角函数的概念同角三角函数的基本关系式诱导公式重难点分析与出题角度归纳
专题17 三角函数概念与诱导公式 (教师版)高中数学53个题型归纳与方法技巧总结篇
【考点预测】知识点一:三角函数基本概念1.角的概念(1)任意角:①高中数学53个题型归纳与方法技巧总结篇专题17三角函数概念与诱导公式定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是{}Z k k S ∈+︒⋅==,αββ360.(3)象限角:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.(4)象限角的集合表示方法:2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.(2)角度制和弧度制的互化:rad 180π=︒,rad 1801π=︒,π︒=180rad 1.(3)扇形的弧长公式:r l ⋅=α,扇形的面积公式:22121r lr S ⋅==α.3.任意角的三角函数(1)定义:任意角α的终边与单位圆交于点)(y x P ,时,则y =αsin ,x =αcos ,)0(tan ≠=x xyα.(2)推广:三角函数坐标法定义中,若取点P )(y x P ,是角α终边上异于顶点的任一点,设点P 到原点O 的距离为r ,则r y =αsin ,r x =αcos ,)0(tan ≠=x xyα三角函数的性质如下表:三角函数定义域第一象限符号第二象限符号第三象限符号第四象限符号αsin R ++--αcos R+--+αtan }2|{Z k k ∈+≠,ππαα+-+-记忆口诀:三角函数值在各象限的符号规律:一全正、二正弦、三正切、四余弦.4.三角函数线如下图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A(1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .三角函数线有向线段MP 为正弦线;有向线段OM 为余弦线;有向线段AT 为正切线知识点二:同角三角函数基本关系1.同角三角函数的基本关系(1)平方关系:1cos sin 22=+αα.(2)商数关系:)2(tan cos sin ππααααk +≠=;知识点三:三角函数诱导公式公式一二三四五六角)(2Z k k ∈+απαπ+α-απ-απ-2απ+2正弦αsin αsin -αsin -αsin αcos αcos 余弦αcos αcos -αcos αcos -αsin αsin -正切αtan αtan αtan -αtan -口诀函数名不变,符号看象限函数名改变,符号看象限【记忆口诀】奇变偶不变,符号看象限,说明:(1)先将诱导三角函数式中的角统一写作2n πα⋅±;(2)无论有多大,一律视为锐角,判断2n πα⋅±所处的象限,并判断题设三角函数在该象限的正负;(3)当n 为奇数是,“奇变”,正变余,余变正;当n 为偶数时,“偶不变”函数名保持不变即可.【方法技巧与总结】1.利用1cos sin 22=+αα可以实现角α的正弦、余弦的互化,利用αααtan cos sin =可以实现角α的弦切互化.2.“ααααααcos sin cos sin cos sin -+,,”方程思想知一求二.222(sin cos )sin cos 2sin cos 1sin 2ααααααα+=++=+222(sin cos )sin cos 2sin cos 1sin 2ααααααα-=+-=-22(sin cos )(sin cos )2αααα++-=【题型归纳目录】题型一:终边相同的角的集合的表示与区别题型二:等分角的象限问题题型三:弧长与扇形面积公式的计算题型四:三角函数定义题题型五:象限符号与坐标轴角的三角函数值题型六:同角求值—条件中出现的角和结论中出现的角是相同的题型七:诱导求值与变形【典例例题】题型一:终边相同的角的集合的表示与区别例1.(2022·全国·高三专题练习)与角94π的终边相同的角的表达式中,正确的是()A .245k π+ ,k Z ∈B .93604k π⋅+,k Z ∈C .360315k ⋅- ,k Z ∈D .54k ππ+,k Z ∈【答案】C 【解析】【分析】要写出与94π的终边相同的角,只要在该角上加2π的整数倍即可.【详解】首先角度制与弧度制不能混用,所以选项AB 错误;又与94π的终边相同的角可以写成92()4k k Z ππ+∈,所以C 正确.故选:C .例2.(2022·全国·高三专题练习)若角α的终边在直线y x =-上,则角α的取值集合为()A .2,4k k πααπ⎧⎫=-∈⎨⎬⎩⎭Z B .32,4k k πααπ⎧⎫=+∈⎨⎬⎩⎭Z C .3,4k k πααπ⎧⎫=-∈⎨⎬⎩⎭Z D .,4k k πααπ⎧⎫=-∈⎨⎬⎩⎭Z 【答案】D 【解析】【分析】根据若,αβ终边相同,则2,k k Z βπα=+∈求解.【详解】解:,由图知,角α的取值集合为:()32,2,4421,2,44,4k k Z k k Z k k Z k k Z k k Z ππααπααπππααπααππααπ⎧⎫⎧⎫=+∈⋃=-∈⎨⎬⎨⎬⎩⎭⎩⎭⎧⎫⎧⎫==+-∈⋃=-∈⎨⎬⎨⎬⎩⎭⎩⎭⎧⎫==-∈⎨⎬⎩⎭故选:D.【点睛】本题主要考查终边相同的角,还考查了集合的运算能力,属于基础题.例3.(2022·上海市嘉定区第二中学高一阶段练习)设集合{}{}|45180,|135180,A k k Z k k Z αααα==︒+⋅︒∈⋃=︒+⋅︒∈,集合{}|4590,B k k Z ββ==︒+⋅︒∈,则()A .AB =∅ B .A BC .B AD .A B=【答案】D 【解析】【分析】考虑A 中角的终边的位置,再考虑B 中角的终边的位置,从而可得两个集合的关系.【详解】.45180,k k Z α=︒+⋅︒∈表示终边在直线y x =上的角,135180,k k Z α=︒+⋅︒∈表示终边在直线y x =-上的角,而4590,k k Z β=︒+⋅︒∈表示终边在四条射线上的角,四条射线分别是射线,0;,0;,0;,0y x x y x x y x x y x x =≥=-≤=≤=-≥,它们构成直线y x =、直线y x =-,故A B =.故选:D.【点睛】本题考查终边相同的角,注意180k α⋅︒+的终边与α的终边的关系是重合或互为反向延长线,而90k α⋅︒+的终边与α的终边的关系是重合或互为反向延长线或相互垂直,本题属于中档题.(多选题)例4.(2022·全国·高三专题练习)如果角α与角45γ+︒的终边相同,角β与45γ-︒的终边相同,那么αβ-的可能值为()A .90︒B .360︒C .450︒D .2330︒【答案】AC 【解析】根据终边相同可得角与角之间的关系,从而可得αβ-的代数形式,故可得正确的选项.【详解】因为角α与角45γ+︒的终边相同,故45360k γα ,其中k Z ∈,同理145360k βγ=-︒+⋅︒,其中1k Z ∈,故90360n αβ-=︒+⋅︒,其中n Z ∈,当0n =或1n =时,90αβ-=︒或450αβ-=︒,故AC 正确,令36090360n ︒=︒+⋅︒,此方程无整数解n ;令903060233n =︒+⋅︒︒即569n =,此方程无整数解n ;故BD 错误.故选:AC.(多选题)例5.(2022·全国·高三专题练习)下列条件中,能使α和β的终边关于y 轴对称的是()A .90αβ+=︒B .180αβ+=︒C .()36090k k αβ+=⋅︒+︒∈ZD .()()21180k k αβ+=+⋅︒∈Z 【答案】BD 【解析】【分析】根据α和β的终边关于y 轴对称时()180360k k αβ+=︒+︒∈Z ,逐一判断正误即可.【详解】根据α和β的终边关于y 轴对称时()180360k k αβ+=︒+︒∈Z 可知,选项B 中,180αβ+=︒符合题意;选项D 中,()()21180k k αβ+=+⋅︒∈Z 符合题意;选项AC 中,可取0,90αβ=︒=︒时显然可见α和β的终边不关于y 轴对称.故选:BD.例6.(2022·全国·高三专题练习)写出两个与113π-终边相同的角___________.【答案】3π,53π-(其他正确答案也可)【解析】【分析】利用终边相同的角的定义求解.【详解】设α是与113π-终边相同的角,则112,3k k Z παπ=-∈,令1k =,得53πα=-,令2k =,得3πα=,故答案为:3π,53π-(其他正确答案也可)【方法技巧与总结】(1)终边相同的角的集合的表示与识别可用列举归纳法和双向等差数列的方法解决.(2)注意正角、第一象限角和锐角的联系与区别,正角可以是任一象限角,也可以是坐标轴角;锐角是正角,也是第一象限角,第一象限角不包含坐标轴角.题型二:等分角的象限问题例7.(2022·浙江·高三专题练习)若18045,k k Z α=⋅+∈ ,则α的终边在()A .第一、三象限B .第一、二象限C .第二、四象限D .第三、四象限【答案】A 【解析】【分析】分21,k n n Z =+∈和2,k n n =∈Z 讨论可得角的终边所在的象限.【详解】解:因为18045,k k Z α=⋅+∈ ,所以当21,k n n Z =+∈时,218018045360225,n n n Z α=⋅++=⋅+∈ ,其终边在第三象限;当2,k n n =∈Z 时,21804536045,n n n Z α=⋅+=⋅+∈ ,其终边在第一象限.综上,α的终边在第一、三象限.故选:A.例8.(2022·全国·高三专题练习(理))角α的终边属于第一象限,那么3α的终边不可能属于的象限是()A .第一象限B .第二象限C .第三象限D .第四象限【答案】D 【解析】【分析】由题意知,222k k ππαπ<<+,k Z ∈,即可得3α的范围,讨论3k n =、31k n =+、32k n =+()n Z ∈对应3α的终边位置即可.【详解】∵角α的终边在第一象限,∴222k k ππαπ<<+,k Z ∈,则223363k k παππ<<+,k Z ∈,当3()k n n Z =∈时,此时3α的终边落在第一象限,当31()k n n Z =+∈时,此时3α的终边落在第二象限,当32()k n n Z =+∈时,此时3α的终边落在第三象限,综上,角α的终边不可能落在第四象限,故选:D.例9.(2022·全国·高三专题练习)θ是第二象限角,则下列选项中一定为负值的是()A .sin2θB .cos2θC .sin 2θD .cos 2θ【答案】C 【解析】表示出第二象限角的范围,求出2θ和2θ所在象限,确定函数值的符号.【详解】因为θ是第二象限角,所以22,2k k k Z ππθππ+<<+∈,则4242,k k k Z ππθππ+<<+∈,所以2θ为第三或第四象限角或终边在y 轴负半轴上,,所以sin 2θ<0.而,422k k k Z πθπππ+<<+∈,2θ是第一象限或第三象限角,正弦余弦值不一定是负数.故选:C .例10.(2022·全国·高三专题练习)已知角α第二象限角,且cos cos22αα=-,则角2α是()A .第一象限角B .第二象限角C .第三象限角D .第四象限角【答案】C 【解析】【分析】由α是第二象限角,知2α在第一象限或在第三象限,再由coscos22αα=-,知cos02α≤,由此能判断出2α所在象限.【详解】因为角α第二象限角,所以()90360180360Z k k k α+⋅<<+⋅∈,所以()4518090180Z 2k k k α+⋅<<+⋅∈,当k 是偶数时,设()2Z k n n =∈,则()4536090360Z 2n n n α+⋅<<+⋅∈,此时2α为第一象限角;当k 是奇数时,设()21Z k n n =+∈,则()225360270360Z 2n n n α+⋅<<+⋅∈,此时2α为第三象限角.;综上所述:2α为第一象限角或第三象限角,因为coscos22αα=-,所以cos02α≤,所以2α为第三象限角.故选:C .【方法技巧与总结】先从α的范围出发,利用不等式性质,具体有:(1)双向等差数列法;(2)nα的象限分布图示.题型三:弧长与扇形面积公式的计算例11.(2022·浙江·镇海中学模拟预测)《九章算术》是中国古代的数学名著,其中《方田》章给出了弧田面积的计算公式.如图所示,弧田是由圆弧AB 及其所对弦AB 围成的图形.若弧田的弦AB 长是2,弧所在圆心角的弧度数也是2,则弧田的弧AB 长为_______,弧田的面积为_________.【答案】2sin1;211sin 1tan1-.【解析】【分析】(1)利用弧长公式解决,那么需要算出半径和圆心角;(2)用扇形的面积减去三角形的面积即可.【详解】由题意可知:111,,sin1sin1tan1tan1======AC BC BC AC AO OC ,所以弧AB 长122sin1sin1=⨯=,弧田的面积22111111222sin12tan1sin 1tan1⎛⎫=-=⨯⨯-⨯⨯=- ⎪⎝⎭扇形AOB AOB S S ,故答案为:2sin1;211sin 1tan1-.例12.(2022·全国·高考真题(理))沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图, AB 是以O 为圆心,OA 为半径的圆弧,C 是AB 的中点,D 在 AB 上,CD AB ⊥.“会圆术”给出 AB 的弧长的近似值s 的计算公式:2CDs AB OA=+.当2,60OA AOB =∠=︒时,s =()A B C D 【答案】B 【解析】【分析】连接OC ,分别求出,,AB OC CD ,再根据题中公式即可得出答案.【详解】解:如图,连接OC ,因为C 是AB 的中点,所以OC AB ⊥,又CD AB ⊥,所以,,O C D 三点共线,即2OD OA OB ===,又60AOB ∠=︒,所以2AB OA OB ===,则OC =2CD =所以()22222CD s AB OA =+=+=故选:B.例13.(2022·全国·高三专题练习)中国传统扇文化有着极其深厚的底蕴.按如下方法剪裁,扇面形状较为美观.从半径为r 的圆面中剪下扇形OAB ,使剪下扇形OAB,再从扇形OAB 中剪下扇环形ABDC 制作扇面,使扇环形ABDC 的面积与扇形OAB.则一个按上述方法制作的扇环形装饰品(如图)的面积与圆面积的比值为()ABCD2-【答案】D 【解析】【分析】记扇形OAB 的圆心角为α,扇形OAB 的面积为1S ,扇环形ABDC 的面积为2S ,圆的面积为S ,根据扇形面积公式,弧长公式,以及题中条件,即可计算出结果.【详解】记扇形OAB 的圆心角为α,扇形OAB 的面积为1S ,扇环形ABDC 的面积为2S ,圆的面积为S ,由题意可得,2112S r α=,21S S =2S r π=,所以()122124S Srαππ==,因为剪下扇形OAB ,所以22r r r παπ-=(3απ=,所以()()()2113244S S απππ====.故选:D.例14.(2022·浙江·赫威斯育才高中模拟预测)“圆材埋壁”是我国古代的数学著作《九章算术》中的一个问题,现有一个“圆材埋壁”的模型,其截面如图所示,若圆柱形材料的底面半径为1,截面圆圆心为O ,墙壁截面ABCD 为矩形,且1AD =,则扇形OAD 的面积是__________.【答案】6π##16π【解析】【分析】计算AOD ∠,再利用扇形的面积公式求解.【详解】由题意可知,圆O 的半径为1,即1OA OD ==,又1AD =,所以OAD △为正三角形,∴3AOD π∠=,所以扇形OAD 的面积是221112236S r AOD ππ=⨯⨯∠=⨯⨯=.故答案为:6π例15.(2022·全国·模拟预测)炎炎夏日,在古代人们乘凉时习惯用的纸叠扇可看作是从一个圆面中剪下的扇形加工制作而成.如图,扇形纸叠扇完全展开后,扇形ABC 的面积S 为22225cm π,若2BD DA =,则当该纸叠扇的周长C 最小时,BD 的长度为___________cm .【答案】10π【解析】【分析】设扇形ABC 的半径为r cm ,弧长为l cm ,根据扇形ABC 的面积S 为22225cm π,由212252rl π=得到rl ,然后由纸叠扇的周长2C r l =+,利用基本不等式求解.【详解】解:设扇形ABC 的半径为r cm ,弧长为l cm ,则扇形面积12S rl =.由题意得212252rl π=,所以2450rl π=.所以纸叠扇的周长260C r l π=+≥==,当且仅当22,450,r l rl π=⎧⎨=⎩即15r π=,30l π=时,等号成立,所以()15BD DA cm π+=.又2BD DA =,所以()1152BD BD cm π+=,所以()3152BD cm π=,故()10BD cm π=.故答案为:10π例16.(2022·全国·高三专题练习)已知扇形的周长为4cm ,当它的半径为________cm 和圆心角为________弧度时,扇形面积最大,这个最大面积是________cm 2.【答案】121【解析】【详解】24l r +=,则()21142222S lr r r r r ==-=-+,则1,2r l ==时,面积最大为1,此时圆心角2lrα ,所以答案为1;2;1.【方法技巧与总结】(1)熟记弧长公式:l =|α|r ,扇形面积公式:S 扇形=12lr =12|α|r 2(弧度制(0,2]απ∈)(2)掌握简单三角形,特别是直角三角形的解法题型四:三角函数定义题例17.(2022·广东·深圳市光明区高级中学模拟预测)已知角θ的终边过点()1,1A -,则sin()6πθ-=()ABCD【答案】D 【解析】【分析】由任意三角形的定义求出sin ,cos θθ,由两角差的正弦公式代入即可求出sin()6πθ-.【详解】因为角θ的终边过点()1,1A -,由任意三角形的定义知:sin θθ==sin()sin cos cos sin 666πππθθθ-=-=故选:D.例18.(2022·河北衡水·高三阶段练习)已知角α的终边经过点(-,则()tan sin 232πααπ⎛⎫++-= ⎪⎝⎭()A .32B .34-C.D【答案】D 【解析】【分析】利用三角函数的定义、诱导公式、二倍角公式以及弦化切可求得所求代数式的值.【详解】依题意,由三角函数的定义可知tan α=()22sin cos 2sin cos 2tan sin 23sin 22sin sin cos cos 2παπαααααπαπαααα⎛⎫+ ⎪⎛⎫⎝⎭++-=-=-- ⎪+⎛⎫⎝⎭+ ⎪⎝⎭22212sin cos 2tan tan sin cos tan 1ααααααα=--===++故选:D.例19.(2022·湖北武汉·模拟预测)已知角α的始边与x 轴非负半轴重合,终边上一点()sin 3,cos3P ,若02απ≤≤,则α=()A .3B .32π-C .532π-D .32π-【答案】C【分析】根据三角函数的定义求出tan α,结合诱导公式即可得解,注意角所在的象限.【详解】解:因为角α的终边上一点()sin 3,cos3P ,所以cos31tan 0sin 3tan 3α==<,又cos 30,sin 30<>,所以α为第四象限角,所以23,Z 2k k παπ=+-∈,又因02απ≤≤,所以532πα=-.故选:C.例20.(2022·北京·二模)已知角α的终边经过点34,55P ⎛⎫- ⎪⎝⎭,则sin 2α=()A .2425-B .725-C .725D .2425【答案】A 【解析】【分析】根据终边上的点确定角的正余弦值,再由二倍角正弦公式求sin 2α.【详解】由题设43sin ,cos 55αα==-,而4324sin 22sin cos 2()5525ααα==⨯⨯-=-.故选:A【方法技巧与总结】(1)任意角的正弦、余弦、正切的定义;题型五:象限符号与坐标轴角的三角函数值例21.(2022·全国·高三专题练习)如果cos 0θ<,且tan 0θ<,则sin cos cos θθθ-+的化简为_____.【答案】sin θ【解析】【分析】由cos 0θ<,且tan 0θ<,得到θ是第二象限角,由此能化简sin cos cos θθθ-+.解:∵cos 0θ<,且tan 0θ<,∴θ是第二象限角,∴sin cos cos sin cos cos sin θθθθθθθ-+=-+=.故答案为:sin θ.例22.(2022·河北·石家庄二中模拟预测)若角α满足sin cos 0αα⋅<,cos sin 0αα-<,则α在()A .第一象限B .第二象限C .第三象限D .第四象限【答案】B 【解析】【分析】根据sin cos 0αα⋅<可知α是第二或第四象限角;根据第二或第四象限角正余弦的符号可确定结果.【详解】sin cos 0αα⋅< ,α 是第二或第四象限角;当α是第二象限角时,cos 0α<,sin 0α>,满足cos sin 0αα-<;当α是第四象限角时,cos 0α>,sin 0α<,则cos sin 0αα->,不合题意;综上所述:α是第二象限角.故选:B.例23.(2022·浙江·模拟预测)已知R θ∈,则“cos 0θ>”是“角θ为第一或第四象限角”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要【答案】B 【解析】【分析】利用定义法进行判断.【详解】充分性:当cos 0θ>时,不妨取cos 1,0θθ==时轴线角不成立.故充分性不满足;必要性:角θ为第一或第四象限角,则cos 0θ>,显然成立.故选:B.例24.(2022·重庆·高三开学考试)若tan 0θ>,则下列三角函数值为正值的是()A .sin θB .cos θC .sin 2θD .cos 2θ【答案】C 【解析】【分析】结合诱导公式、二倍角公式判断出正确选项.【详解】sin tan 0sin cos 0sin 22sin cos 0cos θθθθθθθθ=>⇒⋅>⇒=>,所以C 选项正确.当5π4θ=时,5ππtan 0,sin 0,cos 0,cos 2coscos 022θθθθ><<===,所以ABD 选项错误.故选:C例25.(2022·全国·高三专题练习(理))我们知道,在直角坐标系中,角的终边在第几象限,这个角就是第几象限角.已知点()cos ,tan P αα在第三象限,则角α的终边在()A .第一象限B .第二象限C .第三象限D .第四象限【答案】B 【解析】【分析】本题首先可以根据题意得出cos 0α<、tan 0α<,然后得出sin 0α>,即可得出结果.【详解】因为点()cos ,tan P αα在第三象限,所以cos 0α<,tan 0α<,则sin 0α>,角α的终边在第二象限,故选:B.例26.(2022·全国·高三专题练习(理))已知sin 0,cos 0αα><,则()A .sin 20α>B .cos20α<C .tan02α>D .sin2α<【答案】C 【解析】【分析】由条件得到角α所在的象限,从而得到2α所在的象限,这样就可以得到答案.【详解】由sin 0,cos 0αα><知,α为第二象限角,所以2α为第一或第三象限角,所以tan02α>.故选:C.例27.(2022·江西南昌·三模(文))若角α的终边不在坐标轴上,且sin 2cos 2αα+=,则tan α=()A .43B .34C .23D .32【答案】A 【解析】【分析】结合易知条件和同角三角函数的平方关系即可求出cos α,从而求出sin α,根据sin tan cos ααα=即可求得结果.【详解】22sin cos 13cos 5sin 2cos 2ααααα⎧+=⇒=⎨+=⎩或cos 1α=,∵α的终边不在坐标轴上,∴3cos 5α=,∴34sin 2255α=-⨯=,∴sin 4tan cos 3ααα==.故选:A .例28.(2022·全国·高三专题练习(理))若α是第二象限角,则下列不等式正确的是()A .()cos 0α->B .tan02α>C .sin 20α>D .()sin 0α->【答案】B 【解析】【分析】根据α是第二象限角,分别求出四个选项中角所在的象限,再判断三角函数的符号,即可求解.【详解】对于A :因为()π2ππ2πZ 2k k k α+<<+∈,所以()ππ2π2πZ 2k k k α--<-<--∈,所以α-是第三象限角,所以()cos 0α-<,故选项A 不正确;对于B :因为()π2ππ2πZ 2k k k α+<<+∈,所以()ππππZ 422k k k α+<<+∈,当()2Z k n n =∈时,()ππ2π2πZ 422n n n α+<<+∈,此时2α是第一象限角,当()21Z k n n =+∈时,()5π3π2π2πZ 422n n n α+<<+∈,此时2α是第三象限角,所以2α是第一或第三象限角,所以tan02α>,故选项B 正确;对于C :因为()π2ππ2πZ 2k k k α+<<+∈,所以()π4π22π4πZ k k k α+<<+∈,所以2α是第三或第四象限角或终边落在y 轴非正半轴,所以sin 20α<,故选项C 不正确;对于D :因为()π2ππ2πZ 2k k k α+<<+∈,所以()ππ2π2πZ 2k k k α--<-<--∈,所以α-是第三象限角,所以()sin 0α-<,故选项D 不正确;故选:B.【方法技巧与总结】正弦函数值在第一、二象限为正,第三、四象限为负;.余弦函数值在第一、四象限为正,第二、三象限为负;.正切函数值在第一、三象限为正,第二、四象限为负.题型六:同角求值—条件中出现的角和结论中出现的角是相同的例29.(2022·安徽·合肥市第八中学模拟预测(文))若tan 2θ=-,则2sin 2cos 1θθ+的值为___________.【答案】23-【解析】【分析】利用二倍角公式和同角三角函数平方关系可构造正余弦齐次式,分子分母同除2cos θ,代入tan θ即可得到结果.【详解】2222sin 22sin cos 2tan 42cos 12cos sin 2tan 243θθθθθθθθ===-=-++++.故答案为:23-.例30.(2022·河北·沧县中学模拟预测)已知tan 3α=,则22sin 22sin cos2cos -=-αααα___________.【答案】43【解析】【分析】根据二倍角公式,结合同角三角函数齐次式关系求解即可.【详解】解:22222222sin 22sin 2sin cos 2sin 2tan 2tan 23234cos2cos sin tan 33---⨯-⨯====----ααααααααααα.故答案为:43例31.(2022·广东惠州·一模)已知tan 2α=,32παπ<<,则cos sin αα-=()A B .C D .【答案】A 【解析】【分析】由sin tan 2cos ααα==及22sin cos 1αα+=解出sin α与cos α即可求解.【详解】因为sin tan 2cos ααα==,且22sin cos 1αα+=,32παπ<<,所以sin α=cos α=,所以cos sin αα⎛-== ⎝⎭.故选:A.例32.(2022·全国·模拟预测)已知0πA <<,1sin cos 5A A +=,则1sin 21cos 2AA-=+()A .132B .118C .4918D .4932【答案】C 【解析】【分析】结合同角的平方关系以及二倍角公式即可求出结果.【详解】由1sin cos 5A A +=及22sin cos 1A A +=,解得4sin 5A =,3cos 5A =-或4cos 5A =,3sin 5A =-.因为sin 0A >,所以4sin 5A =,3cos 5A =-,所以24sin 22sin cos 25A A A ==-,227cos 2cos sin 25A A A =-=-,所以2411sin 2492571cos 218125A A +-==+-,故选:C.例33.(2022·海南·模拟预测)已知角α为第二象限角,tan 3α=-,则cos α=()A.BC.D【答案】A 【解析】【分析】由角所在的象限及同角三角函数的平方关系、商数关系求cos α即可.【详解】因为α是第二象限角,所以sin 0α>,cos 0α<,由sin tan 3cos ααα==-,22sin cos 1αα+=,可得:cos α=故选:A.例34.(2022·全国·高三专题练习)已知(,22ππα∈-,且212sin 5cos 9αα-=,则cos 2=α()A .13B .79-C .34-D .18【答案】B 【解析】【分析】利用同角公式化正弦为余弦,求出cos α的值,再利用二倍角的余弦公式求解即得.【详解】依题意,原等式化为:212(1cos )5cos 9αα--=,整理得:(4cos 3)(3cos 1)0αα+-=,因(,)22ππα∈-,则cos 0α>,解得:1cos 3α=,所以2217cos 22cos 12139αα⎛⎫=-=⨯-=- ⎪⎝⎭.故选:B例35.(2022·全国·高三阶段练习(理))若sin cos 2sin cos θθθθ+=-,则sin (1sin 2)sin cos θθθθ+=+()A .65-B .25-C .65D .25【答案】C 【解析】【分析】由已知得sin 3cos θθ=,从而sin ,cos θθ同号,即sin cos 0>θθ,然后由平方关系求得22cos ,sin θθ,进而求得sin cos θθ,求值式应用二倍角公式和平方关系变形后可得结论.【详解】因为sin cos 2sin cos θθθθ+=-,所以sin 3cos θθ=,所以sin ,cos θθ同号,即sin cos 0>θθ,22222sin cos 9cos cos 10cos 1θθθθθ+=+==,21cos 10θ=,从而29sin 10θ=,229sin cos 100θθ=,所以3sin cos 10θθ=,22sin (1sin 2)sin (sin cos 2sin cos )sin (sin cos )sin cos sin cos θθθθθθθθθθθθθθ+++==+++2936sin sin cos 10105θθθ=+=+=.故选:C .例36.(2022·广东广州·三模)已知sin cos x x +=()0,πx ∈,则cos2x 的值为()A .12B C .12-D .【答案】D 【解析】【分析】将sin cos x x +=2sin x cos x =-12<0,结合sin cos x x +=求出x 的范围,再利用22cos 2sin 21x x +=求解即可.【详解】解:将sin cos x x +=2sin x cos x =-12<0,所以π(,π)2x ∈,又因为sin cos x x +=0,所以π3π(,24x ∈,2x 3π(π,)2∈,又因为sin2x =-12,所以cos2x 故选:D.例37.(2022·湖北武汉·模拟预测)已知1sin cos 5θθ+=-,(0,)θπ∈,则sin cos θθ-=()A .15B .15-C .75D .75-【答案】C 【解析】【分析】利用平方关系,结合同角三角函数关系式,即可求解.【详解】()21sin cos 12sin cos 25θθθθ+=+=,242sin cos 025θθ=-<,()0,θπ∈ ,,2πθπ⎛⎫∴∈ ⎪⎝⎭,sin cos θθ>,()249sin cos 12sin cos 25θθθθ-=-=,所以7sin cos 5θθ-=.故选:C例38.(2022·山西晋中·模拟预测(理))若tan 1θ=-,则()cos 1sin 2sin cos θθθθ--等于()A .12B .2C .1-D .13-【答案】C 【解析】【分析】化简原式为2tan 1tan 1θθ-+即得解.【详解】解:原式()222cos sin 2sin cos cos cos (sin cos )=sin cos sin cos θθθθθθθθθθθθ-⋅+-=--22cos (sin cos )sin cos θθθθθ-=+2tan 12=1tan 12θθ--==-+.故选:C例39.(2022·湖北·模拟预测)已知()cos 3cos 02πααπ⎛⎫++-= ⎪⎝⎭,则3sin sin sin 2ααπα-=⎛⎫+ ⎪⎝⎭()A .35B .35C .310D .310-【答案】D 【解析】【分析】根据题意求出tan α,再将原式化简为:32sin sin tan tan 1sin 2αααπαα-=+⎛⎫+ ⎪⎝⎭,求解即可.【详解】因为()cos 3cos 02πααπ⎛⎫++-= ⎪⎝⎭,所以sin 3cos 0αα--=,所以tan 3α=-()232sin 1sin sin sin tan 3sin cos cos tan 110sin 2αααααααπααα--====-+⎛⎫+ ⎪⎝⎭.故选:D.【方法技巧与总结】(1)若已知角的象限条件,先确定所求三角函数的符号,再利用三角形三角函数定义求未知三角函数值.(2)若无象限条件,一般“弦化切”.题型七:诱导求值与变形例40.(2022·贵州·贵阳一中高三阶段练习(理))若π1sin 63α⎛⎫-= ⎪⎝⎭,则2πcos 23α⎛⎫+= ⎪⎝⎭()A .13B .13-C .79D .79-【答案】D 【解析】【分析】由三角函数的二倍角的余弦公式,结合诱导公式,即可求得答案.【详解】由题意得:2222πππππ27cos 22cos 12cos 12sin 113326699αααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+-=---=--=-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,故选:D .例41.(2022·贵州·贵阳一中模拟预测(文))若1sin ,63a π⎛⎫+= ⎪⎝⎭则2cos 3a π⎛⎫+= ⎪⎝⎭()A .13B .13-C .79D .79-【答案】B 【解析】【分析】利用诱导公式计算可得;【详解】解:因为1sin 63a π⎛⎫+= ⎪⎝⎭,所以21cos cos sin 32663ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=++=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故选:B.例42.(2022·青海·海东市教育研究室一模(理))()tan 165-︒=()A .2-B .2-+C .2D .2【答案】C 【解析】【分析】先利用诱导公式可得()tan 165tan15-︒=︒,在运用正切两角差公式()tan15tan 4530︒=︒-︒计算.【详解】()()()tan 165tan 18015tan15tan 4530-︒=-︒+︒=︒=︒-︒1tan 45tan 3021tan 45tan 30︒-︒===+︒︒故选:C .例43.(2022·安徽·合肥市第八中学模拟预测(文))已知2cos sin 022a ππα⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭,则()tan -=πα()A .2B .—2C .12D .12-【答案】C 【解析】【分析】根据诱导公式五、六可得2sin cos 0αα+=,由同角三角函数的关系可得1tan 2α=-,结合诱导公式二计算即可.【详解】由已知得2sin cos 0αα+=,12sin cos tan 2ααα∴=-∴=-,,∴1tan()tan 2παα-=-=.故选:C【方法技巧与总结】(1)诱导公式用于角的变换,凡遇到与2π整数倍角的和差问题可用诱导公式,用诱导公式可以把任意角的三角函数化成锐角三角函数.(2)通过2,,2πππ±±±等诱导变形把所给三角函数化成所需三角函数.(3)2,,2παβππ±=±±±等可利用诱导公式把,αβ的三角函数化【过关测试】一、单选题1.(2022·宁夏·银川一中模拟预测(理))中国古代数学的瑰宝《九章算术》中记载了一种称为“曲池”的几何体,该几何体是上、下底面均为扇环形的柱体(扇环是指圆环被扇形截得的部分)现有一个如图所示的曲池,1AA 垂直于底面,13AA =,底面扇环所对的圆心角为2π,弧AD 长度是弧BC 长度的3倍,2CD =,则该曲池的体积为()A .92πB .5πC .112πD .6π【答案】D 【解析】【分析】利用柱体体积公式求体积.【详解】不妨设弧AD 所在圆的半径为R ,弧BC 所在圆的半径为r ,由弧AD 长度为弧BC 长度的3倍可知3R r =,22CD R r r =-==,所以1r =,3R =.故该曲池的体积22()364V R r ππ=⨯-⨯=.故选:D.2.(2022·海南中学高三阶段练习)二十四节气是中华民族上古农耕文明的产物,是中国农历中表示李节变迁的24个特定节令.如图,每个节气对应地球在黄道上运动15︒所到达的一个位置.根据描述,从立冬到立春对应地球在黄道上运动所对圆心角的弧度数为()A .π3-B .π2C .5π12D .π3【答案】B【解析】【分析】根据条件得到运行度数为6×15°,化为弧度即可得解.【详解】根据题意,立春是立冬后的第六个节气,故从立冬到立春相应于地球在黄道上逆时针运行了61590︒⨯=︒,所以从立冬到立春对应地球在黄道上运动所对圆心角的弧度数为π2.故选:B3.(2022·河北·模拟预测)已知圆锥的母线长为2,其侧面展开图是圆心角等于23π的扇形,则该圆锥的体积为()A B .1627πC D .1681π【答案】C 【解析】【分析】设圆锥的底面半径为r ,高为h ,则由题意可得2223r ππ=⨯,从而可求出半径r ,再求出h ,进而可求出其体积【详解】设圆锥的底面半径为r ,高为h ,则由题意可得2223r ππ=⨯,解得23r =,所以h ===所以圆锥的体积为22112333V r h ππ⎛⎫==⨯=⎪⎝⎭故选:C4.(2022·福建省福州格致中学模拟预测)已知角θ的大小如图所示,则1sin 2cos 2θθ+=()A .5-B .5C .15-D .15【答案】A 【解析】【分析】由图中的信息可知tan 54πθ⎛⎫+=- ⎪⎝⎭,化简1sin 2cos 2θθ+即可.【详解】由图可知,tan 54πθ⎛⎫+=- ⎪⎝⎭,()()()22222cos sin 1sin 2sin cos 2sin cos cos sin cos 2cos sin cos sin cos sin cos sin θθθθθθθθθθθθθθθθθθ+++++===--+-tantan 1tan 4tan 51tan 41tan tan 4πθθπθπθθ++⎛⎫===+=- ⎪-⎝⎭-;故选:A.5.(2022·江西·临川一中模拟预测(文))tan195︒=()A.2-B.2-+C .2D .2【答案】C 【解析】【分析】利用诱导公式及两角差的正切公式计算可得;【详解】解:()()tan195tan 18015tan15tan 4530︒=︒+︒=︒=︒-︒tan 45tan 301tan 45tan 30︒-︒=+︒︒12==故选:C6.(2022·江苏·南京市天印高级中学模拟预测)若21sin2512sin αα+=-,则tan α=()A .23-B .32-C .23D .32【答案】C 【解析】【分析】通过“1”的替换,齐次化,然后得到关于tan α的方程,解方程即可【详解】22221sin 2(cos sin )cos sin 1tan 512sin cos sin cos sin 1tan αααααααααααα++++====----,解得2tan 3α=故选:C7.(2022·四川成都·模拟预测(文))已知向量(3cos 2,sin )a αα= ,(2,cos 5sin )b αα=+ ,π0,2α⎛⎫∈ ⎪⎝⎭,若a b ⊥ ,则tan α=()A .2B .-2C .3D .34【答案】C 【解析】【分析】由a b ⊥可得向量的数量积等于0,化简可得6cos 2sin (cos 5sin )0αααα++=,结合二倍角公式以及同角的三角函数关系式化为226tan tan n 10ta ααα-++=,可求得答案.【详解】由题意a b ⊥可得0a b ⋅= ,即6cos 2sin (cos 5sin )0αααα++=,即2226(cos sin )sin cos 5sin 0ααααα-++=,故22226cos sin sin c sin os 0cos αααααα-++=,即226tan tan n 10ta ααα-++=,由于π0,2α⎛⎫∈ ⎪⎝⎭,故tan 3,tan 2αα==-(舍去),故选:C8.(2022·黑龙江·哈九中模拟预测(文))数学家华罗庚倡导的“0.618优选法”在各领域都应用广泛,0.618就是黄金分割比m =2sin18︒).A .4B 1+C .2D 1【答案】A 【解析】【分析】根据2sin18m ︒=,结合三角函数的基本关系式,诱导公式和倍角公式,即可求解.【详解】根据题意,可得2sin182cos72m =︒=︒,4sin144cos54︒==︒()4sin 90544cos544cos54cos54︒+︒︒===︒︒.故选:A .二、多选题9.(2022·全国·高三专题练习)下列说法正确的有()A .经过30分钟,钟表的分针转过π弧度B .1801radπ︒=C .若sin 0θ>,cos 0θ<,则θ为第二象限角D .若θ为第二象限角,则2θ为第一或第三象限角【答案】CD 【解析】【分析】对于A ,利用正负角的定义判断;对于B ,利用角度与弧度的互化公式判断;对于C ,由sin 0θ>求出θ的范围,由cos 0θ<求出θ的范围,然后求交集即可;对于D ,由θ是第二象限角,可得222k k ππθππ+<<+,k Z ∈,然后求2θ的范围可得答案【详解】对于A ,经过30分钟,钟表的分针转过π-弧度,不是π弧度,所以A 错;对于B ,1︒化成弧度是rad 180π,所以B 错误;对于C ,由sin 0θ>,可得θ为第一、第二及y 轴正半轴上的角;由cos 0θ<,可得θ为第二、第三及x 轴负半轴上的角.取交集可得θ是第二象限角,故C 正确;对于D :若θ是第二象限角,所以222k k ππθππ+<<+,则()422k k k Z πθπππ+<<+∈,当2()k n n Z 时,则22()422n n n Z πθπππ+<<+∈,所以2θ为第一象限的角,当21()k n n Z =+∈时,5322()422n n n Z πθπππ+<<+∈,所以2θ为第三象限的角,综上,2θ为第一或第三象限角,故选项D 正确.故选:CD.10.(2022·全国·高三专题练习)中国传统折扇文化有着极其深厚的底蕴,一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形(如图)的面积为1S ,圆心角为1α,圆面中剩余部分的面积为2S ,圆心角为2α,当1S 与2S0.618≈(黄金分割比)时,折扇看上去较为美观,那么()A .1127.5α=︒B .1137.5α=︒C.21)απ=D.12αα=【答案】BCD 【解析】【分析】利用扇形的面积公式以及角度制与弧度制的互化即可求解.【详解】设扇形的半径为R,由211122221212R S S R αααα===,故D 正确;由122ααπ+=,。
同角三角函数的基本关系与诱导公式考点与提醒归纳
同角三角函数的基本关系与诱导公式考点与提醒归纳1.同角三角函数的基本关系:在一个单位圆上,以原点为中心,作出一个角度为θ的角。
那么,角θ的终边与单位圆交于一点P,点P的坐标可以表示为(Px,Py)。
根据三角函数的定义,可以得到以下关系:(1) 正弦函数(sin):sinθ = Py(2) 余弦函数(cos):cosθ = Px(3) 正切函数(tan):tanθ = Py / Px2.诱导公式:诱导公式是利用同角三角函数的基本关系,通过一些简单的代数运算推导出来的公式。
下面是一些常用的诱导公式:(1)tanθ = sinθ / cosθ -> sinθ = tanθ * cosθ(2)tanθ = py / Px -> Py = tanθ * Px(3)cotθ = 1 / tanθ -> cotθ = cosθ / sinθ(4)secθ = 1 / cosθ -> secθ = 1 / cosθ(5)cscθ = 1 / sinθ -> cscθ = 1 / Py3.开放、诱导角的关系:开放角和诱导角是同角三角函数中的两个重要概念。
(1)开放角:开放角是指角θ的终边所在的象限。
根据角度θ所在的象限,可以确定sinθ、cosθ、tanθ的正负关系。
(2)诱导角:角θ的终边与x轴正半轴之间的夹角记为θ0,称为角θ的诱导角。
根据θ0所在的象限,可以确定sinθ0、cosθ0、tanθ0的值。
4.注意事项:(1)需要记住各个象限中正弦函数、余弦函数、正切函数的正负关系。
通过画图和思考可以帮助记忆。
(2)要掌握正弦函数、余弦函数、正切函数在不同象限中的取值范围,充分理解诱导角与开放角的关系。
(3)熟练掌握诱导公式,能够熟练地根据一个三角函数的值求得其他三个函数的值。
(4)在解决实际问题和解题时,要善于利用诱导公式将一个三角函数转化为其他三个函数,以便更好地解题。
总之,同角三角函数的基本关系与诱导公式是学习三角函数的重要内容,掌握和理解好这一知识点对后续学习和解题非常有帮助。
三角函数的概念同角三角函数的基本关系式诱导公式重难点分析与出题角度归纳
Xx 学校学科教师辅导讲义一)一、定义:角可以看作成平面内一条射线绕着端点从一个位置到另一个位置所称的图形。
旋转开始时的射线、终止时的射线分别叫作_______、_______,射线的端点O 叫做_________.按逆时针方向旋转形成的角叫做_______,顺时针方向旋转形成的角叫做_______,若一条射线没有作任何旋转,称它形成了一个_______。
二、在直角坐标系内讨论角:(1)角的顶点在原点,始边与x 轴的非负半轴重合,角的终边(除端点外)在第几项先,就说这个角是第几象限角(或者说这个角属于第几象限);例如:30°、390°、-330°等都是第一象限角;120°、480°、-240°等都是第二象限角;240°、600°、-120°等都是第三象限角;-30°、-390°、330°等都是第四象限角。
注意:锐角_____第一象限角,但第一象限角_______锐角;钝角______第二象限角,但第二象限角________钝角。
(填“都是”或者“不都是”)(2)若角的终边在坐标轴上,就说这个角不属于任一象限。
例如:直角、周角、平角都不属于任一象限。
三、终边相同的角(重点)所有与角α终边相同的角,连同角α在内,可构成一个集合S={Z k k ∈•+=︒,360/αββ},即任一与角α终边相同的角都可以表示为角α与整个周角的和。
四、1弧度角的定义:我们把等于半径长的圆弧所对的圆心角叫做1弧度的角。
单位符号是 rad,读作弧度。
2、弧度数:在单位圆中,当圆心角为周角时,它所对的弧长为2π,所以周角的弧度数为2π,周角是2πrad 的角. 任意一个0°~360°的角的弧度数必然适合不等式 0≤x<2π. 任一正角的弧度数都是一个正实数;,任一负角的弧度数都是一个负实数; 零角的弧度数是0.五、弧度制与角度制的换算 360°=2πrad ;180°=πrad ;1°=180πrad ≈;1rad=π180≈°≈57°18′。
第25讲 同角三角函数基本关系式及诱导公式6种题型总结
第25讲同角三角函数基本关系式及诱导公式6种题型总结【考点分析】考点一:同角三角函数基本关系①平方关系:1cos sin 22=+αα.②商数关系:)2(tan cos sin ππααααk +≠=;考点二:三角函数诱导公式公式一二三四五六角)(2Z k k ∈+απαπ+α-απ-απ-2απ+2正弦αsin αsin -αsin -αsin αcos αcos 余弦αcos αcos -αcos αcos -αsin αsin -正切αtan αtan αtan -αtan -口诀函数名不变,符号看象限函数名改变,符号看象限【记忆口诀】奇变偶不变,符号看象限注意:①先将诱导三角函数式中的角统一写作2n πα⋅±;②无论有多大,一律视为锐角,判断2n πα⋅±所处的象限,并判断题设三角函数在该象限的正负;③当n 为奇数是,“奇变”,正变余,余变正;当n 为偶数时,“偶不变”函数名保持不变即可.【典例例题】题型一:同角三角函数公式求值【例1】已知角α为第二象限角,tan 3α=-,则cos α=()A .10B .10C .10-D .10【例2】已知12cos 13α=-,α是第三象限角,求sin α,tan α的值.【题型专练】1.已知13sin ,,322ππαα⎛⎫=∈ ⎪⎝⎭,则tan α=___________.2.下列四个命题中可能成立的一个是()A .1sin 3α=且2cos 3α=B .sin 0α=且cos 1α=-C .tan 1α=且cos 1α=-D .sin tan cos ααα-=(α为第二象限角)3.已知tan 2α=,32παπ<<,则cos sin αα-=()A B .C .5D .题型二:弦的齐次式问题【例1】已知角α的终边过点()13-,,求:①tan α;②sin cos sin 2cos αααα+-;③sin cos αα⋅【例2】已知tan 3α=,则ααααα222cos sin 21sin 2cos sin 2---___________.【例3】已知θ是第四象限角,()1,M m 为其终边上一点,且sin 5m θ=,则2sin cos sin cos θθθθ-+的值()A .0B .45C .43D .5【题型专练】1.已知tan 2α=,则sin 2cos 3cos 2sin αααα+-的值为()A .4B .4-C .54D .54-2.已知π3π,24x ⎛⎫∈ ⎪⎝⎭,且332cos sin sin cos 5x x x x +=-,则tan x =().A .2-B .12-C .52-D .3-3.若sin cos 2sin cos θθθθ+=-,则sin cos θθ的值是()A .310-B .310C .310±D .344.若sin cos 2sin cos θθθθ+=-,则()=++θθθθθcos sin cos sin 21sin ()A .65-B .25-C .65D .25题型三:知一求二问题【例1】已知(0,π)α∈,且1sin cos 5αα+=,给出下列结论:①ππ2α<<;②12sin cos 25αα=-;③3cos 5α=;④7cos sin 5αα-=-.其中所有正确结论的序号是()A .①②④B .②③④C .①②③D .①③④【例2】已知0x π-<<,1sin cos 5x x +=,求下列各式的值.(1)sin cos x x -;(2)223sin 2sin cos cos x x x x -+.【例3】已知sin cos x x +=44sin cos x x +=()A .98B .78C .54D .34)A.2或12B.2C.12D.12-【题型专练】1.已知13sin cos,644ππααα=-<<,则sin-cosαα的值等于()A.3B.3-C.3-D.432.已知1sin cos2θθ-=,则33sin cosθθ-=______.3.已知π(,π)2α∈,且1sin cos5αα+=,则sin cosαα=-____.4.(多选)已知(0,)θπ∈,1sin cos5θθ+=,则下列结论正确的是()A.,2πθπ⎛⎫∈ ⎪⎝⎭B.3cos5θ=-C.3tan4θ=-D.7sin cos5θθ-=5.已知1sin cos5θθ+=-,(0,)θπ∈,则sin cosθθ-=()A.15B.15-C.75D.75-题型四:诱导公式化简求值【例1】sin(9330︒)的值为()A.2B.12-C.12D.2【例2】已知7πtan6a⎛⎫=- ⎪⎝⎭,23πcos3b=,33πsin4c⎛⎫=- ⎪⎝⎭,则a,b,c的大小关系是()A.b c a>>B.a b c>>C.b a c>>D.a c b>>【例3】(1)计算:3sin(90)5tan1805cos0sin540-+︒+︒+︒;(2)化简:()3sin2cos()cos(2)sin()229cos()sin(3)sin()sin()2πππαααπαππαπααπα-+------+.【例4】设()()()sinπcosπxf x a b xαβ++=+,其中,,,a bαβ∈R,若()20215f=,则()2022f=()A.4B.3C.-5D.5【例5】已知sin(3π+θ)=13,则[]cos()cos cos()1πθθπθ+--+cos(2)33sin cos()sin22θπππθθπθ-⎛⎫⎛⎫---+⎪ ⎪⎝⎭⎝⎭=____.【题型专练】1.35πsin6=()2.cos 2040︒=()A .12B .12-C .2D .3.化简:sin(5)cos()cos(8)23sin()sin(4)2πθπθπθπθθπ-------=()A .-sin θB .sin θC .cos θD .-cos θ4.(1)化简:3sin(3)cos(2)sin 2cos()sin()παπαπαπαπα⎛⎫-⋅-⋅- ⎪⎝⎭-⋅--(2)求值:()()sin 150cos 210cos 420tan 60-︒⋅︒⋅-︒⋅︒5.已知()()()()()()sin cos 2tan tan sin f πβπββπββππβ--+=----.(1)若角β是第三象限角,且()1sin 5βπ-=,求()f β的值;(2)若2220β=︒,求()f β的值.题型五:诱导公式与三角函数定义、同角关系的综合运用【例1】已知3sin 5α=,且α是第二象限角,则cos()sin()παπα-++的值等于_______【例2】已知()1tan π2α-=2sin cos αα=-()A .14-B .14C .12D .12-【例3】已知角94α+的终边经过点(2,4)-,则23sin sin()cos απαα-+=()A .4-B .2-C .3D .9【例4】已知()()()()()3sin cos tan cos 222sin 2tan sin f πππααπαααπααππα⎛⎫⎛⎫⎛⎫+--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=---+.(1)化简()f α;(2)若31cos 25πα⎛⎫-=- ⎪⎝⎭,求()f α的值.【题型专练】1.已知tan()2πα+=-,则2sin 3cos 2sin 5cos αααα+=-___________.2.已知4sin()5απ+=,且sin cos 0αα<,则2sin()3tan(3)4cos(3)a αππαπ-+-=-________.3.已知22sin(3)cos(5)()3cos ()sin ()22f παπααππαα-+=-++.(1)若tan 2α=,求()f α的值;(2)若12()25f α=,(0,)απ∈,求sin cos αα-的值.4.已知(),0θπ∈-,且sin θ,cos θ为方程250x x m -+=的两根.(1)求m 的值;(2)求()()()23sin cos 2sin 25sin 3sin sin cos 222πθπθπθππππθθθθ⎛⎫-- ⎪-⎝⎭+⎛⎫⎛⎫⎛⎫--+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.5.已知3cos 4cos()02παπα⎛⎫--+= ⎪⎝⎭,求下列各式的值.(1)sin 2cos 5cos sin αααα+-;(2)24sin 3sin cos ααα-.题型六:换元法、角的拼凑【例1】若1sin ,63a π⎛⎫+= ⎪⎝⎭则2cos 3a π⎛⎫+= ⎪⎝⎭()A .13B .13-C .79D .79-【例2】已知5s n 3i πα⎛⎫ ⎪⎝=-⎭+,则3cos 10πα⎛⎫ ⎝-⎪⎭=()A.3B.3-C.3D.3【例3】若1sin 63πα⎛⎫+= ⎪⎝⎭,则5sin 6πα⎛⎫-= ⎪⎝⎭__________.【题型专练】1.当0,2πθ⎛⎫∈ ⎪⎝⎭时,若51cos 62πθ⎛⎫-=-⎪⎝⎭,则sin 6πθ⎛⎫+ ⎪⎝⎭的值为()A .12BC.D .12-2.若sin()63πα-=,则πcos()3α+=()A.B.CD3.(多选)已知π1sin 42α⎛⎫+= ⎪⎝⎭,下列结论正确的是()A.πcos 42α⎛⎫+=⎪⎝⎭B .π1cos 42α⎛⎫-=⎪⎝⎭C .5π1sin 42α⎛⎫+=⎪⎝⎭D .5π1cos 42α⎛⎫-=-⎪⎝⎭。
基础夯实:三角函数的概念、同角三角函数的关系式和诱导公式
基础夯实:三角函数的概念、同角三角函数的关系式和诱导公式作者:高彦军来源:《数学金刊·高考版》2013年第10期三角函数的概念及公式是三角函数整章的基础,是三角函数图象和恒等变换的最终着落点.重点:本部分的重点是三角函数的定义,同角三角函数的函数关系式、诱导公式,并能够灵活运用定义和公式解决有关求值和化简等问题.难点:三角函数线及函数符号的确定,以及灵活选取诱导公式.1. 角的分类(1)按旋转方向分类可以分为正角、负角和零角.(3)按照终边是否相同分类. 与α的终边相同的角的集合为{ββ=2kπ+α,k∈Z},与α的终边共线的角的集合为{ββ=kπ+α,k∈Z}.3. 根据三角函数的定义,求角α的三角函数值?摇(1)已知角α的终边上一点P的坐标,则可先求此点P到原点的距离r,然后利用三角函数的定义求解.(2)已知角α的终边所在的直线方程,需分两种情况取点:先在终边上的两条射线上分别取点,再利用三角函数的定义去求解;根据直线方程直接求出tanα,然后再根据角的终边所在的象限求出其他的三角函数值.4. 同角三角函数关系式的用途(1)根据一个角的某一个三角函数值,求出该角的其他三角函数值.(2)化简同角三角函数式.(3)证明同角的三角恒等式.(4)注意公式的逆用和变形用,如在解决齐次分式求值问题时,经常要用到sin2α+cos2α=1,sin2α=1-cos2α,sinα=cosαtanα等形式.5. 使用诱导公式的注意事项(1)使用步骤:负化正,大化小,小化锐是终了.“负化正”,即使用sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα这组公式将负角转化为正角.“大化小”是指当角较大时可以使用sin(2kπ+α)=sinα,cos(2kπ+α)=cosα,tan(kπ+α)=tanα这组公式将已知角转化为0~360°的角(2)一扇形的周长为20 cm,当扇形的圆心角α等于多少弧度时,这个扇形的面积最大?思索本题考查扇形的面积公式、弧长公式及函数最值等问题.。
三角函数概念、同角三角函数关系式和诱导公式归纳总结
三角函数概念、同角三角函数关系式和诱导公式归纳总结三角函数概念、同角三角函数关系式和诱导公式归纳总结知识点精讲一、基本概念角的概念包括正角、负角和零角。
其中正角是逆时针旋转而成的角,负角是顺时针旋转而成的角,零角是射线没旋转而成的角。
角α的弧度范围为(−∞,+∞)。
角α的始边与x轴的非负半轴重合,终边落在第几象限,α就叫做第几象限角,终边在坐标轴上的角不是象限角,称之坐标角(或象限界角、轴线角等)。
弧度制度是半径为r的圆心角α所对弧长为l,则α=l/r(弧度或rad)。
与角α(弧度)终边相同的角的集合为β=α+2kπ,k∈Z,其意义在于α的终边逆时针旋转整数圈,终边位置不变。
弧度或rad可省略。
两制互化时,只需记忆π=180,1=π/180两个换算单位即可。
6)弧长公式:l=αr(α∈(0,2π]),扇形面积公式:S=1/2lr=αr2/2.底高=lr,如图4-1所示。
注:关于扇形面积公式的记忆,可以采用类似三角形面积公式的方法,把扇形的弧长类比成三角形的底,半径类比成三角形的高,则有S=l*r/2.二、任意角的三角函数1.定义已知角α终边上的任一点P(x,y)(非原点O),则P到原点O的距离r=OP=sqrt(x^2+y^2)。
sinα=y/r,cosα=x/r,tanα=y/x。
此定义是解直三角形内锐角三角函数的推广。
类比,对∠y,邻∠x,斜∠r,如图4-2所示。
2.单位圆中的三角函数线以α为第二象限角为例。
角α的终边交单位圆于P,PM垂直x轴于M,α的终边或其反向延长线交单位圆切线AT于T,如图4-3所示,由于取α为第二象限角,sinα=MP>0,cosα=OM<0,tanα=AT<0.3.三角函数象限符号与单调性在单位圆中r=sqrt(x^2+y^2)=1,则sinα=y,cosα=x,tanα=y/x。
在第一、二象限,三角函数值为正;在第三、四象限,sinα为负,cosα和tanα为正。
七 三角函数的概念及同角三角函数关系式与诱导公式
七 三角函数的概念及同角三角函数关系式与诱导公式知识要点:1.三角函数的概念(1)角的概念:角的定义,正角、负角和零角,象限角,轴线角,终边相同的角.(2)弧度制:弧度制的概念,弧度与角度的互换,弧长公式、扇形面积公式.(3)任意角的三角函数:三角函数的定义,三角函数的符号.2.同角三角函数的关系式:αααααcos sin tan ,1cos sin 22==+ 3.正弦、余弦的诱导公式:奇变偶不变,符号看象限 θθπ→+2k任意角的三角函数→正角的三角函数→︒0~︒360角的三角函数→锐角的三角函数.基础题例:例1.(1)如果α是第三象限的角,那么-α,2α的终边落在何处?(2)写出终边在直线x y 3=上的角的集合;(3)若角θ的终边与76π角的终边相同,求在[0,2π)内终边与3θ角的终边相同的角.例2已知一扇形的周长为C(C>0),当扇形的中心角为多大时,它有最大面积?并求出这个最大值.例3解答下列问题(1)若θ在第四象限,试判断)cos(sin )sin(cos θθ⋅的符号;(2)若0)tan(sin )tan(cos >⋅θθ,试指出θ所在象限,并用图形表示出2θ所取值的范围.例4化简下列各式(1))3tan()cos()tan()2sin(απαπαπαπ--+-(2)︒︒+︒-⋅︒+︒⋅︒1050tan 120tan )870cos(930cos 150sin 690sin例5已知11tan tan -=-αα,求下列各式的值:(1)ααααcos sin cos 3sin +-(2)2cos sin sin 2++ααα练习:1.已知1)21(2sin <θ,则θ所在的象限是 .2.已知角α的终边在直线x y 43-=上,则ααcos sin 2+的值是 .3.(08高考四川卷)设πα20<≤,若ααcos 3sin >,则α的取值范围是 .4.(1)已知扇形的周长为10,面积为4,求扇形中心角的弧度数;(2)已知扇形的周长为40,当它的半径和中心角取何值时,才能使扇形的面积最大?最大面积是多少?5.若524cos ,53sin +-=+-=m m m m θθ(其中πθπ≤≤2),则m 的值等于 .6.已知),0( ,51cos sin πθθθ∈=+,求值:(1)θtan ; (2)θθcos sin -; (3)θθ33cos sin +7.(08高考浙江卷)若5sin 2cos -=+αα,则=αtan .七 三角函数的概念及同角三角函数关系式与诱导公式参考答案: 例1 (1)第二象限; 第一、二象限及y 轴的非负半轴(2)},3|{Z k k ∈+=ππαα (3)πππ2134,2120,72 例2 θ=2, 162c 例3(1) + (2)第一、三象限 例4 (1)-tan α (2)23例5 (1)-513)2(,35练习1.第一、三象限2.52或 - 523.)34,3(ππ4.(1)21(2)θ=2,1005.m=0(舍),m=86.(1)12537)3(,57)2(,34-7.2。
高考数学复习考点讲解与真题分析08---同角三角函数的基本关系及诱导公式
.A sin110 < cos100 < sin1680
.B sin1680 < sin110 < cos100
.C sin110 < sin1680 < cos100
.D
sin1680
<
cos100
<
sin 110 [来源:学科网 ZXXK]
解 为 , 由 于 正 弦 函 数 【 析 】 因 sin160° = sin(180° −12° ) = sin12°, cos10° = cos(90° − 80° ) = sin 80°
之间转化的依据,是三角函数化简、求值、证明的重要工具,主要用于化任意角的三角函数为0o ~ 90o 角
的三角函数或给定区间内角的三角函数.应用诱导公式,既可以直接从九组诱导公式中合理选用,也可以 直接运用十字诀:“奇变偶不变,符号看象限”,一般来说用后一方法记忆负担较轻.应用诱导公式时需 要特别注意符号问题. ◎方法归纳 同角三角恒等变形是三角恒等变形的基础,主要是变名、变式. 1.同角关系及诱导公式要注意象限角对三角函数符号的影响,尤其是利用平方关系在求三角函数值时,进行 开方时要根据角的象限或范围,判断符号后,正确取舍. 2.三角求值、化简是三角函数的基础,在求值与化简时,常用方法有:
( 高三 ) 知 , ( 母题变式 1-2-3 2018 江苏徐州
模拟 已 sin(π − x) = 3 则 cos(5π − x) =
在区间 为 函数, , 。 y = sin x
[0° , 90° ] 上 递增
因此 sin11° < sin12° < sin 80° 即 sin11° < sin160° < cos10°
三角函数概念、同角三角函数关系式和诱导公式归纳总结
三角函数概念、同角三角函数关系式和诱导公式归纳总结知识点精讲一、基本概念(1)任意角---------⎧⎪⎨⎪⎩正角逆时针旋转而成的角;负角顺时针旋转而成的角;零角射线没旋转而成的角.角α(弧度)(,)∈-∞+∞.(2)角α的始边与x 轴的非负半轴重合,终边落在第几象限,α就叫做第几象限角,终边在坐标轴上的角不是象限角,称之坐标角(或象限界角、轴线角等) (3)弧度制度:半径为r 的圆心角α所对弧长为l ,则lrα=(弧度或rad ). (4)与角α(弧度)终边相同的角的集合为{}2,k k Z ββαπ=+∈,其意义在于α的终边逆时针旋转整数圈,终边位置不变. 注:弧度或rad 可省略(5)两制互化:一周角=036022rrππ==(弧度),即0180π=. 1(弧度)00018057.35718π⎛⎫'=≈= ⎪⎝⎭故在进行两制互化时,只需记忆0180π=,01180π=两个换算单位即可:如:005518015066π=⨯=;036361805ππ=⨯=. (6)弧长公式:l r α=((0,2])απ∈, 扇形面积公式:21122S lr r α==. 注:关于扇形面积公式的记忆,可以采用类似三角形面积公式的方法,把扇形的弧长类比成三角形的底,半径类比成三角形的高,则有11=22S lr =底高,如图4-1所示.二、任意角的三角函数1.定义已知角α终边上的任一点(,)P x y (非原点O ),则P到原点O的距离0r OP ==>.sin ,cos ,tan y x y r r xααα===.此定义是解直三角形内锐角三角函数的推广.类比,对y ↔,邻x ↔,斜r ↔, 如图4-2所示.2.单位圆中的三角函数线以α为第二象限角为例.角α的终边交单位圆于P ,PM 垂直x 轴于M , α的终边或其反向延长线交单位圆切线AT 于T ,如图4-3所示,由于取α为第二象限角,sin α=MP>0, cos α=OM<0, tan α=AT<0.3.三角函数象限符号与单调性在单位圆中1r ==,则:(1)sin yy rα==,即α终边与单位圆交点的纵坐标y 即为α的正弦值sin α. 如图4-4(a )所示,sin α的特征为:01101111.⎧⎪-⎪⎨⎪⎪--⎩上正、下负;上(90),下(270),左、右都为;按逆时针方向旋转,向上(一、四)象限为增,从增到,向下(二,三象限)为减,从减到 (2)cos xx rα==,即α终边与单位圆交点的横坐标x 即为的余弦值cos α. 如图4-4(b )所示,cos α的特征为:01101111.⎧⎪-⎪⎨⎪⎪--⎩右正、左负;右(0),左(180),上、下都为;按逆时针方向旋转,向右(三、四)象限为增,从增到,向左(一,三象限)为减,从减到 (3)tan yxα=.如图4-4(c )所示,tan α的特征为: 0.⎧⎪⎨⎪⎩一、三正,二、四负;上、下是(即不存在),左、右都是;逆时针方向旋转,各象限全增三、同角三角函数的基本关系、诱导公式 1. 同角三角函数的基本关系 平方关系:22sin cos 1αα+= 商数关系:sin tan cos ααα=2. 诱导公式(1)sin ()sin()sin ()n n n ααπα⎧+=⎨-⎩为偶数;为奇数cos ()cos()cos ()n n n ααπα⎧+=⎨-⎩为偶数;为奇数tan()tan ()n n απα+=为整数.(2)奇偶性.()()()sin -=-sin cos -=cos tan -=-tan αααααα,,.(3)1sin -=cos cos -=sin tan -=222tan πππαααααα⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,, 奇变偶不变,符号看象限,说明:(1)先将诱导三角函数式中的角统一写作2n πα⋅±;(2)无论有多大,一律视为锐角,判断2n πα⋅±所处的象限,并判断题设三角函数在该象限的正负;(3)当n 为奇数是,“奇变”,正变余,余变正;当n 为偶数时,“偶不变”函数名保持不变即可. 例如(1)sin +2πα⎛⎫⎪⎝⎭,因为+22ππαπ<<,所以sin +>02πα⎛⎫⎪⎝⎭,即sin +=cos 2παα⎛⎫⎪⎝⎭, (2)()sin +πα,因为3+2ππαπ<<,所以()sin +<0πα,即()sin +=-cos παα, 简而言之即“奇变偶不变,符号看象限”.题型归纳及思路提示题型1终边相同的角的集合的表示与区别 思路提示(1) 终边相同的角的集合的表示与识别可用列举归纳法和双向等差数列的方法解决.(2) 注意正角、第一象限角和锐角的联系与区别,正角可以是任一象限角,也可以是坐标轴角;锐角是正角,也是第一象限角,第一象限角不包含坐标轴角.例4.1终边落在坐标轴上的角的集合为( ) A. {},k k Zααπ=∈ B. ,2k k Z παα⎧⎫=∈⎨⎬⎩⎭C. ,2k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭D.,2k k N παα⎧⎫=∈⎨⎬⎩⎭分析 表示终边相同的角的集合,必有k Z ∈,而不是k N ∈.解析 解法 一:排除法.终边在坐标轴上的角有4种可能,x 轴正、负半轴,y 轴正、负半轴,取1,2,3,4,,k =可知只有选项B占有4条半轴,故选B. 解法二;推演法.终边在坐标轴上的角的集合为3113",2,,,,0,,,,2,",2222ππππππππ----可以看作双向等差数列,公差为2π,取初始角0α=,故0()2k k Z πα=+∈,故0()2k k Z πα=+∈⇒,2k k Z παα⎧⎫=∈⎨⎬⎩⎭故选B. 评注 终边在x 轴的角的集合,公差为π,取初始角0α=⇒{},k k Z ααπ=∈;终边在y 轴的角的集合,公差为π,取初始角2πα=⇒,2k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭.例4.2 请表示终边落在图4-5中阴影部分的角的集合.分析 本题是关于区域角的表示问题,需要借助终边相同角的集合表示知识求解,只需要把握区域角初始角的范围和终边相同角的集合的公差的大小即可顺利求解.解析 (1)如图4-5(a )所示阴影部分的角的集合表示为22,63k k k N ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭;(2)如图4-5(b )所示阴影部分的角的集合表示为222,63k k k N ππαπαπ⎧⎫-+≤≤+∈⎨⎬⎩⎭; (3)如图4-5(c )所示阴影部分的角的集合表示为21122,36k k k N ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭; (4)如图4-5(d )所示阴影部分的角的集合表示为,63k k k N ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭. 评注 任一角α与其终边相同的角,都可以表示成α与整数个周角的和,正确理解终边相同的角的集合中元素组成等差数列,公差为2π,即集合的周期概念,是解决本题的关键.变式1设集合M =⎩⎨⎧ x ⎪⎪⎭⎬⎫x =k 2·180°+45°,k ∈Z ,N =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k 4·180°+45°,k ∈Z ,那么( ) A .M ⊆N B . N ⊆M C .M =ND .M ∩N =∅例4.3 下列命题中正确的是( )A. 第一象限角是锐角B. 第二象限角是钝角C.()0,απ∈,是第一、二象限角D. ,02πα⎛⎫∈-⎪⎝⎭,α是第四象限角,也叫负锐角 解析 第一象限角的集合为022,2k k k Z παπαπ⎧⎫+<<+∈⎨⎬⎩⎭,锐角的集合是是其真子集(即当0k =时)故选项A 错;同理选项B 错;选项C 中(0,)2ππ∈,但2π不是象限角,选项C 也错,故选D. 题型2 等分角的象限问题 思路提示先从α的范围出发,利用不等式性质,具体有:(1)双向等差数列法;(2)nα的象限分布图示. 例4.4 α 是第二象限角,2α是第 象限角解析 解法一:α与终边相同的角的集合公差为2π,该集合中每个月的一半组成的集合公差为π,取第二象限的一个初始集合,2ππ⎛⎫ ⎪⎝⎭,得2α的初始集合,42ππ⎛⎫⎪⎝⎭,对比集合以π公差旋转得2α的分布,如图4-6所示,得2α是第一、三象限角.解法二:如图4-7所示,α是第二象限角,2α是第一、三象限角,又若α是第四象限角,2α是第二、四象限角.解法三:取α=0120,000012036060,2402α+⇒=,即2α是第一、三象限角.评注 对于2α是第几象限角的问题,做选填题以记住图示最为便捷,解法三是一种只要答案的特值方法;解法一能准确找出2α的分布. 对于3α是第几象限角可使用象限分布图示的规律,如图4-8所示,那么对于“nα是第几象限角”的象限分布图示规律是什么?只需要把第一个象限平均分成n 部分,并从x 轴正向起,逆时针依次标注1,2,3,4,1,2,3,4,1,2,3,4…..,则数字(α终边所在象限)所在象限即为nα终边所在象限.例如:3α的象限分布图示如图4-8所示,若α为第一象限角,则3α为第一、二、三象限角.变式1 若α是第二象限角,则3α是第 象限角;若α是第二象限角,则3α的取值范围是 题型3 弧长与扇形面积公式的计算 思路提示(1) 熟记弧长公式:l =|α|r ,扇形面积公式:S 扇形=12lr =12|α|r 2(弧度制(0,2]απ∈)(2) 掌握简单三角形,特别是直角三角形的解法例4.5 有一周长为4的扇形,求该扇形面积的最大值和相应圆心角的大小. 解析:设扇形的半径为r ,弧长为l ,圆心角为α(弧度),扇形面积S.依题意0024r l r l >⎧⎪>⎨⎪+=⎩,12S lr =,则12S lr =11(42)(42)224r r r r =-=-32π 2π4π O yx 54π 图 4-62 3 1 4 x 4 13 2 y图 4-7O21422()142r r -+≤=,(当且仅当422r r -=时,即1r =时取“=”,此时2l =)故扇形的面积最大值为1,此时lrα==2(弧度).评注本题亦可解作21112212442l r S lr l r +⎛⎫==⋅≤= ⎪⎝⎭,当且仅当22l r ==,即2l =,1r =时“=”成立,此时lr α==2.本题可改为扇形面积为1,求周长的最小值,2C l r =+≥且112lr =得2lr =,故4C ≥(当且仅当22l r ==时“=”成立),扇形周长的最小值为4.变式1 扇形OAB 的圆心角∠OAB=1(弧度),则AB =() A. 1sin2 B. 6π C. 11sin 2D. 21sin 2变式2 扇形OAB ,其圆心角∠OAB=0120,其面积与其内切圆面积之比为 题型4 三角函数定义题 思路提示(1) 任意角的正弦、余弦、正切的定义; (2) 诱导公式;(3) 理解并掌握同角三角函数基本关系.例4.6 角α终边上一点(2sin 5,2cos5)P -,(0,2)απ∈,则α=( ) A. 52π-B. 35π-C. 5D.5+2π 解析 解法一:排队法. 005557.3286.5≈⨯=,是第四象限角,2sin50x =<,2cos50y =-<,2r ==,α是第三象限角.选项C 中,5是第四象限角,选项D 中,5+2π是第一象限角,故排除C 、D ;选项B 中, ()cos cos 35cos5απ=-=-,与cos sin 5xrα==矛盾,排除B ,故选A.解法二:推演法.由解法一,35,2πθαπθ'=+=+,,(0,)2πθθ'∈(这样设的原因是cos sin5α=),cos cos()απθ'=+=cos θ'-,3sin 5sin()cos 2πθθ=+=-⇒cos cos θθ'-=-⇒cos cos θθ'=,,(0,)2πθθ'∈⇒352πθθ'==-, ⇒35522ππαπ⎛⎫=+-=- ⎪⎝⎭故选A.变式1 已知角α终边上一点(2sin 2,2cos 2)P -,(0,2)απ∈,则α=( )A.2B.-2C.22π-D. 22π- 变式2 已知角α终边上一点22(2sin ,2cos )77P ππ-,则α=变式3 已知角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线2y x =上,则cos2θ=( ) A. 45-B. 35-C. 35D. 45题型5 三角函数线及其应用 思路提示正确作出单位圆中正弦、余弦、正切的三角函数线 一,利用三角函数线证明三角公式 例4.7 证明(1)()sin -=sin παα, (2)sin -=cos 2παα⎛⎫⎪⎝⎭(3)31tan =-2tan παα⎛⎫+⎪⎝⎭解析 (1)如图4-9所示,角-πα与α的终边关于y 轴对称,MP MP '=⇒()sin -=sin παα. (2)如图4-10所示,角-2πα与α的终边关于直线y x =对称.OM M P ''=⇒sin -=cos 2παα⎛⎫⎪⎝⎭(3) 如图4-11所示,.2311tan =k =--2tan tan OT πααα⎛⎫+=⎪⎝⎭评注 用单位圆中的三角函数线证明诱导公式是新课标的要求,必须掌握,重点在(),,2ππααα±-±.在(1)证明中易得()cos -=-cos παα,,相除得()tan -=-tan παα,,在(2)证明 中易得cos -=sin 2παα⎛⎫⎪⎝⎭,相除得1tan =2tan παα⎛⎫-⎪⎝⎭.角α与-πα的终边关于终边(即y 轴)对称,角-2πα与α的终边关于终边所在的直线y x =轴对称.一般地,角α,β的终边关于终边所在直线2αβ+轴对称二.利用三角函数线比较大小 例4.8 ,42ππα⎛⎫∈⎪⎝⎭,比较sin ,cos ,tan ααα的大小. 解析 如图4-12所示,,42ππα⎛⎫∈⎪⎝⎭,在单位圆中作出α的正弦线MP ,余弦线OM 和正切线AT ,显然有OM<MP<A T,故cos sin tan ααα<<.评注 由本例可看出,三角函数线可直观、形象地处理三角函数中的大小比较问题变式1 求证:(1)当角α的终边靠近y 轴时,cos sin αα<及tan 1α>; (2)当角α的终边靠近x 轴时,cos sin αα>及tan 1α<;变式2 (1)α为任意角,求证:cos sin 1αα+>; (2)0,2πα⎛⎫∈ ⎪⎝⎭,比较sin ,cos ,tan ααα的大小 变式3 比较大小 (1)sin 2,sin 4,sin 6 (2)cos 2,cos 4,cos6(3)tan 2,tan 4,tan 6 变式4 1sin tan ()tan 22ππαααα>>-<< ,则α∈() A. ,24ππ⎛⎫-- ⎪⎝⎭ B. ,04π⎛⎫- ⎪⎝⎭C. 0,4π⎛⎫⎪⎝⎭D. ,42ππ⎛⎫ ⎪⎝⎭三、利用三角函数线求解特殊三角方程例4.9 利用单位圆中的三角函数线求解下列三角方程: (1)1sin 22x =;(2)2cos 22x =;(3)tan 23x =.解析 (1)在单位圆中作为正弦为12的正弦线,如图4-13所示,得正弦为12的两条终边,即16πα=,256πα=,故226x k ππ=+或5226x k ππ=+,k Z ∈. 解得12x k ππ=+或512x k ππ=+,k Z ∈.(2)如图4-14所示14πα=,24πα=-,故224x k ππ=+或224x k ππ=-+,k Z ∈,解得8x k ππ=+或8x k ππ=-+,k Z ∈.(3)如图4-15所示,得13πα=,243πα=,公差为π,故23x k ππ=+,k Z ∈. 解得6x k ππ=+,k Z ∈.评注(1)sin 1α≤ ,cos 1α≤,tan x R ∈;(2)当1k <时,方程sin ,cos x k x k ==在[0,2)π有两解. 四、利用三角函数线求解特殊三角不等式例4.10利用单位圆,求使下列不等式成立 的角的集合. (1)1sin 2x ≤;(2)2cos 2x ≥;(3)tan 1x ≤.分析 这是一些较简单的三角函数不等式,在单位圆中,利用三角函数线作出满足不等式的角所在的区域,由此写出不等式的解集.解析 (1)如图4-16所示,作出正弦线等于12的角:5,66ππ,根据正弦上正下负,得在图4-16中的阴影区域内的每一个角均满足1sin 2x ≤,因此所求的角x 的集合为 51322,66xk x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭.(2)如图4-17所示,由余弦左负右正得满足2cos 2x ≥的角的集合为 22,44x k x k k Z ππππ⎧⎫-+≤≤+∈⎨⎬⎩⎭. (3)如图4-18所示,在[0,2]π内,作出正切线等于1的角5,44ππ:则在如图4-18所示的阴影区域内(不含y 轴)的每一个角均满足tan 1x ≤,因此所求的角的集合为,24x k x k k Z ππππ⎧⎫-+≤≤+∈⎨⎬⎩⎭.评注 解简单的三角不等式,可借助于单位圆中的三角函数线,先在[0,2]π内找出符合条件的角,再利用终边相同的角的表达式写出符合条件的所有角的集合,借助关于单位圆中的三角函数线,还可以比较三角函数值的大小.例4.11利用单位圆解下列三角不等式: (1)2sin 10α+>; (2)23cos 30α+≤; (3)sin cos αα>;(4)若02απ≤<,sin 3cos αα>,则则α∈() A. ,32ππ⎛⎫⎪⎝⎭ B. ,3ππ⎛⎫⎪⎝⎭ C. 4,33ππ⎛⎫⎪⎝⎭D. 3,32ππ⎛⎫ ⎪⎝⎭解析 (1)由题意1sin 2α>-,令1sin 2α=-,如图4-19所示,在单位圆中标出第三、四象限角的两条终边,这两条终边将单位圆分成上、下两部分,根据正弦上正下负,取α终边上面的部分,按逆时针从小到大标出16πα=-,2766ππαπ=+=,故不等式的解集为 722,66k k k Z ππαπαπ⎧⎫-+≤≤+∈⎨⎬⎩⎭.(2)如图4-20所示,3cos α≤标出3cos α=的角在单位圆中第二、三象限的两条终边,这两条终边将单位圆分成左,右两部分,根据余弦左负右正,取α终边在左侧的部分,按逆时针从小到大标出1566ππαπ=-=,2766ππαπ=+=,.故不等式的解集为 5722,66k k k Z ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭. (3)sin cos αα>y x y x r r ⇒>⇒>.如图4-21所示,在单位圆中作出y x =所对的两个角14πα=,254πα=.这两个角的终边将单位圆分成上、下两部分.在上面的部分取2πα=,sin cos 22ππ>成立 ,故不等式的解集为522,44k k k Z ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭. 注 本题也可通过线性规划的知识直接判断出表示y x >的平面区域为如图4-21所示的阴影部分.(4)sin 3cos αα>,得33y x y x r r>⇒>,如图4-22所示,在单位圆中标出3y x =所对的角13πα=,243πα=.,.这两个角的终边把单位圆分为上、下两部分,因为02απ≤<,在上面的部分取2πα=,sin 3cos αα>成立 ,所以取α终边上面的部分,故不等式的解集为433ππαα⎧⎫≤≤⎨⎬⎩⎭,故选C.评注 三角函数线的应用(1)证明 三角公式;(2)比较大小;(3)解三角方程;(4)求解三角不等式. 变式1 已知函数()3cos ,,()1f x x x x R f x =-∈≥若,则x 的取值范围() A. ,3xk x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭ B. 22,3x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭ C. 5,66xk x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭D. 522,66x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭题型6 象限符号与坐标轴角的三角函数值思路提示正弦函数值在第一、二象限为正,第三、四象限为负;. 余弦函数值在第一、四象限为正,第二、三象限为负;. 正切函数值在第一、三象限为正,第二、四象限为负.例4.12(1)若()0,2απ∈,sin cos 0αα<,则α的取值范围是 ; (2)3tan 0sincos sincos 222ππππ+---= ; 解析:(1)由sin cos 0αα<得sin 0cos 0αα>⎧⎨>⎩或sin 0cos 0αα<⎧⎨<⎩,得α为第二象限角或第四象限角⇒α的取值范围是3,,222ππππ⎛⎫⎛⎫⋃⎪ ⎪⎝⎭⎝⎭. (2)01(1)(1)12+-----=.变式1 sin 0α>是α为第一、二象限的( )A.充分而不必要条件B. 必要而不充分条件C.充分必要条件D.既不充分也不必要条件 变式2 ,43sin,cos 2525αα==-,2α是第 象限角,α是第 象限角. 变式3若sin cos 1=-,则α的取值范围是 .变式4 已知tan cos 0αα<,则α是第( )象限角.A.一或三B. 二或三C.三或四D.一或四 变式5 若α为第二象限角,则tan2α的符号为变式6 若点(tan ,cos )P αα在第三象限,则角α的终边在第 象限角变式7 函数cos sin tan sin tan x x xy x cox x=++的值域为 . 题型7 同角求值-----条件中出现的角和结论中出现的角是相同的思路提示(1) 若已知角的象限条件,先确定所求三角函数的符号,再利用三角形三角函数定义求未知三角函数值.(2) 若无象限条件,一般“弦化切”. 例4.13 (1)已知3,22παπ⎛⎫∈ ⎪⎝⎭,1sin 3α=-,cos α= , tan α=(2)已知tan α=2, 1. 3,2παπ⎛⎫∈ ⎪⎝⎭,sin α= , cos α= 2.2sin cos 3sin 4cos αααα-+= ,3. 22sin 2sin cos 3cos αααα--= , (3)已知2sin cos αα-= 1. sin cos tan ααα+= ; 2. sin cos αα-= . 解析 (1)因为3,22παπ⎛⎫∈⎪⎝⎭,cos 0,tan 0αα><,故cos α==.sin tan cos ααα==(2)1.因为3,2παπ⎛⎫∈ ⎪⎝⎭,所以sin 0,cos 0αα<<,22sin tan cos sin cos 1ααααα⎧=⎪⎨⎪+=⎩, 得22sin 2cos sin cos 1αααα=⎧⎨+=⎩,得21cos 5α=.cos 5α=-,sin 5α=-2.无象限条件,弦化切.2sin cos 3sin 4cos αααα-+=2tan 122133tan 432410αα-⨯-==+⨯+3. 22sin 2sin cos 3cos αααα--=2222sin 2sin cos 3cos sin cos αααααα--=+22tan 2tan 3tan 1ααα--=+35- (3)无象限条件,弦化切.,两边平方,得()()2222sin cos 5sin cos αααα-=+222sin 4sin cos 4cos (sin 2cos )0αααααα⇒++⇒+=sin 2cos 0αα⇒+=,tan 20α+=⇒tan 2α=-.1. sin cos tan ααα+=22sin cos tan sin cos ααααα+=+2tan 12tan tan 15ααα+=-+2. 2sin cos αα-=()αϕ+=可知当x α=时,2sin cos x x -取最小值.()2sin cos sin 2cos 0x x x ααα='-=+=.2sin cos sin 2cos 0αααα⎧-=⎪⎨+=⎪⎩⇒cos 5sin αα⎧=⎪⎪⎨⎪=⎪⎩,sin cos αα-=5-. 评注 本题给出同角求值的几种基本题型..(1)及(2)中的1体现了有象限条件的任意角三角函数与锐角三角函数的本质联系(只多了一个象限符号);(2)中的2体现了无象限条件弦化切的解题策略.(3)中无象限条件,2sin cos αα-=()αϕ+=表示函数2sin cos y x x =-在处取得极小值,导数0x y α='=,故有更简便做法:()2sin cos sin 2cos 0x x x ααα='-=+=.如已知sin cos αα-=()0,απ∈,则tan α= .答案为-1,与本题(3)同理可解.变式1 若tan α=2,则2212sin cos cos sin αααα+=-=( ) A. 13 B.3 C. 13- D.-3变式2 当x θ=时,函数sin 2cos y αα=-取得最大值,则cos θ= ; 例4.14 已知1sin cos 5αα+=-时,,22ππα⎛⎫∈-⎪⎝⎭,则tan α=( )A. 34-B. 43-C. 34D.- 43解析 解法一:已知角的象限条件,将方程两边平方得112sin cos 25αα+=12sin cos 025αα⇒=-<,,22ππα⎛⎫∈- ⎪⎝⎭,tan 0α<,排除C 和D., sin 0,cos 01sin cos 05αααα<>⎧⎪⎨+=-<⎪⎩⇒sin cos ,αα>tan 1α>,故排除A ,故选B. 解法二:将方程两边平方得,()22221sin 2sin cos cos sin cos 25αααααα++=+ 2212sin 25sin cos 12cos 0αααα⇒++=212tan 25tan 120αα⇒++=43tan 34α⇒=--或由解法一知tan 1α>,得4tan 3α=-,故选B. 变式1 已知R α∈,sin 2cos αα+=,则tan 2α=( ) A.43 B. 34 C. 34- D. 43- 变式2 已知3sin cos 8αα=,42ππα<<,则cos sin αα-=( )A. 12B. 12-C. 14D. 14-题型8 诱导求值与变形 思路提示(1)诱导公式用于角的变换,凡遇到与2π整数倍角的和差问题可用诱导公式,用诱导公式可以把任意角的三角函数化成锐角三角函数. (2)通过2,,2πππ±±±等诱导变形把所给三角函数化成所需三角函数.(3)2,,2παβππ±=±±±等可利用诱导公式把,αβ的三角函数化例4.15 求下列各式的值.(1)0sin(3000)-; (2)41cos 3π⎛⎫-⎪⎝⎭; (3)51tan 4π⎛⎫-⎪⎝⎭解析 (1)0sin(3000)-=0sin(8360120)sin120-⨯+=-000sin(18060)sin 602=--=-=-;(2)41cos 3π⎛⎫-⎪⎝⎭=411cos cos 14cos 3332ππππ⎛⎫⎛⎫⎛⎫=-==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(3)5151tan tan tan(13)tan 14444πππππ⎛⎫-=-=--== ⎪⎝⎭. 评注 利用诱导公式化简或求值,可以参照口决“负角化正角,大角化小角,化为锐角,再计算比较”.变式1 若()cos 2-3πα=,且,02πα⎛⎫∈- ⎪⎝⎭,则()sin -πα= ; 变式2 若3,22ππα⎛⎫∈⎪⎝⎭,()3tan 74απ-=,则cos sin αα+=( ) A. 15± B. 15- C.15 D. 75- 变式3 若cos-80°= k ,则tan 100°的值为( )A.B. D.变式4 已知1sin 64x π⎛⎫+= ⎪⎝⎭,则25sin sin ()63x x ππ⎛⎫-+- ⎪⎝⎭= ; 最有效训练题A. 15± B. 15- C. 15 D. 75-2.已知点33(sin ,cos )44P ππ落在角θ的终边上,且[]0,2θπ∈,则θ的值为( )A. 4πB. 34πC. 54πD. 74π3.若角α的终边落在直线0x y +==( )A. 2B. 2-C. 1D. 0 4.若角A 是第二象限角,那么2A 和2A π-都不是( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 5.已知sin -=cos ,cos -=sin 22ππαααα⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,,对于任意角α均成立.若(sin )cos 2f x x =,则(cos )f x =( )A. cos2x -B. cos2xC. sin 2x -D. sin 2x6.已知02x π-<<,1cos sin 5αα+=-,则sin cos 1αα-+=( ) A. 25- B. 25 C. 15 D. 15-7.已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若(4,)P y 是角θ终边上一点,且25sin 5θ=-,则y = .8.函数2lgsin 29y x x =+-的定义域为 .9.如图4-23所示,已知正方形ABCD 的边长为1,以A 为圆心,AD 长为半径画弧,交BA 的延长线于1P ,然后以B 为圆心,1BP 长为半径画弧,交CB 的延长线于2P ,再以C 为圆心,2CP 长为半径画弧,交DC 的延长线于3P ,再以D 为圆心,3DP 长为半径画弧,交AD 的延长线于4P ,再以A 为圆心,4AP 长为半径画弧,…,如此继续下去,画出的第8道弧的半径是 ,画出第n 道弧时,这n 道弧的弧度之和为 .10.在平面直角坐标系xOy 中,将点3,1)A 绕点O 逆时针旋转090到点B ,那么点B 的坐标为 ;若直线OB 的倾斜角为α,则sin 2α的值为 . 11.一条弦的长度等于半径r ,求: (1)这条弦所对的劣弧长;(2)这条弦和劣弧所围成的弓形的面积.12.已知001tan(720)3221tan(360)θθ++=+--. 求2221cos ()sin()cos()2sin ()cos (2)πθπθπθπθθπ⎡⎤-++-++⎣⎦--的值.。
专题5.2 同角三角函数的基本关系与诱导公式(精讲)(解析版)
专题5.2 同角三角函数的基本关系与诱导公式【考纲要求】1. 理解同角三角函数的基本关系.2. 掌握正弦、余弦、正切的诱导公式.【知识清单】知识点1.同角三角函数的基本关系式 1.同角三角函数的基本关系式(1)平方关系:sin 2α+cos 2α=1(α∈R ). (2)商数关系:tan α=sin αcos α⎝⎛⎭⎫α≠k π+π2,k ∈Z . 2.对同角三角函数基本关系式的理解注意“同角”,这里“同角”有两层含义,一是“角相同”,二是对“任意”一个角(在使函数有意义的前提下)关系式都成立,即与角的表达形式无关,如sin 23α+cos 23α=1成立,但是sin 2α+cos 2β=1就不一定成立. 3.常用的等价变形sin 2α+cos 2α=1⇒⎩⎪⎨⎪⎧sin 2α=1-cos 2α,cos 2α=1-sin 2α,sin α=±1-cos 2α,cos α=±1-sin 2α;tan α=sin αcos α⇒⎩⎪⎨⎪⎧sin α=tan αcos α,cos α=sin αtan α.知识点2.三角函数诱导公式 六组诱导公式对于角“k π2±α”(k ∈Z )的三角函数记忆口诀“奇变偶不变,符号看象限”,“奇变偶不变”是指“当k 为奇数时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变”.“符号看象限”是指“在α的三角函数值前面加上当α为锐角时,原函数值的符号”知识点3.特殊角的三角函数值(熟记)【考点梳理】考点一同角三角函数的基本关系式【典例1】(2020·嘉兴市第五高级中学高二期中)若0,2πα⎛⎫∈ ⎪⎝⎭,5cosα3,则sinα=________,tanα= ________.【答案】23【解析】因为0,2πα⎛⎫∈ ⎪⎝⎭,5cosα3,22sin cos1αα+=所以2sin3α=,2sintancosααα===故答案为:23.【典例2】(2020·金华市江南中学高一月考)已知sin cossin cosx xx x+-=2,则tan x=____,sin x cos x=____.【答案】3310【解析】将sin cos sin cos x x x x +-=2左端分子分母同除以cos x ,得tan 12tan 1x x +=-,解得tan 3x =, 2222sin cos tan 33sin cos sin cos tan 13110x x x x x x x x ====+++. 故答案为:3;310【规律方法】1.同角三角函数关系式的三种应用方法--“弦切互化法”、““1”的灵活代换法”、“和积转换法” (1)利用sin 2α+cos 2α=1可实现α的正弦、余弦的互化,注意()222124sin cos sin cos sin cos tanπθθθθθθ=+=+-=等;(2)由一个角的任一三角函数值可求出这个角的另外两个三角函数值,因为利用“平方关系”公式,需求平方根,会出现两解,需根据角所在的象限判断符号,当角所在的象限不明确时,要进行分类讨论. 2. 利用sin αcos α=tan α可以实现角α的弦切互化.(1)若已知tan α=m ,求形如a sin α+b cos αc sin α+d cos α(或a sin 2α+b cos 2αc sin 2α+d cos 2α)的值,其方法是将分子、分母同除以cos α(或cos 2α)转化为tan α的代数式,再求值,如果先求出sin α和cos α的值再代入,那么运算量会很大,问题的解决就会变得繁琐.(2)形如a sin 2α+b sin αcos α+c cos 2α通常把分母看作1,然后用sin 2α+cos 2α代换,分子、分母同除以cos 2α再求解. 【变式探究】1.(2020·上海高一课时练习)若α是第三象限角,1sin 3α=-,则cos α=_________;tan α=________.【答案】4【解析】因为α是第三象限角,则cos 0α<,所以cos α===,1sin tan cos 4ααα-===.故答案为:42.(2020·山西平城�大同一中高一月考)已知tan 3α=,则3sin cos 5cos sin αααα-=-( )A .2B .4C .6D .8【答案】B 【解析】 由已知3sin cos 3tan 133145cos sin 5tan 53αααααα--⨯-===---.故选:B . 【总结提升】在使用开平方关系sin α=±1-cos 2α和cos α=±1-sin 2α时,一定要注意正负号的选取,确定正负号的依据是角α所在的象限,如果角α所在的象限是已知的,则按三角函数在各个象限的符号来确定正负号;如果角α所在的象限是未知的,则需要按象限进行讨论. 考点二 sin α±cos α与sin αcos α的关系及应用【典例3】(2019·四川石室中学高考模拟(理))已知α为第二象限角,且1sin cos 5αα+=,则cos sin αα-=( )A .75B .75-C .75±D .2525【答案】B 【解析】∵1sin cos 5αα+=,平方得11+2sin cos 25αα=, ∴2cos αsin α=﹣2425∴22449cos sin 1-2sin cos 12525αααα-==+=(),∵α为第二象限角, ∴7cos sin -5αα-= 故选:B .【典例4】(2020·永州市第四中学高一月考)已知22sin 2sin cos 01tan 2k αααπαα+⎛⎫=<< ⎪+⎝⎭.试用k 表示sin cos αα-的值.【答案】详见解析【解析】()22sin sin cos 2sin 2sin cos sin 1tan 1cos ααααααααα++=++()2sin cos sin cos sin cos αααααα+=+2sin cos k αα==,()222sin cos sin cos 2sin cos αααααα-=+-12sin cos αα=-1k =-,当04πα<<时,sin cos αα<,此时sin cos αα-= 当42ππα≤<时,sin cos αα≥,此时sin cos αα-=【规律方法】和积转换法:利用()()22212,()2sin cos sin cos sin cos sin cos θθθθθθθθ±=±++-=的关系进行变形、转化.【变式探究】1. (2019·山东高三期末(理))已知sinα+cosα=15,α∈(0,π),则tanα=( ) A .−34 B .−43 C .−34或−43 D .34或43 【答案】B 【解析】由题意知, sinα+cosα=15,α∈(0,π),① ∴(sinα+cosα)2=125,即1+2sinα⋅cosα=125, ∴2sinα⋅cosα=−2425<0,∴α为钝角,,∴sinα>0,cosα<0,∴sinα−cosα>0 ∴(sinα−cosα)2=1−2sinα⋅cosα=4925, ∴sinα−cosα=75,②由①②解得sinα=45,cosα=−35,∴tanα=45−35=−43,故选B.2. (2019·上海高考模拟)设a>0且a≠1,若log a(sinx−cosx)=0,则sin8x+cos8x=______.【答案】1【解析】设a>0且a≠1,若log a(sinx−cosx)=0,所以:sinx−cosx=a0=1,∴(sinx−cosx)2=1,又(sinx)2+(cosx)2=1,∴sinx⋅cosx=0,∴(sinx+cosx)2=1,又sin8x+cos8x=(sin4x−cos4x)2+2sin4x⋅cos4x=[(sin2x+cos2x)(sin2x−cos2x)]2+2sin4x⋅cos4x=[(sinx+cosx)(sinx−cosx)]2−0=(sinx+cosx)2(sinx−cosx)2=1,故答案为:1.【总结提升】1.对于三角函数式sinθ±cosθ,sinθ·cosθ之间的关系,可以通过(sinθ±cosθ)2=1±2sinθ·cosθ进行转化.2.若已知sinθ±cosθ,sinθ·cosθ中三者之一,利用方程思想进一步可以求得sinθ,cosθ的值,从而求出其余的三角函数值.考点三利用诱导公式化简求值【典例5】(2019·北京高考真题(文))如图,A,B是半径为2的圆周上的定点,P为圆周上的动点,APB是锐角,大小为β.图中阴影区域的面积的最大值为()A.4β+4cosβB.4β+4sinβC.2β+2cosβD.2β+2sinβ【答案】B 【解析】观察图象可知,当P 为弧AB 的中点时,阴影部分的面积S 取最大值,此时∠BOP =∠AOP =π-β, 面积S 的最大值为2222βππ⨯⨯+S △POB + S △POA =4β+1||sin()2OPOB πβ-‖1||sin()2OP OA πβ+-‖ 42sin 2sin 44sin βββββ=++=+⋅.故选:B .【典例6】(2017·全国高考真题(文))函数f (x )=15sin(x +π3)+cos(x −π6)的最大值为( )A .65B .1C .35D .15 【答案】A 【解析】由诱导公式可得cos (x −π6)=cos [π2−(x +π3)]=sin (x +π3), 则f (x )=15sin (x +π3)+sin (x +π3)=65sin (x +π3), 函数f (x )的最大值为65. 所以选A. 【规律方法】1.利用诱导公式化简求值的步骤:(1)负化正;(2)大化小;(3)小化锐;(4)锐求值.2.利用诱导公式化简三角函数的基本思路:(1)分析结构特点,选择恰当公式;(2)利用公式化成单角三角函数;(3)整理得最简形式.3.化简要求:(1)化简过程是恒等变形;(2)结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值. 【变式探究】1.(2020·永州市第四中学高一月考)已知α是第四象限角,3sin cos tan()22()tan()sin()f ππααπααπαπα⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭=---. (1)化简()f α.(2)若33cos 25πα⎛⎫-= ⎪⎝⎭,求()f α的值. 【答案】(1)cos α-;(2)45- 【解析】(1)3sin()cos()tan()22()tan()sin()f ππααπααπαπα-+-=---. sin()sin (tan )2tan sin πααααα---=- cos sin tan tan sin ααααα=-cos α=-.(2)因为3cos()2πα- 3cos()2πα=- 3sin 5α=-=, 所以3sin 5α=-. 因为α是第四象限角, 所以4cos 5α=, 所以4()cos 5f αα=-=-.2.化简[][]sin()cos (1),sin (1)cos()k k k Z k k παπαπαπα---∈+++【答案】当2,k n n Z =∈时,原式1=-;当21,k n n Z =+∈时,原式1=. 【解析】(1)当2,k n n Z =∈时, 原式sin()cos()sin (cos )1sin()cos sin cos απαααπαααα-----===-+-;(2)当21,k n n Z =+∈时, 原式sin()cos()sin cos 1sin cos sin cos παααααααα--===.【总结提升】用诱导公式求值时,要善于观察所给角之间的关系,利用整体代换的思想简化解题过程.常见的互余关系有π3-α与π6+α,π3+α与π6-α,π4+α与π4-α等,常见的互补关系有π6-θ与5π6+θ,π3+θ与2π3-θ,π4+θ与3π4-θ等.考点四 同角三角函数基本关系式、诱导公式的综合应用【典例7】(2020·山东诸城�高一期中)已知3sin 5α=-,且α是第________象限角.从①一,②二,③三,④四,这四个选项中选择一个你认为恰当的选项填在上面的横线上,并根据你的选择,解答以下问题: (1)求cos ,tan αα的值;(2)化简求值:3sin()cos()sin 2cos(2020)tan(2020)πααπαπαπα⎛⎫--+ ⎪⎝⎭+-.【答案】(1)答案不唯一,具体见解析(2)1625【解析】(1)因为3sin 5α=-,所以α为第三象限或第四象限角;若选③,4sin 3cos ,tan 5cos 4αααα==-==;若选④,4sin 3cos ,tan 5cos 4αααα====-; (2)原式sin cos (cos )cos tan()ααααα-=-sin cos tan ααα-=-sin cos sin cos αααα=2cos α=2315⎛⎫=-- ⎪⎝⎭1625=. 【典例8】设tan(α+8π7)=m ,求证:sin (15π7+α)+3cos (α-13π7)sin (20π7-α)-cos (α+22π7)=m +3m +1.【答案】见解析 【解析】 证法一:左边=sin[π+(87π+α)]+3cos[(α+8π7-3π)]sin[4π-(α+87π)]-cos[2π+(α+8π7)]=-sin (α+8π7)-3cos (α+8π7)-sin (α+8π7)-cos (α+8π7)=tan (α+8π7)+3tan (α+8π7)+1=m +3m +1=右边.∴等式成立. 证法二:由tan(α+8π7)=m ,得tan(α+π7)=m .左边=sin[2π+(π7+α)]+3cos[2π-(π7+α)]sin[2π+π-(π7+α)]-cos[2π+π+(π7+α)]=sin (π7+α)+3cos (π7+α)sin[π-(π7+α)]-cos[π+(π7+α)]=sin (π7+α)+3cos (π7+α)sin (π7+α)+cos (π7+α)=tan (π7+α)+3tan (π7+α)+1=m +3m +1=右边, ∴等式成立. 【规律方法】(1)三角恒等式的证明一般有三种方法:①一端化简等于另一端;②两端同时化简使之等于同一个式子;③作恒等式两端的差式使之为0.(2)证明条件恒等式,一般有两种方法:一是在从被证等式一边推向另一边的适当时候将条件代入,推出被证等式的另一边,这种方法称作代入法;二是直接将条件等式变形,变形为被证的等式,这种方法称作推出法,证明条件等式时,不论使用哪一种方法,都要依据要证的目标的特征进行变形. 【变式探究】1. (2020·武威第六中学高一期末)已知α是第三象限角,()sin()cos(2)tan()tan()sin()f παπααπααπα----=---. (1)化简()f α;(2)若31cos()25απ-=,求()f α的值; 【答案】(1)cos α-(2) 【解析】第一问利用()3sin()cos()tan()22tan()sin()f ππααπαααπαπ-+-=---- (cos )(sin )(tan )(tan )sin cos αααααα--=-=- 第二问∵31cos()25πα-=∴1sin 5α-=从而1sin 5α=-,从而得到三角函数值. 解:(1)()3sin()cos()tan()22tan()sin()f ππααπαααπαπ-+-=---- (cos )(sin )(tan )(tan )sin cos αααααα--=-=-(2)∵31cos()25πα-= ∴1sin 5α-=从而1sin 5α=- 又α为第三象限角∴即()f α的值为 2.(2020·四川省绵阳江油中学高三开学考试(文))已知2sin ()cos(2)tan()(),sin()tan(3)f παπαπααπααπ-⋅-⋅-+=+⋅-+ (1)化简()f α;(2)若1(),8f α=且,42ππα<<求cos sin αα-的值; (3)求满足1()4f α≥的α的取值集合.【答案】(1)()sin cos f ααα=;(2)(3)5,1212k k k Z ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭. 【解析】 (1)2sin cos tan ()sin cos (sin )(tan )f αααααααα⋅⋅==--; (2)由(1)可得1()sin cos 8f ααα==,则23(cos sin )12sin cos 4αααα-=-=, ,sin cos 42ππααα<<∴>,即cos sin 0αα-<cos sin αα∴-=; (3)由题意得11()sin cos sin 224f αααα==≥,1sin 22α∴≥, 5222,66k k k Z πππαπ∴+≤≤+∈,即5,1212k k k Z πππαπ+≤≤+∈, 所以α的取值集合为5,1212k k k Z ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭. 【总结提升】 三角函数式化简的方法和技巧:(1)方法:三角函数式化简的关键是抓住函数名称之间的关系和角之间的关系,据此灵活应用相关的公式及变形,解决问题.(2)技巧:①异名化同名;②异角化同角;③切化弦.。
同角三角函数间的关系知识点
同角三角函数间的关系知识点同角三角函数间的关系知识点同角三角函数的基本关系式是三角函数基础知识的综合应用,是高考必考内容。
本文是店铺整理同角三角函数间的关系的资料,仅供参考。
同角三角函数间的关系平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα·cosαcosα=cotα·sinαtanα=sinα·secαcotα=cosα·cscαsecα=tanα·cscαcscα=secα·cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,余切等于邻边比对边互余角的三角函数间的关系:sin(90°-α)=cosα, cos(90°-α)=sinα,tan(90°-α)=cotα, cot(90°-α)=tanα.同角三角函数基本关系三类:一)同角三角函数的基本关系:(sinθ)^2+(cosθ)^2=1;tanθcotθ=sinθcscθ=cosθsecθ=1;(secθ)^2-(tan^θ)^2=(cscθ)^2-(cosθ)^2=1二)诱导公式,在360°内的变换(角度制):取值sinθ cosθ tanθα sinα cosα tanα-α -sinα cosα -tanα180+α -sinα -cosα tanα180-α sinα -cosα -tanα360+α sinα cosα tanα360-α -sinα cosα -tanα90+α cosα -sinα -cotα90-α cosα sinα cotα270+α -cosα sinα -cotα270-α -cosα -sinα cotα三)两个角的变换关系,不属于初中内容:sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ同角三角函数公式起源“三角学”,英文Trigonometry,法文Trigonometrie,德文Trigonometrie,都来自拉丁文 Trigonometria。
高一数学必修一三角函数的概念及公式
三角函数的概念及公式教学目标1、掌握同终边角的求法,熟悉象限角、轴线角,掌握角度与弧度的互化,会求弧长与扇形面积;2、掌握三角函数的概念,会求角的三角函数值;3、同角三角函数的基本关系;4、掌握诱导公式及应用。
重难点分析重点:1、角度、弧度的转化; 2、同角三角函数基本关系; 3、诱导公式。
难点:1、角度的表示;2、同角三角函数值的求解;3、诱导公式的变换。
知识点梳理1、角度概念:角可以看成是平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。
2、角度分类:按逆时针方向旋转的角叫做正角;按顺时针方向旋转的角叫做负角;若一条射线没有任何旋转,我们称它形成了一个零角。
3、象限角:角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限的角。
如果角的终边在坐标轴上,就认为这个角不属于任何一个象限。
4、终边相同的角:所有与角α的终边相同的角,连同α在内,可构成一个集合=S ________________,即任一与角α终边相同的角,都可以表示成角α与整数个周角的和。
5、把长度等于半径长的弧所对的圆心角叫做1弧度的角。
6、弧度制与角度制的换算关系式:π弧度=o180。
7、在弧度制下,弧长公式为R l ⋅=α,扇形面积公式为R l S ⋅=21。
(α为圆心角,R 为半径) 8、一般的,设角α终边上任意一点的坐标为),(y x ,它与原点的距离为r ,那么(1)r y叫做α的正弦,记作αsin ; (2)rx叫做α的余弦,记作αcos ;(3)xy叫做α的正切,记作αtan 。
9、同角三角函数关系的基本关系式(1)平方关系:1cos sin 22=+x x (2)商数关系:xxx cos sin tan =10、同角三角函数基本关系式的常用变形(1)α2sin =________________;α2cos =________________;(2)2)cos (sin αα+=________________;2)cos (sin αα-=________________;(3)ααcos sin ⋅=__________________=___________________。
三角函数的概念、同角三角函数的关系式和诱导公式
一
角的 三角函 数转化为l 0 , — l 内 角的
L J
图 1
j角 函数 值 .其 解 题 思 路 是 化 负 角 为正 角 , 化 复 杂 角 为 简单 角 , 运 用 时 应充 分 注意 符 号 : 3 . 利 用商 数 关 系 、倒数 关 系能
三、 同角 三角 函数 的基 本关 系式 1 .倒 数 关 系 : t a n a・ c o t a= 1 ,
(  ̄a s i n a + b c o s a
.
常采用“ 1 ” 代换法求解 ;
5 .涉 及 s i n a+ c o s  ̄, s i n a— c 0 s ,
c s i n a+ d c o s a
)的问题 常采用分
式 的 基本 性 质进 行 变形 .
— ▲ - ■
/ 一 — — 、
.
所以c >
c o s 3 5 。
象限角,贝 l c o s a = 晒
t a n : 1 旦: 一
c Os
= 西 1 2 则
,
b , 所v X c > b > a , 故选 C .
4 . 涉及s i n a , C O S O t 的二 次 齐 次式
1 2
(  ̄a s i n 2 a + b s i n a c o s a + c c o s 2 a) 的 问题
s l n a ・ c 0 s 的问题常采用平方法求解 : 6 .涉及 s i n a . c o s 的 齐 次 分 式
义 。求 解 时 注 意 三 角 函数 在 每 个 象
限的 正 负.
s i n 3 3 。 ,所 以 b > a .・ 因 为0 < c o s 3 5 。 < 1 .
同角三角函数基本关系式与诱导公式知识点讲解+例题讲解(含解析)
同角三角函数基本关系式与诱导公式一、知识梳理1.同角三角函数的基本关系(1)平方关系:sin2α+cos2α=1.(2)商数关系:sin αcos α=tanα.2.三角函数的诱导公式总结:1.同角三角函数关系式的常用变形(sin α±cos α)2=1±2sin αcos α;sin α=tan α·cos α.2.诱导公式的记忆口诀“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍和偶数倍,变与不变指函数名称的变化.3.在利用同角三角函数的平方关系时,若开方,要特别注意判断符号.二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”)(1)sin(π+α)=-sin α成立的条件是α为锐角.()(2)六组诱导公式中的角α可以是任意角.()(3)若α∈R,则tan α=sin αcos α恒成立.()(4)若sin(k π-α)=13(k ∈Z ),则sin α=13.( ) 解析 (1)中对于任意α∈R ,恒有sin(π+α)=-sin α. (3)中当α的终边落在y 轴,商数关系不成立. (4)当k 为奇数时,sin α=13, 当k 为偶数时,sin α=-13. 答案 (1)× (2)√ (3)× (4)×2.已知tan α=-3,则cos 2α-sin 2α=( ) A.45B.-45C.35D.-35解析 由同角三角函数关系得cos 2α-sin 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α=1-91+9=-45.答案 B3.已知α为锐角,且sin α=45,则cos (π+α)=( ) A.-35B.35C.-45D.45解析 因为α为锐角,所以cos α=1-sin 2α=35, 故cos(π+α)=-cos α=-35. 答案 A4.(2017·全国Ⅲ卷)已知sin α-cos α=43,则sin 2α=( )A.-79B.-29C.29D.79 解析 ∵(sin α-cos α)2=1-2sin αcos α=1-sin 2α, ∴sin 2α=1-⎝ ⎛⎭⎪⎫432=-79.答案 A5.(2019·济南质检)若sin α=-513,且α为第四象限角,则tan α=( ) A.125B.-125C.512D.-512解析 ∵sin α=-513,α为第四象限角,∴cos α=1-sin 2α=1213,因此tan α=sin αcos α=-512. 答案 D6.(2018·上海嘉定区月考)化简:sin 2(α+π)·cos(π+α)·cos(-α-2π)tan(π+α)·sin 3⎝ ⎛⎭⎪⎫π2+α·sin(-α-2π)=________.解析 原式=sin 2α·(-cos α)·cos αtan α·cos 3α·(-sin α)=sin 2αcos 2αsin 2αcos 2α=1.答案 1考点一 同角三角函数基本关系式 角度1 公式的直接运用【例1-1】 (2018·延安模拟)已知α∈⎝⎛⎭⎪⎫-π,-π4,且sin α=-13,则cos α=( ) A.-223 B.223 C.±223 D.23解析 因为α∈⎝ ⎛⎭⎪⎫-π,-π4,且sin α=-13>-22=sin ⎝ ⎛⎭⎪⎫-π4,所以α为第三象限角,所以cos α=-1-sin 2α=-1-⎝ ⎛⎭⎪⎫-132=-223. 答案 A角度2 关于sin α,cos α的齐次式问题 【例1-2】 已知tan αtan α-1=-1,求下列各式的值.(1)sin α-3cos αsin α+cos α;(2)sin 2α+sin αcos α+2.解 由已知得tan α=12. (1)sin α-3cos αsin α+cos α=tan α-3tan α+1=-53. (2)sin 2α+sin αcos α+2=sin 2α+sin αcos αsin 2α+cos 2α+2=tan 2α+tan αtan 2α+1+2=⎝ ⎛⎭⎪⎫122+12⎝ ⎛⎭⎪⎫122+1+2=135.角度3 “sin α±cos α,sin αcos α”之间的关系 【例1-3】 已知x ∈(-π,0),sin x +cos x =15. (1)求sin x -cos x 的值; (2)求sin 2x +2sin 2x 1-tan x 的值.解 (1)由sin x +cos x =15,平方得sin 2x +2sin x cos x +cos 2x =125, 整理得2sin x cos x =-2425.所以(sin x -cos x )2=1-2sin x cos x =4925. 由x ∈(-π,0),知sin x <0,又sin x +cos x >0, 所以cos x >0,则sin x -cos x <0, 故sin x -cos x =-75.(2)sin 2x +2sin 2x 1-tan x=2sin x (cos x +sin x )1-sin x cos x=2sin x cos x (cos x +sin x )cos x -sin x=-2425×1575=-24175.【训练1】 (1)(2019·烟台测试)已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为( )A.-32B.32C.-34D.34(2)已知sin α+3cos α3cos α-sin α=5,则cos 2α+12sin 2α的值是( )A.35B.-35C.-3D.3解析 (1)∵5π4<α<3π2,∴cos α<0,sin α<0且cos α>sin α, ∴cos α-sin α>0.又(cos α-sin α)2=1-2sin αcos α=1-2×18=34, ∴cos α-sin α=32.(2)由sin α+3cos α3cos α-sin α=5得tan α+33-tan α=5,可得tan α=2,则cos 2α+12sin 2α=cos 2α+sin αcos α=cos 2α+sin αcos αcos 2α+sin 2α=1+tan α1+tan 2α=35.答案 (1)B (2)A考点二 诱导公式的应用【例2】 (1)设f (α)=2sin (π+α)cos (π-α)-cos (π+α)1+sin 2α+cos ⎝ ⎛⎭⎪⎫3π2+α-sin 2⎝ ⎛⎭⎪⎫π2+α(1+2sin α≠0),则f ⎝ ⎛⎭⎪⎫76π=________. (2)已知cos ⎝ ⎛⎭⎪⎫π6-θ=a ,则cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ的值是________. 解析 (1)∵f (α)=(-2sin α)(-cos α)+cos α1+sin 2α+sin α-cos 2α=2sin αcos α+cos α2sin 2α+sin α=cos α(1+2sin α)sin α(1+2sin α)=1tan α,∴f ⎝ ⎛⎭⎪⎫76π=1tan 76π=1tan π6= 3. (2)∵cos ⎝ ⎛⎭⎪⎫5π6+θ=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-θ=-cos ⎝ ⎛⎭⎪⎫π6-θ=-a ,sin ⎝ ⎛⎭⎪⎫2π3-θ=sin ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫π6-θ=a , ∴cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ=-a +a =0.答案 (1)3 (2)0【训练2】 (1)(2019·衡水中学调研)若cos ⎝ ⎛⎭⎪⎫π2-α=23,则cos(π-2α)=( )A.29B.59C.-29D.-59 (2)(2017·北京卷)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则sin β=________. 解析 (1)由cos ⎝ ⎛⎭⎪⎫π2-α=23,得sin α=23.∴cos(π-2α)=-cos 2α=-(1-2sin 2α)=2sin 2α-1=2×29-1=-59. (2)α与β的终边关于y 轴对称,则α+β=π+2k π,k ∈Z ,∴β=π-α+2k π,k ∈Z .∴sin β=sin(π-α+2k π)=sin α=13. 答案 (1)D (2)13考点三 同角三角函数基本关系式与诱导公式的综合应用【例3】 (1)(2019·菏泽联考)已知α∈⎝ ⎛⎭⎪⎫3π2,2π,sin ⎝ ⎛⎭⎪⎫π2+α=13,则tan(π+2α)=( ) A.427B.±225C.±427D.225(2)(2019·福建四地六校联考)已知α为锐角,且2tan(π-α)-3cos ⎝ ⎛⎭⎪⎫π2+β+5=0,tan(π+α)+6sin(π+β)-1=0,则sin α的值是( ) A.355B.377C.31010D.13解析 (1)∵α∈⎝ ⎛⎭⎪⎫3π2,2π,sin ⎝ ⎛⎭⎪⎫π2+α=13,∴cos α=13,sin α=-223,tan α=sin αcos α=-2 2.∴tan(π+2α)=tan 2α=2tan α1-tan 2α=-421-(-22)2=427. (2)由已知得⎩⎨⎧3sin β-2tan α+5=0,tan α-6sin β-1=0.消去sin β,得tan α=3,∴sin α=3cos α,代入sin 2α+cos 2α=1,化简得sin 2α=910,则sin α=31010(α为锐角). 答案 (1)A (2)C(3)已知-π<x <0,sin(π+x )-cos x =-15. ①求sin x -cos x 的值; ②求sin 2x +2sin 2 x 1-tan x的值.解 ①由已知,得sin x +cos x =15, 两边平方得sin 2x +2sin x cos x +cos 2x =125,整理得2sin x cos x =-2425.∵(sin x -cos x )2=1-2sin x cos x =4925,由-π<x <0知,sin x <0, 又sin x cos x =-1225<0, ∴cos x >0,∴sin x -cos x <0, 故sin x -cos x =-75.②sin 2x +2sin 2x 1-tan x=2sin x (cos x +sin x )1-sin x cos x=2sin x cos x (cos x +sin x )cos x -sin x=-2425×1575=-24175.【训练3】 (1)(2019·湖北七州市联考)已知α∈(0,π),且cos α=-513,则sin ⎝ ⎛⎭⎪⎫π2-α·tan α=( ) A.-1213 B.-513C.1213D.513(2)已知θ是第四象限角,且sin ⎝ ⎛⎭⎪⎫θ+π4=35,则tan ⎝ ⎛⎭⎪⎫θ-π4=________.解析 (1)∵α∈(0,π),且cos α=-513,∴sin α=1213,因此sin ⎝ ⎛⎭⎪⎫π2-α·tan α=cos α·sin αcos α=sin α=1213.(2)由题意,得cos ⎝ ⎛⎭⎪⎫θ+π4=45,∴tan ⎝ ⎛⎭⎪⎫θ+π4=34.∴tan ⎝ ⎛⎭⎪⎫θ-π4=tan ⎝ ⎛⎭⎪⎫θ+π4-π2=-1tan ⎝ ⎛⎭⎪⎫θ+π4=-43. 答案 (1)C (2)-43三、课后练习1.若sin θ,cos θ是方程4x 2+2mx +m =0的两根,则m 的值为( ) A.1+ 5 B.1-5 C.1± 5D.-1-5解析 由题意知sin θ+cos θ=-m 2,sin θ·cos θ=m4.又()sin θ+cos θ2=1+2sin θcos θ,∴m 24=1+m2,解得m =1± 5.又Δ=4m 2-16m ≥0,∴m ≤0或m ≥4,∴m =1- 5. 答案 B2.已知sin ⎝ ⎛⎭⎪⎫-π2-αcos ⎝ ⎛⎭⎪⎫-7π2+α=1225,且0<α<π4,则sin α=________,cos α=________.解析 sin ⎝ ⎛⎭⎪⎫-π2-αcos ⎝ ⎛⎭⎪⎫-7π2+α=-cos α·(-sin α)=sin αcos α=1225.∵0<α<π4,∴0<sin α<cos α.又∵sin 2α+cos 2α=1,∴sin α=35,cos α=45. 答案 35 453.已知k ∈Z ,化简:sin (k π-α)cos[(k -1)π-α]sin[(k +1)π+α]cos (k π+α)=________.解析 当k =2n (n ∈Z )时,原式=sin (2n π-α)cos[(2n -1)π-α]sin[(2n +1)π+α]cos (2n π+α)=sin (-α)·cos (-π-α)sin (π+α)·cos α=-sin α(-cos α)-sin α·cos α=-1;当k =2n +1(n ∈Z )时,原式=sin[(2n +1)π-α]·cos[(2n +1-1)π-α]sin[(2n +1+1)π+α]·cos[(2n +1)π+α]=sin (π-α)·cos αsin α·cos (π+α)=sin α·cos αsin α(-cos α)=-1. 综上,原式=-1. 答案 -14.是否存在α∈⎝ ⎛⎭⎪⎫-π2,π2,β∈(0,π),使等式sin(3π-α)=2cos ⎝ ⎛⎭⎪⎫π2-β,3cos(-α)=-2cos(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由. 解 假设存在角α,β满足条件,则由已知条件可得⎩⎨⎧sin α=2sin β, ①3cos α=2cos β,②由①2+②2,得sin 2α+3cos 2α=2. ∴sin 2α=12,∴sin α=±22.∵α∈⎝ ⎛⎭⎪⎫-π2,π2,∴α=±π4. 当α=π4时,由②式知cos β=32,又β∈(0,π),∴β=π6,此时①式成立; 当α=-π4时,由②式知cos β=32,又β∈(0,π),∴β=π6,此时①式不成立,故舍去.∴存在α=π4,β=π6满足条件.5.已知sin α=23,α∈⎝ ⎛⎭⎪⎫0,π2,则cos(π-α)=________,cos 2α=________.解析 cos(π-α)=-cos α=-1-sin 2α=-73,cos 2α=cos 2α-sin 2α=⎝ ⎛⎭⎪⎫-732-⎝ ⎛⎭⎪⎫232=59.答案 -73 59。
考点14 三角函数的基本概念、同角三角函数的基本关系与诱导公式-备战2020年高考数学(理)考点一遍过
考点14 三角函数的基本概念、同角三角函数的基本关系与诱导公式1.任意角的概念、弧度制 (1)了解任意角的概念.(2)了解弧度制的概念,能进行弧度与角度的互化. 2.三角函数(1)理解任意角三角函数(正弦、余弦、正切)的定义. (2)能利用单位圆中的三角函数线推导出2απ±,πα±的正弦、余弦、正切的诱导公式,能画出sin ,cos ,tan y x y x y x ===的图象,了解三角函数的周期性.(3)理解同角三角函数的基本关系式:22sin cos 1x x +=,sin tan cos xx x=.一、角的有关概念 1.定义角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形. 2.分类(1)按旋转方向不同分为正角、负角、零角. (2)按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合·3{|}60,S k k ββα==+︒∈Z .3.象限角与轴线角第一象限角的集合为π2π2π,2k k k αα⎧⎫<<+∈⎨⎬⎩⎭Z ;第二象限角的集合为π2π2ππ,2k k k αα⎧⎫+<<+∈⎨⎬⎩⎭Z ; 第三象限角的集合为3π2ππ2π,2k k k αα⎧⎫+<<+∈⎨⎬⎩⎭Z ; 第四象限角的集合为3π2π2π2π,.2k k k αα⎧⎫+<<+∈⎨⎬⎩⎭Z 终边与x 轴非负半轴重合的角的集合为{}2π,k k αα=∈Z ; 终边与x 轴非正半轴重合的角的集合为{}2ππ,k k αα=+∈Z ; 终边与x 轴重合的角的集合为{}π,k k αα=∈Z ; 终边与y 轴非负半轴重合的角的集合为π2π,2k k αα⎧⎫=+∈⎨⎬⎩⎭Z ; 终边与y 轴非正半轴重合的角的集合为π2π,2k k αα⎧⎫=-∈⎨⎬⎩⎭Z ; 终边与y 轴重合的角的集合为ππ,2k k αα⎧⎫=+∈⎨⎬⎩⎭Z ; 终边与坐标轴重合的角的集合为π,2k k αα⎧⎫=∈⎨⎬⎩⎭Z . 二、弧度制1.1弧度的角把长度等于半径长的弧所对的圆心角叫做1弧度的角. 规定:,ll rα=是以角α作为圆心角时所对圆弧的长,r 为半径.正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.2.弧度制用“弧度”做单位来度量角的单位制叫做弧度制.比值lr与所取的r 的大小无关,仅与角的大小有关. 3.弧度与角度的换算180π180πrad ,1rad =57.3,1=rad π180⎛⎫︒=︒≈︒︒ ⎪⎝⎭. 4.弧长公式l r α=,其中α的单位是弧度,l 与r 的单位要统一.角度制下的弧长公式为:π180n rl =(其中n 为扇形圆心角的角度数). 5.扇形的面积公式21122S lr r α==.角度制下的扇形面积公式为:2π360n r S =(其中n 为扇形圆心角的角度数).三、任意角的三角函数 1.定义设α是一个任意角,它的顶点与原点重合,始边与x 轴非负半轴重合,点(),P x y 是角α的终边上任意一点,P 到原点的距离()0O P r r =>,那么角α的正弦、余弦、正切分别是s i n ,c o s ,t a n yxy rrxααα===.注意:正切函数tan y x α=的定义域是ππ,2k k αα⎧⎫≠+∈⎨⎬⎩⎭Z ,正弦函数和余弦函数的定义域都是R .2.三角函数值在各象限内的符号三角函数值在各象限内的符号口诀:一全正、二正弦、三正切、四余弦. 3.三角函数线设角α的顶点与原点重合,始边与x 轴非负半轴重合,终边与单位圆相交于点P ,过P 作PM 垂直于x 轴于M .由三角函数的定义知,点P 的坐标为()cos ,sin αα,即()cos ,sin P αα,其中cos ,sin ,OM MP αα==单位圆与x 轴的正半轴交于点A ,单位圆在A 点的切线与α的终边或其反向延长线相交于点T ,则ta n AT α=.我们把有向线段,,OM MP AT 分别叫做α的余弦线、正弦线、正切线.各象限内的三角函数线如下:4.特殊角的三角函数值α0︒ 30︒45︒60︒90︒120︒135︒150︒ 180︒270︒360︒π6π4π3π22π3 3π4 5π6 π3π22πsin α0 12 223213222121-cos α132 221212-22- 32-1-1tan α3313 不存在3-1- 33-不存在补充:6262sin15cos 75,sin 75cos15,44︒=︒=︒=︒= tan1523,tan 752 3.︒=︒=+四、同角三角函数的基本关系式 1.平方关系22sin cos 1αα+=.2.商的关系sin cos tan ααα=. 3.同角三角函数基本关系式的变形(1)平方关系的变形:2222sin 1cos ,cos 1sin αααα=-=-;(2)商的关系的变形:sin sin tan cos ,cos tan αααααα=⋅=; (3)2222111tan 1,1cos sin tan αααα-=-=.五、三角函数的诱导公式公式一 二三四五六角2k π+α(k ∈Z )π+α −α π−α2π−α 2π+α正弦 sin α −sin α −sin α sin α cos α cos α 余弦 cos α −cos α cos α −cos α sin α −sin α 正切tan αtan α−tan α−tan α口诀函数名不变,符号看象限函数名改变, 符号看象限考向一 三角函数的定义1.利用三角函数的定义求角的三角函数值,需确定三个量:角的终边上任意一个异于原点的点的横坐标x 、纵坐标y 、该点到原点的距离r .若题目中已知角的终边在一条直线上,此时注意在终边上任取一点有两种情况(点所在象限不同).2.利用三角函数线解三角不等式的步骤:①确定区域的边界;②确定区域;③写出解集.3.已知角α的终边所在的直线方程或角α的大小,根据三角函数的定义可求角α终边上某特定点的坐标. 4.三角函数值的符号及角的位置的判断.已知一角的三角函数值(sin α,cos α,tan α)中任意两个的符号,可分别确定出角的终边所在的可能位置,二者的交集即为该角的终边位置.注意终边在坐标轴上的特殊情况.典例1 已知角θ的终边上有一点P (m ),且sin 4θ=m ,求cos θ与tan θ的值.【解析】由已知有4m =m =0,或m =当m =0时,cos 1,tan 0θθ=-=;当5m =615cos ,tan 43θθ=-=-; 当5m =615cos tan θθ==【名师点睛】任意角的三角函数值仅与角α的终边位置有关,而与角α终边上点P 的位置无关.若角α已经给出,则无论点P 选择在α终边上的什么位置,角α的三角函数值都是确定的.1.已知角8π3=θ的终边经过点(,3)P x ,则x 的值为 A .±2 B .2 C .﹣2D .﹣4考向二 象限角和终边相同的角的判断及表示方法1.已知θ所在的象限,求nθ或nθ(n ∈N *)所在的象限的方法是:将θ的范围用不等式(含有k )表示,然后两边同除以n 或乘以n ,再对k 进行讨论,得到nθ或nθ(n ∈N *)所在的象限.2.象限角的判定有两种方法:一是根据图象,其依据是终边相同的角的思想;二是先将此角化为k ·360°+α(0°≤α<360°,k ∈Z )的形式,即找出与此角终边相同的角α,再由角α终边所在的象限来判断此角是第几象限角.3.由角的终边所在的象限判断三角函数式的符号,需确定各三角函数的符号,然后依据“同号得正,异号得负”求解.典例2 已知sin325α=,4cos 25α=- ,试确定角α是第几象限的角. 【解析】因为sin325α=>0,4cos 25α=-<0,所以2α是第二象限的角,所以π2π2ππ,22k k k α+<<+∈Z .由32sin5α=<3π2π2ππ,42k k k α+<<+∈Z ,所以3π4π4π2π,2k k k α+<<+∈Z , 故角α是第四象限的角. 【名师点睛】角2α与α所在象限的对应关系: 若角α是第一象限角,则2α是第一象限角或第三象限角; 若角α是第二象限角,则2α是第一象限角或第三象限角; 若角α是第三象限角,则2α是第二象限角或第四象限角; 若角α是第四象限角,则2α是第二象限角或第四象限角.2.若sin x <0,且sin (cos x )>0,则角x 是 A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角考向三 同角三角函数基本关系式的应用1.利用22sin +cos 1αα=可以实现角α的正弦、余弦的互化,利用sin cos tan ααα=可以实现角α的弦切互化. 2.sin ,cos αα的齐次式的应用:分式中分子与分母是关于sin ,cos αα的齐次式,或含有22sin ,cos αα及sin cos αα的式子求值时,可将所求式子的分母看作“1”,利用“22sin +cos 1αα=”代换后转化为“切”后求解.典例3 已知 , . (1)当 时,求 的值; (2)当时,求 的值. 【解析】(1)由已知得 ,∴ ,∴ ,又 ,∴ ,∴. (2)当时,.① 方法1:,∴,∴, ∵,∴.② 由①②可得,,∴ .方法2:, ∴ ,∴ , ∴ 或,又,∴,∴ ,∴ .3.已知ππ,42⎛⎫∈⎪⎝⎭θ,则2cos 12sin(π)cos --=θθθ A .sin cos +θθ B .sin cos -θθ C .cos sin -θθD .3cos sin -θθ考向四 诱导公式的应用1.应用诱导公式,重点是“函数名称”与“正负号”的正确判断.求任意角的三角函数值的问题,都可以通过诱导公式化为锐角三角函数的求值问题,具体步骤为“负角化正角”→“正角化锐角”→求值.2.使用诱导公式时一定要注意三角函数值在各象限的符号,特别是在具体题目中出现类似πk α±的形式时,需要对k 的取值进行分类讨论,从而确定出三角函数值的正负. 3.利用诱导公式化简三角函数式的思路: (1)分析结构特点,选择恰当公式; (2)利用公式化成单角三角函数; (3)整理得最简形式.利用诱导公式化简三角函数式的要求: (1)化简过程是恒等变形;(2)结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值. 4.巧用相关角的关系能简化解题的过程.常见的互余关系有π3α-与π6α+,π3α+与π6α-,π4α+与π4α-等; 常见的互补关系有π3θ+与2π3θ-,π4θ+与3π4θ-等.典例4 已知()2sin π3α-=-,且π,02α⎛⎫∈- ⎪⎝⎭,则()tan 2πα-= A 25B .25C .52D .52-【答案】A【解析】∵()2sin π3α-=-,∴2sin 3α=-. ∵π,02α⎛⎫∈-⎪⎝⎭,∴5cos α=,则25tan α=.∵()tan 2πtan αα-=-,∴()25tan 2πα-=.故选A . 典例5 (1)化简:()()()()()()sin πcos 3πtan πtan 2πtan 4πsin 5πa ααααα------+;(2)化简:()()()()()()sin 540cos 360tan 540tan tan 900sin x x x x x x ︒-︒-⋅︒+⋅-⋅︒--.【解析】(1)()()()()()()()()()()sin πcos 3πtan πtan 2πsin cos tan tan tan 4πsin 5πtan sin a ααααααααααα-------=-+--=cos tan sin ααα==.(2)原式()()2sin cos tan tan cos sin tan sin x xx x x x x x =⋅-⋅=-⋅=---.4.已知2019π1cos 22⎛⎫+= ⎪⎝⎭α,π,π2⎛⎫∈ ⎪⎝⎭α,则cos =αA .12B .12-C .3D 3考向五 同角三角函数的基本关系式、诱导公式在三角形中的应用与三角形相结合时,诱导公式在三角形中经常使用,常用的角的变形有:πA B C +=-,222π2A B C +=-,π2222A B C ++=等,于是可得in i (s s n )A B C =+,cos sin 22A B C +=等.典例6 在ABC △中,内角 , , 所对的边分别是 , , ,若 ,π3C =,,则 ______, ________.【答案】35, 【解析】由sin 3tan cos 4A A A ==,得22π34sin cos 1,sin cos 255A A A A A <+=∴==,又,, ()3143343sin sin sin cos cos sin 525B A C A C A C +∴=+=+=⨯+=, 由正弦定理sin 34352343sin sin sin 103b a a B b B A A +====+,得5.在△ABC 中,“sin cos A B <”是“△ABC 为钝角三角形”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件1.与2019终边相同的角是 A .37 B .37-C .37-D .141-2.设集合{|9036,}M k k ==⋅︒-︒∈ααZ ,{|180180}N =-︒<<︒αα,则M N =A .{36,54}-︒︒B .{126,144}-︒︒C .{36,54,126,144}-︒︒-︒︒D .{54,126}︒-︒3.已知扇形面积为3π8,半径是l ,则扇形的圆心角是 A .3π16 B .3π8 C .3π4D .3π24.函数cos sin tan sin cos tan x x xy x x x=++的值域是 A .{}1,0,1,3- B .{}1,0,3- C .{}1,3-D .{}1,1-5.若tan 0α>,则A .sin 0α>B .cos 0α>C .sin 20α>D .cos20α>6.若()()sin 3sin παβαβ+=-+,π,0,2αβ⎛⎫∈ ⎪⎝⎭,则tan tan αβ= A .2 B .12 C .3D .137.在平面直角坐标系中,若角α,则()sin πα+=A .2-B .12-C .12D 8.已知()()sin π22sin 3cos 5+=-+-ααα ,则tan =αA .23 B .23-C .6D .6-9.若()0,π∈α,()2sin πcos -+=αα,则sin cos -αα的值为 A 2B .2C .43 D .43-10.已知点()12,P 在α终边上,则6sin 8cos 3sin 2cos +=-αααα______.11.在平面直角坐标系中, 点的坐标为34,55⎛⎫⎪⎝⎭, 是第三象限内一点, ,且3π4POQ ∠=,则 点的横坐标为_________. 12.已知π(0)2αα<<的终边与单位圆交于点P ,点P 关于直线y x =对称后的点为M ,点M 关于y 轴对称后的点为N ,设角β的终边为射线ON .(1)β与α的关系为_________;(2)若1sin 3α=,则tan β=________. 13. 在ABC △中,3sin()3sin()2A A π-=π-,且cos A =-3 cos (π-B ),则C 等于 .14.已知角α的终边经过点(P m ,且1cos 3=-α. (1)求m 的值;(2)求22cos sin 2sin cos -+⋅αααα的值.15.已知△ABC 中,7sin cos 5A A -=. (1)试判断三角形的形状; (2)求tan A 的值.16.已知向量2,sin θ=()a 与1,cos θ=()b 互相平行,其中θ∈(0,)2π.(1)求sin θ和cos θ的值; (2)若sin (θ-φ100<φ<2π,求cos φ的值.1.(2019年高考全国Ⅱ卷理数)已知α∈(0,2π),2sin2α=cos2α+1,则sin α=A .15B 5C.3D.52.(2017年高考北京卷理数)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________. 3.(2018年高考全国Ⅱ理数)已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________. 4.(2018年高考浙江卷)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P(3455-,-).(1)求sin (α+π)的值; (2)若角β满足sin (α+β)=513,求cos β的值.1.【答案】C【解析】∵已知角8π3=θ的终边经过点(,P x , 变式拓展∴8π2ππtantan tan 333==-==x,则2x =-. 故选C .【名师点睛】本题主要考查任意角的三角函数的定义,属于基础题.求解时,直接利用任意角的三角函数的定义求得x 的值. 2.【答案】D【解析】∵﹣1≤cos x ≤1,且sin (cos x )>0, ∴0<cos x ≤1, 又sin x <0,∴角x 为第四象限角, 故选D .【名师点睛】本题主要考查三角函数中角的象限的确定,根据三角函数值的符号去判断象限是解决本题的关键.求解时,根据三角函数角的范围和符号之间的关系进行判断即可. 3.【答案】A 【解析】因为ππ,42⎛⎫∈⎪⎝⎭θ,所以()2cos 12sin πcos --θθθ2cos 12sin cos =-θθθ()22cos sin cos =+-θθθ2cos sin cos sin cos =+-=+θθθθθ.故选A.【名师点睛】本题主要考查诱导公式的应用,三角函数式的化简等知识,意在考查学生的转化能力和计算求解能力.由题意结合诱导公式和三角函数的性质化简三角函数式即可. 4.【答案】C 【解析】因为2019π1cos 22⎛⎫+=⎪⎝⎭α,由诱导公式可得,2019π3π1cos()cos()sin 222+=+==ααα,又因为π,π2⎛⎫∈ ⎪⎝⎭α,所以cos ==-α. 故选C.【名师点睛】本题考查了诱导公式,解题的关键是在于诱导公式的掌握,易错点为没有注意角的范围,属于较为基础题.求解时,先由诱导公式对原式进行化简,从而可得sin α,再利用角的平方关系可得结果. 5.【答案】A【解析】由πsin cos cos cos 2A B A B ⎛⎫<⇔-< ⎪⎝⎭,且B 必为锐角, 可得π2A B ->或π2A B ->,即角A 或角C 为钝角; 反之,当100A =︒,30B =︒时,3cos B =3sin sin120A >︒==cos B ,所以sin cos A B <不成立, 所以“sin cos A B <”是“△ABC 为钝角三角形”的充分不必要条件, 故选A.【名师点睛】本题考查充分必要条件的判定,考查了三角形形状的判定,考查诱导公式等,属于综合题.求解时,先由诱导公式将正弦化为余弦,利用余弦的三角函数线比较大小即可得到角A 或角C 为钝角,再举反例说明必要性不成立即可.1.【答案】D【解析】终边相同的角相差了360︒的整数倍,设与2019︒角的终边相同的角是α,则2019360k =︒+⋅︒α,k ∈Z , 当6k =-时,141=-︒α. 故选D .【名师点睛】本题考查终边相同的角的概念及终边相同的角的表示形式.属于基本知识的考查.终边相同的角相差了360︒的整数倍,由2019360k =︒+⋅︒α,k ∈Z ,令6k =-,即可得解. 2.【答案】C【解析】∵{|9036,}M k k ==⋅︒-︒∈ααZ ,∴当0k =时36=-︒α,1k =时54=︒α,2k =时144=︒α,1k =-时126=-︒α, 又{|180180}N =-︒<<︒αα,考点冲关∴{}36,54,144,126MN =-︒︒︒-︒.故选C .【名师点睛】本题考查了交集及其运算,考查了赋值思想,是基础题.求解时,分别取0,1,2,1k =-,得到M 内α的值,与N 取交集得答案. 3.【答案】C【解析】设扇形的圆心角是α,则23π1182α=⨯,解得3π4α=,故选C . 4.【答案】C【解析】由题意可知:角x 的终边不能落在坐标轴上, 当角x 终边在第一象限时,cos sin tan 1113sin cos tan ;x x x y x x x=++=++= 当角x 终边在第二象限时,cos sin tan 1111sin cos tan ;x x xy x x x=++=--=- 当角x 终边在第三象限时,cos sin tan 1111sin cos tan ;x x xy x x x=++=--+=- 当角x 终边在第四象限时,cos sin tan 1111,sin cos tan x x xy x x x=++=-+-=- 因此函数的值域为{}1,3-,故选C.【名师点睛】本题考查了三角函数的正负性、分类讨论思想、数学运算能力.因为角x 的终边不能落在坐标轴上,所以分别求出角x 终边在第一、第二、第三、第四象限时,根据三角函数的正负性,函数的表达式,进而求出函数的值域. 5.【答案】C【解析】由tan 0α>得α是第一、三象限角,若α是第三象限角,则A ,B 错;由sin 22sin cos ααα=知sin 20α>,C 正确;α取π3时,2211cos 22cos 12()1022αα=-=⨯-=-<,D 错. 6.【答案】A【解析】因为()()sin 3sin παβαβ+=-+,所以sin cos 2cos sin ,αβαβ=即tan 2tan αβ=,选A . 7.【答案】B12=,即12P ⎛⎫ ⎪ ⎪⎝⎭,由三角函数的定义可得:11sin 2α==,则()sin πα+= 1sin 2α-=-.故选B.8.【答案】C【解析】根据三角函数的诱导公式和三角函数基本关系式, 可得:()()sin πsin tan 22sin 3cos 2sin 3cos 2tan 35+--===-+-++αααααααα,解得tan 6=α,故选C.【名师点睛】本题主要考查了三角函数的诱导公式和三角函数的基本关系式的化简求值问题,其中解答中熟记三角函数的诱导公式和三角函数的基本关系式,准确化简是解答的关键,着重考查了运算与求解能力,属于基础题. 9.【答案】C【解析】由诱导公式得()2sin πcos sin cos -+=+=αααα 两边平方得()22sin cos 12sin cos 9+=+=αααα,则72sin cos 09=-<αα, 所以()216sin cos 12sin cos 9-=-=αααα, 又因为()0,π∈α,所以sin cos 0->αα, 所以4sin cos 3-=αα,故选C . 10.【答案】5【解析】∵点P (1,2)在角α的终边上,∴tan α2=, 将原式分子分母同除以cos α,则原式6tan 86282053tan 23224+⨯+====-⨯-αα.故答案为:5.【名师点睛】此题考查了任意角的三角函数定义,同角三角函数基本关系的运用,属于基础题.求解时,根据P 坐标,利用任意角的三角函数定义求出tan α的值,原式分子分母除以cos α,利用同角三角函数间基本关系化简,把tan α的值代入计算即可求出值.11.【答案】10-【解析】设xOP α∠=,则34cos ,sin 55αα==, Q 点的横坐标为3πcos 410α⎛⎫+=-⎪⎝⎭. 12.【答案】(1)π2βα=+;(2)22- 【解析】(1)由题意可得点P 为单位圆上的点,并且以射线OP 为终边的角的大小为α, 所以(cos ,sin ),P αα 又因为P M ,两点关于直线y x =对称,所以(sin ,cos )M αα.即ππcos sin 22Mαα⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭(,).则π2βα=+.(2)ππ1,cos cos sin ,223βαβαα⎛⎫=+∴=+=-=- ⎪⎝⎭ππ220,sin sin cos ,223αβαα⎛⎫<<∴=+== ⎪⎝⎭ 故sin tan 2 2.cos βββ==- 13.【答案】2π33sin()3sin()33sin ,tan 2A ΑA A A π-=π-=,∴∴ 又0A <<π,6A π=∴. 又cos 3),A B =π-即cos 3A B =,1cos ,0623B B π==<<π,∴..32B C ΑΒππ==π-(+)=∴∴ 故填2π. 14.【解析】(1)因为角α的终边经过点(22,P m ,且1cos 3=-α, 2138m =-+,求得1m =-.(2)由(1)可得,tan 22=-α 所以22cos sin 2sin cos -+⋅αααα=2222cos sin 2sin cos cos sin -++αααααα=221tan 2tan 1tan -++ααα=79--. 【名师点睛】本题考查了余弦函数的定义,同角三角函数关系中的正弦、余弦平方和为1的关系和商关系,考查了数学运算能力.15.【解析】(1)将原式平方得1−2sin A cos A =49,25即2sin A cos A =−24025<, 故cos A 0<,则三角形为钝角三角形.(2)由(1)cos A +sin A =112sin cos 5A A ±+=±, 解得4sin 53cos 5A A ⎧=⎪⎪⎨⎪=-⎪⎩或3sin 54cos 5A A ⎧=⎪⎪⎨⎪=-⎪⎩,故tan A =34-或43-. 【名师点睛】本题考查同角三角函数基本关系,考查化简求值能力,是中档题.求解时,(1)将原式平方得2sin A cos A <0,得cos A 0<即可判断三角形为钝角三角形;(2)结合(1)求得cos A +sin A =15±,求得sin A 及cos A 即可求解. 16.【解析】(1)∵a 与b 互相平行,∴sin θ=2cos θ,代入sin 2θ+cos 2θ=1,可得cos θ=5, 又θ∈(0,)2π,∴cos θ5 ∴sin θ25(2)∵0<φ<2π,0<θ<2π,∴-2π<θ-φ<2π, 又sin (θ-φ∴cos (θ-φ10, ∴cos φ=cos[θ-(θ-φ)]=cos θcos (θ-φ)+sin θsin (θ-φ)=2. 1.【答案】B 【解析】2sin 2cos21αα=+,24sin cos 2cos .0,,cos 02αααααπ⎛⎫∴⋅=∈∴> ⎪⎝⎭,sin 0,α>2sin cos αα∴=,又22sin cos 1αα+=,2215sin 1,sin 5αα∴==,又sin 0α>,5sin α∴=,故选B .【名师点睛】本题是对三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦的正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负很关键,切记不能凭感觉.解答本题时,先利用二倍角公式得到正余弦关系,再利用角范围及正余弦平方和为1关系得出答案. 2.【答案】79-【解析】因为α和β关于y 轴对称,所以π2π,k k αβ+=+∈Z ,那么1s i n s i n 3βα==,22cos cos 3αβ=-=(或22cos cos 3βα=-=), 所以()2227cos cos cos sin sin cos sin 2sin 19αβαβαβααα-=+=-+=-=-. 【名师点睛】本题考查了角的对称关系,以及诱导公式,常用的一些对称关系包含:若α与β的终边关于y 轴对称,则π2π,k k αβ+=+∈Z ,若α与β的终边关于x 轴对称,则2π,k k αβ+=∈Z ,若α与β的终边关于原点对称,则π2π,k k αβ-=+∈Z . 3.【答案】12-【解析】因为sin cos 1+=αβ,cos sin 0+=αβ,所以()()221sin cos 1,-+-=αα直通高考所以11sin ,cos 22==αβ, 因此()22111111sin sin cos cos sin cos 1sin 1.224442+=+=⨯-=-+=-+=-αβαβαβαα【名师点睛】本题主要考查三角恒等变换,考查考生分析问题、解决问题的能力,考查的核心素养是数学运算. 4.【答案】(1)45;(2)56cos 65β=-或16cos 65β=-. 【解析】(1)由角α的终边过点34(,)55P --得4sin 5α=-,所以4sin(π)sin 5αα+=-=.(2)由角α的终边过点34(,)55P --得3cos 5α=-,由5sin()13αβ+=得12cos()13αβ+=±. 由()βαβα=+-得cos cos()cos sin()sin βαβααβα=+++, 所以56cos 65β=-或16cos 65β=-. 【名师点睛】本题主要考查三角函数的定义、诱导公式、两角差的余弦公式,考查考生分析问题、解决问题的能力,运算求解能力,考查的数学核心素养是数学运算.求解三角函数的求值问题时,需综合应用三角函数的定义、诱导公式及三角恒等变换. (1)首先利用三角函数的定义求得sin α,然后利用诱导公式,计算sin (α+π)的值;(2)根据sin (α+β)的值,结合同角三角函数的基本关系,计算cos()+αβ的值,要注意该值的正负,然后根据()βαβα=+-,利用两角差的余弦公式,通过分类讨论,求得cos β的值.。
2024年新高考版数学专题1_5.1 三角函数的概念、同角三角函数的基本关系及诱导公式
综合篇
考法一 三角函数定义的应用 1.已知角α终边上一点P的坐标,求三角函数值:先求出点P到原点的距离r, 然后利用三角函数的定义求解;若含参数,则需对参数进行讨论. 2.已知角α的终边所在直线的方程(角α的终边为射线,此处给的是直线方 程),求三角函数值:一般地,由于不确定终边所在象限,故在终边上任取一 个异于原点的点时应分两种情况,然后利用三角函数的定义求解;若直线 的倾斜角为特殊角,则可直接写出角α的三角函数值.
r
r
x
2)三角函数值在各象限内的符号
记忆口诀:一全正,二正弦,三正切,四余弦. 二、同角三角函数的基本关系 1.平方关系:sin2α+cos2α=1.
2.商数关系:tan
α=
sin α cos α
α
2
k
,
k
Z
.
三、三角函数的诱导公式
公式
角
正弦
Hale Waihona Puke 一2kπ+α
sin α
(k∈Z)
二
π+α
-sin α
三
-α
-sin α
四
π-α
sin α
五
-α
cos α
2
六
2 +α
cos α
七
3
2 π+α
-cos α
八
3
2 π-α
-cos α
余弦 cos α
-cos α cos α -cos α sin α -sin α sin α -sin α
正切 tan α
tan α -tan α -tan α
口诀 函数名不变,符 号看象限
高考 数学
高中数学三角函数知识点归纳及常考题型分析
三角函数知识点归纳及常考题型分析【知识点回顾】1、角的概念、正角、负角、零角.2、角的表示:(1)终边相同的角:与α角终边相同的角的集合(连同α角在内),可以记为{ββ|=k ·360+α,k ∈Z }。
(2)象限角:顶点在原点,始边与x 轴非负半轴重合,则终边落在第几象限,就称这个角是第几象限的角。
请写出各象限角的集合。
(3)轴线角:顶点在原点,始边与x 轴非负半轴重合,则终边落在坐标轴上的角叫轴线角。
请写出各轴线角的集合。
(4)区间角、区间角的集合: 角的量数在某个确定的区间内(上),这角就叫做某确定区间的角.由若干个区间构成的集合称为区间角的集合.3、角度制、弧度制及互换: 1rad =π180°≈57.30°=57°18ˊ, 1°=180π≈0.01745(rad ) 4、弧长公式:r l ⋅=||α,扇形面积公式:211||22s lr r α==⋅扇形5、三角函数的定义:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )P 与原点的距离为r ,则sin y r α=, cos x r α= ,tan y x α=,cot x y α=,sec rxα=,csc r y α=.6、三角函数在各象限的符号:(一全二正弦,三切四余弦)7、三角函数线正弦线:MP ;余弦线:OM ;正切线: AT 。
8、同角三角函数的基本关系式:22sin cos 1θθ+=,tan θ=θθcos sin ,tan cot θθ⋅= 9、正弦、余弦的诱导公式(奇变偶不变,符号看象限)212(1)sin ,()sin()2(1)s ,()n n n n co n απαα-⎧-⎪+=⎨⎪-⎩为偶数为奇数,212(1)s ,()s()2(1)sin ,()n n co n n co n απαα+⎧-⎪+=⎨⎪-⎩为偶数为奇数 10、和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=;22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式);22cos()cos()cos sin αβαβαβ+-=-;11、二倍角公式及降幂公式sin 2sin cos ααα=22tan 1tan αα=+;2222cos 2cos sin 2cos 112sin ααααα=-=-=-221tan 1tan αα-=+ 22tan tan 21tan ααα=-;221cos 21cos 2sin ;cos 22αααα-+==。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Xx 学校学科教师辅导讲义一)一、定义:角可以看作成平面内一条射线绕着端点从一个位置到另一个位置所称的图形。
旋转开始时的射线、终止时的射线分别叫作_______、_______,射线的端点O 叫做_________.按逆时针方向旋转形成的角叫做_______,顺时针方向旋转形成的角叫做_______,若一条射线没有作任何旋转,称它形成了一个_______。
二、在直角坐标系内讨论角:(1)角的顶点在原点,始边与x 轴的非负半轴重合,角的终边(除端点外)在第几项先,就说这个角是第几象限角(或者说这个角属于第几象限);例如:30°、390°、-330°等都是第一象限角;120°、480°、-240°等都是第二象限角;240°、600°、-120°等都是第三象限角;-30°、-390°、330°等都是第四象限角。
注意:锐角_____第一象限角,但第一象限角_______锐角;钝角______第二象限角,但第二象限角________钝角。
(填“都是”或者“不都是”)(2)若角的终边在坐标轴上,就说这个角不属于任一象限。
例如:直角、周角、平角都不属于任一象限。
三、终边相同的角(重点)所有与角α终边相同的角,连同角α在内,可构成一个集合S={Z k k ∈•+=︒,360/αββ},即任一与角α终边相同的角都可以表示为角α与整个周角的和。
四、1弧度角的定义:我们把等于半径长的圆弧所对的圆心角叫做1弧度的角。
单位符号是 rad,读作弧度。
2、弧度数:在单位圆中,当圆心角为周角时,它所对的弧长为2π,所以周角的弧度数为2π,周角是2πrad 的角. 任意一个0°~360°的角的弧度数必然适合不等式 0≤x<2π. 任一正角的弧度数都是一个正实数;,任一负角的弧度数都是一个负实数; 零角的弧度数是0.五、弧度制与角度制的换算 360°=2πrad ;180°=πrad ;1°=180πrad ≈;1rad=π180≈°≈57°18′。
六、弧长公式l=r •α七、设是一个任意角,在的终边上任取(异于原点的)一点P (x,y )则P 与原点的距离02222>+=+=y x yx r八、比值ry 叫做的正弦 记作: r y =αsin ; 比值rx 叫做的余弦 记作: rx =αcos ;比值xy 叫做的正切 记作: xy =αtan ; 比值yx 叫做的余切 记作: yx =αcot ;比值xr 叫做的正割 记作: xr=αsec ;比值y r 叫做的余割 记作: yr=αcsc 。
⑤定义域:αααtan cos sin ===y y y )(2Z k k RR ∈+≠ππα αααcsc sec cot ===y y y )()(2)(Z k k Z k k Z k k ∈≠∈+≠∈≠παππαπα三角函数定义域第一象限第二象限第三象限第四象限sin αcos αtan α九.公式: 1cos sin22=+ααααtan cos = 1cot tan =⋅αα十、公式一: 设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)=sinα k∈z ;cos (2kπ+α)=cosα k∈z ;tan (2kπ+α)=tanα k∈z 。
公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)=-sinα ;cos (π+α)=-cosα ;tan (π+α)=tanα 。
公式三: 任意角α与 -α的三角函数值之间的关系:sin (-α)=-sinα ;cos (-α)=cosα ;tan (-α)=-tanα公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)=sinα ;cos (π-α)=-cosα ;tan (π-α)=-tanα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)=-sinα ;cos (2π-α)=cosα ;tan (2π-α)=-tanα 公式六: π/2±α与α的三角函数值之间的关系:sin (π/2+α)=cosα ;cos (π/2+α)=-sinα ;tan (π/2+α)=-cotα。
sin (π/2-α)=cosα ;cos (π/2-α)=sinα ; tan (π/2-α)=cotα 。
推算公式:3π/2±α与α的三角函数值之间的关系:sin (3π/2+α)=-cosα ;cos (3π/2+α)=sinα ;tan (3π/2+α)=-cotα 。
sin (3π/2-α)=-cosα ;cos (3π/2-α)=-sinα ;tan (3π/2-α)=cotα 。
诱导公式记忆口诀:“奇变偶不变,符号看象限”。
“奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。
(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。
符号判断口诀:“一全正;二正弦;三两切;四余弦”。
这十二字口诀的意思就是说: 第一象限内任何一个角的四种三角函数值都是“+”; 第二象限内只有正弦是“+”,其余全部是“-”; 第三象限内只有正切和余切是“+”,其余全部是“-”; 第四象限内只有余弦是“+”,其余全部是“-”。
二)、重难点分析一、象限角的表示。
例 1、写出终边在x 轴正半轴、负半轴,y 轴正半轴、负半轴上的角的集合。
例 2、写出终边在x 轴,y 周上的角的集合。
例 3、写出终边在坐标轴上的角的集合。
练习一:1、写出第一、二、三、四象限角的集合。
二、同角三角函数的基本关系式应用的基本题型。
1、求值题型。
已知一个角的某个函数值,求该角的其它函数值。
(1)已知一个角的一个具体的三角函数值及这个角所在象限。
求该角的其他三角函数值。
例 4、 已知54sin =α,并且α是第二象限角,求α的其他三角函数值. 练习二:1.已知21cos =θ , 是第一θ象限角 求θtan 的值. (2)已知一个角的一个具体的三角函数值但该角所在的象限没有给出,解题时首先要根据已知的三角函数确定这个角所在的象限,然后分不同的情况来求解。
例 5、已知178cos -=α,求sin α、tan α的值. 练习三:1.已知2tan =α,求αsin 的值。
(3)一个角的某一个三角函数值是用字母给出的,但该角所在象限没有给出,这时一般有两组解。
例 6、已知=αcos a ,求αsin 的值。
练习四:1.已知2tan =αb ,求αcos 的值。
2、化简题型。
化简三角函数式的一般要求是:能求出值得要求求出值;函数种类尽可能少;化简后的式子项数尽可能少;函数次数尽可能低;尽可能使分母不含三角形式和根号等。
3、证明题型。
证明三角形等式和条件等式的实际是消除两端的诧异,就是有目标的化简。
根据不同题型,可采用: (1)左边⇒右边;(2)右边⇒左边;(3)右边、左边⇒中间 例 8、证明:1cos cos sin sin sin sin 222222=+-+∂βαβαβ。
例9、证明:12sin 2sin 2sin222<++CB A (其中A 、B 、C 为⊿ABC 的内角)练习五 :1、已知A 、B 是锐角:A+B=4π的充分必要条件是(1+tanA )(1+tanB )=2. 2、求值:75cos 73cos 7cos πππ++三)出题角度归纳一、角的取值范围例 10、如果α是第一象限角,那么-α,2α,4α,4,2αα的终边落在何处?练习六:1、如果α是第三象限角,那么-α,2α,2α的终边落在何处? 2、已知点P (tan α,cos α)在第三象限,则角α的终边在第几象限?二、三角函数的概念例11、设α是第四象限角,其终边上的一点是P (x ,-5),且cos α=x 42,求sin α和tan α。
例12、求函数xx xx y tan tan cos cos +=的值域。
练习七:1、若sin αcos α>0,试确定α所在的象限。
2、函数+=x x y sin sin x x x x tan tan cos cos ++xxcot cot 的值域。
三、同角三角函数的基本关系式、诱导公式的应用 例13、已知函数)2(cos 1cos sin 21)(2x x x x f ---=π。
(1)求)(x f 的定义域;(2)已知tanA=-2,求)(A f 的值。
例14、已知A 是三角形的一个内角,sinA+cosA=51,求tanA 的值。
练习八:1、若f (sinx )=2+x 2cos ,求f (cosx ) 四)课时作业:见附件。