出答案);(3分)(3) 求两车最后一次相遇时,距离A地的路程和货车从A地出发了几小时.(10分)【解析】(1)图象如图; (2)4次;(3)如图,设直线EF 的解析式为1y k x =∵图象过(90),,(5200),,1111200509.k b k b =+⎧∴⎨=+⎩, 1150450.k b =-⎧∴⎨=⎩,50450y x ∴=-+.设直线CD 的解析式为22y k x b =+,∵图象过(80),,(6200),,2222200608.k b k b =+⎧∴⎨=+⎩,22100800.k b =-⎧∴⎨=⎩,100800y x ∴=-+.解由①,②组成的方程组得7100.x y =⎧⎨=⎩,∴最后一次相遇时距离A 地的路程为100km ,货车从A 地出发8小时.10、(2009·南宁中考)南宁市狮山公园计划在健身区铺设广场砖.现有甲、乙两个工程队参加竞标,甲工程队铺设广场砖的造价y 甲(元)与铺设面积()2m x 的函数关系如图所示;乙工程队铺设广场砖的造价y 乙(元)与铺设面积()2m x 满足函数关系式:xxy kx =乙.(1)根据图写出甲工程队铺设广场砖的造价y 甲(元)与铺设面积()2m x 的函数关系式;(2)如果狮山公园铺设广场砖的面积为21600m ,那么公园应选择哪个工程队施工更合算【解析】(1)当0500x ≤≤时,设1y k x =甲,把()50028000,代入上式得:11280002800050056500k k =∴==,56y x∴=甲当500x ≥时,设2y k x b =+甲,把()50028000,、()100048000,代入上式得:2250028000100048000k b k b +=⎧⎨+=⎩解得:2408000k b =⎧⎨=⎩408000y x ∴=+甲()()560500408000500x x y x x <⎧⎪∴=⎨+⎪⎩甲≤≥(2)当1600x =时,401600800072000y =⨯+=甲1600y k =乙①当y y <乙甲时,即:720001600k <得:45k > ②当y y >乙甲时,即:720001600k >得:045k << ③当y y =乙甲时,即720001600k =,45k ∴=答:当45k >时,选择甲工程队更合算,当045k <<时,选择乙工程队更合算,当45k =时,选择两个工程队的花费一样.11、 (2009·娄底中考)娄底至新化高速公路的路基工程分段招标,市路桥公司中标承包了一段路基工程,进入施工场地后,所挖筑路基的长度y (m )与挖筑时间x (天)之间的函数关系如图所示,请根据提供的信息解答下列问题:(1)请你求出:①在0≤x <2的时间段内,y 与x 的函数关系式; ②在x ≥2时间段内,y 与x 的函数关系式.(2)用所求的函数解析式预测完成1620 m 的路基工程,需要挖筑多少天 【解析】(1)当0≤x <2时,设y 与x 的函数关系式为y =kx ∴40=k∴y 与x 的函数式为y =40x (0≤x<2) (2)当x ≥2时,设y 与x 的函数式为y=kx+b31157255k b k b +=⎧⎨+=⎩3515k b =⎧⎨=⎩∴y 与x 的函数式为y =35x +10(x ≥2) (3)当y =1620时,35x +10=1620x =46 答:需要挖筑46天12、(2010·黄冈中考)某同学从家里出发,骑自行车上学时,速度v (米/秒)与时间t (秒)的关系如下方左图,A (10,5),B (130,5),C (135,0).(1)求该同学骑自行车上学途中的速度v 与时间t 的函数关系式;(2)计算该同学从家到学校的路程(提示:在OA 和BC 段的运动过程中的平均速度分别等于它们中点时刻的速度,路程=平均速度×时间);(3)如下方右图,直线x =t (0≤t≤135),与下方左图的图象相交于P 、Q ,用字母S 表示图中阴影部分面积,试求S 与t 的函数关系式;(4)由(2)(3),直接猜出在t 时刻,该同学离开家所超过的路程与此时S 的数量关系.解之得【解析】(1)1(010)25(10130)135(130135)v t t v t v t t ⎧=≤<⎪⎪=≤<⎨⎪=-≤≤⎪⎩ (2)×10+5×120+2×5=635(米)(3)221(010)4525(10130)1(130135)2S t t S t t S t t ⎧=≤<⎪⎪=-≤<⎨⎪⎪=-≤≤⎩ +135t-8475 (4) 相等的关系13、(2009·恩施中考)某超市促销A 、B 两种商品,A 种商品每件进价20元,售价30元;B 种商品每件进价35元,售价48元.(1)该超市准备用800元去购进A 、B 两种商品若干件,怎样购进才能使超市促销这两种商品所获利润最大(其中B 种商品不少于7件)(2)在“五·一”期间,该商场对A 、B 两种商品进行如下优惠促销活动:打折前一次性购物总金额 优惠措施 不超过300元不优惠超过300元且不超过400元售价打八折超过400元售价打七折 促销活动期间小颖去该超市购买A 种商品,小华去该超市购买B 种商品,分别付款210元与元. 促销活动期间小明决定一次去购买小颖和小华购买的同样多的商品,他需付款多少元【解析】(1)设购进A 、B 两种商品分别为x 件、y 件 ,所获利润w 元 则:⎩⎨⎧=++=80035201310y x y x w 解之得: 40029+-=y w∵w 是y 的一次函数,随y 的增大而减少,又∵y 是大于等于7的整数,且x 也 为整数,∴当8=y 时,w 最大,此时26=x所以购进A 商品26件,购进B 商品8件才能使超市促销这两种商品所获利润最大 (2)∵300×=240 210﹤240∴小颖去该超市购买A 种商品:210÷30=7(件)又不是48的整数倍∴小华去该超市购买B 种商品:÷÷48=7(件)小明一次去购买小颖和小华购买的同样多的商品:7×30+7×48=546﹥400 小明付款为:546×=(元) 答:小明付款元14、(2010·宁波中考)小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁之间的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O -A -B -C 和线段OD 分别表示两人离学校的路程s (千米)与所经过的时间t (分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在天一阁查阅资料的时间为__________分钟,小聪返回学校的速度为_______千米/分钟。

相关文档
最新文档