小学四年级奥数 第47讲:排列组合综合应用(一)

合集下载

四年级奥数-排列组合(1)

四年级奥数-排列组合(1)

排列组合排列组合问题是必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例 1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有A 、60种B 、48种C 、36种D 、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是A 、1440种B 、3600种C 、4820种D 、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B .3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例 3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是A 、24种B 、60种C 、90种D 、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B . 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有A 、6种B 、9种C 、11种D 、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B .5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是A 、1260种B 、2025种C 、2520种D 、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有2112520C C C =种,选C .(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有A 、4441284C C C 种B 、44412843C C C 种 C 、4431283C C A 种D 、444128433C C C A 种 答案:A .6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有234336C A =种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为A 、480种B 、240种C 、120种D 、96种答案:B .7.名额分配问题隔板法:例7.10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况: ①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种.9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计.例9.(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有A 、210种B 、300种C 、464种D 、600种解析:按题意,个位数字只可能是0、1、2、3和4共5种情况,分别有55A 、113433A A A 、113A A A 、113233A A A 和1333A A 个,合并总计300个,选B .(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A =共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100I A =共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从I A 中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种. (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?解析:将{}1,2,3,100I =分成四个不相交的子集,能被4整除的数集{}4,8,12,100A =;能被4除余1的数集{}1,5,9,97B =,能被4除余2的数集{}2,6,,98C =,能被4除余3的数集{}3,7,11,99D =,易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有211225252525C C C C ++种. 10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B =+-.例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种.11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。

小学奥数之排列组合问题

小学奥数之排列组合问题
题目:有五本不同的书分给甲、乙、丙三人,其中一人一本,另两人各两本,不同的分配方法有 _______ 种. 答案:90
题目:将5个不同的小球放到4个不同的盒子里,要求每个盒子都不空,则不同的放法种数为 _______. 答案:60
掌握基础概念和公式
理解排列组合的原理和计算方法
理解排列组合的概念和公式
练习题:有5个不同的小球放到4个不同的盒子里,要求每个盒子都不空,则不同的放法种数为多少? 答案解析:根据题意,先选出5个小球,再将其分成4组,然后对4组进行排列,最后将排列后的4组对应到4个不同的盒子里。根据分步乘法计数原理,共有$A_{5}^{4} = 240$种不同的放法。答案解析:根据题意,先选出5个小球,再将其分成4组,然后对4组进行排列,最后将排列后的4组对应到4个不同的盒子里。根据分步乘法计数原理,共有$A_{5}^{4} = 240$种不同的放法。练习题:有7把椅子摆成一排,现有3人随机就座,那么任何两人不相邻的坐法种数为多少? 答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。练习题:用数字0,1,2,3,4可以组成多少个无重复数字且大于2000的三位数? 答案解析:对于三位数的百位数字,不能为0,所以百位数字可以为1、2、3、4中的任意一个,共有4种选择。对于十位数字和个位数字,由于不能有重复数字,所以十位数字和个位数字各有4种选择。根据分步乘法计数原理,共有$4 \times 4 \times 3 = 48$个无重复数字且大于2000的三位数。答案解析:对于三位数的百位数字,不能为0,所以百位数字可以为1、2、3、4中的任意一个,共有4种选择。对于十位数字和个位数字,由于不能有重复数字,所以十位数字和个位数字各有4种选择。根据分步乘法计数原理,共有$4 \times 4 \times 3 = 48$个无重复数字且大于2000的三位数。练习题:有7把椅子摆成一排,现有3人随机就座,那么任何两人不相邻的坐法种数为多少? 答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。

排列组合综合应用课件大习题课

排列组合综合应用课件大习题课

解: 2A A
2 2
5 5
问:若7个座位3个孩子去坐,要求每个孩子的旁边都 有空位置,有多少种不同的排法?
解:A (搬凳子插入)
3 3
分 配 问 题
例 3: ( 1 ) 6 本 不 同的 书 分给 5 名同 学 每 人一本,有多少种不同分法?
A
5 6 5 6 5 5
(2)5本相同的书分给 6名同学每人至
解 1 :C C
3 7 3 4
3 7
3 4
C C 2 解2: ( ). A 2 2 A2
分 配 问 题
例 3: ( 7)将5名实习教师分配到高一年级的 3 个班实习,每个班至少1名,最多2名,则 不 同 的 分 配 方 案 有 多 少 ?
C C 3 解: ( ). A 90 3 2 A2
2 5
解2:将 5 块地转化为 块地 解1 : 3 2 (2 2 3 3 ) 42 1,3,5 ; 2; 4, 1,3; 2,5; 4, 1,3; 2,4; 5 , 1,5; 2,4; 3 3,5; 1,4; 2, 3,5; 2,4; 1 , 1,4; 2,5; 3
3 3
共有7 A 42种
2 1 有 5 个,因此共有 N=4A3 + 6A + 5A 9 8 7+5=2392 种.

例2:



4个男孩3个女孩,站成一排照相留念。 1)若三个女孩要站在一起,有多少种不同的排法?
解:A . A
3 3
5 5
2)若三个女孩要站在一起,四个男孩也 要站在一 起,有多少种不同的排法?
解:A .A .A 288
(2) 若允许某些盒子不放球,则相当于在 n+m-1 个位置 中选m-1个隔板,把n个小球分隔成m份,共有 种

排列组合综合应用第1课时教案

排列组合综合应用第1课时教案

排列组合综合应用 第1课时一、教学目标1.掌握排列和组合数的各个性质并能熟练运用. 2.认识分组分配和分组组合问题的区别. 3.能够区分和解决分组分配和分组组合问题. 二、教学重点难点重点:熟练掌握排列和组合数的各个性质并能熟练运用; 难点:能够区分和解决分组分配和分组组合问题. 三、教学过程(一)预习检查、总结疑惑检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性. (二)情景导入、展示目标.前面,我们已经分别对排列组合问题做了较全面的研究,我们知道排列组合相互联系又相互区别.在实际问题中,有些问题既涉及排列问题又涉及组合问题,因此只有将两个知识点结合起来,才能更好的解决实际问题,今天我们先解决以下几类综合问题.(三)合作探究、精讲点拨. 1.分组分配问题 探究:将3件不同的礼品(1)分给甲乙丙三人,每人各得1件,有多少种分法? (2)分成三堆,一堆一件,有几种分法?答案:(1)633 A (2)1种(4)因为没有规定谁得1件,谁得2件和3件,那么谁都可以得1,2,或3件,故应比(2)扩大33A 倍,则一共有36033332516=A C C C 种. (5)解法一:第一堆有26C 种分法,第二堆有24C 种分法,第三堆有22C 种分法,所以一共有222426C C C 种分法,但因为堆与堆之间没有区别,故每33A 种情况只能算一种情况,因此,共有1533222426=A C C C 种分法. 解法二:设6件礼品分3堆有x 种分法,在平均分成3堆后再分给三个人,又有33A 种分法,故将6件礼品分给三个人,每人2件共有x 33A 种分法,再由(1)知它应等于222426C C C 种,列方程得x 33A 222426C C C ,可得x 1533222426==A C C C . 点评:本题中的每一个小题都提出了一种类型的问题,搞清类型的归属对今后的解题大有裨益.其中:(1)均匀不定向分配问题(2)非均匀定向分配问题(3)非均匀不定向分配问题(4)非均匀分配问题(5)均匀分配问题.这是一个典型的问题,要认真体会.变式训练1 按下列要求把12个人分成3个小组,各有多少种不同的分法? (1)各组人数分别为2,4,6人; (2)平均分成3个小组;(3)平均分成3个小组,进入3个不同车间.简答:(1)66410212C C C =13860,(2)334448412A C C C =5775, (3)分两步:第一步平均分成3组,第二步让3个小组分别进入不同车间,故有334448412A C C C 33A =4448412C C C =34650种不同的分法.2.分组组合问题例2 6名男医生,4名女医生(1)选3名男医生,2名女医生,让他们到5个不同的地区巡回医疗,共有多少种不同的分派方法?(2)把10名医生分成2组,每组5人且每组要有女医生,有多少种不同的分派方法?若将这两组医生分派到两地去,并且每组选出正,副组长2人,又有多少种方法?解析:取部分元素进行排列,一定要先取后排.解:(1)法1:分三步:①从6名男医生中选3名 ②从4名女医生中选2名 ③对选出的5人全排列,故一共有14400552436=C C C 种法2:分两步:从5个地区中选出3个地区,再将3个地区的工作分配给6个男医生中的3个,3635A C再将剩下的2个地区的工作分给4个女医生中的2个24A ,故一共3635A C 1440024=A(2)医生的选法有两类:第一类:一组女医生1人男医生4人,另一组女医生3人男医生2人,因为组合组之间没有顺序,故一共有4614C C 种不同的选法. 第二类:两组都是3男2女,考虑两组没有顺序,因此有种223624A C C 不同的 选法,因此医生不同的选法总数为+4614C C 种120223624=A C C .分派到两地22A 种方法,每个小组选出正副组长各有25A 种选法,故一共有96000120252522==A A A N . 点评:对于排列组合的综合题,常采用先组合(选出元素),再排列(将选出的这些元素按要求进行排序).变式训练2.从6个男同学和4个女同学中,选出3个男同学和2个女同学分别承担A 、B 、C 、D 、E 五项不同的工作,一共有多少种分配工作的方法?简答:一般方法是先选后排,按元素的性质“分类”和按事件发生的连续过程分步,故有2436C C 55A =14400种方法.3.相同元素的分组分配问题例3 某校高二年级有6个班级,现要从中选出10人组成高二年级女子篮球队参加县高中年级篮球比赛,且规定每班至少要选1人参加,这10个名额有多少种不同的分配方案?解析:名额分配问题,名额之间没有区别,可以采用隔板法.解:因为名额之间没有区别,所以可以把它们视作是排成一排的10个相同的小球,要把这10个小球分开成6段,且每段至少一个小球,为达到这个目的,我们把这10个球拉开,每两个球之间空出一个位置,两端不留位置,共9个位置,现在要把这9个位置中放入5个隔板,则每一种放法把这10个球都能分成6段,得到的结果对应于一种分配方案,故有12659=C 种放法. 点评:相同元素的分配问题,通常可以采用隔板法. 例4 求方程X+Y+Z=10的正整数解的个数.解析:可以将方程解的问题转化为相同元素的分配问题.解:将10个球排成一排,球与球之间形成9个空隙,将两个隔板插入这些空隙中(每空至多插一块隔板),规定由隔板分成的左、中、右三部分的球数分别为x 、y 、z 之值,则隔法与解的个数之间建立了一一对立关系,故解的个数为29C =36(个).点评:该题的转化是关键,将方程的解转化为小球的分配的问题,使问题豁然开朗;既好理解,又便于计算.在做题时注意体会.变式训练3 20个不加区别的小球放入编号为1,2,3的三个不同盒子中,要求每个盒子里的球数不少于该盒子的编号数,问有多少种不同的方法.简答:由于每个盒子里的球数不少于编号数,则在2号盒子内放入1个球,3号盒子放入2个球,然后把余下的17个小球分成3份放入3个盒子中,相当于16个空位放2个隔板,故一共2C种不同的方法.16变式训练4求方程X+Y+Z=10的非负整数解的个数.简答:注意到x、y、z可以为零,故上题解法中的限定“每空至多插一块隔板”就不成立了,怎么办呢?只要添加三个球,给x、y、z各一个球.这样原问题就转化为求X+Y+Z=13的正整数解的个数了,故解的个数为2C=66(个).12(四)反思总结,当堂检测教师组织学生反思总结本节课的主要内容,并进行当堂检测.四、板书设计排列组合综合问题第一课时一、预习检查2分组组合问题.3.相同元素的分组分配二、合作探究、精讲点拨例2例31.分组分配问题例1例4三、小结五、作业布置1.六本不同的书,分为三组,一组四本,另外两组各一本,有多少种分法?2.有5个男生和3个女生,从中选5 个担任5门学科代表,求符合下列条件的选法数.(1)有女生但人数少于男生(2)某女生一定要担任语文科代表.(3)某男生必须在内,但不担任数学科代表.(4)某女生一定要担任语文科代表,某男生必须担任科代表,但不是数学科代表.3.把12本相同的笔记本全部分给7位同学,每人至少一本,有多少种分法?。

小学奥数排列组合教案

小学奥数排列组合教案

小学奥数-排列组合教案一、教学目标1. 让学生理解排列组合的概念,掌握排列组合的基本算法。

2. 培养学生的逻辑思维能力,提高学生解决实际问题的能力。

3. 激发学生的学习兴趣,培养学生的耐心和细心。

二、教学内容1. 排列的概念和排列数公式2. 组合的概念和组合数公式3. 排列组合的综合应用三、教学重点与难点1. 教学重点:排列组合的概念,排列数和组合数的计算方法。

2. 教学难点:排列组合的综合应用,解决实际问题。

四、教学方法1. 采用直观演示法,让学生通过实际操作理解排列组合的概念。

2. 采用案例教学法,分析典型例题,引导学生运用排列组合知识解决实际问题。

3. 采用讨论法,鼓励学生提问、交流、探讨,提高学生的逻辑思维能力。

五、教学安排1. 课时:每课时约40分钟2. 教学步骤:引入新课讲解概念举例讲解练习巩固课堂小结3. 课后作业:布置相关练习题,巩固所学知识。

教案一、引入新课1. 老师:同学们,你们平时喜欢做游戏吗?今天我们就来玩一个有趣的游戏,请大家观察这些数字(出示数字卡片),看看你能发现什么规律?2. 学生观察数字卡片,发现规律。

二、讲解概念1. 老师:同学们观察得很仔细,这些数字卡片其实就是我们今天要学习的内容——排列组合。

什么是排列呢?2. 学生回答:排列是指从n个不同元素中取出m(m≤n)个元素的所有可能的排列的个数。

3. 老师:很好,那什么是组合呢?4. 学生回答:组合是指从n个不同元素中取出m(m≤n)个元素的所有可能的组合的个数。

5. 老师:同学们掌握得很好,我们来学习排列数和组合数的计算方法。

三、举例讲解1. 老师:我们以n=5,m=3为例,来计算排列数和组合数。

2. 学生计算排列数:5×4×3=60,计算组合数:C(5,3)=10。

3. 老师:同学们计算得很好,这些排列和组合在实际生活中有哪些应用呢?四、排列组合在实际生活中的应用1. 老师:比如说,我们有一排5个位置,要从中选出3个位置来安排3个同学,就有60种排列方式,10种组合方式。

四年级奥数讲义:排列组合的综合应用

四年级奥数讲义:排列组合的综合应用

四年级奥数讲义:排列组合的综合应用排列组合是数学中风格独特的一部分内容.它具有广泛的实际应用.例如:某城市电话号码是由六位数字组成,每位可从0~9中任取一个,问该城市最多可有多少种不同的电话号码?又如从20名运动员中挑选6人组成一个代表队参加国际比赛.但运动员甲和乙两人中至少有一人必须参加代表队,问共有多少种选法?回答上述问题若不采用排列组合的方法,结论是难以想像的.(前一个问题,该城市最多可有1000000个不同电话号码.后一个问题,代表队有20196种不同选法.)当然排列组合的综合应用具有一定难度.突破难点的关键:首先必须准确、透彻的理解加法原理、乘法原理;即排列组合的基石.其次注意两点:①对问题的分析、考虑是否能归纳为排列、组合问题?若能,再判断是属于排列问题还是组合问题?②对题目所给的条件限制要作仔细推敲认真分析.有时利用图示法,可使问题简化便于正确理解与把握.例1 从5幅国画,3幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?分析首先考虑从国画、油画、水彩画这三种画中选取两幅不同类型的画有三种情况,即可分三类,自然考虑到加法原理.当从国画、油画各选一幅有多少种选法时,利用的乘法原理.由此可知这是一道利用两个原理的综合题.关键是正确把握原理.解:符合要求的选法可分三类:不妨设第一类为:国画、油画各一幅,可以想像成,第一步先在5张国画中选1张,第二步再在3张油画中选1张.由乘法原理有5×3=15种选法.第二类为国画、水彩画各一幅,由乘法原理有5×2=10种选法.第三类油画、水彩各一幅,由乘法原理有3×2=6种选法.这三类是各自独立发生互不相干进行的.因此,依加法原理,选取两幅不同类型的画布置教室的选法有15+10+6=31种.注运用两个基本原理时要注意:①抓住两个基本原理的区别,千万不能混.不同类的方法(其中每一个方法都能各自独立地把事情从头到尾做完)数之间做加法,可求得完成事情的不同方法总数.不同步的方法(全程分成几个阶段(步),其中每一个方法都只能完成这件事的一个阶段)数之间做乘法,可求得完成整个事情的不同方法总数.②在研究完成一件工作的不同方法数时,要遵循“不重不漏”的原则.请看一些例:从若干件产品中抽出几件产品来检验,如果把抽出的产品中至多有2件次品的抽法仅仅分为两类:第一类抽出的产品中有2件次品,第二类抽出的产品中有1件次品,那么这样的分类显然漏掉了抽出的产品中无次品的情况.又如:把能被2、被3、或被6整除的数分为三类:第一类为能被2整除的数,第二类为能被3整除的数,第三类为能被6整除的数.这三类数互有重复部分.③在运用乘法原理时,要注意当每个步骤都做完时,这件事也必须完成,而且前面一个步骤中的每一种方法,对于下个步骤不同的方法来说是一样的.例2 一学生把一个一元硬币连续掷三次,试列出各种可能的排列.分析要不重不漏地写出所有排列,利用树形图是一种直观方法.为了方便,树形图常画成倒挂形式.解:由此可知,排列共有如下八种:正正正、正正反、正反正、正反反、反正正、反正反、反反正、反反反.例3 用0~9这十个数字可组成多少个无重复数字的四位数.分析此题属于有条件限制的排列问题,首先弄清楚限制条件表现为:①某位置上不能排某元素.②某元素只能排在某位置上.分析无重复数字的四位数的千位、百位、十位、个位的限制条件:千位上不能排0,或说千位上只能排1~9这九个数字中的一个.而且其他位置上数码都不相同,下面分别介绍三种解法.解法1:分析某位置上不能排某元素.分步完成:第一步选元素占据特殊位置,第二步选元素占据其余位置.解:分两步完成:第一步:从1~9这九个数中任选一个占据千位,有9种方法.第二步:从余下的9个数(包括数字0)中任选3个占据百位、十位、个位,百位有9种.十位有8种,个位有7种方法.由乘法原理,共有满足条件的四位数9×9×8×7=4536个.答:可组成4536个无重复数字的四位数.解法2:分析对于某元素只能占据某位置的排列可分步完成:第一步让特殊元素先占位,第二步让其余元素占位.在所给元素中0是有位置限制的特殊元素,在组成的四位数中,有一类根本无0元素,另一类含有0元素,而此时0元素只能占据百、十、个三个位置之一.解:组成的四位数分为两类:第一类:不含0的四位数有9×8×7×6=3024个.第二类:含0的四位数的组成分为两步:第一步让0占一个位有3种占法,(让0占位只能在百、十、个位上,所以有3种)第二步让其余9个数占位有9×8×7种占法.所以含0的四位数有3×9×8×7=1512个.∴由加法原理,共有满足条件的四位数3024+1512=4536个.解法3:从无条件限制的排列总数中减去不合要求的排列数(称为排除法).此题中不合要求的排列即为0占据千位的排列.解:从0~9十个数中任取4个数的排列总数为10×9×8×7,其中0在千位的排列数有9×8×7个(0确定在千位,百、十、个只能从9个数中取不同的3个)∴共有满足条件的四位数10×9×8×7-9×8×7=9×8×7×(10-1)=4536个.注用解法3时要特别注意不合要求的排列有哪几种?要做到不重不漏.例4 从右图中11个交点中任取3个点,可画出多少个三角形?分析首先,构成三角形与三个点的顺序无关因此是组合问题,另外考虑特殊点的情况:如三点在一条直线上,则此三点不能构成三角形,四点在一条直线上,则其中任意三点也不能构成三角形.此题采用排除法较方便.解:组合总数为C311,其中三点共线不能构成的三角形有7C33,四点共线不能构成的三角形有2C34,∴C311-(7C33+2C34)=165-(7+8)=150个.例5 7个相同的球,放入4个不同的盒子里,每个盒子至少放一个,不同的放法有多少种?(请注意,球无区别,盒是有区别的,且不允许空盒)分析首先研究把7分成4个自然数之和的形式,容易得到以下三种情况:①7=1+1+1+4②7=1+2+2+2③7=1+1+2+3其次,将三种情况视为三类计算不同的放法.第一类:有一个盒子里放了4个球,而其余盒子里各放1个球,由于4个球可任意放入不同的四个盒子之一,有4种放法,而其他盒子只放一个球,而球是相同的,任意调换都是相同的放法,所以第一类只有4种放法.第二类:有一个盒子里放1个球,有4种放法,其余盒子里都放2个球,与第一类相同,任意调换都是相同的放法,所以第二类也只有4种放法.第三类:有两个盒子里各放一个球,另外两个盒子里分别放2个及3个球,这时分两步来考虑:第一步,从4个盒子中任取两个各放一个球,这种取法有C24种.第二步,把余下的两个盒子里分别放入2个球及3个球,这种放法有P22种.由乘法原理有C24×P22=12种放法.∴由加法原理,可得符合题目要求的不同放法有4+4+12=20(种)答:共有20种不同的放法.注本题也可以看成每盒中先放了一个球垫底,使盒不空,剩下3个球,放入4个有区别盒的放置方式数.例 6 用红、橙、黄、绿、蓝、青、紫七种颜色中的一种,或两种,或三种,或四种,分别涂在正四面体各个面上,一个面不能用两色,也无一个面不涂色的,问共有几种不同涂色方式?分析首先介绍正四面体(模型).正四面体四个面的相关位置,当底面确定后,(从上面俯视)三个侧面的顺序有顺时针和逆时针两种(当三个侧面的颜色只有一种或两种时,顺时针和逆时针的颜色分布是相同的).先看简单情况,如取定四种颜色涂于四个面上,有两种方法;如取定一种颜色涂于四个面上,只有一种方法.但取定三种颜色如红、橙、黄三色,涂于四个面上有六种方法,如下图①②③(图中用数字1,2,3分别表示红、橙、黄三色)如果取定两种颜色如红、橙二色,涂于四个面上有三种方法.如下图④⑤⑥但是从七种颜色里,每次取出四种颜色,有C47种取法,每次取出三种颜色有C37种取法,每次取出两种颜色有C27种取法,每次取出一种颜色有C17种取法.因此着色法共有2 C47+6 C37+3 C27+ C17=350种.习题六1.有3封不同的信,投入4个邮筒,一共有多少种不同的投法?2.甲、乙两人打乒乓球,谁先连胜头两局,则谁赢.如果没有人连胜头两局,则谁先胜三局谁赢,打到决出输赢为止,问有多少种可能情况?3.在6名女同学,5名男同学中,选4名女同学,3名男同学,男女相间站成一排,问共有多少种排法?4.用0、1、2、3、4、5、6这七个数字可组成多少个比300000大的无重复数字的六位偶数?5.如右图:在摆成棋盘眼形的20个点中,选不在同一直线上的三点作出以它们为顶点的三角形,问总共能作多少个三角形?6.有十张币值分别为1分、2分、5分、1角、2角、5角、1元、2元、5元、10元的人民币,能组成多少种不同的币值?并请研究是否可组成最小币值1分与最大币值(总和)之间的所有可能的币值.。

排列组合综合应用PPT课件

排列组合综合应用PPT课件
种,只会唱的5人中只有1人选上唱歌人
员__C_15C__13C__24 _种,只会唱的5人中只有2人
选上唱歌人员有_C_52_C_52种,由分类计数
原理共有___C__32 C_32_+__C__15C__13C__24 +__C_52_C_52__种。
本题还有如下分类标准: *以3个全能演员是否选上唱歌人员为标准 *以3个全能演员是否选上跳舞人员为标准 *以只会跳舞的2人是否选上跳舞人的5个节目已排成节 目单,开演前又增加了两个新节目.如果将这 两个节目插入原节目单中,那么不同插法的 种数为( 42 )
2. 某8层大楼一楼电梯上来8名乘客人,他们 到各自的一层下电梯,下电梯的方法
( 78 )
2021
22
练习题 6颗颜色不同的钻石,可穿成几种钻石圈
要注意合并元素2内021 部也必须排列.
14
练习题
某人射击8枪,命中4枪,4枪命中恰好 有3枪连在一起的情形的不同种数为 ( 20 )
2021
15
6.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个
独唱,舞蹈节目不能连续出场,则节目的出
场顺序有多少种?
解:分两步进行第一步排2个相声和3个独唱共
2021
17
7. 合理分类与分步策略 例4.在一次演唱会上共10名演员,其中8人能
唱歌,5人会跳舞,现要演出一个2人
唱歌2人伴舞的节目,有多少选派方法? 解:10演员中有5人只会唱歌,2人只会跳舞
3人为全能演员。以只会唱歌的5人是否
选上唱歌人员为标准进行研究 只会唱
的5人中没有人选上唱歌人员共有_C_32C__32
10.3.3 排列组合综合应用
2021

四年级奥数-排列组合(1)

四年级奥数-排列组合(1)

排列组合排列组合问题是必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例 1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有A 、60种B 、48种C 、36种D 、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 A 、1440种 B 、3600种 C 、4820种 D 、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B . 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例 3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是A 、24种B 、60种C 、90种D 、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B .4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有A 、6种B 、9种C 、11种D 、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B .5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是A 、1260种B 、2025种C 、2520种D 、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110872520C C C =种,选C .(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有A 、4441284C C C 种 B 、44412843C C C 种 C 、4431283C C A 种D 、444128433C C C A 种 答案:A .6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有234336C A =种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为 A 、480种 B 、240种 C 、120种 D 、96种 答案:B .7.名额分配问题隔板法:例7.10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况: ①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种.9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计.例9.(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有A 、210种B 、300种C 、464种D 、600种解析:按题意,个位数字只可能是0、1、2、3和4共5种情况,分别有55A 、113433A A A 、113333A A A 、113233A A A 和1333A A 个,合并总计300个,选B .(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A =共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100I A =共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从I A 中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种. (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?解析:将{}1,2,3,100I =分成四个不相交的子集,能被4整除的数集{}4,8,12,100A =;能被4除余1的数集{}1,5,9,97B =,能被4除余2的数集{}2,6,,98C =,能被4除余3的数集{}3,7,11,99D =,易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有211225252525C C C C ++种.10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B =+-.例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种. 11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。

【思维拓展】数学四年级思维拓展之排列组合的综合应用(附答案)

【思维拓展】数学四年级思维拓展之排列组合的综合应用(附答案)

四年级奥数:排列组合的综合应用1.有3封不同的信,投入4个邮筒,一共有多少种不同的投法?2.甲、乙两人打乒乓球,谁先连胜头两局,则谁赢.如果没有人连胜头两局,则谁先胜三局谁赢,打到决出输赢为止,问有多少种可能情况?3.在6名女同学,5名男同学中,选4名女同学,3名男同学,男女相间站成一排,问共有多少种排法?4.用0、1、2、3、4、5、6这七个数字可组成多少个比300000大的无重复数字的六位偶数?5.有两个小盒子,第一个盒子中有标有数字1,2,3,…,10的十张卡片,第二个盒子中有标有11,12,13,…,20的十张卡片.若从两个盒子中各拿出一张卡片相加,一共可列出多少种不同的加法式子?6.如下图:在摆成棋盘眼形的20个点中,选不在同一直线上的三点作出以它们为顶点的三角形,问总共能作多少个三角形?7.有十张币值分别为1分、2分、5分、1角、2角、5角、1元、2元、5元、10元的人民币,能组成多少种不同的币值?并请研究是否可组成最小币值1分与最大币值(总和)之间的所有可能的币值.8.从19,20,21,…,97,98,99这81个数中,选取两个不同的数,使其和为偶数的选法总数是多少?9.现有五元人民币2张,十元人民币8张,一百元人民币3张,用这些人民币可以组成多少种不同的币值?参考答案1.若投一封信看作一个步骤,则完成投信的任务可分三步,每封信4个邮筒都可投,即每个步骤都有4种方法.故由乘法原理:共有不同的投法4×4×4=64种.2.甲(或乙)胜就写一个甲(或乙)字,画树形图:由图可见共有14种可能.甲甲、甲乙甲甲、甲乙甲乙甲、甲乙甲乙乙、甲乙乙甲甲、甲乙乙甲乙、甲乙乙乙、乙甲甲甲、乙甲甲乙甲、乙甲甲乙乙、乙甲乙甲甲、乙甲乙甲乙、乙甲乙乙、乙乙.3.现有4名女同学,3名男同学,男女相间站成一排,则站在两端的都是女同学.将位置从右到左编号,第1、3、5、7号位是女同学,第2、4、6号位是男同学.于是完成适合题意的排列可分两步:第一步:从6名女同学中任选4名排在第1、3、5、7号位.有P46种排法.第二步:从5名男同学中任选3名排在第2、4、6号位,有P35种排法.因此,由乘法原理排出不同队形数为P46·P35=6×5×4×3×5×4×3=21600.4.图示:分两类:第一类:十万位上是3或5之一的六位偶数有P12·P14·P45个.第二类:十万位上是4或6之一的六位偶数有P12·P13·P45个.∴P12P14P45+P12P13P45=1680.5.200种第一个盒子中的每一张卡片都可以与第二个盒子中的十张卡片组成20种加法式子(包括被加数与加数交换位置,例如将1+11与11+1看成为两个加法式子),而第一个盒子中共有十张卡片,则由乘法原理,共10×20=200种不同的加法式子。

排列组合的二十种解法(最全的排列组合方法总结)(1)

排列组合的二十种解法(最全的排列组合方法总结)(1)

位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。

若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件3 4 4 4 3 4 A C 5 2 2教学目标1.进一步理解和应用分步计数原理和分类计数原理。

2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。

提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第 1 类办法中有m 1 种不同的方法,在第 2 类办法中有m 2 种不同的方法,…,在第n 类办法中有m n 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第 1 步有m 1 种不同的方法,做第 2 步有m 2 种不同的方法,…, 做第n 步有m n 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例 1.由 0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,. 先排末位共有C 1然后排首位共有C 1 最后排其它位置共有 A 3由分步计数原理得C 1C 1A 3 = 288131443练习题:7 种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例 2. 7 人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

排列组合综合应用题专题

排列组合综合应用题专题

排列组合综合应用题专题
排列组合是数学中的一个重要分支,常常用于计数。

在实际生活中,排列组合常常被用来解决各种问题。

下面介绍几个常见的应用案例。

1. 摆放位置问题
假设有10个人要坐在一排座位上,问有多少种不同的坐法?这
是一个典型的排列问题,因为这10个人的顺序不同,组合起来的结果
也就不同。

答案是10的阶乘,即10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1 = 3,628,800种。

2. 抽奖问题
假设有40个人参加了一次抽奖活动,每人只能中一次奖,问中
奖的人数有多少种可能性?这是一个组合问题,因为每个人是否中奖
并不影响其他人是否中奖。

答案是40个人中选取1个人中奖的方案数,即40种。

3. 球队比赛问题
假设有20支球队要进行比赛,每两支球队之间只能比赛一次,
问需要多少场比赛才能产生胜负?这是一个排列组合问题。

首先需要
从20支球队中选取两支进行比赛,共有C(20,2)种选法,即20 * 19
/ 2 = 190种。

然后每一场比赛都有胜负和平局三种可能性,因此总共需要190 * 3 = 570场比赛。

排列组合在实际生活中的应用非常广泛,以上只是其中的几个例子。

对于排列组合的掌握不仅能够帮助我们解决生活中的问题,也对
数学学习有很大帮助。

排列与组合的综合应用题

排列与组合的综合应用题
【解析】两点确定一条直线,共 C26=15 条; 不在同一平面内的四个点确定一个三棱锥,由排除 法得 C46-3=12 个三棱锥;每个三棱锥可确定三对 异面直线,故有 12×3=36 对异面直线.
5.有五张卡片,它们的正、反面分别写 0 与 1,2 与 3,4 与 5,6 与 7,8 与 9,将其中任意三张并排放在一 起组成三位数,共可组成 432 个不同的三位数.
2.局局部步,整体分类以后,对每一类进行局局部 步,分步要做到步骤连续,以保证分步的不遗漏,同 时步骤要独立,以保证分步的不重复,计算结果时用 分步计数原理.
3.辩证地看待“元素〞与“位置〞.排列、组合问 题中的元素与位置,没有严格的界定标准,哪些 事物看成元素或位置,要视具体情况而定.有时“ 元素选位置〞,问题解决得简捷;有时“位置选元 素〞,效果会更好.
【点评】本小题考查排列组合、计数原理等根底知
识以及分类讨论的数学思想.
排列组合问题的常见解法主要有以下几种: (1)特殊元素优先安排的策略; (2)合理分类与准确分步的策略; (3)排列、组合混合问题先选后排的策略; (4)正难那么反、等价转化的策略; (5)相邻问题捆绑处理的策略; (6)不相邻问题插空处理的策略;
【点评】有关由假设干个数字组成满足某条件的数的
问题通常应用“特殊元素先排法〞或“减去法〞,思考
这类问题时应注意数字“0〞是否参与、组成的数是多
少位数、数字使用时是否可以重复这三个根本方面.
四、几何型排列组合问题 例 4(1)将一个四棱锥的每个顶点染上 1 种颜 色,并使同一条棱上的两端点异色,现共有 5 种颜 色可供使用,问共有多少种不同染色方法?
【点评】几何型排列组合问题需充分利用题设情 境相应的几何性质,利用分类整合的方法求解.

小学四年级奥数竞赛班作业第47讲:排列组合综合应用(一)

小学四年级奥数竞赛班作业第47讲:排列组合综合应用(一)

排列组合综合应用练习题一.夯实基础:1.由0,2,5,6,7,8组成无重复数字的数.⑴四位偶数有多少个?⑵四位奇数有多少个?⑶四位偶数有多少个?2.由0,2,5,6,7,8组成无重复数字的数.⑴整数有多少个?⑵是5的倍数的三位数有多少个?3.由0,2,5,6,7,8组成无重复数字的数.⑴是25的倍数的四位数有多少个?⑵大于5860的四位数有多少个?4.一个小组共10名学生,其中4女生,6男生.现从中选出3名代表,其中至少有一名女生共有多少种选法?二.拓展提高:5.正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个?6.从10件产品中有4件次品,现抽取3件检查,(1)恰好有一件次品的取法有___________种;(2)既有正品又有次品的取法有_______________种.7.圆周上有十个点,任两点之间连一条弦,这些弦在圆内共有多少个交点?8.用2,4,6三个数字来构造六位数,但是不允许有两个连着的2出现在六位数中(例如626442是允许的,但226426就不允许),问这样的六位数有多少个?三. 超常挑战9.有5个标签分别对应着5个药瓶,恰好贴错3个标签的可能情况有多少种?10.由1447,1005,1231这三个数字有许多相同之处:它们都是四位数,最高位都是1,都恰有两个相同数字,一共有多少个这样的数?11.某旅社有导游9人,其中3人只会英语,2人只会日语,其余4个既会英语又会日语.现要从中选6人,其中3人做英语导游,另外3人做日语导游.则不同的选择方法有多少种?12.在10名学生中,有5人会装电脑,有3人会安装音响设备,其余2人既会安装电脑,又会安装音响设备,今选派由6人组成的安装小组,组内安装电脑要3人,安装音响设备要3人,共有多少种不同的选人方案?13.在四位数中,各位数字之和是4的四位数有多少?四.杯赛演练:14.(迎春杯初赛)6个人传球,每两人之间至多传1次,那么至多共进行几次传球?15.(华杯赛冬令营培训题)如图,A、B、C、D为海上的四个小岛,要建三座桥,将这四个岛连接起来,则不同的建桥方案共有几种?DACB答案:1. (1)注意0不能做首位,355300A =个.(2)个位为特殊位置,只能从5,7中选一个;0是特殊元素,它不能放在千位;综上,四位奇数有11224496C C A =个.(3)位只能在0,2,6,8中选择,进一步分成两种情况:若个位为0,则共有3560A =种;若个位不是0,则个位从2,6,8中选一个,有3种方法,然后选择千位,有4种方法,最后再选剩余的两位,有2412A =种,所以四位偶数有603412204+⨯⨯=个.2. ⑴包括一位数、二位数、三位数、…、六位数,共有111121313141565555555555551631A A A A A A A A A A A A A ++++++=个.⑵5的倍数,则个位为0或5,分两种情况:若个位为0,则有2520A =个;若个位为5,则有114416A A =个,所以共有36个是5的倍数的三位数.3. ⑴25的倍数,在本题的条件下,末两位只可能是25,50或75.若末两位为25,则这样的四位数有11339A A =个;若末两位为50,则这样的四位数有2412A =个;若末两位为75,则这样的四位数有11339A A =个,因此能被25整除的四位数共有30个. ⑵千位如果为5,则前三位为586,第四位有2或7两种选择;前三位若为587,则四位有0,2,6三种选择,所以,千位为5总共有5个数;千位如果为6、7、8,则均有3560A =个数,因此,大于5860的四位数有5360185+⨯= 个.4. “至少有一名女生”意味着存在女生,也就是说不能都是男生.所以,理解这句话的意思至关重要!我们可以从直接与间接两种方法解这道题,同学们可以比较一下.方法一:直接法.由于共有4个候选女生,因此至少有一名女生,包括如下几种情况:⑴1名女生,2名男生:124660C C =种选法; ⑵2名女生,1名男生:214636C C =种选法; ⑶3名女生,344C =种选法. 所以,共有60364100++=种选法. 方法二:间接法.先从10名学生中任意选出3名学生,有310C 种选法;然后从中扣除没有女生的情况(即全是男生的情况),有36C 种选法.所以,至少有一名女生的选法数有3310612020100C C -=-=.5. 7个点中选出3个点的方法为3735C =种,其中三条对角线上的3点组合是共线的,不合要求.35332-=种.6. ⑴124660C C =种; ⑵既有正品又有次品分为:1件次品,2件正品;2件次品,1件正品两类,即:12214646603696C C C C +=+=种.7. 两条弦的交点与四边形的个数一一对应,因而有410210C =个交点.8. (1)若六位数中没有2,则每一位只能从4或6中选一个,这时有6264=个.(2)若六位数中只有1个2,则2有166C =种位置选择,其余5个位置从4或6中选取,则有562192⨯=个.(3)若六位数中有2个2,这时有4252160C ⋅=个(插空法).(4)若六位数中有3个2,这时有334232C ⋅=个; 由题意,不可能在六位数中出现4个4个以上的2.于是共有6419216032448+++=个.9. 将瓶子命名为1,2,3,4,5号,如果是1,2号瓶贴对,则其余3个瓶子都贴错的,简单枚举可发现有2种贴错的情况;而另选两个瓶子贴对,则剩余3个瓶子都贴错也是2种情况,因此共有25220C ⨯=种.10. 由于首位是1,因此那两个相同数字应该以是否是1而分类:⑴若相同数字是1:另一个1有3种位置可以选择,另两位数字不能是1且不能相同,故有29A 种不同排法,因而有2193216m A ==个.⑵若相同数字不是1:这时相同数字有9种不同选法,这两个相同数字在后3位只有3种不同排法,另一位数字既不是1,又不能与相同数字相同,因此有8种不同取法.因而有2938216m =⨯⨯=个.综上,满足条件的四位数共有216216432+=个.11. 此题若从“多面手”出发来做,不太简便,由于只会日语的人较少,所以针对只会日语的人讨论,分三类:⑴只会日语的2人都出场,则还需1个多面手做日语导游,有4种选择.从剩下的只会英语的人和多面手共6人中选3人做英语导游,有3665420321C ⨯⨯==⨯⨯种选择.由乘法原理,有42080⨯=种选择.⑵只会日语的2人中有1人出场,有2种选择.还需从多面手中选2人做日语导游,有2443621C ⨯==⨯种选择.剩下的只会英语的人和多面手共5人中选3人做英语导游,有3554310321C ⨯⨯==⨯⨯种选择.由乘法原理,有2610120⨯⨯=种选择.⑶只会日语的人不出场,需从多面手中选3人做日语导游,有31444C C ==种选择.剩下的只会英语的人和多面手共4人中选3人做英语导游,有31444C C ==种选择.由乘法原理,有4416⨯=种选择.根据加法原理,不同的选择方法一共有8012016216++=种.12. 按具有双项技术的学生分类:⑴两人都不选派,有3510C =种选派方法;⑵两人中选派1人,有2种选法.而针对此人的任务又分两类:若此人要安装电脑,有2510C =种选法,而另外会安装音响设备的3人全选派上,只有1种选法.由乘法原理,有10110⨯=种选法;若此人安装音响设备,有233C =种选法,需从5人中选3人安装电脑,有3510C =种选法.由乘法原理,有31030⨯=种选法.根据加法原理,有103040+=种选法;综上所述一共有24080⨯=种选派方法.⑶两人全派,针对两人的任务可分类讨论如下:①两人全安装电脑,有515⨯=种选派方案;②两人一个安装电脑,一个安装音响设备,有225360C C ⨯=种选派方案;③两人全安装音响设备,有35330C ⨯=种选派方案.根据加法原理,共有5603095++=种选派方案.综合以上所述,符合条件的方案一共有108095185++=种.13. 设原四位数为ABCD ,按照题意,我们有4A B C D +++=,但是对A 、B 、C 、D 要求不同,因为这是一个四位数,所以应当有0A ≠,而其他三个字母都可以等于0,这样就不能使用我们之前的插板法了,因此我们考虑将B 、C 、D 都加上1,这样B 、C 、D 都至少是1,而且这个时候它们的和为437+=,即问题变成如下表达:一个各位数字不为0的四位数,它的各位数字之和为7,这样的四位数有多少个?采用插板法,共有6个间隔,要插入3个板,可知这样的四位数有个,对应着原四位数也应该有20个.14. 6个点间进行连线,共可以连成15条,但是由题意知这是个一笔画问题,若把这些线全连上,则图形中有6个奇点,不能一笔画,因此至少要去掉2条线(以去掉4个奇点),所以至多共进行15213-=次传球.15. 本题考察对应与转化思想.可以这样考虑:先把四个点间所有能连的线都连起来,共有246C =种方法,然后从这6条线中选择3条将其去掉,有3620C =种选法,但是连在同一个点上的三条线不能同时去掉,所以必须再去掉4种情况,所以共有16种.3620C =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列组合综合应用(一)2.组合:
从n个不同元素中任意取出m个(m≤n)元素组成一组,不.计.较.组.内.各.元.素.
【温故知新】的.顺.序.,叫做从n个不同元素中取出m个元素的一个组合。

一、你必须知道的
1.排列:
不同元素中任意取出m个(m≤n)元素,按.照.一.定.的.顺.序.排成一列,叫做从n 个不同元素中取出m个元素的一个排列。

所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记作A
m
n
A n n n n m
m
n 1 2 1
所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,记作C
m
n C n n n n m m
n 1 2 1 !
m
重要结论
【例2】(★★★)
正六边形的中心和顶点共7 个点,以其中3 个点为顶点的三角形共有多少个?
【例1】(★★★)
六个人排成一排照相,
⑴若小明必须与小丽排在一起,有多少种排法?
⑵若小明和小丽不能排在一起,有多少种排法?
1
【例3】(★★★★) 【例4】(★★★★)
在新学期的班会上,大家从11 名候选人中选出班干部。

请问:从15 名同学选出5 人,上场参加篮球比赛。

⑴选出三人组成班委会,那一共有多少种选法?请问:
⑵从剩下的候选人中,选出三人分别担任语文、数学、英语的课代表,一共⑴如果甲、乙、丙三人中恰好入选一人,共有多少种选法?有多少种选法?⑵如果甲、乙、丙不能同时都入选,共有多少种选法?
【例5】
⑴(★★)
在图中1×5的格子中填入1,2,3,4,5 这5 个数,要求,填入的数各不相同并且填在黑格里的数比它旁边的两个数都大。

共有_____种不同的填法。

⑵(★★★★)
在图中1×5的格子中填入1,2,3,4,5,6,7,8 中的5 个数,要求,填入的数各不相同并且填在黑格里的数比它旁边的两个数都大。

共有_____ 种不同的填法。

【例6】(★★★★★)
从10 名男生,8 名女生中选出8 人参加游泳比赛。

在下列条件下,分别有多少种选法?
⑴恰有3 名女生入选;
⑵至少有两名女生入选;
⑶某两名女生,某两名男生必须入选;
⑷某两名女生,某两名男生不能同时入选;
⑸某两名女生,某两名男生最多入选两人。

2。

相关文档
最新文档