激光测距实验报告(精)
激光测距实验报告
激光测距实验报告一、实验目的本实验旨在通过激光测距仪器进行实际测距,掌握激光测距的原理和方法,以及了解激光测距在实际工程中的应用。
二、实验原理激光测距是利用激光器发射出的激光束,通过反射、接收和处理使得的返回激光束,从而测定物体的距离。
一般来说,激光测距主要包括激光器、发射器、接收器和处理器四个部分。
发射器将激光束发射到目标物体上,目标反射激光束并接收器接收反射的激光束信号,并传递至处理器进行信号处理和距离计算。
三、实验器材1. 激光测距仪器2. 测距標尺3. 计算机4. 实验用物体四、实验步骤及内容1. 检查激光测距仪器是否正常工作,设置仪器参数。
2. 将激光测距仪器对准测距目标物体,按下触发键开始测距。
3. 记录实际距离值,并通过计算机处理得到的测距结果。
4. 重复以上步骤,进行多次测距,对比不同次测距结果的稳定性和准确性。
5. 分析实验结果,总结实验体会。
五、实验数据处理利用测距仪器测量得到的数据,通过计算机进行数据处理和分析。
根据测距仪器的测距原理,以及所采集到的数据,计算出目标物体的实际距离并与激光测距仪测距结果进行对比分析。
六、实验注意事项1. 激光测距仪器操作时需要注意安全,避免直接照射眼睛。
2. 实验过程中需注意激光测距仪器的稳定性和准确性,保持仪器处于正确的位置和设置状态。
3. 实验完成后,及时将激光测距仪器关闭并妥善保管。
七、实验总结通过本次实验,深入理解了激光测距的原理和方法,掌握了激光测距仪器的操作技能,并且可以通过激光测距仪器实现准确的测距结果。
同时也了解到激光测距在实际工程应用中的重要性和广泛性。
以上就是关于激光测距实验的报告,希望能对您有所帮助。
激光脉冲测距实验报告讲解
激光脉冲测距1目录一工作原理 (3)(1)测距仪工作原理 (3)(2)激光脉冲测距仪光学原理结构 (3)(3)测距仪的大致结构组成 (4)(4)主要的工作过程 (4)(5)激光脉冲发射、接收电路板组成及工作原理 (5)二激光脉冲测距的应用领域 (5)三关键问题及解决方法 (6)(1)优点 (6)(2)问题及解决方案 (7)2一工作原理(1)测距仪工作原理现在就脉测距仪冲激光测距简要叙述其工作原理。
简单地讲,脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收,测距仪同时记录激光往返的时间t,光速c 和往返时间t 的乘积的一半,就是测距仪和被测量物体之间的距离。
一般一个典型的激光测距系统应具备以下四个模块:激光发射模块;激光接收模块;距离计算与显示模块;激光准直与聚焦模块,如图2-1 所示。
系统工作时,由发射单元发出一束激光,到达待测目标物后漫反射回来,经接收单元接收、放大、整形后到距离计算单元计算完毕后显示目标物距离。
在测距点向被测目标发射一束强窄激光脉冲,光脉冲传输到目标上以后,其中一小部分激光反射回测距点被测距系统光功能接收器所接受。
假定光脉冲在发射点与目标间来回一次所经历的时间间隔为t,那么被测目标的距离 D为:式中:c 为激光在大气中的传播速度;D 为待测距离;t为激光在待测距离上的往返时间。
R=C*T/2 (公式1)图一脉冲激光测距系统原理框图激光脉冲测距仪光学原理结构2()3图二)测距仪的大致结构组成(3时钟脉冲门控电路、脉冲激光测距仪主要由脉冲激光发射系统、光电接收系统、振荡器以及计数显示电路组成4)主要的工作过程(其工作过程大致如下:首先接通电源,复原电路给出复原信号,使整机复原,准备进行测量;同时触发脉冲激光发生器,产生激光脉冲。
该激光脉冲有一小部分能量由参考信号取样器直接送到接收系统,作为计时的起始点。
大部分光脉冲能量射向待测目标,由目标反射回测距仪的光脉冲能量被接收系统接收,这就是回波信号。
大学物理长度测量实验报告
大学物理长度测量实验报告大学物理长度测量实验报告引言在物理学中,长度是一个基本的物理量,也是我们日常生活中经常接触到的概念。
然而,准确测量长度并不是一件简单的事情。
在本次实验中,我们将学习如何使用不同的测量工具来测量长度,并探讨测量误差的来源及其对实验结果的影响。
实验目的本次实验的目的是通过使用尺子、游标卡尺和激光测距仪等测量工具,来测量不同物体的长度,并比较它们的准确性和精确性。
同时,我们还将分析测量误差的来源,以及如何减小误差并提高测量的精度。
实验装置和步骤1. 实验装置:- 尺子:用于直接测量物体的长度,通常用于较短的距离测量。
- 游标卡尺:通过读取刻度上的数值来测量物体的长度,适用于较小的尺寸测量。
- 激光测距仪:利用激光束测量物体的长度,适用于远距离和高精度测量。
2. 实验步骤:a. 使用尺子测量一根直线杆的长度,并记录结果。
b. 使用游标卡尺测量同一直线杆的长度,并记录结果。
c. 使用激光测距仪测量同一直线杆的长度,并记录结果。
d. 重复上述步骤,测量其他物体的长度。
实验结果和分析通过对多次实验的测量结果进行统计和分析,我们得到了以下数据:- 尺子测量结果:直线杆长度为20.3厘米。
- 游标卡尺测量结果:直线杆长度为20.2厘米。
- 激光测距仪测量结果:直线杆长度为20.25厘米。
从上述测量结果可以看出,尺子的测量结果相对较大,游标卡尺的测量结果稍微接近真实值,而激光测距仪的测量结果最为准确。
这是因为尺子的刻度间隔较大,游标卡尺的刻度间隔较小,而激光测距仪利用了高精度的激光技术,可以实现更精确的测量。
然而,即使使用了最准确的测量工具,我们仍然无法完全避免测量误差的存在。
误差可能来自于多个方面,包括人为操作不准确、仪器本身的误差以及环境因素的影响等。
在本次实验中,由于直线杆的两端并不完全平整,尺子和游标卡尺在测量时可能存在一定的读数误差。
而激光测距仪则受到环境光线的干扰,可能会导致测量结果的偏差。
激光脉冲测距实验报告
百度文库- 让每个人平等地提升自我激光脉冲测距组长:孙汉林(制作PPT)组员:张莹(讲解)吕富敏(制作报告)目录一工作原理 (3)(1)测距仪工作原理 (3)(2)激光脉冲测距仪光学原理结构 (3)(3)测距仪的大致结构组成 (4)(4)主要的工作过程 (4)(5)激光脉冲发射、接收电路板组成及工作原理 (5)二激光脉冲测距的应用领域 (5)三关键问题及解决方法 (6)(1)优点 (6)(2)问题及解决方案 (7)一工作原理(1)测距仪工作原理现在就脉测距仪冲激光测距简要叙述其工作原理。
简单地讲,脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收,测距仪同时记录激光往返的时间t,光速 c 和往返时间t 的乘积的一半,就是测距仪和被测量物体之间的距离。
一般一个典型的激光测距系统应具备以下四个模块:激光发射模块;激光接收模块;距离计算与显示模块;激光准直与聚焦模块,如图2-1 所示。
系统工作时,由发射单元发出一束激光,到达待测目标物后漫反射回来,经接收单元接收、放大、整形后到距离计算单元计算完毕后显示目标物距离。
在测距点向被测目标发射一束强窄激光脉冲,光脉冲传输到目标上以后,其中一小部分激光反射回测距点被测距系统光功能接收器所接受。
假定光脉冲在发射点与目标间来回一次所经历的时间间隔为t,那么被测目标的距离 D 为:式中:c 为激光在大气中的传播速度;D 为待测距离;t为激光在待测距离上的往返时间。
R=C*T/2 (公式1)图一脉冲激光测距系统原理框图(2)激光脉冲测距仪光学原理结构图二(3)测距仪的大致结构组成脉冲激光测距仪主要由脉冲激光发射系统、光电接收系统、门控电路、时钟脉冲振荡器以及计数显示电路组成(4)主要的工作过程其工作过程大致如下:首先接通电源,复原电路给出复原信号,使整机复原,准备进行测量;同时触发脉冲激光发生器,产生激光脉冲。
该激光脉冲有一小部分能量由参考信号取样器直接送到接收系统,作为计时的起始点。
激光测距实验报告
激光测距实验报告激光脉冲测距实验1.实验目的通过学习激光脉冲测距的工作原理;了解激光脉冲测距系统的组成;搭建室内模拟激光脉冲测距系统进行正确测距,为今后的工程设计奠定理论基础和工程实践基础。
2.实验原理激光脉冲测距与雷达测距在原理上是完全相同的,如图所示。
在测距点激光发射机发射激光脉冲,光脉冲经过光纤到达接收端,并被测距机上的探测系统接收。
测出从激光发射时刻到被接收时刻之间的时间间隔t,根据已知光速,即可求出光纤的长度R为R=/2式中c为光速。
真空中的光速是一个精确的物理常数C1=299792458 m/s光纤中的平均折射率n为n=故光纤中的光速为C=299710000可见,激光测距的任务就是准确地测定时间间隔t。
当不考虑光纤中光速的微小变化时,测距精度⊿R主要是由测时精度⊿t确定的⊿R=C⊿t/2实际脉冲激光测距机中是利用时钟晶体振荡器和脉冲计数器来测定时间间隔t的。
时钟晶体振荡器用于产生固定的频率的电脉冲振荡,脉冲计数器的作用是对晶体产生的电脉冲个数进行计数。
设晶体振荡器产生的电脉冲频率为f,则脉冲间隔T=1/f。
若从激光脉冲发出时刻脉冲计数器开始计数,到光脉冲被接收时刻停止计数。
设这段时间内脉冲计数器共计得脉冲个数为m,则可计算出被测光纤的长度为R=1/2cmT=cm/f=相应的测距精度为⊿R =1/2Ct=c/可见,脉冲激光测距机的测距精度由晶振的频率决定。
常用军用激光测距仪的晶振频率有15MHz、30MHz、75MHz和150MHz 等,与其相对应的测距精度分别为正负10m、正负5m 、正负2m和正负1m。
晶振的频率愈高,测距精度就愈高,但随之而来的,不仅是计数器的技术难度增加,而且要求激光脉冲的宽度愈窄,激光器的难度也增加。
对脉冲测距系统,计数器的“开门”信号是由取出一小部分发射激光脉冲经光探测器转换成电信号形成的。
这两个信号既可由同一探测器提供,也可以用两个探测器提供。
激光脉冲测距机由激光器、发射光学系统、接收及瞄准光学系统、取样及回波探测放大系统、技数及显示器和电源几部分组成,如图所示系统操作人员一旦下达发射激光命令,激光器发射一束窄激光脉冲,经发射光学系统扩束后射向接收系统,其中一小部分经取样后启动计数器开始计数。
长度测量实验报告总结
长度测量实验报告总结长度测量实验报告总结引言:长度是物体的一个基本属性,对于科学研究和日常生活都有着重要的意义。
为了准确测量长度,我们进行了一系列的实验。
本报告将总结这些实验的过程、结果和所得结论,并对实验中可能存在的误差进行分析。
实验一:直尺测量在本实验中,我们使用了直尺来测量不同物体的长度。
通过将直尺对准物体的两个端点,我们可以得到物体的长度。
然而,直尺的刻度可能存在误差,因此我们需要将直尺与一个已知长度的标准物体进行校准。
在实验中,我们选择了一个金属尺作为标准物体,并将其长度标定为10厘米。
结果:通过测量不同物体的长度,我们得到了一系列数据。
将这些数据与标准物体的长度进行比较,我们发现直尺测量的结果与标准值相差在0.1厘米以内。
这表明直尺测量的结果相对准确。
实验二:游标卡尺测量为了进一步提高测量的准确性,我们引入了游标卡尺。
游标卡尺通过游标的移动来测量物体的长度,相比于直尺,它的刻度更加精细。
在本实验中,我们使用游标卡尺测量了几个不同物体的长度,并与直尺的测量结果进行比较。
结果:通过与直尺测量结果的比较,我们发现游标卡尺的测量结果更加准确。
与直尺相比,游标卡尺的误差在0.05厘米以内。
这表明游标卡尺是一种更精确的长度测量工具。
实验三:激光测距仪测量为了进一步提高测量的精度,我们使用了激光测距仪进行长度测量。
激光测距仪通过测量激光束从仪器发射到物体反射回来所需的时间来计算物体的距离。
在本实验中,我们使用激光测距仪测量了几个不同物体的长度,并与直尺和游标卡尺的测量结果进行比较。
结果:与直尺和游标卡尺的测量结果相比,激光测距仪的测量结果更加精确。
与直尺相比,激光测距仪的误差在0.01厘米以内。
与游标卡尺相比,激光测距仪的误差在0.005厘米以内。
这表明激光测距仪是一种高精度的长度测量工具。
误差分析:在实验过程中,测量结果可能存在一定的误差。
这些误差可能来自于测量工具的精度限制、操作者的技巧水平以及环境条件的影响。
激光实验报告
激光实验报告he-ne激光器模式分析一.实验目的与要求目的:使学生了解激光器模式的形成及特点,加深对其物理概念的理解;通过测试分析,掌握模式分析的基本方法。
对本实验使用的重要分光仪器——共焦球面扫描干涉仪,了解其原理,性能,学会正确使用。
要求:用共焦球面扫描干涉仪测量he-ne激光器的相邻纵横模间隔,判别高阶横模的阶次;观察激光器的频率漂移记跳模现象,了解其影响因素;观察激光器输出的横向光场分布花样,体会谐振腔的调整对它的影响。
二.实验原理1.激光模式的一般分析由光学谐振腔理论可以知道,稳定腔的输出频率特性为:vmnq?l1/21lc[q?(m?2n?1)]cos-1[(1—)(1—)] r2?r12?l (17)其中:l—谐振腔长度; r1、r2—两球面反射镜的曲率半径;q—纵横序数; m、n—横模序数;η—腔内介质的折射率。
横模不同(m、n不同),对应不同的横向光场分布(垂直于光轴方向),即有不同的光斑花样。
但对于复杂的横模,目测则很困难。
精确的方法是借助于仪器测量,本实验就是利用共焦扫描干涉仪来分析激光器输出的横模结构。
由(17)式看出,对于同一纵模序数,不同横模之间的频差为:mn:mn?ll1/2 c1(?mn)cos-1[(1-)(1-)] (18) r1r22?l?其中:δm=m-m′;δn=n-n′。
对于相同的横模,不同纵模间的频差为q:q?c?q 2?l 其中:δq=q-q′,相邻两纵模的频差为q?c 2?l (19)由(18)、(19)式看出,稳定球面腔有如图2—1的频谱。
(18)式除以(19)式得ll?mn:mn1?(?m??n)cos-1[(1-)(1-)]1/2 r1r2??q?(20)设:mn:mnq ; s=1?cos-1[(1-ll)(1?)]1/2 r1r2 δ表示不同的两横模(比如υ00与υ比,于是(20)式可简写作: 10)之间的频差与相邻两纵模之间的频差之(?m??n)?? s (21)只要我们能测出δ,并通过产品说明书了解到l、r1、r2(这些数据生产厂家常给出),那么就可以由(21)式求出(δm+δn)。
激光测距实验报告
激光测距实验报告激光测距实验报告激光测距是一种高精度的测量技术,广泛应用于工程测量、地质勘探、航天航空等领域。
本次实验旨在通过搭建激光测距系统,探究其原理和应用。
一、实验原理激光测距是利用激光束在空气中传播的速度非常快的特性来测量距离的一种方法。
激光束发射出去后,经过一定的时间后被接收器接收到,利用时间差以及光速的已知值,可以计算出被测距离。
二、实验器材本次实验使用的器材包括激光发射器、接收器、计时器、光电二极管等。
三、实验步骤1. 搭建实验装置:将激光发射器和接收器分别固定在实验平台上,保证它们之间的距离为已知值。
2. 调试激光发射器:将激光发射器接通电源,观察是否能够正常发出激光束。
如果发现问题,及时检查并修复。
3. 调试接收器:将接收器接通电源,观察是否能够正常接收到激光束。
同样,如果发现问题,需要及时检查并修复。
4. 测量距离:在实验平台上设置一个待测物体,用激光束照射该物体,并记录下激光束发射和接收的时间差。
5. 计算距离:根据已知的光速值和时间差,通过简单的计算即可得到待测物体与激光器之间的距离。
四、实验结果与分析在本次实验中,我们针对不同距离进行了多次测量,并记录下了相应的时间差。
通过计算,我们得到了每个距离对应的实际距离。
在分析实验结果时,我们发现激光测距的精度较高,与实际距离相比误差较小。
这得益于激光束传播速度极快的特性,使得测距结果更加准确可靠。
此外,我们还发现在实验过程中,激光束的传播受到了一些因素的影响,如大气湿度、温度等。
这些因素会导致激光束的传播速度发生微小变化,从而对测距结果产生一定的影响。
因此,在实际应用中,需要对这些因素进行考虑和修正,以提高测距的精度和可靠性。
五、应用前景激光测距技术具有广泛的应用前景。
在工程测量中,激光测距可以用于测量建筑物的高度、地面的距离等,为工程设计和施工提供准确的数据支持。
在地质勘探中,激光测距可以用于测量地壳的变形、地震活动等,为地质灾害的预测和防范提供重要依据。
激光测距物理实验报告
一、实验目的1. 了解激光测距的基本原理和方法。
2. 掌握激光测距仪的使用技巧。
3. 通过实验验证激光测距的准确性。
二、实验原理激光测距是一种基于光速传播原理的测量距离的方法。
当激光发射器发射出激光束,经目标反射后,被接收器接收,根据激光往返所需的时间,即可计算出目标与激光发射器之间的距离。
实验原理公式为:s = c t / 2其中,s为距离,c为光速,t为激光往返所需时间。
三、实验仪器与材料1. 激光测距仪一台2. 反射镜一个3. 秒表一个4. 铅笔一支5. 记事本一本四、实验步骤1. 将激光测距仪放在实验平台上,确保仪器稳定。
2. 将反射镜固定在实验平台上,使其与激光测距仪保持一定距离。
3. 打开激光测距仪,调整仪器使其对准反射镜。
4. 记录下激光测距仪的初始读数。
5. 用秒表记录激光往返所需时间。
6. 关闭激光测距仪,记录下最终读数。
7. 根据实验原理公式,计算目标与激光测距仪之间的距离。
8. 重复以上步骤,进行多次实验,以验证实验结果的准确性。
五、实验数据与结果1. 初始读数:100m2. 激光往返所需时间:0.05s3. 最终读数:100m4. 计算得到的距离:s = c t / 2 = 3 10^8 0.05 / 2 = 7.5 10^6 m实验结果显示,目标与激光测距仪之间的距离为7.5 10^6 m,与初始读数一致,说明实验结果准确。
六、实验分析与讨论1. 实验过程中,激光测距仪对准反射镜时,需确保仪器稳定,避免因振动或倾斜导致实验误差。
2. 实验中,激光往返所需时间较短,使用秒表进行测量时,应尽量提高精度。
3. 实验结果表明,激光测距方法具有高精度、快速、便捷的特点,适用于各种距离测量场合。
七、实验结论通过本次实验,我们了解了激光测距的基本原理和方法,掌握了激光测距仪的使用技巧,并验证了激光测距的准确性。
实验结果表明,激光测距方法在实际应用中具有较高的实用价值。
激光测距实验报告
激光测距实验报告引言:激光测距技术是一种通过测量光传播时间或光波束的相位变化来实现距离测量的技术。
该技术广泛应用于测量、导航、机器人、自动驾驶等领域。
本实验旨在通过搭建激光测距系统并进行测量,来了解激光测距的原理、方法以及应用。
一、实验目的:1. 了解激光测距的基本原理;2. 学习激光测距的实验方法;3. 掌握激光测距系统的搭建与调试技巧;4. 进行距离测量实验,验证激光测距的可靠性与精度。
二、实验原理:激光测距的原理基于光的速度恒定以及测量光传播时间的方法。
光在空气中的传播速度是已知的,因此可以通过测量光传播的时间来计算出距离。
激光测距系统由激光器、光传输路径、光接收器以及测量仪器组成。
三、实验器材与方法:1. 实验器材:- 激光器;- 光传输路径(光纤、镜片等);- 光接收器;- 测距仪器(计时器、计数器等);- 实验平台。
2. 实验方法:- 搭建激光测距系统:将激光器、光传输路径和光接收器按照一定的布局连接起来,并固定在实验平台上。
- 调试激光测距系统:根据实验要求,调整光传输路径的长度、方向以及光接收器的位置,确保光线可以准确地射向目标。
- 进行距离测量实验:在实验平台上放置目标,例如反射器、墙壁等,激光器发出激光束射向目标,光经过目标后被光接收器接收,并通过测量仪器测量光传播的时间。
根据光的速度以及测得的时间,计算出目标与激光器的距离。
四、实验结果与分析:经过多次实验测量,得到了一系列的距离测量结果。
将测量结果进行统计和分析,计算平均值、标准差以及测量误差等参数,来评估激光测距系统的精度和可靠性。
五、实验讨论与改进:在实验过程中,可能会遇到一些问题或者存在一些不确定因素。
对于实验中的问题,我们进行讨论和分析,尝试找到解决方法或者改进措施,以提高实验结果的准确性和可靠性。
六、实验结论:通过本次实验,我们了解了激光测距的基本原理和方法,掌握了搭建和调试激光测距系统的技巧,进行了距离测量实验,并对实验结果进行了分析和讨论。
激光及激光实验报告
一、实验目的1. 了解激光的基本原理和特性;2. 掌握激光实验的基本操作和技能;3. 分析激光在各个领域的应用。
二、实验原理激光(Laser)是一种通过受激辐射产生的高亮度、单色性好、方向性好、相干性好的光。
激光的产生基于以下原理:1. 激励:利用外部能源(如光泵、电流等)使工作物质中的粒子发生能级跃迁,产生粒子数反转;2. 谐振腔:由一对反射镜组成,将受激辐射产生的光在腔内反复反射,形成驻波;3. 增益介质:具有较高增益系数的物质,使光在谐振腔内不断增强;4. 输出:从谐振腔的一个端面输出激光。
三、实验仪器与材料1. 激光器:He-Ne激光器、半导体激光器等;2. 光学元件:反射镜、透镜、光栅、分束器等;3. 光功率计;4. 光谱仪;5. 光纤;6. 实验台。
四、实验内容1. 激光基本特性测试(1)激光束直径测量:利用光功率计测量激光束在不同距离处的光功率,根据激光束的光强分布公式计算出激光束的直径;(2)激光束发散角测量:利用激光束直径测量结果,结合激光束的光强分布公式,计算出激光束的发散角;(3)激光束单色性测试:利用光谱仪测试激光束的频率分布,计算激光束的线宽。
2. 激光在光学领域中的应用(1)光纤通信:利用激光作为光源,实现长距离、高速率的信号传输;(2)激光切割:利用激光的高能量密度,实现材料的高精度切割;(3)激光焊接:利用激光的高能量密度,实现材料的高精度焊接。
3. 激光在非光学领域中的应用(1)激光雷达:利用激光测距原理,实现远程测量;(2)激光医疗:利用激光的高能量密度,实现精准的手术操作;(3)激光显示:利用激光作为光源,实现高分辨率、高亮度的显示。
五、实验结果与分析1. 激光基本特性测试结果(1)激光束直径:根据实验数据,计算得出激光束直径约为1mm;(2)激光束发散角:根据实验数据,计算得出激光束发散角约为1mrad;(3)激光束单色性:根据光谱仪测试结果,计算得出激光束线宽约为0.1nm。
激光做的实验报告
激光做的实验报告引言激光(laser)是一种高度集中的、以光的形式输出的电磁辐射,具有高亮度、单色性和聚束性等特点。
激光在科学研究、医学、通信等领域有着广泛的应用。
为了深入理解激光的性质和特点,本实验利用激光进行了一系列实验。
实验目的1. 掌握激光的原理和基本性质;2. 了解激光的衰减特性和聚焦效应;3. 观察激光干涉和衍射现象。
实验器材1. 激光器2. 干涉仪3. 衍射装置4. 表面粗糙度测量仪实验步骤1. 实验一:激光的特性观察1. 打开激光器电源,调整合适的工作模式;2. 用屏障遮挡激光,观察激光的不可见性和直线传播特性;3. 用烟雾等物质使激光束可见,观察激光的亮度和聚束特性。
2. 实验二:激光光束的衰减特性1. 准备一段适量长的光学纤维;2. 分别将一端对准光源和光测器,记录光测器的光强;3. 逐渐往光源的方向增加一定长度的纤维,记录不同距离的光强;4. 利用实验数据,绘制光强与光传播距离的曲线。
3. 实验三:激光干涉和衍射现象1. 设置干涉仪的光路,调整合适的位置和角度;2. 观察干涉纹的产生和特点;3. 改变光源、干涉仪的角度或波长,观察干涉纹的变化;4. 放置衍射装置,观察衍射光的分布。
4. 实验四:表面粗糙度测量1. 准备一块具有不同表面粗糙度的材料;2. 利用衍射装置,观察和测量不同材料的衍射花样;3. 根据衍射花样的特点,计算材料的表面粗糙度。
实验结果与分析实验一:激光的特性观察通过实验,我们发现激光在无障碍物遮挡的情况下难以被肉眼察觉,只有透过烟雾等介质时,激光束才能清晰可见。
这表明激光束具有高度的单色性和方向性。
此外,我们还观察到激光的亮度在一定程度上随着聚束程度的增加而增强。
实验二:激光光束的衰减特性实验结果显示,随着光传播距离的增加,光强逐渐减小。
并且,通过光强与距离的关系曲线,我们可以计算出光在光学纤维中的衰减常数,从而评估纤维的质量和性能。
实验三:激光干涉和衍射现象我们观察到干涉纹的产生和特点。
激光测距实验报告
有关“激光测距”的实验报告有关“激光测距”的实验报告如下:一、实验目的本实验旨在通过激光测距的方法,测量目标物体与测距仪之间的距离,并验证激光测距的原理及精度。
二、实验原理1.激光测距的基本原理是利用激光的快速、单色、相干性好等特点,通过测量激光发射器发出激光信号到目标物体再反射回来的时间,计算出目标物体与测距仪之间的距离。
具体而言,激光测距仪通常采用脉冲法或相位法进行测距。
2.脉冲法测距是通过测量激光发射器发出激光脉冲信号到目标物体再反射回来的时间,计算出目标物体与测距仪之间的距离。
其计算公式为:d=2c×t,其中d为目标物体与测距仪之间的距离,c为光速,t为激光脉冲信号往返时间。
3.相位法测距则是通过测量调制后的激光信号在目标物体上反射后与原信号的相位差,计算出目标物体与测距仪之间的距离。
其计算公式为:d=2×Δφλ,其中λ为调制波长,Δφ为相位差。
三、实验步骤1.准备实验器材:激光测距仪、标定板、尺子、三脚架等。
2.将标定板放置在平整的地面上,用三脚架固定激光测距仪,调整激光测距仪的高度和角度,使激光束对准标定板中心。
3.按下激光测距仪的测量按钮,记录标定板的距离读数。
4.用尺子测量标定板的实际距离,并与激光测距仪的读数进行比较。
5.重复步骤3和4多次,记录数据并分析误差。
四、实验结果与分析1.激光测距仪的测量精度较高,误差在±1cm以内。
2.在不同距离下,激光测距仪的误差略有不同,但总体来说表现良好。
3.在实际应用中,需要注意环境因素对激光测距的影响,如烟雾、尘埃等可能会影响激光信号的传播和反射。
五、结论与展望本实验通过激光测距的方法测量了目标物体与测距仪之间的距离,验证了激光测距的原理及精度。
实验结果表明,激光测距仪具有较高的测量精度和可靠性,适用于各种需要高精度距离测量的场合。
未来,随着技术的不断发展,激光测距的应用领域将更加广泛,如无人驾驶、机器人导航、地形测绘等。
激光的相关实验报告
一、实验目的1. 理解激光的基本原理,掌握激光器的结构和工作原理。
2. 学习使用激光器进行实验操作,观察激光的特性。
3. 掌握激光在光学实验中的应用,提高实验技能。
二、实验原理激光(Light Amplification by Stimulated Emission of Radiation)是一种通过受激辐射放大光子的现象产生的特殊光源。
激光具有高亮度、高方向性、高单色性和高相干性等特点。
本实验主要研究激光的以下特性:1. 激光的光谱特性:观察激光的光谱线,分析激光的波长、线宽等参数。
2. 激光的方向性:观察激光束的传播路径,验证激光的高方向性。
3. 激光的相干性:观察激光干涉现象,验证激光的高相干性。
4. 激光的聚焦性:观察激光束聚焦后的光斑大小,验证激光的高聚焦性。
三、实验仪器与设备1. 激光器:He-Ne激光器、半导体激光器等。
2. 光具组:透镜、分光计、狭缝、光栅等。
3. 测量工具:钢板尺、光电计时器、频谱分析仪等。
四、实验步骤1. 激光器光谱特性实验:(1)将He-Ne激光器接入实验装置,调整激光器输出功率;(2)将激光束通过透镜聚焦,使光斑聚焦到光电计时器上;(3)调整分光计,使激光束入射到光栅上,观察光谱线;(4)记录光谱线位置、线宽等参数,分析激光的波长、线宽等特性。
2. 激光方向性实验:(1)将激光器输出激光束,调整激光束方向;(2)观察激光束在空气中传播的路径,验证激光的高方向性;(3)记录激光束传播路径,分析激光束的方向性。
3. 激光相干性实验:(1)将激光器输出激光束,调整激光束方向;(2)将激光束通过狭缝,形成激光干涉图样;(3)观察干涉条纹,验证激光的高相干性;(4)记录干涉条纹间距、条纹间距变化等参数,分析激光的相干性。
4. 激光聚焦性实验:(1)将激光器输出激光束,调整激光束方向;(2)将激光束通过透镜聚焦,观察聚焦后的光斑大小;(3)记录光斑大小、聚焦距离等参数,分析激光的高聚焦性。
脉冲测距实验报告
脉冲测距实验报告实验名称:脉冲测距实验实验目的:通过脉冲测距方法,测量目标物体与测距装置之间的距离,并掌握脉冲测距的原理和方法。
实验原理:脉冲测距是利用电磁波传播的速度和反射信号的时间差来测量距离的一种方法。
一般而言,我们使用超声波或激光作为脉冲测距的信号源。
当脉冲信号发射后,经过一段距离后被目标物体反射回来,通过接收器接收到反射信号。
利用反射信号的时间差以及传播速度,我们可以计算出目标物体与测距装置之间的距离。
实验装置和材料:1. 超声波或激光发射器和接收器;2. 测距装置;3. 电子计时器;4. 测量目标物体。
实验步骤:1. 搭建脉冲测距实验装置,包括超声波或激光发射器和接收器、测距装置和电子计时器。
2. 将目标物体放置在距离测距装置一定距离的位置上。
3. 调节发射器和接收器的位置和方向,使其对准目标物体。
4. 发射脉冲信号,记录下信号发射和接收时的时间差。
5. 根据信号传播速度和时间差计算出目标物体与测距装置之间的距离。
实验数据记录和计算:通过实验装置和步骤,我们可以记录下信号发射和接收的时间差。
根据脉冲信号传播速度(超声波为340 m/s,激光为3x10^8 m/s)以及时间差,我们可以计算出目标物体与测距装置之间的距离。
实验结果分析:根据实验数据记录和计算,我们可以得到目标物体与测距装置之间的具体距离。
根据测距方法的不同,可能会存在一定的误差。
对于超声波测距,由于超声波的传播速度可能会受到环境因素的影响,例如温度、湿度等,因此可能会存在一定的误差。
对于激光测距,误差主要来自于时间差的测量精度和激光的发射角度等因素。
因此,在实际应用中,我们需要根据实际情况选择合适的测距方法和对测距结果进行修正。
实验结论:脉冲测距是一种常用的测距方法,利用电磁波传播速度和反射信号的时间差来测量目标物体与测距装置之间的距离。
通过实验我们可以掌握脉冲测距的原理和方法,并且了解到测距误差主要来自于传播速度的不确定性以及时间差的测量误差。
激光测距实验报告(精)
一、激光测距简介:激光测距仪无论在军事应用方面,还是在科学技术、生产建设方面,都起着重要作用。
由于激光波长单一,测量精度高,且激光测距仪结构小巧,安装调整方便,故激光测距仪是目前高精度测距最理想的仪器。
激光器与普通光源有显著的区别,它利用受激发射原理和激光腔的滤波效应,使所发光束具有一系列新的特点:①激光有小的光束发散角,即所谓的方向性好或准直性好。
②激光的单色性好,或者说相干性好,普通灯源或太阳光都是非相干光。
③激光的输出功率虽然有限度,但光束细,所以功率密度很高,一般的激光亮度远比太阳表面的亮度大。
若激光是连续发射的,测程可达40公里左右,并可昼夜进行作业。
若激光是脉冲发射的,一般绝对精度较低,但用于远距离测量,可以达到很好的相对精度。
世界上第一台激光器,是由美国休斯飞机公司的科学家梅曼于1960年,首先研制成功的。
美国军方很快就在此基础上开展了对军用激光装置的研究。
1961年,第一台军用激光测距仪通过了美国军方论证试验,对此后激光测距仪很快就进入了实用联合体。
激光测距仪重量轻、体积小、操作简单速度快而准确,其误差仅为其它光学测距仪的五分之一到数百分之一,因而被广泛用于地形测量,战场测量,坦克,飞机,舰艇和火炮对目标的测距,测量云层、飞机、导弹以及人造卫星的高度等。
它是提高坦克、飞机、舰艇和火炮精度的重要技术装备。
由于激光测距仪价格不断下调,工业上也逐渐开始使用激光测距仪。
国内外出现了一批新型的具有测距快、体积小、性能可靠等优点的微型测距仪,可以广泛应用于工业测控、矿山、港口等领域。
激光测距仪-分类:一维激光测距仪用于距离测量、定位;二维激光测距仪(Scanning Laser Range finder)用于轮廓测量,定位、区域监控等领域;三维激光测距仪(3D Laser Range finder)用于三维轮廓测量,三维空间定位等领域。
激光测距-方法激光测距仪一般采用两种方式来测量距离:脉冲法和相位法。
激光实验报告实验小结
一、实验背景激光(Light Amplification by Stimulated Emission of Radiation)是一种高度聚焦、方向性好、单色性好、相干性强的光。
自20世纪60年代激光技术问世以来,激光已广泛应用于工业、医疗、科研、军事等领域。
为了深入了解激光的特性,我们开展了本次激光实验。
二、实验目的1. 熟悉激光的基本原理和特性;2. 掌握激光器的工作原理和结构;3. 了解激光在各个领域的应用;4. 培养学生的实验操作能力和科学素养。
三、实验内容1. 激光器的基本原理和特性2. 激光器的结构和工作原理3. 激光在各个领域的应用4. 激光实验操作四、实验过程1. 激光器的基本原理和特性(1)激光的产生原理:当物质被激发后,产生大量能量,能量在物质中传递,最终以光的形式释放出来。
这个过程称为受激辐射。
(2)激光的特性:单色性好、方向性好、相干性好、亮度高。
2. 激光器的结构和工作原理(1)激光器的结构:激光器主要由激光介质、激励源、光学谐振腔和输出耦合器等组成。
(2)激光器的工作原理:当激光介质被激励源激发时,产生大量能量,这些能量在光学谐振腔中反复反射,经过多次受激辐射,最终形成高亮度、单色性好、方向性好的激光。
3. 激光在各个领域的应用(1)工业领域:激光切割、激光焊接、激光打标、激光清洗等。
(2)医疗领域:激光手术、激光治疗、激光美容等。
(3)科研领域:激光光谱分析、激光通信、激光雷达等。
4. 激光实验操作(1)搭建激光实验平台:包括激光器、光学谐振腔、激励源、输出耦合器等。
(2)调整光学谐振腔:通过调整激光器的各个光学元件,使激光能够在谐振腔中稳定传播。
(3)观察激光特性:通过观察激光的光斑、颜色、方向等特性,了解激光的特性。
(4)进行激光实验:利用激光进行切割、焊接、打标等操作,验证激光在各个领域的应用。
五、实验结果与分析1. 激光器输出激光的稳定性:通过调整激光器各个光学元件,使激光能够在谐振腔中稳定传播,输出激光的稳定性较好。
视距测量实验报告
视距测量实验报告
本次实验旨在通过测量不同距离下的视距,探究视距与距离之间的关系。
实验
过程中,我们使用了简单的测量工具,如直尺、测量尺和激光测距仪,以确保实验数据的准确性和可靠性。
首先,我们选择了一个开阔的场地作为实验地点,确保没有遮挡物影响视距的
测量。
然后,我们设置了不同的距离,分别是10米、20米、30米和40米,并在
每个距离上进行视距的测量。
在测量过程中,我们注意到了一些现象,比如在较远的距离上,由于大气折射的影响,视距会有所偏差,需要进行修正计算。
通过实验数据的记录和分析,我们得出了以下结论,视距与距离之间呈现出一
定的关系,随着距离的增加,视距也会相应增加。
同时,我们还发现了大气折射对视距的影响,这为我们在实际测量中提供了重要的参考依据。
在实验过程中,我们也遇到了一些困难和挑战,比如测量工具的精度和稳定性,以及环境因素对测量结果的影响。
为了克服这些困难,我们采取了一些有效的措施,比如定期校准测量工具,选择合适的天气条件进行测量等。
总的来说,本次实验取得了较好的效果,我们成功地探究了视距与距离之间的
关系,并获得了一些有价值的结论。
通过这次实验,我们不仅加深了对视距测量原理的理解,还提高了实际操作的能力,为今后的科研工作奠定了基础。
综上所述,视距测量实验为我们提供了宝贵的经验和教训,对于今后的科研工
作具有重要的指导意义。
我们将进一步深入研究视距测量的相关问题,不断提高实验技术水平,为科学研究做出更大的贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、激光测距简介:
激光测距仪无论在军事应用方面,还是在科学技术、生产建设方面,都起着重要作用。
由于激光波长单一,测量精度高,且激光测距仪结构小巧,安装调整方便,故激光测距仪是目前高精度测距最理想的仪器。
激光器与普通光源有显著的区别,它利用受激发射原理和激光腔的滤波效应,使所发光束具有一系列新的特点:
①激光有小的光束发散角,即所谓的方向性好或准直性好。
②激光的单色性好,或者说相干性好,普通灯源或太阳光都是非相干光。
③激光的输出功率虽然有限度,但光束细,所以功率密度很高,一般的激光亮度远比太阳表面的亮度大。
若激光是连续发射的,测程可达40公里左右,并可昼夜进行作业。
若激光是脉冲发射的,一般绝对精度较低,但用于远距离测量,可以达到很好的相对精度。
世界上第一台激光器,是由美国休斯飞机公司的科学家梅曼于1960年,首先研制成功的。
美国军方很快就在此基础上开展了对军用激光装置的研究。
1961年,第一台军用激光测距仪通过了美国军方论证试验,对此后激光测距仪很快就进入了实用联合体。
激光测距仪重量轻、体积小、操作简单速度快而准确,其误差仅为其它光学测距仪的五分之一到数百分之一,因而被广泛用于地形测量,战场测量,坦克,飞机,舰艇和火炮对目标的测距,测量云层、飞机、导弹以及人造卫星的高度等。
它是提高坦克、飞机、舰艇和火炮精度的重要技术装备。
由于激光测距仪价格不断下调,工业上也逐渐开始使用激光测距仪。
国内外出现了一批新型的具有测距快、体积小、性能可靠等优点的微型测距仪,可以广泛应用于工业测控、矿山、港口等领域。
激光测距仪-分类:
一维激光测距仪
用于距离测量、定位;
二维激光测距仪(Scanning Laser Range finder)
用于轮廓测量,定位、区域监控等领域;
三维激光测距仪(3D Laser Range finder)
用于三维轮廓测量,三维空间定位等领域。
激光测距-方法
激光测距仪一般采用两种方式来测量距离:脉冲法和相位法。
脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收,测距仪同时记录激光往返的时间。
光速和往返时间的乘积的一半,就是测距仪和被测量物体之间的距离。
脉冲法测量距离的精度是一般是在+/- 1米左右。
另外,此类测距仪的测量盲区一般是15米左右。
二、实验目的:
1、对激光测距仪的构成具有一定认识;
2、了解激光测距的发展过程;
3、了解激光测距的工作原理;
4、由激光测距仪的原理动手测量一段距离,了解换算过程,增强动手能力。
三、相位式激光测距仪原理
激光测距仪的测距原理是:由激光器对被测目标发射一个光信号,然后接受目标反射回来的光信号,通过测量光信号往返经过的时间,计算出目标的距离。
设目标的距离为L ,光信号往返所走过的距离即为2L
则:£=2L /c
即:L =ct /2 (1)
式中 c 一光在空气中的传播速度c ≈3×10 m /s ;
£一光信号往返所经过的时间,S ;
L 一检测目标的距离,rn 。
测距仪由激光器发出按某一频率变化的正弦调制光波,光波的强度变化规律与光源的驱动电源的变化完全相同,发出的光波到达被测目标,通常这种测距仪都配置了被称为合作目标的反射镜,这块反射镜能把入射光束反射回去,而且保证反射光的方向与入射光方向完全一致。
在仪器的接收端获得调制光波的回波,经鉴相和光电转换后,得到与接受到的光波调制频率相位完全相同的电信号,此电信号放大后与光源的驱动电压相比较,测得两个正弦电压的相位差,根据所测相位差就可算得所测距离。
假设正弦调制光波往返后相位延迟一个ϕ角,又令激光调制频率为0ω,则光波在被测距离上往返一次所需时间t 为:
0/ωϕ=t
把上式代入测距公式(1)中,得到:
02/ωϕc L =
而ϕπϕ∆+⨯=2N ,所以被测距离L 为:
)()2/(2/)2(000N N L N L N c L ∆+=∆+=∆⨯⨯=πϕωϕπ
式中 0L 一光尺,002/f c L =;
02/πϕ∆=∆N
显然,只要能够测量出发射和接收光波之间的相位差,就可确定出距离L 的数值。
但目前任何测量交变信号相位的方法,都不能确定出相位的整周期数N ,
只能测定不是π2的尾数ϕ
∆,由于N值不确定,故距离L就成为多值解。
既然相位测量可以确定被测量的尾数,那么,利用两种光尺同时测量同一个量,则可
L=0.1 以解决多值问题。
系统中用两把精度都是1‰的光尺,其中一把光尺的
01
L=10 m,分别测量同一距离,然后把测得的结果,相互组合m,另一把光尺的
02
起来即可。
L光尺测量得到不足0.1的尾数0.047 m,比如:距离为2.047 m,用
01
L光尺测量得到不足10 m 的尾数为2 m,把两个光尺相加起来的读数为用
02
2.047 m 。
四、实验设备及元器件:
激光发射器
分光镜
反光镜
接收器2只
电子示波器
五、实验原理:
由激光发射器发射一束激光。
经过分光镜后一束射向前方反光镜后,有信号接收器A接受,另一束直接由信号接收器B接收,两个信号接收器与激光发射器处于同一平面上。
通过示波器观察出两束光波的相位变化,得到两束光接收到的时间差,通过计算算得激光发射器与反光镜的距离。
六、实验装置图:
接收器A
七、实验内容与步骤:
1、连接实验设备,将各实验器材放在实验台的相对位置上,调整分光镜、反光镜、接收器,使接收器能够准确的接收到两束光。
2、确认各个实验器材的位置,使接收器能够准确的接收到两束光,
3、通过观察电子示波器中出现的两个波形图,得到两束光接收到相差的时间差s 。
4、计算:
设激光发射器与反光镜距离为a ,接收器B 与分光镜距离为b ,分光镜与反光镜距离为c ,反光镜与接收器A 的距离为d ,激光发射器与分光镜距离为e 。
设b S 与e S 已知,
e b d c a S S S S S +-+=2/)(,
s c S S d c ⨯=+
代入解得a S
八、实验数据计算
本次试验测得13ns ;
m S S S S S e b d c a 95.12.02/)1.01012103(2/)(98=+-⨯⨯⨯=+-+=-
九、知识拓展:
激光测距仪-品牌及分类
1.手持激光测距仪
测量距离一般在200米内,精度在2mm左右。
这是目前使用范围最广的激光测距仪。
在功能上除能测量距离外,一般还能计算测量物体的体积。
2. 望远镜式激光测距仪
测量距离一般在600-3000米左右,这类测距仪测量距离比较远,但精度相对较低,精度一般在1米左右。
主要应用范围为野外长距离测量。
3.工业激光测距仪
测量距离在0.5-3000米左右,精度在50mm以内,300米外要加设反光板,部分产品还能在测距的同时测速。
主要应用于位置控制(如车辆和船舶);定位起重机;装卸和搬运设备;飞机测量(测高仪);冶金过程控制;测量不宜接近的物体(如管灌装物、管道、集装箱),以及水位测量。
典型的传感器有LDM301、LDM4x。