典型电子元器件失效分析方法

合集下载

电子元器件的失效分析

电子元器件的失效分析

电子元器件的失效分析随着人们对电子产品质量可靠性的要求不断增加,电子元器件的可靠性不断引起人们的关注,如何提高可靠性成为电子元器件制造的热点问题。

例如在卫星、飞机、舰船和计算机等所用电子元器件质量可靠性是卫星、飞机、舰船和计算机质量可靠性的基础。

这些都成为电子元器件可靠性又来和发展的动力,而电子元器件的实效分析成为其中很重要的部分。

一、失效分析的定义及意义可靠性工作的目的不仅是为了了解、评价电子元器件的可靠性水平,更重要的是要改进、提高电子元器件的可靠性。

所以,在从使用现场或可靠性试验中获得失效器件后,必须对它进行各种测试、分析,寻找、确定失效的原因,将分析结果反馈给设计、制造、管理等有关部门,采取针对性强的有效纠正措施,以改进、提高器件的可靠性。

这种测试分析,寻找失效原因或机理的过程,就是失效分析。

失效分析室对电子元器件失效机理、原因的诊断过程,是提高电子元器件可靠性的必由之路。

元器件由设计到生产到应用等各个环节,都有可能失效,从而失效分析贯穿于电子元器件的整个寿命周期。

因此,需要找出其失效产生原因,确定失效模式,并提出纠正措施,防止相同失效模式和失效机理在每个元器件上重复出现,提高元器件的可靠性。

归纳起来,失效分析的意义有以下5点:(1)通过失效分析得到改进设计、工艺或应用的理论和思想。

(2)通过了解引起失效的物理现象得到预测可靠性模型公式。

(3)为可靠性试验条件提供理论依据和实际分析手段。

(4)在处理工程遇到的元器件问题时,为是否要整批不用提供决策依据。

(5)通过实施失效分析的纠正措施可以提高成品率和可靠性,减小系统试验和运行工作时的故障,得到明显的经济效益。

二、失效的分类在实际使用中,可以根据需要对失效做适当的分类。

按失效模式,可以分为开路、短路、无功能、特性退化(劣化)、重测合格;按失效原因,可以分成误用失效、本质失效、早期失效、偶然失效、耗损失效、自然失效;按失效程度,可分为完全失效、部分(局部)失效;按失效时间特性程度及时间特性的组合,可以分成突然失效、渐变失效、间隙失效、稳定失效、突变失效、退化失效、可恢复性失效;按失效后果的严重性,可以分为致命失效、严重失效、轻度失效;按失效的关联性和独立性,可以分为关联失效、非关联失效、独立失效、从属失效;按失效的场合,可分为试验失效、现场失效(现场失效可以再分为调试失效、运行失效);按失效的外部表现,可以分为明显失效、隐蔽失效。

电子元器件失效分析技术

电子元器件失效分析技术

电子元器件失效分析技术摘要:在当前市场竞争的刺激下,电子产品趋向小型化、智能化,市场对产品质量的要求越来越高。

电子产品的质量和可靠性密不可分,可靠性研究对保证和提高电子产品的质量非常重要,因此对失效分析的要求也越来越高。

产品失效分析的目的不仅仅是判断失效的性质和原因,更重要的是找到一种有效的方法来主动防止重复失效。

电子元器件的失效分析要模式准确、原因清晰、机理明确、措施有效、模拟再现、外推。

关键词;电子元器件;技术发展;失效分析;在科技时代下,电子技术得以被应用于各个领域,尤其是集成电路的应用范围更是不断扩大,集成电路能否可靠的运行,对电子产品的功能发挥有着至关重要的影响,而为了保证集成电路的运行可靠性,就必须要开展必要的电子元器件失效分析。

一、电子元器件失效分析原则与基本程序1.电子元器件失效分析原则。

电子元器件失效分析一般是基于非破坏性检查所开展的分析活动,具有逐层化特征。

对于电子元器件来说,若失效根源无法通过非破坏性检查进行确定,则需要进一步探究失效根源。

失效分析的整个过程是获得信息的关键环节,为保证电子元器件失效分析合理,降低失效原因遗漏概率,在失效分析过程中必须遵循相关原则:第一,遵循“先制订方案、后进行操作”的原则,在外检后才能进行通电检查;第二,在加电测试过程中,遵循电流“先弱后强”的原则,失效分析应先从外部开始,后进入内部,起初保持静态,之后不断转变为动态化;第三,失效分析应遵循“先宏观、后微观”的原则,要先从普遍化角度开展失效分析,之后再从特殊化角度展开分析。

另外,还要明确失效分析的主次顺序,一般先对主要问题开展失效分析,必要情况下开展破坏性检测。

2.电子元器件失效分析基本程序。

首先,要对失效现象加以确认,做好失效样品制备及保存工作;其次,在对电子元器件进行外部检查和电性分析之后,分析其内部结构并开展可靠性测试,必要时可开展电路评价,之后开封并剥层;最后,对失效点进行准确定位,通过物理分析确定电子元器件失效机理,进而针对失效机理采取有效的纠正措施。

电子元器件失效分析

电子元器件失效分析

电子元器件失效分析一般的仪器都会一点点的误测率,但既然有五道测试,基本可以消退这种误测,否则就说明你的仪器实在太烂啦!然后就是自动选择机的问题,有没有误动作的可能性,最好找一个比较大的不良品样本,对机器进行测试。

假如上面两项都没有问题,那说明运输和贮存可能初相了问题,当然半导体器件受环境因素的影响是比较小的。

最终就有可能是客户和你们的仪器有肯定差距,从而造成这种状况。

当然还有一种状况,就是本身半导体器件质量有问题,漏电测试是反向加电压,可能就是在测试的过程中器件被击穿的。

目的对电子元器件的失效分析技术进行讨论并加以总结。

方法通过对电信器类、电阻器类等电子元器件的失效缘由、失效机理等故障现象进行分析。

结论电子元器件的质量与牢靠性保证体系一个重要组成部分是失效分析,对电子元器件进行失效分析,才能准时了解电子元器件的问题所在,才能为设备及系统的正常工作带来牢靠保障。

进入21世纪后,电子信息技术成为最重要的技术,电子元器件则是电子信息技术进展的前提。

为了促进电子信息技术的进一步进展,就要提高电子元器件的牢靠性,所以就必需了解电子元器件失效的机理、模式以及分析技术等。

1.失效的含义失效是指电子元器件消失的故障。

各种电子系统或者电子电路的重要组成部分一般是不同类型的元器件,当它需要的元器件较多时,则标志其设备的简单程度就较高;反之,则低。

一般还会把电路故障定义为:电路系统规定功能的丢失。

2.失效的分类依据不同的标准,对失效的分类一般主要有以下几种归类法。

以失效缘由为标准:主要分为本质失效、误用失效、偶然失效、自然失效等。

以失效程度为标准:主要分为部分失效、完全失效。

以失效模式为标准:主要分为无功能、短路、开路等。

以失效后果的严峻程度为标准:主要分为轻度失效、严峻失效以及致命失效。

除上述外,还有多种分类标准,如以失效场合、失效外部表现为标准等,不在这里一一赘述。

3.失效的机理电子元器件失效的机理也有不同分类,通常以其导致缘由作为分类依据,主要可分为下面几种失效机理。

常见的电子元器件失效机理与分析

常见的电子元器件失效机理与分析

常见的电子元器件失效机理与分析电子元器件的主要失效模式包括但不限于开路、短路、烧毁、爆炸、漏电、功能失效、电参数漂移、非稳定失效等。

对于硬件工程师来讲电子元器件失效是个非常麻烦的事情,比如某个半导体器件外表完好但实际上已经半失效或者全失效会在硬件电路调试上花费大把的时间,有时甚至炸机。

硬件工程师调试爆炸现场所以掌握各类电子元器件的实效机理与特性是硬件工程师比不可少的知识。

下面分类细叙一下各类电子元器件的失效模式与机理。

电阻器失效失效模式:各种失效的现象及其表现的形式。

失效机理:是导致失效的物理、化学、热力学或其他过程。

电阻器的失效模式与机理▶开路:主要失效机理为电阻膜烧毁或大面积脱落,基体断裂,引线帽与电阻体脱落。

▶阻值漂移超规范:电阻膜有缺陷或退化,基体有可动钠离子,保护涂层不良。

▶引线断裂:电阻体焊接工艺缺陷,焊点污染,引线机械应力损伤。

▶短路:银的迁移,电晕放电。

失效模式占失效总比例表▶线绕电阻:▶非线绕电阻:失效模式机理分析电阻器失效机理是多方面的,工作条件或环境条件下所发生的各种理化过程是引起电阻器老化的原因。

▶导电材料的结构变化:薄膜电阻器的导电膜层一般用汽相淀积方法获得,在一定程度上存在无定型结构。

按热力学观点,无定型结构均有结晶化趋势。

在工作条件或环境条件下,导电膜层中的无定型结构均以一定的速度趋向结晶化,也即导电材料内部结构趋于致密化,能常会引起电阻值的下降。

结晶化速度随温度升高而加快。

电阻线或电阻膜在制备过程中都会承受机械应力,使其内部结构发生畸变,线径愈小或膜层愈薄,应力影响愈显著。

一般可采用热处理方法消除内应力,残余内应力则可能在长时间使用过程中逐步消除,电阻器的阻值则可能因此发生变化。

结晶化过程和内应力清除过程均随时间推移而减缓,但不可能在电阻器使用期间终止。

可以认为在电阻器工作期内这两个过程以近似恒定的速度进行。

与它们有关的阻值变化约占原阻值的千分之几。

电负荷高温老化:任何情况,电负荷均会加速电阻器老化进程,并且电负荷对加速电阻器老化的作用比升高温度的加速老化后果更显著,原因是电阻体与引线帽接触部分的温升超过了电阻体的平均温升。

失效分析之经典案例

失效分析之经典案例

电子元器件失效分析技术与失效分析经典案例案例1 器件内部缺陷——导致整机批次性失效失效信息:整机是磁盘驱动器,制造过程整机的次品率正常为300ppm,某时起发现次品率波动,次品原因是霍尔器件极间漏电、短路。

图1 引出电极金属化(金)边缘脱落跨接图片析说明:引出电极金属化边两电极之间,在电压作用下漏电、击穿。

案例电极边缘脱落,跨接两电极引起电极之间漏电短路分缘有残边,残边在注塑时被冲开而跨接于这是器件的工艺缺陷,这种缺陷具有批次性的特征,该批器件在使用过程中失效率大,寿命短。

2:静电放电损伤失效图2 射频器件静电击穿照片(金相)图3 数字IC静电击穿照片SEM)分析说明:静电放电击穿典型的特征是能量小、线径小,飞狐、喷射。

主要发生在射频、能量释放时间短,其失效特征是击穿点微波器件,场效应器件、光电器件也常有静电放电击穿的案例。

案例3:外部引入异常电压引起通讯IC 输失效信息:分析说明:通讯芯片通讯端口上的传输线容易引入干扰电压(窄脉冲浪涌),干扰电压多次对通讯案例电流能力下降引起整机失效率异常增大某时起整机的市场维修率异常增大,维修增大是整机中的IGBT 功率器件失效引起的。

另外集成电路、出驱动失效通讯芯片在现场使用时发生失效,表现为通讯端口对地短路。

图4 通讯IC 输出管形貌(SEM )图5 输出管电压击穿形貌(SEM )IC 的通讯端内部电路起损伤作用,最终形成击穿通道。

4:功率器件失效信息:图6 IGBT 芯片呈现过电流失效特征图7 原来IGBT 的内部结构析说明:效样品表现为过电流失效。

整机维修率异常增大发生时更改IGBT 的型号。

IBGT 制造厂家给出新330W ,原来型号的IGBT 的功率指标为,其它指标没有变化。

两只芯片,多了一只反向释放二极管,两个型号的IGBT 芯片的面积一样大,显然,下降,因此,新型号的IGBT 的电流能分失型号的IGBT 的功率指标比为175W 但新型号的IGBT 内部结构(图6)仅有一只芯片,而原来型号的IGBT 有新型号的IGBT 的芯片要有部分面积来完成反向释放二极管的作用,由于IGBT 芯片有效面积的减小,导致其电流能力力不如原来型号的IGBT ,整机中IGBT 的工作电流比较临界,因此,使用过程中由于电流问题的发生大量失效。

电子元器件中的异常问题分析与解决方法

电子元器件中的异常问题分析与解决方法

电子元器件中的异常问题分析与解决方法电子元器件是现代电子技术的重要组成部分,广泛应用于各种电子设备和系统中。

然而,在电子元器件制造和使用过程中,常常会出现各种异常问题,如焊接不良、静电击穿、氧化腐蚀等。

本文将从异常问题分析和解决方法两个方面介绍电子元器件中的一些常见异常问题和相应的解决方法。

一、异常问题分析1. 焊接不良焊接不良是电子元器件中常见的问题之一。

当焊接点接触不良或焊接质量不好时,会导致元器件性能下降或失效。

焊接不良的原因主要有以下几种:(1) 焊接温度不足,导致焊接点未能完全熔化和结合。

(2) 焊接时间太短,导致焊接点没有充分熔化和结合。

(3) 焊接点表面不干净,存在氧化物或污垢等,导致焊接不牢固。

(4) 焊接点设计不合理,焊接面积太小或焊接位置不当,容易出现焊接不良。

2. 静电击穿静电击穿是指电子元器件因受到静电场的影响而导致烧毁或失效的现象。

在现代电子制造过程中,静电击穿已成为电子元器件的重要故障之一。

静电击穿的原因主要有以下几种:(1) 电场强度过大,导致电子元器件内部断裂或击穿。

(2) 静电电荷在元器件表面聚集,导致表面受到静电击穿。

(3) 经过高速移动的物体会带电,当物体与元器件接触时,会将静电荷传递到元器件上,造成静电击穿。

3. 氧化腐蚀氧化腐蚀是电子元器件中的另一个常见问题。

当元器件表面被氧化或腐蚀时,会导致元器件性能下降或失效。

氧化腐蚀的原因主要有以下几种:(1) 暴露在潮湿环境中的元器件容易受到氧化腐蚀的影响。

(2) 暴露在酸性或碱性环境中的元器件容易受到化学腐蚀的影响。

(3) 元器件表面存在污垢或化学物质,容易引起氧化腐蚀。

二、解决方法1. 焊接不良的解决方法(1) 控制焊接温度,保证焊接点充分熔化和结合。

(2) 延长焊接时间,使焊接点有足够的时间熔化和结合。

(3) 在焊接前清洗焊接点表面,去除污垢和氧化物。

(4) 设计合理的焊接点,保证焊接面积充足且位置合理。

2. 静电击穿的解决方法(1) 安装静电保护设备,防止静电对元器件造成损害。

失效电子元器件分析方法

失效电子元器件分析方法

分析Technology AnalysisI G I T C W 技术120DIGITCW2021.011 电子元器件失效一件电子成品的失效是指产品丧失规定的功能指标,不能满足规范要求,其中90%以上是可以通过更换元器件修复的,而元器件的失效往往是不可修复的。

因此,要控制成品设备的可靠性,就需要对元器件的失效规律进行研究分析,控制好元器件的失效率就能提高产品的可靠性。

影响一个元器件失效的因素多种多样,不同的元器件在同一应力环境失效的模式和机理都有可能不同,同一种元器件在不同的应力环境的失效状态也会不同。

因此,我们在分析元器件失效时要统计出元器件的材料、质量等级、静电等级、失效模式、失效机理以及应力阶段、加电时长等。

2 名词解释(1)失效:产品丧失规定功能指标不能满足规范要求。

(2)失效模式:失效的外在直观表现形式和过程规律,主要包括漏电、短路、开路、参数漂移及功能失效。

(3)失效机理:电子元器件本身化学、物理变化,这种变化一般是机械、腐蚀、过电引起。

(4)失效原因:引起器件失效的外在因素,电子元器件在材料、制造、设计、使用中引起的直接失效原因。

(5)失效分析:是找到产品的失效模式,根据失效模式找出产品失效机理以及失效原因,制定对策防止产品再次失效的活动。

3 失效分析步骤造成元器件失效的因素很多,必须收集器件失效的多方面要素加以比对分析才能找到失效根因,主要分析过程按图1执行。

图1 元器件失效分析过程3.1 统计失效元器件的关键要素损坏元器件的关键要素主要有器件类别、质量等级、静电等级、失效模式、失效机理、失效阶段等。

3.1.1 电子元器件主要类别失效电子元器件分析方法张光强(中电集团第十研究所,四川 成都 610036)摘要:介绍了一种电子元器件失效分析方法,给出了失效器件失效的统计要素,并对失效要素进行分析、研究失效模式与失效机理,找出失效原因,找到生产过程中的薄弱环节,制定相应措施,及时有效预防器件的再次失效,提高电子元器件的使用可靠性,进而提高整机可靠性,以较小的质量成本获取较高的经济效益,避免产品出现重复性问题,最终达到控制质量成本的目的。

电子元器件失效分析技术与案例

电子元器件失效分析技术与案例

电子元器件失效分析技术与案例费庆学二站开始使用电子器件当时电子元器件的寿命20h.American from 1959 开始:1。

可靠性评价,预估产品寿命2。

可靠性增长。

不一定知道产品寿命,通过方法延长寿命。

通过恶裂环境的试验。

通过改进提高寿命。

―――后来叫a.可靠性物理—实效分析的实例 b.可靠数学第一部分:电子元器件失效分析技术(方法)1.失效分析的基本的概念和一般程序。

A 定义:对电子元器件的失效的原因的诊断过程b.目的:0000000c.失效模式――》失效结果――》失效的表现形式――》通过电测的形式取得d.失效机理:失效的物理化学根源――》失效的原因1)开路的可能失效机理日本的失效机理分类:变形变质外来异物很多的芯片都有保护电路,保护电路很多都是由二极管组成正反向都不通为内部断开。

漏电和短路的可能的失效机理接触面积越小,电流密度就大,就会发热,而烧毁例:人造卫星的发射,因工人误操作装螺丝时掉了一个渣于继电器局部缺陷导致电流易集中导入产生热击穿(si 和al 互熔成为合金合金熔点更低)塑封器件烘烤效果好当开封后特性变好,说明器件受潮或有杂质失效机理环境应力:温度温度过低易使焊锡脆化而导致焊点脱落。

,2.失效机理的内容I失效模式与环境应力的关系任何产品都有一定的应力。

a当应力>强度就会失效如过电/静电:外加电压超过产品本身的额定值会失效b应力与时间应力虽没有超过额定值,但持续累计的发生故:如何增强强度&减少应力能延长产品的寿命c.一切正常,正常的应力,在时间的累计下,终止寿命特性随时间存在变化e机械应力如主板受热变形对零件的应力认为用力塑封的抗振动好应力好陶瓷的差。

f重复应力如:冷热冲击是很好的零件筛选方法重复应力易导致产品老化,存在不可靠性故使用其器件:不要过载;温湿度要适当II如何做失效分析例:一个EPROM在使用后不能读写1)先不要相信委托人的话,一定要复判。

2)快始失效分析:取NG&OK品,DataSheet,查找电源断地开始测试首先做待机电流测试(IV测试)电源对地的待机电流下降开封发现电源端线中间断(因为中间散热慢,两端散热快,有端子帮助散热)因为断开,相当于并联电阻少了一个电阻,电流减小。

电子元器件失效分析

电子元器件失效分析

电子元器件失效分析第一篇:电子元器件失效分析电子元器件失效分析1.失效分析的目的和意义电子元件失效分折的目的是借助各种测试分析技术和分析程序确认电子元器件的失效现象.分辨其失效模式和失效机理.确定其最终的失效原因,提出改进设计和制造工艺的建议。

防止失效的重复出现,提高元器件可靠性。

失效分折是产品可靠性工程的一个重要组成部分,失效分析广泛应用于确定研制生产过程中产生问题的原因,鉴别测试过程中与可靠性相关的失效,确认使用过程中的现场失效机理。

在电子元器件的研制阶段。

失效分折可纠正设计和研制中的错误,缩短研制周期;在电子器件的生产,测试和试用阶段,失效分析可找出电子元器件的失效原因和引起电子元件失效的责任方。

根据失效分析结果。

元器件生产厂改进器件的设计和生产工艺。

元器件使用方改进电路板设汁。

改进元器件和整机的测试,试验条件及程序,甚至以此更换不合格的元器件供货商。

因而,失效分析对加快电子元器件的研制速度.提高器件和整机的成品率和可靠性有重要意义。

失效分折对元器件的生产和使用都有重要的意义.如图所列。

元器件的失效可能发生在其生命周期的各个阶段.发生在产品研制阶段,生产阶段到使用阶段的各个环节,通过分析工艺废次品,早期失效,实验失效及现场失效的失效产品明确失效模式、分折失效机理,最终找出失效原因,因此元器件的使用方在元器件的选择、整机计划等方面,元器件生产方在产品的可靠性方案设计过程,都必须参考失效分折的结果。

通过失效分折,可鉴别失效模式,弄清失效机理,提出改进措施,并反馈到使用、生产中,将提高元器件和设备的可靠性。

2.失效分析的基本内容对电子元器件失效机理,原因的诊断过程叫失效分析。

进行失效分析往往需要进行电测量并采用先进的物理、冶金及化学的分析手段。

失效分析的任务是确定失效模式和失效机理.提出纠正措施,防止这种失效模式和失效机理的重复出现。

因此,失效分析的主要内容包括:明确分析对象。

确定失效模式,判断失效原因,研究失效机理,提出预防措施(包括设计改进)。

电子行业电子元器件失效分析

电子行业电子元器件失效分析

电子行业电子元器件失效分析1. 引言电子行业是现代社会中不可或缺的重要组成部分。

然而,在电子产品的生产、使用以及维护过程中,电子元器件的失效问题时常出现。

电子元器件失效可能导致设备故障、数据损失甚至人身安全等严重后果。

因此,深入分析电子元器件失效的原因和机理对于提高电子产品的可靠性和稳定性具有重要意义。

本文将对电子行业中常见的电子元器件失效进行分析,包括失效的类型、原因和常见的预防和修复措施。

本文旨在帮助读者更好地理解电子元器件失效并提供一些解决方案。

2. 失效类型电子元器件失效可以分为以下几种类型:2.1 电气失效电气失效是指电子元器件在使用过程中由于电气参数超过规定范围或电压电流过大而发生的失效。

常见的电气失效包括过电压、过电流、电磁干扰等。

2.2 机械失效机械失效是指电子元器件在使用过程中由于机械应力超过其承受能力而发生的失效。

常见的机械失效包括振动引起的松动、机械损伤等。

2.3 热失效热失效是指电子元器件在使用过程中由于温度过高或过低导致的失效。

温度变化会导致元器件内部的电子结构破坏或金属膨胀引起松动等问题。

2.4 化学失效化学失效是指电子元器件在使用过程中由于化学物质的侵蚀、氧化等引起的失效。

常见的化学失效包括腐蚀、电化学腐蚀等。

3. 失效原因电子元器件失效的原因多种多样,以下是常见的几个原因:3.1 原材料问题一些电子元器件可能因为原材料的质量或制造工艺的问题而导致失效。

例如,使用劣质的焊料可能导致焊接点松动,从而引起电气失效。

3.2 环境因素环境因素对电子元器件的稳定性和可靠性产生重要影响。

例如,高温、湿度、腐蚀性气体等环境条件都可能引起电子元器件失效。

3.3 设计问题一些电子元器件在设计阶段存在问题,例如电路设计不合理、过度设计等,都可能导致电子元器件失效。

3.4 维护不当不当的维护方式也是电子元器件失效的一个重要原因。

例如,使用不适当的清洁剂可能对元器件表面造成损害,从而引起电气失效。

电感零件常见失效模式及分析手法

电感零件常见失效模式及分析手法
2.问题分析流程
(1)不良品外观检查确认(非破坏)
(2)不良品/良品电气特性比对确认(非破坏)
经过电气测试确认:2pcs 不良品电感值都小于规格要求的 33uH±20% 的范围,DCR 明显小于规格值 0.35(Ω)max.基本判断不良品为短路失 效。
3.不良品进一步 Wire 拆解分析(破坏)
4. Core 验证分析(破坏) Core 外观检查 OK,不良品与库存新品拆解进行对比分析将拆解后的库 存新品的 Wire 绕制上在不良品的 Core 上,感值恢复为 29.8uH;将拆 解后的不良品的 Wire 绕制上在库存新品的 Core 上,感值为 17.1uH, 同样出现感值偏低现象。因此初步排除 Core 不良的原因,不良的问题 点是出现在 Wire 方面。4
电子零件失效分析之电感
对于电子品质工程师来说电子元器件失效是非常麻烦的事情,比如 某个半导体器件外表完好但实际上已经半失效或者完全失效会在硬件 电路调试上面花费大把的时间,有时甚至炸机。所以掌握各类电子元器 件的实效机理与特性是工程师必不可少的知识。
电感是导线内通过交流电流时,在导线的内部及其周围产生交变磁 通,导线的磁通量与产生此磁通量的电流成之比。
1 .芯片电感机械/外力异常分析---本体 Crack 裂痕或破损:
电气异常分析---内电极熔化 Crack 裂痕开路:
总结:
1.熟知零件的组成结构,材料,制程和特性 2.FA 一般流程
例如:不良率,异常现象,零件 DateCode, 发生不良的流程,PCB 上发生异常的位置,终端产品及客户等
磨损/异物附着、产品底部平整度不佳/底部料片偏移等,对此改善和应 对的措施为原材料厂商提供电镀报告,可焊性测试验证。

电子元器件失效分析技术经典案例1

电子元器件失效分析技术经典案例1
• 热:键合失效、Al-Si互溶、pn结漏电 • 热电:金属电迁移、欧姆接触退化 • 高低温:芯片断裂、芯片粘接失效 • 低温:芯片断裂
失效发生期与失效机理的关系
• 早期失效:设计失误、工艺缺陷、材料 缺陷、筛选不充分
• 随机失效:静电损伤、过电损伤 • 磨损失效:元器件老化 • 随机失效有突发性和明显性 • 早期失效、磨损失效有时间性和隐蔽性
失效分析的一般程序
• 收集失效现场数据 • 电测并确定失效模式 • 非破坏检查 • 打开封装 • 镜检 • 通电并进行失效定位 • 对失效部位进行物理化学分析,确定失效机
理 • 综合分析,确定失效原因,提出纠正措施
收集失效现场数据
• 作用:根据失效现场数据估计失效原因 和失效责任方 根据失效环境:潮湿、辐射 根据失效应力:过电、静电、高温、低 温、高低温 根据失效发生期:早期、随机、磨损
• 应力-时间模型(反应论模型) 失效原因:应力的时间累积效应,特性变化超 差。如金属电迁移、腐蚀、热疲劳
温度应力-时间模型
dM
E
Ae kT
dt
M温度敏感参数, E激活能, k 玻耳兹曼常量, T绝对温度, t时间, A常数
T大, 反应速率dM/dt 大,寿命短
E大,反应速率dM/dt 小,寿命长
电路设计、改进电路板制造工艺、提高测试技 术、设计保护电路的依据 • 整机用户:获得改进操作环境和操作规程的依 据 • 提高产品成品率和可靠性,树立企业形象,提 高产品竞争力
失效分析技术的延伸
• 进货分析的作用:选择优质的供货渠道, 防止假冒伪劣元器件进入整机生产线
• 良品分析的作用:学习先进技术的捷径
e)xp(
E k
(
1 T2

电子元器件失效分析具体案列

电子元器件失效分析具体案列
典型分析照片
图 1 Pin17 已熔断内引线
图 2 Pin17 已熔断内引线
中国赛宝实验室可靠性研究分析中心
图 3 击穿点及引线损坏形貌
图 4 过电形貌
图 5 内部电路过电形貌
图 6 内部电路击穿点形貌
图 7 内部电路击穿点形貌
图 8 内部电路击穿点形貌
中国赛宝实验室可靠性研究分析中心
案例三:
1 产品名称及型号:通信 IC PMB6850E V2.10
作均正常;
3)内部水汽含量测试:应委托方要求,8#与 12#样品进行内部水汽含量测试,结果符合
要求;
中国赛宝实验室可靠性研究分析中心
4)端口 I-V 特性测试:使用静电放电测试系统剩下的样品进行 I-V 端口扫描测试,发现: 4#样品的 Pin3、Pin4、Pin5、Pin7 对地呈现明显的电阻特性,使用图示仪测试后测得 Pin3 对地呈现约 660Ω阻值、Pin4 与 Pin5 对地呈现约 300Ω阻值、Pin7 对地呈现约 140
___
Ω阻值,且在 1#与 4#样品的 Pin31( EA /Vpp)发现特性曲线异常,但并非每次都能 出现;其他样品的管脚未发现明显异常; 5)开封和内部分析:对 1#~5#样品进行开封,内目检时发现: 芯片的铝键合丝与键合台以外相邻的金属化层(有钝化层覆盖)存在跨接现象。在拉 断铝丝后,可见到铝丝通过超声键合已粘接在相邻的地连线或膜电阻上,并粘附着铝丝被 粘连的铝屑见图 2~图 4。拉断铝丝后均能观察到键合台邻近的工作金属线或膜电阻上存在 铝丝残存的碎屑,说明铝丝存在键合跨接。 统计发现,在 3#与 4#样品中,每只样品的 40 个键合台均有 27 个存在铝丝键合 与其相连的工作金属化铝连线(地线或膜电阻)跨接粘连的问题。

电子元器件的失效分析

电子元器件的失效分析

电子元器件的失效分析随着人们对电子产品质量可靠性的要求不断增加,电子元器件的可靠性不断引起人们的关注,如何提高可靠性成为电子元器件制造的热点问题。

例如在卫星、飞机、舰船和计算机等所用电子元器件质量可靠性是卫星、飞机、舰船和计算机质量可靠性的基础。

这些都成为电子元器件可靠性又来和发展的动力,而电子元器件的实效分析成为其中很重要的部分。

一、失效分析的定义及意义可靠性工作的目的不仅是为了了解、评价电子元器件的可靠性水平,更重要的是要改进、提高电子元器件的可靠性。

所以,在从使用现场或可靠性试验中获得失效器件后,必须对它进行各种测试、分析,寻找、确定失效的原因,将分析结果反馈给设计、制造、管理等有关部门,采取针对性强的有效纠正措施,以改进、提高器件的可靠性。

这种测试分析,寻找失效原因或机理的过程,就是失效分析。

失效分析室对电子元器件失效机理、原因的诊断过程,是提高电子元器件可靠性的必由之路。

元器件由设计到生产到应用等各个环节,都有可能失效,从而失效分析贯穿于电子元器件的整个寿命周期。

因此,需要找出其失效产生原因,确定失效模式,并提出纠正措施,防止相同失效模式和失效机理在每个元器件上重复出现,提高元器件的可靠性。

归纳起来,失效分析的意义有以下5点:(1)通过失效分析得到改进设计、工艺或应用的理论和思想。

(2)通过了解引起失效的物理现象得到预测可靠性模型公式。

(3)为可靠性试验条件提供理论依据和实际分析手段。

(4)在处理工程遇到的元器件问题时,为是否要整批不用提供决策依据。

(5)通过实施失效分析的纠正措施可以提高成品率和可靠性,减小系统试验和运行工作时的故障,得到明显的经济效益。

二、失效的分类在实际使用中,可以根据需要对失效做适当的分类。

按失效模式,可以分为开路、短路、无功能、特性退化(劣化)、重测合格;按失效原因,可以分成误用失效、本质失效、早期失效、偶然失效、耗损失效、自然失效;按失效程度,可分为完全失效、部分(局部)失效;按失效时间特性程度及时间特性的组合,可以分成突然失效、渐变失效、间隙失效、稳定失效、突变失效、退化失效、可恢复性失效;按失效后果的严重性,可以分为致命失效、严重失效、轻度失效;按失效的关联性和独立性,可以分为关联失效、非关联失效、独立失效、从属失效;按失效的场合,可分为试验失效、现场失效(现场失效可以再分为调试失效、运行失效);按失效的外部表现,可以分为明显失效、隐蔽失效。

电子元器件失效分析技术

电子元器件失效分析技术

电源招聘专家电子元器件失效分析技术电子信息技术是当今新技术革命的核心,是发展电子信息技术的基础。

了解造成元器件失效的因素,以提高可靠性,是电子信息技术应用的必要保证。

开展电子元器件,需要采用一些先进的分析测试技术和仪器。

1 光学显微镜分析技术光学显微镜分析技术主要有立体显微镜和金相显微镜。

立体显微镜放大倍数小,但景深大;金相显微镜放大倍数大,从几十倍到一千多倍,但景深小。

把这两种显微镜结合使用,可观测到器件的外观,以及失效部位的表面形状、分布、尺寸、组织、结构和应力等。

如用来观察到芯片的烧毁和击穿现象、引线键合情况、基片裂缝、沾污、划伤、氧化层的缺陷、金属层的腐蚀情况等。

显微镜还可配有一些辅助装置,可提供明场、暗场、微分干涉相衬和偏振等观察手段,以适应各种需要。

2 红外分析技术红外显微镜的结构和金相显微镜相似。

但它采用的是近红外(波长为01 75~ 3 微米)光源,并用红外变像管成像。

由于锗、硅等半导体材料及薄金属层对红外辐射是透明的。

利用它,不剖切器件的芯片也能观察芯片内部的缺陷及焊接情况等。

它还特别适于作塑料封装半导体器件的失效分析。

红外显微分析法是利用红外显微技术对微电子器件的微小面积进行高精度非接触测温的方法。

器件的工作情况及失效会通过热效应反映出来。

器件设计不当,材料有缺陷,工艺差错等都会造成局部温度升高。

发热点可能小到微米以下,所以测温必须针对微小面积。

为了不影响器件的工作情况和电学特性,测量又必须是非接触的。

找出热点,并用非接触方式高精度地测出温度,对产品的设计、工艺过程控制、失效分析、可靠性检验等,都具有重要意义。

红外热像仪是非接触测温技术,它能测出表面各点的温度,给出试样表面的温度分布。

红外热像仪用振动、反射镜等光学系统对试样高速扫描,将发自试样表面各点的热辐射会聚到检测器上,变成电信号,再由显示器形成黑白或彩色图像,以便用来分析表面各点的温度。

3 声学显微镜分析超声波可在金属、陶瓷和塑料等均质材料中传播。

电子元器件失效分析技术及方法

电子元器件失效分析技术及方法

电子元器件失效分析技术及方法摘要:经过长期坚持不懈的努力,国内环境大变样,这对电子行业而言无疑是利好消息。

随着电子行业的不断发展,电子元器件的升级换代速度越来越快,应用范围也越来越广。

在享受电子元器件带来便利的同时,也要客观看待它的失效现象。

电子元器件一旦失效,就会导致整个系统无法正常运行。

越早分析出原因,损失就越小。

因此,本文对电子元器件失效分析技术方法展开研究,以供广大电子人参考。

关键词:电子元器件;失效分析;技术方法前言市场经济的蓬勃发展为电子行业发展带来了生机与活力,同时也对电子元器件质量提出更高要求。

只有质量过硬,电子元器件才能一直发挥作用。

经过调查发现,电子元器件失效现象比较普遍,想要减少这种现象,需要做好失效分析工作。

这并不是一件容易的事,能否高质量完成,关键要看广大电子人是否完全掌握分析技术及方法。

很显然,目前还不满足要求。

本文从两个方面进行讨论,希望能给大家一些启示。

一、电子元器件失效分析的过程及原则(一)基本流程电子元器件失效的主要有三种类型,第一种是功能丧失,第二种是物理参数发生漂移,第三种是电学特性突然改变,是短路、开路等故障引起的。

不管是哪种情况,分析过程大致相同,即对失效样品的背景进行调查,检查外观的完整性,按要求测试电气特性,对失效模式进行验证,开封去层后开展破坏性物理分析工作,失效定位,从物理和化学两个角度去分析,确定失效机理,发现问题背后的原因,出具失效分析报告[1]。

(二)应遵循的原则不管做什么事,都要遵循一定原则,电子元器件失效分析也不例外。

原则一,先制定分析方案,再采取相应行动。

原则二,先对外观进行检查,再给电子元器件通电。

原则三,在加电测试中,电压要由弱变强。

原则四,先进性静态分析,再实时动态分析。

原则五,先进行宏观分析,再进行微观分析。

原则六,剖析问题时,要从简单到复杂。

原则七,先关注主要零件,再检查辅助零件。

原则八,无损检测在前,破损检查在后。

只有严格遵守八项基本原则,才能避免引入新的失效因素,从而让真正原因浮出水面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

典型电子元器件失效分析方法
纵观当今电子信息技术发展状况,自进入二十世纪后期以来发展尤为猛烈,而电子元器件作为发展电子信息技术的基础,一直扮演着十分重要的角色。

于是,了解电子元器件失效分析是人们一直关心的问题,那么这次华强北IC代购网就为大家简要的介绍几种典型电子元器件失效分析方法。

1、微分析法
(1)肉眼观察是微分析技术的第一步,对电子元器件进行形貌观察、线系及其定位失准等,必要时还可以借助仪器,例如:扫描电镜和透射电子显微镜等进行观察;
(2)其次,我们需要了解电子元器件制作所用的材料、成分的深度分布等信息。

而AES、SIMS和XPS仪器都能帮助我们更好的了解以上信息。

不过,在作AES测试时,电子束的焦斑要小,才能得到更高的横向分辨率;
(3)最后,了解电子元器件衬底的晶体取向,探测薄膜是单晶还是多晶等对其结构进行分析是一个很重要的方面,这些信息主要由XRD结构探测仪来获取。

2、光学显微镜分析法
进行光辐射显微分析技术的仪器主要有立体显微镜和金相显微镜。

将其两者的技术特点结合使用,便可观测到器件的外观、以及失效部位的表面形状、结构、组织、尺寸等。

亦可用来检测芯片击穿和烧毁的现象。

此外我们还可以借助具有可提供明场、暗场、微干涉相衬和偏振等观察手段的显微镜辅助装置,以适应各种电子元器件失效分析的需要。

3、红外显微分析法
与金相显微镜的结构相似,不同的是红外显微镜是利用近红外光源,并采用红外变像管成像,利用此工作原理不用对芯片进行剖切也能观察到芯片内部的缺陷及焊接情况。

红外显微分析法是针对微小面积的电子元器件,在对不影响器件电学特性和工作情况下,利用红外显微技术进行高精度非接触测温方法,对电子元器件失效分析都具有重要的意义。

4、声学显微镜分析法
电子元器件主要是由金属、陶瓷和塑料等材料制成的,因此声学显微镜分析法就是基于超声波可在以上这些均质传播的特点,进行电子元器件失效分析。

此外,声学显微镜分析法最大的特点就是,能观察到光学显微镜无法看到的电子元器件内部情况并且能提供高衬度的检测图像。

以上是几种比较常见的典型电子元器件失效分析方法,电子元器件失效一直都是历久弥新的话题,而对电子元器件失效分析是确定其失效模式和失效机理的有效途径之一,对电子元器件的发展具有重要的意义。

相关文档
最新文档