中考数学知识点专题复习系列训练题及解析(珍藏版):23概率与统计真题汇编与预赛典型例题
概率(共50题)(解析版)--2023年中考数学真题分项汇编(全国通用)
专题概率(50题)一、单选题1(2023·湖南·统考中考真题)从6名男生和4名女生的注册学号中随机抽取一个学号,则抽到的学号为男生的概率是()A.25B.35C.23D.34【答案】B【分析】根据概率公式求解即可.【详解】解:总人数为10人,随机抽取一个学号共有10种等可能结果,抽到的学号为男生的可能有6种,则抽到的学号为男生的概率为:610=35,故选:B.【点睛】本题考查了概率公式求概率;解题的关键是熟练掌握概率公式.2(2023·湖北十堰·统考中考真题)任意掷一枚均匀的小正方体色子,朝上点数是偶数的概率为()A.16B.13C.12D.23【答案】C【分析】由题意可知掷一枚均匀的小正方体色子有6种等可能的结果,再找出符合题意的结果数,最后利用概率公式计算即可.【详解】∵任意掷一枚均匀的小正方体色子,共有6种等可能的结果,其中朝上点数是偶数的结果有3种,∴朝上点数是偶数的概率为36=12.故选:C.【点睛】本题考查简单的概率计算.掌握概率公式是解题关键.3(2023·湖北武汉·统考中考真题)某校即将举行田径运动会,“体育达人”小明从“跳高”“跳远”“100米”“400米”四个项目中,随机选择两项,则他选择“100米”与“400米”两个项目的概率是()A.12B.14C.16D.112【答案】C【分析】设“跳高”“跳远”“100米”“400米”四个项目分别为A、B、C、D,画出树状图,找到所有情况数和满足要求的情况数,利用概率公式求解即可.【详解】解:设“跳高”“跳远”“100米”“400米”四个项目分别为A、B、C、D,画树状图如下:由树状图可知共有12种等可能情况,他选择“100米”与“400米”两个项目即选择C 和D 的情况数共有2种,∴选择“100米”与“400米”两个项目的概率为212=16,故选:C .【点睛】此题考查了树状图或列表法求概率,正确画出树状图或列表,找到所有等可能情况数和满足要求情况数是解题的关键.4(2023·河北·统考中考真题)1有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上.若从中随机抽取一张,则抽到的花色可能性最大的是()A. B. C. D.【答案】B【分析】根据概率计算公式分别求出四种花色的概率即可得到答案.【详解】解:∵一共有7张扑克牌,每张牌被抽到的概率相同,其中黑桃牌有1张,红桃牌有3张,梅花牌有1张,方片牌有2张,∴抽到的花色是黑桃的概率为17,抽到的花色是红桃的概率为37,抽到的花色是梅花的概率为17,抽到的花色是方片的概率为27,∴抽到的花色可能性最大的是红桃,故选:B .【点睛】本题主要考查了简单的概率计算,正确求出每种花色的概率是解题的关键.5(2023·江苏苏州·统考中考真题)如图,转盘中四个扇形的面积都相等,任意转动这个转盘1次,当转盘停止转动时,指针落在灰色区域的概率是()A.14B.13C.12D.34【答案】C【分析】根据灰色区域与整个面积的比即可求解.【详解】解:∵转盘中四个扇形的面积都相等,设整个圆的面积为1,∴灰色区域的面积为12,∴当转盘停止转动时,指针落在灰色区域的概率是12,故选:C.【点睛】本题考查了几何概率,熟练掌握概率公式是解题的关键.6(2023·湖南永州·统考中考真题)今年2月,某班准备从《在希望的田野上》《我和我的祖国》《十送红军》三首歌曲中选择两首进行排练,参加永州市即将举办的“唱响新时代,筑梦新征程”合唱选拔赛,那么该班恰好选中前面两首歌曲的概率是()A.12B.13C.23D.1【答案】B【分析】根据概率公式,即可解答.【详解】解:从三首歌曲中选择两首进行排练,有《在希望的田野上》《我和我的祖国》、《在希望的田野上》《十送红军》、《我和我的祖国》《十送红军》共三种选择方式,故选到前两首的概率是1 3,故选:B.【点睛】本题考查了根据概率公式计算概率,排列出总共可能的情况的数量是解题的关键.7(2023·山东临沂·统考中考真题)在项目化学习中,“水是生命之源”项目组为了解本地区人均淡水消耗量,需要从四名同学(两名男生,两名女生)中随机抽取两人,组成调查小组进行社会调查,恰好抽到一名男生和一名女生的概率是()A.16B.13C.12D.23【答案】D【分析】画树状图得出所有等可能的结果数和抽取的两名同学恰好是一名男生和一名女生的结果数,再利用概率公式可得出答案.【详解】解:设两名男生分别记为A,B,两名女生分别记为C,D,画树状图如下:共有12种等可能的结果,其中抽取的两名同学恰好是一名男生和一名女生的结果有8种,∴抽取的两名同学恰好是一名男生和一名女生的概率为812=23,故选:D.【点睛】本题考查列表法或树状图法求概率,解题时要注意是放回试验还是不放回试验;概率等于所求情况数与总情况数之比.用列表法或画树状图法不重复不遗漏的列出所有可能的结果是解题的关键.8(2023·浙江温州·统考中考真题)某校计划组织研学活动,现有四个地点可供选择:南麂岛、百丈漈、楠溪江、雁荡山.若从中随机选择一个地点,则选中“南麂岛”或“百丈漈”的概率为()A.14B.13C.12D.23【答案】C【分析】根据概率公式可直接求解.【详解】解:∵有四个地点可供选择:南麂岛、百丈漈、楠溪江、雁荡山,∴若从中随机选择一个地点,则选中“南麂岛”或“百丈漈”的概率为24=12;故选:C .【点睛】本题考查了根据概率公式求简单事件的概率,正确理解题意是关键.9(2023·浙江绍兴·统考中考真题)在一个不透明的袋子里装有2个红球和5个白球,它们除颜色外都相同,从中任意摸出1个球,则摸出的球为红球的概率是()A.25B.35C.27D.57【答案】C【分析】根据概率的意义直接计算即可.【详解】解:在一个不透明的袋子中装有2个红球和5个白球,它们除颜色外其他均相同,从中任意摸出1个球,共有7种可能,摸到红球的可能为2种,则摸出红球的概率是27,故选:C .【点睛】本题考查了概率的计算,解题关键是熟练运用概率公式.10(2023·四川遂宁·统考中考真题)为增强班级凝聚力,吴老师组织开展了一次主题班会.班会上,他设计了一个如图的飞镖靶盘,靶盘由两个同心圆构成,小圆半径为10cm ,大圆半径为20cm ,每个扇形的圆心角为60度.如果用飞镖击中靶盘每一处是等可能的,那么小全同学任意投掷飞镖1次(击中边界或没有击中靶盘,则重投1次),投中“免一次作业”的概率是()A.16B.18C.110D.112【答案】B【分析】根据扇形面积公式求出免一次作业对应区域的面积,再根据投中“免一次作业”的概率=免一次作业对应区域的面积÷大圆面积进行求解即可.【详解】解:由题意得,大圆面积为π×202=400πcm 2,免一次作业对应区域的面积为60×π×202360-60×π×102360=50πcm 2,∴投中“免一次作业”的概率是50π400π=18,故选B.【点睛】本题主要考查了几何概率,扇形面积,正确求出大圆面积和免一次作业对应区域的面积是解题的关键.11(2023·安徽·统考中考真题)如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用1,2,3这三个数字随机组成一个无重复数字的三位数,恰好是“平稳数”的概率为()A.59B.12C.13D.29【答案】C【分析】根据题意列出所有可能,根据新定义,得出2种可能是“平稳数”,根据概率公式即可求解.【详解】解:依题意,用1,2,3这三个数字随机组成一个无重复数字的三位数,可能结果有,123,132,213,231,312,321共六种可能,只有123,321是“平稳数”∴恰好是“平稳数”的概率为26=13故选:C.【点睛】本题考查了新定义,概率公式求概率,熟练掌握概率公式是解题的关键.12(2023·浙江·统考中考真题)某校准备组织红色研学活动,需要从梅岐、王村口、住龙、小顺四个红色教育基地中任选一个前往研学,选中梅岐红色教育基地的概率是()A.12B.14C.13D.34【答案】B【分析】直接根据概率公式求解即可.【详解】解:从梅岐、王村口、住龙、小顺四个红色教育基地中任选一个前往研学,总共有4种选择,选中梅岐红色教育基地有1种,则概率为1 4,故选:B【点睛】此题考查了概率的求法,通过所有可能结果得出n,再从中选出符合事件结果的数目m,然后根据概率公式P=mn求出事件概率.13(2023·四川成都·统考中考真题)为贯彻教育部《大中小学劳动教育指导纲要(试行)》文件精神,某学校积极开设种植类劳动教育课.某班决定每位学生随机抽取一张卡片来确定自己的种植项目,老师提供6张背面完全相同的卡片,其中蔬菜类有4张,正面分别印有白菜、辣椒、豇豆、茄子图案;水果类有2张,正面分别印有草莓、西瓜图案,每个图案对应该种植项目.把这6张卡片背面朝上洗匀,小明随机抽取一张,他恰好抽中水果类卡片的概率是()A.12B.13C.14D.16【答案】B【分析】根据概率公式求解即可.【详解】解:由题意,随机抽取一张,共有6种等可能的结果,其中恰好抽中水果类卡片的有2种,∴小明随机抽取一张,他恰好抽中水果类卡片的概率是26=13,故选:B .【点睛】本题考查求简单事件的概率,关键是熟知求概率公式:所求情况数与总情况数之比.14(2023·四川泸州·统考中考真题)从1,2,3,4,5,5六个数中随机选取一个数,这个数恰为该组数据的众数的概率为()A.16B.13C.12D.23【答案】B【分析】由众数的概念可知六个数中众数为5,然后根据简单概率计算公式求解即可.【详解】解:1,2,3,4,5,5六个数中,数字5出现了2次,出现的次数最多,故这组数据的众数为5,所以从六个数中随机选取一个数,这个数恰为该组数据的众数的概率为P =26=13.故选:B .【点睛】本题主要考查了求一组数据的众数以及简单概率计算,正确确定该组数据的众数是解题关键.15(2023·广东·统考中考真题)某学校开设了劳动教育课程.小明从感兴趣的“种植”“烹饪”“陶艺”“木工”4门课程中随机选择一门学习,每门课程被选中的可能性相等,小明恰好选中“烹饪”的概率为()A.18 B.16C.14D.12【答案】C【分析】根据概率公式可直接进行求解.【详解】解:由题意可知小明恰好选中“烹饪”的概率为14;故选C .【点睛】本题主要考查概率,熟练掌握概率公式是解题的关键.二、填空题16(2023·山西·统考中考真题)中国古代的“四书”是指《论语》《孟子》《大学》《中庸》,它是儒家思想的核心著作,是中国传统文化的重要组成部分,若从这四部著作中随机抽取两本(先随机抽取一本,不放回,再随机抽取另一本),则抽取的两本恰好是《论语》和《大学》的概率是.【答案】16【分析】用树状图把所有情况列出来,即可求出.【详解】总共有12种组合,《论语》和《大学》的概率112=16,故答案为:16.【点睛】此题考查了用树状图或列表法求概率,解题的关键是熟悉树状图或列表法,并掌握概率计算公式.17(2023·湖南郴州·统考中考真题)在一个不透明的袋子中装有3个白球和7个红球,它们除颜色外,大小、质地都相同.从袋子中随机取出一个球,是红球的概率是.【答案】710【分析】根据概率公式进行计算即可.【详解】解:由题意,得,随机取出一个球共有10种等可能的结果,其中取出的是红球共有7种等可能的结果,∴P =710;故答案为:710.【点睛】本题考查概率.熟练掌握概率的计算公式,是解题的关键.18(2023·浙江杭州·统考中考真题)一个仅装有球的不透明布袋里只有6个红球和n 个白球(仅有颜色不同).若从中任意摸出一个球是红球的概率为25,则n =.【答案】9【分析】根据概率公式列分式方程,解方程即可.【详解】解:∵从中任意摸出一个球是红球的概率为25,∴66+n =25,去分母,得6×5=26+n ,解得n =9,经检验n =9是所列分式方程的根,∴n =9,故答案为:9.【点睛】本题考查已知概率求数量、解分式方程,解题的关键是掌握概率公式.19(2023·天津·统考中考真题)不透明袋子中装有10个球,其中有7个绿球、3个红球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率为.【答案】710【分析】直接利用概率公式求解即可.【详解】解:由题意,从装有10个球的不透明袋子中,随机取出1个球,则它是绿球的概率为710,故答案为:710.【点睛】本题考查求简单事件的概率,理解题意是解答的关键.20(2023·山东滨州·统考中考真题)同时掷两枚质地均匀的骰子,则两枚骰子点数之和等于7的概率是.【答案】16【分析】利用表格或树状图列示出所有可能结果,找出满足条件的结果,根据概率公式计算即可.【详解】所有可能结果如下表,所有结果共有36种,其中,点数之和等于7的结果有6种,概率为636=16故答案为:16.【点睛】本题考查概率的计算,运用列表或树状图列示出所有可能结果是解题的关键.21(2023·新疆·统考中考真题)在平面直角坐标系中有五个点,分别是A 1,2 ,B -3,4 ,C -2,-3 ,D 4,3 ,E 2,-3 ,从中任选一个点恰好在第一象限的概率是.【答案】25【分析】根据第一象限的点的特征,可得共有2个点在第一象限,进而根据概率公式即可求解.【详解】解:在平面直角坐标系中有五个点,分别是A 1,2 ,B -3,4 ,C -2,-3 ,D 4,3 ,E 2,-3 ,其中A 1,2 ,D 4,3 ,在第一象限,共2个点,∴从中任选一个点恰好在第一象限的概率是25,故答案为:25.【点睛】本题考查了概率公式求概率,第一象限点的坐标特征,熟练掌握以上知识是解题的关键.22(2023·浙江台州·统考中考真题)一个不透明的口袋中有5个除颜色外完全相同的小球,其中2个红球,3个白球.随机摸出一个小球,摸出红球的概率是.【答案】25【分析】根据概率的公式即可求出答案.【详解】解:由题意得摸出红球的情况有两种,总共有5个球,∴摸出红球的概率:22+3=25.故答案为:25.【点睛】本题考查了概率的求法,解题的关键在于熟练掌握概率的简单计算公式:概率=事件发生的可能情况÷事件总情况.23(2023·上海·统考中考真题)在不透明的盒子中装有一个黑球,两个白球,三个红球,四个绿球,这十个球除颜色外完全相同.那么从中随机摸出一个球是绿球的概率为.【答案】25【分析】根据简单事件的概率公式计算即可得.【详解】解:因为在不透明的盒子中,总共有10个球,其中有四个绿球,并且这十个球除颜色外,完全相同,所以从中随机摸出一个球是绿球的概率为P =410=25,故答案为:25.【点睛】本题考查了求概率,熟练掌握概率公式是解题关键.24(2023·浙江金华·统考中考真题)下表为某中学统计的七年级500名学生体重达标情况(单位:人),在该年级随机抽取一名学生,该生体重“标准”的概率是.“偏瘦”“标准”“超重”“肥胖”803504624【答案】710【分析】根据概率公式计算即可得出结果.【详解】解:该生体重“标准”的概率是350500=710,故答案为:710.【点睛】本题考查了概率公式,熟练掌握概率=所求情况数与总情况数之比是本题的关键.25(2023·浙江嘉兴·统考中考真题)现有三张正面印有2023年杭州亚运会吉祥物琮琮、宸宸和莲莲的不透明卡片,卡片除正面图案不同外,其余均相同,将三张卡片正面向下洗匀,从中随机抽取一张卡片,则抽出的卡片图案是琮琮的概率是.【答案】13【分析】根据概率公式即可求解.【详解】解:将三张卡片正面向下洗匀,从中随机抽取一张卡片,则抽出的卡片图案是琮琮的概率是13故答案为:13.【点睛】本题考查了概率公式求概率,熟练掌握概率公式是解题的关键.26(2023·四川南充·统考中考真题)不透明袋中有红、白两种颜色的小球,这些球除颜色外无其他差别.从袋中随机取出一个球是红球的概率为0.6,若袋中有4个白球,则袋中红球有个.【答案】6【分析】设袋中红球有x 个,然后根据概率计算公式列出方程求解即可.【详解】解:设袋中红球有x 个,由题意得:xx +4=0.6,解得x =6,检验,当x =6时,x +4≠0,∴x =6是原方程的解,∴袋中红球有6个,故答案为:6.【点睛】本题主要考查了已知概率求数量,熟知红球的概率=红球数量÷球的总数是解题的关键.27(2023·重庆·统考中考真题)一个口袋中有1个红色球,有1个白色球,有1个蓝色球,这些球除颜色外都相同.从中随机摸出一个球,记下颜色后放回,摇匀后再从中随机摸出一个球,则两次都摸到红球的概率是.【答案】19【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【详解】解:根据题意列表如下:红球白球蓝球红球(红球,红球)(白球,红球)(蓝球,红球)白球(红球,白球)(白球,白球)(蓝球,白球)蓝球(红球,蓝球)(白球,蓝球)(蓝球,蓝球)由表知,共有9种等可能结果,其中两次都摸到红球的有1种结果,所以两次摸到球的颜色相同的概率为19,故答案为:19.【点睛】本题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.28(2023·四川自贡·统考中考真题)端午节早上,小颖为全家人蒸了2个蛋黄粽,3个鲜肉粽,她从中随机挑选了两个孝敬爷爷奶奶,请问爷爷奶奶吃到同类粽子的概率是.【答案】25【分析】画树状图可得,共有20种等可能的结果,其中爷爷奶奶吃到同类粽子有8种等可能的结果,再利用概率公式求解即可.【详解】解:设蛋黄粽为A ,鲜肉粽为B ,画树状图如下:共有20种等可能的结果,其中爷爷奶奶吃到同类粽子有8种等可能的结果,∴爷爷奶奶吃到同类粽子的概率是820=25,故答案为:25.【点睛】本题考查用列表法或树状图求概率、概率公式,熟练掌握相关知识是解题的关键.29(2023·辽宁大连·统考中考真题)一个袋子中装有两个标号为“1”“2”的球.从中任意摸出一个球,记下标号后放回并再次摸出一个球,记下标号后放回.则两次标号之和为3的概率为.【答案】12【分析】先画出树状图,从而可得两次摸球的所有等可能的结果,再找出两次标号之和为3的结果,然后利用概率公式求解即可得.【详解】解:由题意,画出树状图如下:由图可知,两次摸球的所有等可能的结果共有4种,其中,两次标号之和为3的结果有2种,则两次标号之和为3的概率为P =24=12,故答案为:12.【点睛】本题考查了利用列举法求概率,熟练掌握列举法是解题关键.30(2023·山东·统考中考真题)用数字0,1,2,3组成个位数字与十位数字不同的两位数,其中是偶数的概率为.【答案】59【分析】先列表得出所有的情况,再找到符合题意的情况,利用概率公式计算即可.【详解】解:0不能在最高位,而且个位数字与十位数字不同,列表如下:1230102030121312123231323一共有可以组成9个数字,偶数有10、12、20、30、32,∴是偶数的概率为59.故答案为:59.【点睛】本题考查了列表法求概率,注意0不能在最高位.三、解答题31(2023·四川内江·统考中考真题)某校为落实国家“双减”政策,丰富课后服务内容,为学生开设五类社团活动(要求每人必须参加且只参加一类活动):A.音乐社团;B.体育社团;C.美术社团;D.文学社团;E.电脑编程社团,该校为了解学生对这五类社团活动的喜爱情况,随机抽取部分学生进行了调查统计,并根据调查结果,绘制了如图所示的两幅不完整的统计图.根据图中信息,解答下列问题:(1)此次调查一共随机抽取了名学生,补全条形统计图(要求在条形图上方注明人数);(2)扇形统计图中圆心角α=度;(3)现从“文学社团”里表现优秀的甲、乙、丙、丁四名同学中随机选取两名参加演讲比赛,请用列表或画树状图的方法求出恰好选中甲和乙两名同学的概率.【答案】(1)200,补全条形统计图见解析(2)54(3)恰好选中甲、乙两名同学的概率为16【分析】(1)用B类型社团的人数除以其人数占比即可求出参与调查的总人数;用总人数减去A、B、D、E 四个类型社团的人数得到C类型社团的人数,即可补全条形统计图;(2)用360°乘以C类型社团的人数占比即可求出扇形统计图中α的度数;(3)先画出树状图得到所有等可能性的结果数,再找到恰好选中甲和乙两名同学的结果数,最后依据概率计算公式求解即可.【详解】(1)解:50÷25%=200(人),C类型社团的人数为200-30-50-70-20=30(人),补全条形统计图如图,故答案为:200;=54°,(2)解:α=360°×30200故答案为:54;(3)解:画树状图如下:∵共有12种等可能的结果,其中恰好选中甲、乙两名同学的结果有2种,∴恰好选中甲、乙两名同学的概率为212=16.【点睛】本题主要考查了条形统计图与扇形统计图信息相关联,树状图法或列表法求解概率,正确读懂统计图并画出树状图或列出表格是解题的关键.32(2023·湖北宜昌·统考中考真题)“阅读新时代,书香满宜昌”.在“全民阅读月”活动中,某校提供了四类适合学生阅读的书籍:A 文学类,B 科幻类,C 漫画类,D 数理类.为了解学生阅读兴趣,学校随机抽取了部分学生进行调查(每位学生仅选一类).根据收集到的数据,整理后得到下列不完整的图表:书籍类别学生人数A 文学类24B 科幻类mC 漫画类16D 数理类8(1)本次抽查的学生人数是,统计表中的m =;(2)在扇形统计图中,“C 漫画类”对应的圆心角的度数是;(3)若该校共有1200名学生,请你估计该校学生选择“D 数理类”书籍的学生人数;(4)学校决定成立“文学”“科幻”“漫画”“数理”四个阅读社团.若小文、小明随机选取四个社团中的一个,请利用列表或画树状图的方法,求他们选择同一社团的概率.【答案】(1)80,32(2)72°(3)120(4)14【分析】(1)利用A 文学类的人数除以对应的百分比即可得到本次抽查的学生人数,用抽查总人数乘以B 科幻类的百分比即可得到m 的值;(2)用360°乘以“C 漫画类”对应的百分比即可得到“C 漫画类”对应的圆心角的度数;(3)用该校共有学生数乘以抽查学生中选择“D 数理类”书籍的学生的百分比即可得到该校学生选择“D 数理类”书籍的学生人数;(4)画出树状图,找到等可能情况总数和小文、小明选择同一社团的情况数,利用概率公式求解即可.【详解】(1)解:由题意得,本次抽查的学生人数是24÷30%=80(人),统计表中的m =80×40%=32,故答案为:80,32(2)在扇形统计图中,“C 漫画类”对应的圆心角的度数是:360°×1680×100%=72°,故答案为:72°(3)由题意得,1200×880×100%=120(人),即估计该校学生选择“D 数理类”书籍的学生为120人;(4)树状图如下:从树状图可看出共有16种等可能的情况,小文、小明选择同一社团的情况数共有4种,∴P (小文、小明选择同一社团)=416=14.【点睛】此题考查了树状图或列表法求概率、样本估计总体、扇形统计图等相关知识,读懂题意,熟练掌握树状图或列表法求概率和准确计算是解题的关键.33(2023·湖北黄冈·统考中考真题)打造书香文化,培养阅读习惯,崇德中学计划在各班建图书角,开展“我最喜欢阅读的书篇”为主题的调查活动,学生根据自己的爱好选择一类书籍(A :科技类,B :文学类,C :政史类,D :艺术类,E :其他类).张老师组织数学兴趣小组对学校部分学生进行了问卷调查,根据收集到的数据,绘制了两幅不完整的统计图(如图所示).根据图中信息,请回答下列问题;(1)条形图中的m =,n =,文学类书籍对应扇形圆心角等于度;(2)若该校有2000名学生,请你估计最喜欢阅读政史类书籍的学生人数;(3)甲同学从A ,B ,C 三类书籍中随机选择一种,乙同学从B ,C ,D 三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.【答案】(1)18,6,72°(2)480人(3)29【分析】(1)根据选择“E :其他类”的人数及比例求出总人数,总人数乘以A 占的比例即为m ,总人数减去A ,B ,C ,E 的人数即为n ,360度乘以B 占的比例即为文学类书籍对应扇形圆心角;。
中考数学专题复习题 概率(含解析)
xx中考数学专题复习题:概率一、选择题1.在学习掷硬币的概率时,老师说:“掷一枚质地均匀的硬币,正面朝上的概率是”,小明做了下列三个模拟实验来验证.取一枚新硬币,在桌面上进行抛掷,计算正面朝上的次数与总次数的比值.把一个质地均匀的圆形转盘平均分成偶数份,并依次标上奇数和偶数,转动转盘,计算指针落在奇数区域的次数与总次数的比值.将一个圆形纸板放在水平的桌面上,纸板正中间放一个圆锥如图,从圆锥的正上方往下撒米粒,计算其中一半纸板上的米粒数与纸板上总米粒数的比值.上面的实验中,合理的有A. 0个B. 1个C. 2个D. 3个2.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出白球的频率稳定在附近,则n的值约为A. 20B. 30C. 40D. 503.小明做“用频率估计概率”的实验时,根据统计结果,绘制了如图所示的折线统计图,则符合这一结果的实验最有可能的是A. 同时抛掷两枚硬币,落地后两枚硬币正面都朝上B. 一副去掉大小王的扑克牌,洗匀后,从中任抽一张牌的花色是红桃C. 抛一个质地均匀的正方体骰子,朝上的面点数是3D. 一个不透明的袋子中有4个白球、1个黑球,它们除了颜色外都相同,从中抽到黑球4.下列事件中是必然事件的是A. 明天太阳从西边升起B. 篮球队员在罚球线上投篮一次,未投中C. 抛出一枚硬币,落地后正面朝上D. 实心铁球投入水中会沉入水底5.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是A. 摸出的是3个白球B. 摸出的是3个黑球C. 摸出的是2个白球、1个黑球D. 摸出的是2个黑球、1个白球6.下列说法中不正确的是A. 函数的一次项系数是B. “明天降雨的概率是”表示明天有半天都在降雨C. 若a为实数,则是不可能事件D. 一个盒子中有白球m个,红球6个,黑球n个每个球除了颜色外都相同,如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m与n的和是67.三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是A. B. C. D.8.把八个完全相同的小球平分为两组,每组中每个分别协商1,2,3,4四个数字,然后分别装入不透明的口袋内搅匀,从第一个口袋内取出一个数记下数字后作为点P的横坐标x,然后再从第二个口袋中取出一个球记下数字后作为点P的纵坐标,则点落在直线上的概率是A. B. C. D.9.下列算式;;;;.运算结果正确的概率是A. B. C. D.10.向如图所示的地砖上随机地掷一个小球,当小球停下时,最终停在地砖上阴影部分的概率是A. B. C. D.二、填空题11.一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是,那么添加的球是______ .12.已知四个点的坐标分别是,,,,从中随机选取一个点,在反比例函数图象上的概率是______.13.有6张看上去无差别的卡片,上面分别写着1,2,3,4,5,6,随机抽取1张后,放回并混在一起,再随机抽取1张,则两次取出的数字都是奇数的概率为______ .14.如图,随机地闭合开关,,,,中的三个,能够使灯泡,同时发光的概率是______ .15.下列事件:过三角形的三个顶点可以作一个圆;检验员从被检查的产品中抽取一件,就是合格品;度量五边形的内角和,结果是;测得某天的最高气温是;掷一枚骰子,向上一面的数字是3,其中必然事件的有______ ,随机事件的有______ 只填序号16.我国魏晋时期数学家刘徽首创“割圆术”计算圆周率随着时代发展,现在人们依据频率估计概率这一原理,常用随机模拟的方法对圆周率进行估计,用计算机随机产生m个有序数对y是实数,且,,它们对应的点在平面直角坐标系中全部在某一个正方形的边界及其内部如果统计出这些点中到原点的距离小于或等于1的点有n个,则据此可估计的值为______ 用含m,n的式子表示17.为了估计一个不透明的袋子中白球的数量袋中只有白球,现将5个红球放进去这些球除颜色外均相同随机摸出一个球记下颜色后放回每次摸球前先将袋中的球摇匀,通过多次重复摸球试验后,发现摸到红球的频率稳定于,由此可估计袋中白球的个数大约为______.18.黔东南下司“蓝每谷”以盛产“优质蓝莓”而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在,该果农今年的蓝莓总产量约为800kg,由此估计该果农今年的“优质蓝莓”产量约是______ kg.19.“的估计”有很多方法,下面这个随机模拟实验就是一种,其过程如下:如图,随机撒一把米到画有正方形及其内切圆的白纸上,统计落在圆内的米粒数m 与正方形内的米粒数n,并计算频率;在相同条件下,大量重复以上试验,当显现出一定稳定性时,就可以估计出的值为请说出其中所蕴含的原理:_____.20.小静和哥哥两人都很想去观看某场体育比赛,可门票只有一张哥哥想了一个办法,拿了8张扑克牌,将数字为2、3、5、9的四张牌给小静,将数字为4、6、7、8的四张牌留给自己,并按如下游戏规则进行:小静和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小静去;如果和为奇数,则哥哥去哥哥设计的游戏规则______填“公平”或“不公平”.三、计算题21.甲、乙两个人做游戏:在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,从中随机摸出一张纸牌然后放回,再随机摸出一张纸牌,若两次摸出的纸牌上数字之和是3的倍数,则甲胜;否则乙胜这个游戏对双方公平吗?请列表格或画树状图说明理由.22.研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球实验,摸球实验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.活动结果:摸球实验活动一共做了50次,统计结果如下表:无记号有记号球的颜色红色黄色红色黄色摸到的次数182822推测计算:由上述的摸球实验可推算:盒中红球、黄球各占总球数的百分比分别是多少?盒中有红球多少个?23.某篮球运动员去年共参加40场比赛,其中3分球的命中率为,平均每场有12次3分球未投中.该运动员去年的比赛中共投中多少个3分球?在其中的一场比赛中,该运动员3分球共出手20次,小亮说,该运动员这场比赛中一定投中了5个3分球,你认为小亮的说法正确吗?请说明理由.24.抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级请根据两幅统计图中的信息回答下列问题:本次抽样调查共抽取了多少名学生?求测试结果为C等级的学生数,并补全条形图;若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.25.小明学习电学知识后,用四个开关按键每个开关键闭合的可能性相等、一个电源和一个灯泡设计了一个电路图若小明设计的电路图四个开关按键都处于打开状态如图所示,求任意闭合一个开关按键,灯泡能发光的概率;若小明设计的电路图四个开关按键都处于打开状态如图所示,求同时闭合其中的两个开关按键,灯泡能发光的概率用列表或树状图法【答案】1. D2. B3. C4. D5. A6. B7. A8. B9. A10. B11. 红球12.13.14.15. ;16.17. 20个18. 56019. 用频率估计概率20. 不公平21. 解:根据题意列表如下:1234 1234所有等可能的情况数有16种,其中两次摸出的纸牌上数字之和是3的倍数的情况有:,,,,,共5种,甲获胜,乙获胜,则该游戏不公平.22. 解:由题意可知,50次摸球实验活动中,出现红球20次,黄球30次,红球所占百分比为,黄球所占百分比为,答:红球占,黄球占;由题意可知,50次摸球实验活动中,出现有记号的球4次,总球数为,红球数为,答:盒中红球有40个.23. 解:设该运动员共出手x个3分球,根据题意,得,解得,个,答:运动员去年的比赛中共投中160个3分球;小亮的说法不正确;3分球的命中率为,是40场比赛来说的平均水平,而在其中的一场比赛中,命中率并不一定是,所以该运动员这场比赛中不一定投中了5个3分球.24. 解:,所以本次抽样调查共抽取了50名学生;测试结果为C等级的学生数为人;补全条形图如图所示:中考数学专题复习题 概率(含解析)11 /11,所以估计该中学八年级学生中体能测试结果为D 等级的学生有56名; 画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2, 所以抽取的两人恰好都是男生的概率.25. 解:任意闭合一个开关按键,灯泡能发光的概率; 画树状图为:共有12种等可能的结果数,其中同时闭合其中的两个开关按键,灯泡能发光的结果数为6, 所以同时闭合其中的两个开关按键,灯泡能发光的概率.【感谢您的阅览,下载后可自由复制或修改编辑,敬请您的关注】。
中考数学统计与概率专题复习(基础知识归纳+常考题型剖析)
中考数学统计与概率专题复习(基础知识归纳+常考题型剖析)
第2ห้องสมุดไป่ตู้讲 统计
【基础知识归纳】
归纳1:普查、抽查
为了一定目的对考察对象进行 全面的调查叫做 普查,
从考察对象中抽取一部分对象作调查分析叫做 抽查.
归纳 2:总体、个体、样本及样本容量
①总体:把所要考察的对象的 全体 叫总体.
②个体: 每一个 考察对象叫做个体.
③样本:从总体中所抽取的 一部分个体 叫做总体的一个样本.
④样本容量:样本中个体的 数目叫做样本容量.
(11)统计与概率——2023年中考数学真题专项汇编(含解析)
(11)统计与概率——2023年中考数学真题专项汇编1.【2023年河南】为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为( )A. B. C. D.2.【2023年安徽】如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用1,2,3这三个数字随机组成一个无重复数字的三位数,恰好是“平稳数”的概率为( )A. B. C. D.3.【2023年河北】有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上,若从中随机抽取一张,则抽到的花色可能性最大的是( )A. B. C. D.4.【2023年福建】为贯彻落实教育部办公厅关于“保障学生每天校内、校外各1小时体育活动时间”的要求,学校要求学生每天坚持体育锻炼.小亮记录了自己一周内每天校外锻炼的时间(单位:分钟),并制作了如图所示的统计图.根据统计图,下列关于小亮该周每天校外锻炼时间的描述,正确的是( )A.平均数为70分钟B.众数为67分钟C.中位数为67分钟D.方差为05.【2023年甘肃兰州】2022年我国新能源汽车销量持续增长,全年销量约为572.6万辆,同比增长91.7%,连续8年位居全球第一.如图,统计图反映了2021年、2022年新能源汽车月度销量及同比增长速度的情况.(2022年同比增长速度)根据统计图提供的信息,下列推断不合理的是( )A.2021年新能源汽车月度销量最高是12月份,超过40万辆B.2022年新能源汽车月度销量超过50万辆的月份有6个C.相对于2021年,2022年新能源汽车同比增长速度最快的是2月份,达到了181.1%D.相对于2021年,2022年从5月份开始新能源汽车同比增长速度持续降低6.【2023年北京】某厂生产了1000只灯泡.为了解这1000只灯泡的使用寿命,从中随机抽取了50只灯泡进行检测,获得了它们的使用寿命(单位:小时),数据整理如下:_________只.7.【2023年重庆A】一个口袋中有1个红色球,有1个白色球,有1个蓝色球,这些球除颜色外都相同.从中随机摸出一个球,记下颜色后放回,摇匀后再从中随机摸出一个球,则两次都摸到红球的概率是___________.8.【2023年河南】某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x (cm)的统计图,则此时该基地高度不低于300 cm的“无絮杨”品种苗约有__________棵.9.【2023年山西】中国古代的“四书”是指《论语》《孟子》《大学》《中庸》(如图),它是儒家思想的核心著作,是中国传统文化的重要组成部分,若从这四部著作中随机抽取两本(先随机抽取一本,不放回,再随机抽取另一本),则抽取的两本恰好是《论语》和《大学》的概率是__________.10.【2023年福建】某公司欲招聘一名职员.对甲、乙、丙三名应聘者进行了综合知识、工作经验、语言表达等三方面的测试,他们的各项成绩如下表所示:甲的比例计算其总成绩,并录用总成绩最高的应聘者,则被录用的是_________.11.【2023年天津】为培养青少年的劳动意识,某校开展了剪纸、编织、烘焙等丰富多彩的活动.该校为了解参加活动的学生的年龄情况,随机调查了a名参加活动的学生的年龄(单位:岁).根据统计的结果,绘制出如下的统计图(1)和图(2).请根据相关信息,解答下列问题:(1)填空:a的值为________,图(1)中m的值为________;(2)求统计的这组学生年龄数据的平均数、众数和中位数.12.【2023年北京】某校舞蹈队共16名学生,测量并获取了所有学生的身高(单位:cm),数据整理如下:a.16名学生的身高:161,162,162,164,165,165,165,166,166,167,168,168,170,172,172,175b.16名学生的身高的平均数、中位数、众数:(2)对于不同组的学生,如果一组学生的身高的方差越小,则认为该组舞台呈现效果越好.据此推断:在下列两组学生中,舞台呈现效果更好的是__________(填“甲组”或“乙组”).168,172,他们的身高的方差为.在选另外两名学生时,首先要求所选的两名学生与已确定的三名学生所组成的五名学生的身高的方差小于,其次要求所选的两名学生与已确定的三名学生所组成的五名学生的身高的平均数尽可能大,则选出的另外两名学生的身高分别为__________和____________.13.【2023年重庆A】为了解A、B两款品质相近的智能玩具飞机在一次充满电后运行的最长时间,有关人员分别随机调查了A、B两款智能玩具飞机各10架,记录下它们运行的最长时间(分钟),并对数据进行整理、描述和分析(运行最长时间用x表示,共分为三组:合格,中等,优等),下面给出了部分信息:A款智能玩具飞机10架一次充满电后运行最长时间是:60,64,67,69,71,71,72,72,72,82B款智能玩具飞机架一次充满电后运行最长时间属于中等的数据是:70,71,72,72,73两款智能玩具飞机运行最长时间统计表根据以上信息,解答下列问题:(1)上述图表中___________,___________,___________;(2)根据以上数据,你认为哪款智能玩具飞机运行性能更好?请说明理由(写出一条理由即可).(3)若某玩具仓库有A款智能玩具飞机200架、B款智能玩具飞机120架,估计两款智能玩具飞机运行性能在中等及以上的共有多少架.14.【2023年河南】蓬勃发展的快递业,为全国各地的新鲜水果及时走进千家万户提供了极大便利.不同的快递公司在配送、服务、收费和投递范围等方面各具优势.樱桃种植户小丽经过初步了解,打算从甲、乙两家快递公司中选择一家合作,为此,小丽收集了10家樱桃种植户对两家公司的相关评价,并整理、描述、分析如下:a.配送速度得分(满分10分):甲:6 6 7 7 7 8 9 9 9 10乙:6 7 7 8 8 8 8 9 9 10b.服务质量得分统计图(满分10分):c.配送速度和服务质量得分统计表:(1)表格中的______;______(填“>”“=”或“<”).(2)综合上表中的统计量,你认为小丽应选择哪家公司?请说明理由.(3)为了从甲、乙两家公司中选出更合适的公司,你认为还应收集什么信息(列出一条即可)?15.【2023年安徽】端午节是中国的传统节日,民间有端午节吃粽子的习俗.在端午节来临之际,某校七、八年级开展了一次“包粽子”实践活动,对学生的活动情况按10分制进行评分,成绩(单位:分)均为不低于6的整数.为了解这次活动的效果,现从这两个年级各随机抽取10名学生的活动成绩作为样本进行活整理,并绘制统计图表,部分信息如下:八年级10名学生活动成绩统计表请根据以上信息,完成下列问题:(1)样本中,七年级活动成绩为7分的学生数是______________,七年级活动成绩的众数为______________分;(2)______________,______________;(3)若认定活动成绩不低于9分为“优秀”,根据样本数据,判断本次活动中优秀率高的年级是否平均成绩也高,并说明理由.16.【2023年陕西A】一个不透明的袋子中装有四个小球,这四个小球上各标有一个数字,分别是1,1,2,3.这些小球除标有的数字外都相同.(1)从袋中随机摸出一个小球,则摸出的这个小球上标有的数字是1的概率为_________;(2)先从袋中随机摸出一个小球,记下小球上标有的数字后,放回,摇匀,再从袋中随机摸出一个小球,记下小球上标有的数字,请利用画树状图或列表的方法、求摸出的这两个小球上标有的数字之积是偶数的概率.17.【2023年陕西A】某校数学兴趣小组的同学们从“校园农场”中随机抽取了20棵西红柿植株,并统计了每棵植株上小西红柿的个数.其数据如下:28,36,37,39,42,45,46,47,48,50,54,54,54,54,55,60,62,62,63,64.通过对以上数据的分析整理,绘制了如下统计图表:根据以上信息,解答下列问题:(1)补全频数分布直方图:这20个数据的众数是________;(2)求这20个数据的平均数;(3)“校园农场“中共有300棵这种西红柿植株,请估计这300棵西红柿植株上小西红柿的总个数.18.【2023年山西】为增强学生的社会实践能力,促进学生全面发展,某校计划建立小记者站,有20名学生报名参加选拔.报名的学生需参加采访、写作、摄影三项测试,每项测试均由七位评委打分(满分100分),取平均分作为该项的测试成绩,再将采访、写作、摄影三项的测试成绩按的比例计算出每人的总评成绩.小悦、小涵的三项测试成绩和总评成绩如下表,这20名学生的总评成绩频数直方图(每组含最小值,不含最大值)如下图.(1)在摄影测试中,七位评委给小涵打出的分数如下:67,72,68,69,74,69,71.这组数据的中位数是__________分,众数是__________分,平均数是__________分.(2)请你计算小涵的总评成绩.(3)学校决定根据总评成绩择优选拔12名小记者.试分析小悦、小涵能否入选,并说明理由.19.【2023年江西】为了弘扬雷锋精神,某校组织“学雷锋,争做新时代好少年”的宣传活动,根据活动要求,每班需要2名宣传员.某班班主任决定从甲、乙、丙、丁4名同学中随机选取2名同学作为宣传员.(1)“甲、乙同学都被选为宣传员”是_______事件;(填“必然”、“不可能”或“随机”)(2)请用画树状图法或列表法,求甲、丁2名同学都被选为宣传员的概率.20.【2023年江西】为了解中学生的视力情况,某区卫健部门决定随机抽取本区部分初、高中学生进行调查,并对他们的视力数据进行整理,得到如下统计表和统计图.整理描述初中学生视力情况统计表(1)_______,_______;(2)被调查的高中学生视力情况的样本容量为_______;(3)分析处理:①小胡说:“初中学生的视力水平比高中学生的好.”请你对小胡的说法进行判断,并选择一个能反映总体的统计量说明理由.②约定:视力未达到1.0为视力不良.若该区有26000名初中学生,估计该区有多少名初中学生视力不良?并对视力保护提出一条合理化建议.21.【2023年河北】某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现,调意度从低到高为1分,2分,3分,4分,5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,如图是根据这20份问卷中的客户所评分数绘制的统计图.(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改.(2)监督人员从余下问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数的平均数大于3.55分,求监督人员抽取的问卷所评分数为几分?与(1)相比,中位数是否发生变化?22.【2023年广东】小红家到学校有两条公共汽车线路,为了解两条线路的乘车所用时间,小红做了试验,第一周(5个工作日)选择A线路,第二周(5个工作日)选择B线路,每天在固定时间段内乘车2次并分别记录所用时间,数据统计如下:(单位:min)数据统计表___________;___________(2)应用你所学统计知识,帮助小红分析如何选择乘车线路.答案以及解析1.答案:B解析:用A,B,C分别代表三部影片,画树状图如下:由树状图可知,共有9种等可能的情况,其中两个年级选择的影片相同的情况有3种,故所求概率为.故选B.2.答案:C解析:根据题意,有以下6种等可能的结果:123,132,213,231,312,321,其中恰好是“平稳数”的结果有:123,321,共有2种,故所求概率为,即.3.答案:B解析:在7张扑克牌中,有1张黑桃牌,3张红心牌,1张梅花牌,2张方块牌.因为红心牌的张数最多,所以从中随机抽取一张,抽到红心牌的可能性最大.4.答案:B解析:平均数(分钟).把这组数据按照从低到高的顺序排列为65,67,67,70,75,79,88,位于中间的数为70,故中位数为70分钟.这组数据中67出现了2次,出现的次数最多,故众数是67分钟.由于这7个数不完全相等,故方差不为0.5.答案:D解析:比较统计表中的数据可知,相对于2021年,2022年5月到6月,新能源汽车同比增长速度提高,而从6月到12月,新能源汽车同比增长速度持续降低.故选项D推断不合理.6.答案:460解析:(只).7.答案:解析:根据题意列表如下:率为.8.答案:280解析:该基地高度不低于300 cm的“无絮杨”品种苗约有(棵).9.答案:解析:将《论语》《孟子》《大学》《中庸》分别用A,B,C,D表示,根据题意列表如下:率是.10.答案:乙解析:利用加权平均数计算.甲:(分);乙:(分);丙:(分).,故被录用的是乙.11.答案:(1)40;15(2)14解析:(1).,.(2)观察条形统计图,,这组数据的平均数是14.在这组数据中,15出现了16次,出现的次数最多,这组数据的众数是15.将这组数据按由小到大的顺序排列,处于中间的两个数都是14,且,这组数据的中位数是14.12.答案:(1),.(2)甲组(3)170;172解析:(1)将这组数据按照从小到大的顺序排列为:161,162,162,164,165,165,165,166,166,167,168,168,170,172,172,175,出现次数最多的数是165,出现了3次,即众数,16个数据中的第8和第9个数据分别是166,166,中位数,,;(2)甲组身高的平均数为,甲组身高的方差为乙组身高的平均数为,乙组身高的方差为,舞台呈现效果更好的是甲组,故答案为:甲组;(3)168,168,172的平均数为所选的两名学生与已确定的三名学生所组成的五名学生的身高的方差小于,数据的差别较小,数据才稳定,可供选择的有:170,172,且选择170,172时,平均数会增大,故答案为:170;172.13.答案:(1)72;70.5;10(2)答案一:A款智能玩具飞机运行性能更好.理由如下(写出一条理由即可):①A款智能玩具飞机运行最长时间的中位数71大于B款智能玩具飞机运行最长时间的中位数70.5;②A款智能玩具飞机运行最长时间的众数72大于B款智能玩具飞机运行最长时间的众数67.答案二:B款智能玩具飞机运行性能更好,理由如下:A,B两款智能玩具飞机运行最长时间的平均数均为70,B款智能玩具飞机运行最长时间的方差26.6小于A款智能玩具飞机运行最长时间的方差30.4.(3)(架)答:估计两款智能玩具飞机运行性能在中等及以上的共有192架.解析:14.答案:(1)7.5;<(2)选择乙公司.因为乙公司配送速度得分的平均数和中位数都比甲公司高,说明乙公司的整体配送速度较快.(注:答案不唯一,合理即可)(3)收集快递公司的收费标准.(注:答案不唯一,合理即可)解析:(1)由题意可得,,∴,故答案为:7.5.(2)略(3)还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)15.答案:(1)1;8(2)2;3(3)否.理由:七年级平均成绩(分),优秀率.八年级平均成绩(分),优秀率.因为,,所以根据样本数据,本次活动中优秀率高的年级平均成绩较低.解析:(1)根据扇形统计图,七年级活动成绩为分学生数的占比为.样本中,七年级活动成绩为分的学生数是,根据扇形统计图,七年级活动成绩的众数为8分故答案为:1;8.(2)八年级10名学生活动成绩的中位数为8.5分,第5名学生为8分,第6名学生为9分,,,故答案为:2;3.(3)优秀率高的年级不是平均成绩也高,理由如下,七年级优秀率为,平均成绩为,八年级优秀率为,平均成绩为:,优秀率高的年级为八年级,但平均成绩七年级更高,优秀率高的年级不是平均成绩也高.16.答案:(1)(2)解析:(1)由题意可得,数字1,1,2,3中,数字1有2个,所以,从袋中机摸出一个小球,则摸出的这个小球上标有的数字是1的概率为,故答案为:;(2)根据题意列表如下:数的结果有7种,所以.17.答案:(1)54(2)50(3)15000个解析:(1)补全的频数分布直方图如图所示(2).(3)估计这300棵西红柿植株上小西红柿的总个数是.18.答案:(1)69;69;70(2)82分(3)结论:小涵能入选,小悦不一定能入选,理由见解析.解析:(1)从小到大排序,67,68,69,69,71,72,74,中位数是69,众数是69,平均数:(2)(分).答:小涵的总评成绩为82分.(3)结论:小涵能入选,小悦不一定能入选.理由:理由:由题中20名学生的总评成绩频数直方图可得,总评成绩不低于80分的学生有10名,总评成绩不低于70分且低于80分的学生有6名.小涵和小悦的总评成绩分别是82分、78分,学校要选拔12名小记者,小涵的成绩在前12名,因此小涵一定能入选;小悦的成绩不一定在前12名,因此小悦不一定能入选.19.答案:(1)随机(2)解析:(1)略(2)解法一:列表如下:同学1同学2甲乙丙丁甲(甲,乙)(甲,丙)(甲,丁)乙(乙,甲)(乙,丙)(乙,丁)丙(丙,甲)(丙,乙)(丙,丁)丁(丁,甲)(丁,乙)(丁,丙)由上表可知,所有可能的结果共有12种,且每种结果出现的可能性相等,其中甲、丁2名同学都被选为宣传员的结果有2种.所以P(甲、丁2名同学都被选为宣传员).解法二:画树状图如下:由树状图可知,所有可能的结果共有12种,且每种结果出现的可能性相等,其中甲、丁2名同学都被选为宣传员的结果有2种.所以P(甲、丁2名同学都被选为宣传员).20.答案:(1)68;(2)320(3)①小胡的说法正确②估计该区有14300名中学生视力不良,建议见解析解析:(1)略(2)略(3)①小胡的说法正确.理由如下:理由一:从中位数看,初中学生视力的中位数为1.0,高中学生视力的中位数为0.9,所以初中学生的视力水平好于高中学生.理由二:从众数看,初中学生视力的众数为1.0,高中学生视力的众数为0.9,所以初中学生的视力水平好于高中学生.②方法一:(名).方法二:(名).答:估计该区有14300名中学生视力不良.建议:①勤做眼保健操;②不要长时间用眼;③不要在强光下看书;④加强户外运动.21.答案:(1)中位数为3.5分,平均数为3.5分;该部门不需要整改(2)监督人员抽取的问卷所评分数为5分;与(1)相比,中位数发生了变化解析:(1)由条形统计图可知,客户所评分数按从小到大排列后,第10,11个数据分别是3分,4分,客户所评分数的中位数为(分).客户所评分数的平均数为(分).客户所评分数的平均数和中位数都不低于3.5分,该部门不需要整改.(2)设监督人员抽取的问卷所评分数为x分,根据题意,得,解得.满意度从低到高为1分,2分,3分,4分,5分,共5档,监督人员抽取的问卷所评分数为5分.中位数发生了变化.理由:加入这个数据后,将客户所评分数按从小到大排列,第11个数据是4分,加入这个数据之后,中位数是4分,与(1)相比,中位数发生了变化.22.答案:(1)19;26.8;25(2)选择A线路.理由:A线路平均用时少.或选择B线路.理由:B线路方差小,说明用时波动性不大.解析:(1)将A线路所用时间数据按从小到大的顺序排列,中间的两个数是18,20,故该组数据的中位数是,即.,即.B线路所用时间数据中,25出现的次数最多,故众数是25,即.(2)(可从平均数、中位数、众数、方差等四个方面分析,并说明理由,合理即可)。
中考数学高频考点《统计与概率》专题训练-带答案
中考数学高频考点《统计与概率》专题训练-带答案一.选择题(共15小题)1.(2024•新华区二模)已知三个数﹣3、5、7,若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为( )A .3B .4C .5D .72.(2024•新华区二模)某校八年级学生参加每分钟跳绳的测试,并随机抽取部分学生的成绩制成了频数分布直方图(如图),若取每组的组中值作为本小组的均值,则抽取的部分学生每分钟跳绳次数的平均数(结果取整数)为( )A .87次B .110次C .112次D .120次3.(2024•长安区二模)班主任邀请甲、乙、丙三位同学参加圆桌会议.如图,班主任坐在D 座位,三位同学随机坐在A 、B 、C 三个座位,则甲、乙两位同学座位相邻的概率是( )A .23B .13C .14D .12 4.(2024•桥西区二模)如图,某十字路口有交通信号灯,在东西方向上,红灯开启27秒后,紧接着绿灯开启30秒,再紧接着黄灯开启3秒,然后接着又是红灯开启27秒…按这样的规律循环下去,在不考虑其他因素的前提下,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是( )A .920B .1019C .13D .12 5.(2024•裕华区二模)为深入开展全民禁毒宣传教育,某校举行了禁毒知识竞赛,嘉嘉说:“我们班100分的同学最多,一半同学成绩在96分以上”,嘉嘉的描述所反映的统计量分别是( )A .众数和中位数B .平均数和中位数C .众数和方差D .众数和平均数6.(2024•裕华区二模)某班开展了两次跳绳比赛,从班级里随机抽取了20名学生两次跳绳的成绩(单位:个/分钟),并对数据进行整理、描述和分析.如图是这些学生第一次和第二次比赛成绩情况统计图,设每名学生两次跳绳的平均成绩是x 个/分钟,落在130<x ⩽140的范围内的数据有( )A .6个B .5个C .4个D .3个7.(2024•石家庄二模)一个不透明盒子里,共装有10个白球,5个红球,5个黄球,这些球仅颜色不同.小明从中任取一球,下列说法错误的是( )A .摸到白球的可能性最大B .摸到红球和黄球的可能性相同C .摸到白球的可能性为12D .摸到白球、红球、黄球的可能性都为13 8.(2024•藁城区二模)从分别写有“大”“美”“江”“汉”汉字的四张卡片中,随机抽出两张,抽出的卡片上的汉字能组成“江汉”的概率是( )A .18B .16C .14D .12 9.(2024•新华区二模)2024年河北省初中学业水平体育与健康科目考试的抽考项目包含①②③④共四项,由各市教育行政部门抽签决定.某市教育行政部门从四个项目中随机抽取一项,抽到项目①的概率为( )A .12B .13C .14D .15 10.(2024•新乐市二模)在一次体育课上,小明随机调查了30名同学投篮20次投中的次数,数据如表所示:投篮20次投中的次数67 9 12人数 6 7 10 7 则投篮20次投中的次数的中位数和众数分别是( )A .8,9B .10,9C .7,12D .9,911.(2024•裕华区二模)七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的( )A .平均数B .中位数C .极差D .众数12.(2024•新华区二模)掷两枚质地均匀的骰子,下列事件是随机事件的是( )A .点数的和为1B .点数的和为6C .点数的和大于12D .点数的和小于1313.(2024•新华区二模)如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是( )A .1B .23C .13D .19 14.(2024•桥西区二模)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是( )A .16B .14C .13D .12 15.(2024•石家庄二模)下列说法正确的是( )A .了解一批灯泡的使用寿命,应采用抽样调查的方式B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则乙组数据较稳定D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件二.填空题(共2小题)16.(2024•平山县二模)已知一个不透明的袋子中装有4个只有颜色不同的小球,其中1个白球,3个红球.(1)从袋子中随机摸出1个小球是红球的概率是 ;(2)若在原袋子中再放入m 个白球和m 个红球(m >1),搅拌均匀后,使得随机从袋子中摸出1个小球是白球的概率为25,则m 的值为 . 17.(2024•石家庄二模)经过某T 字路口的汽车,可能向左转或向右转,如果两种可能性大小相同,则两辆汽车经过这个T 字路口时,“行驶方向相同”的概率是 .三.解答题(共14小题)18.(2024•石家庄二模)为了解甲、乙两个茶园种植的“龙井”茶叶的品质,现从两个茶园里分别随机抽取了20份茶叶样本,对它们的品质进行评分(满分100分,分数越高代表品质越好)评分用x 表示,共分为四组,A 组:60≤x <70,B 组:70≤x <80,C 组:80≤x <90,D 组:90≤x ≤100.甲茶园20份茶叶的评分从小到大分别为:65,68,72,75,78,80,82,85,85,88,90,90,90,92,95,95,95,95,98,100;乙茶园20份茶叶中有3份的评分为100分,评分在C 组中的数据是:85,88,80,85,82,83. 甲、乙两茶园随机抽取的茶叶评分数据统计分析如下表所示,乙茶园抽取的茶叶评分扇形统计图如图所示:甲茶园 乙茶园 平均数 85.9 87.6中位数89 b众数a95根据以上信息解答下列问题:(1)直接写出统计表中a,b的值;(2)若甲、乙两茶园的茶叶总共有2400份,请估计甲、乙两茶园评分在D组的茶叶共有多少份;(3)本次抽取的40份茶叶样本中,评分为100分的视为“精品茶叶”.茶农要在“精品茶叶”中任选两份参加茶叶展销会,用列表法(或画树状图)求这两份茶叶全部来自乙茶园的概率.19.(2024•裕华区二模)某中学为了解初三同学的体育中考准备情况,随机抽取该年级某班学生进行体育模拟测试(满分30分),根据测试成绩(单位:分)绘制成两幅不完整的统计图(如图1和图2),已知图2中得28分的人数所对圆心角为90°,回答下列问题:(1)条形统计图有一部分污损了,求得分27分的人数;直接写出所调查学生测试成绩中位数和众数.(2)一同学因病错过考试,补测后与之前成绩汇总,发现中位数变大了,求该名同学的补测成绩.(3)已知体育测试的选考项目有:①足球运球绕杆:②篮球运球绕杆;③排球正面双手垫球,求小明和小亮选择同一项目的概率.20.(2024•石家庄二模)某班组织开展课外体育活动,在规定时间内,进行定点投篮,对投篮命中数量进行了统计,并制成下面的统计表和如图不完整的折线统计图(不含投篮命中个数为0的数据).投篮命中数量/个 1 2 3 4 5 6学生人数 1 2 3 7 6 1 根据以上信息,解决下面的问题:(1)在本次投篮活动中,投篮命中的学生共有人,并求投篮命中数量的众数和平均数;(2)补全折线统计图;(3)嘉淇在统计投篮命中数量的中位数时,把统计表中相邻两个投篮命中的数量m,n错看成了n,m (m<n)进行计算,结果错误数据的中位数与原数据的中位数相比发生了改变,求m,n的值.21.(2024•新华区二模)“惜餐为荣,敛物为耻.”为了解落实“光盘行动”的情况,某校调研了七、八年级部分班级某一天的厨余垃圾质量,并作出如下统计分析.【收集数据】七、八年级各随机抽取10个班厨余垃圾质量的数据(单位:kg).【整理数据】进行整理和分析(厨余垃圾质量用x表示,共分为四个等级:A.x<1;B.1≤x<1.5;C.1.5≤x<2;D.x≥2).【描述数据】下面给出了部分信息,绘制如下统计图:七年级10个班厨余垃圾质量:0.6,0.7,0.7,0.7,1.3,1.3,1.6,1.7,2,2.4.八年级10个班厨余垃圾质量中B等级包含的所有数据为:1.1,1.1,1.1,1.3.【分析数据】七、八年级抽取的班级厨余垃圾质量统计表如下:年级平均数中位数众数方差A等级所占百分比七年级 1.3 1.3 a0.352 40%八年级 1.3 b 1.1 0.24 m%根据以上信息,解答下列问题:(1)填空:a=,b=,m=;(2)该校八年级共有30个班,估计八年级这一天厨余垃圾质量符合A等级的班级数;(3)根据以上信息,请你任选一个统计量,分析在此次“光盘行动”中,该校七、八年级的哪个年级落实得更好?并说明理由.22.(2024•桥西区二模)小亮所在的学校共有900名初中学生,小亮同学想了解本校全体初中学生的年龄构成情况、他从全校学生中随机选取了部分学生,调查了他们的年龄(单位:岁),绘制出如图所示的学生年龄扇形统计图.(1)直接写出m的值,并求全校学生中年龄不低于15岁的学生大约有多少人;(2)利用该扇形统计图,你能求出样本的平均数、众数和中位数中的哪些统计量?请直接写出相应的结果;(3)小红认为无法利用该扇形统计图求出样本的方差.你认同她的看法吗?若认同,请说明理由;若不认同,请求出方差.23.(2024•裕华区二模)2024年3月20日,天都一号、二号通导技术试验星由长征八号遥三运载火箭在中国文昌航天发射场成功发射升空,卫星作为深空探测实验室的首发星,将为月球通导技术提供先期验证!临邑县某中学为了解学生对航天知识的掌握情况,学校随机抽取了部分学生进行问卷调查,并将调查结果绘制成了下列两幅统计图(不完整),请根据图中信息,解答下列问题:(1)本次调查一共抽取了名学生,扇形统计图中“比较了解”所对应的圆心角度数是.(2)请你将条形统计图补充完整;(3)若该学校共有1200名学生,根据抽样调查的结果,请问该学校选择“不了解”项目的学生约有多少名?(4)在本次调查中,张老师随机抽取了4名学生进行感悟交流,其中“非常了解”的1人,“比较了解”的2人,“了解”的1人.若从这4人中随机抽取2人,请用画树状图或列表法,求抽取的2人全是“比较了解”的概率.24.(2024•正定县二模)某市教育局以“学习强国”学习平台知识内容为依托,要求市直辖学校利用“豫事办”手机客户端开展“回顾二十大”全民知识竞赛活动,市教育局随机抽取了两所学校各10名教师进行测试(满分10分),并对相关数据进行了如下整理:收集数据:一中抽取的10名教师测试成绩:9.1,7.8,8.5,7.5,7.2,8.4,7.9,7.2,6.9,9.5二中抽取的10名教师测试成绩:9.2,8.0,7.6,8.4,8.0,7.2,8.5,7.4,7.5,8.2分析数据:两组数据的相关统计量如下(规定9.0分及其以上为优秀):平均数中位数方差优秀率一中8.0 7.85 0.666 c二中8.0 b0.33 10%问题解决:根据以上信息,解答下列问题:(1)若绘制分数段频数分布表,则一中分数段0≤x<8.0的频数a=;(2)填空:b=,c=;(3)若一中共有教师280人,二中共有教师350人,估计这两个学校竞赛成绩达到优秀的教师总人数为多少人?(4)根据以上数据,请你对一、二中教师的竞赛成绩做出分析评价.(写出两条即可)25.(2024•新华区二模)在“书香进校园”读书活动中,为了解学生课外读物的阅读情况,随机调查了部分学生的课外阅读量.绘制成不完整的扇形统计图(图1)和条形统计图(图2),其中条形统计图被墨汁污染了一部分.(1)条形统计图中被墨汁污染的人数为人.“8本”所在扇形的圆心角度数为°;(2)求被抽查到的学生课外阅读量的平均数和中位数;(3)随后又补查了m名学生,若已知他们在本学期阅读量都是10本,将这些数据和之前的数据合并后,发现阅读量的众数没改变,求m的最大值.26.(2024•平山县二模)某班进行中考体育适应性练习,球类运动可以在篮球、足球、排球中选择一种.该班体委将测试成绩进行统计后,发现选择足球的同学测试成绩均为7分、8分、9分、10分中的一种(满分为10分),并依据统计数据绘制了如下不完整的扇形统计图(如图1)和条形统计图(如图2).(1)该班选择足球的同学共有人,其中得8分的有人;(2)若小宇的足球测试成绩超过了参加足球测试的同学半数人的成绩,则他的成绩是否超过了所有足球测试成绩的平均分?通过计算说明理由.27.(2024•裕华区二模)为了保护学生视力,防止学生沉迷网络和游戏,促进学生身心健康发展,某学校团委组织了“我与手机说再见”为主题的演讲比赛,根据参赛同学的得分情况绘制了如图所示的两幅不完整的统计图(其中A表示“一等奖”,B表示“二等奖”,C表示“三等奖”,D表示“优秀奖”).请你根据统计图中所提供的信息解答下列问题:(1)获奖总人数为人,m=,A所对的圆心角度数是°;(2)学校将从获得一等奖的4名同学(其中有一名男生,三名女生)中随机抽取两名参加全市的比赛,请利用树状图或列表法求抽取同学中恰有一名男生和一名女生的概率.28.(2024•藁城区二模)甲、乙两个不透明的袋子中,分别装有大小材质完全相同的小球,其中甲口袋中小球编号分别是1、2、3、4,乙口袋中小球编号分别是2、3、4,先从甲口袋中任意摸出一个小球,记下编号为m,再从乙袋中摸出一个小球,记下编号为n.(1)请用画树状图或列表的方法表示(m,n)所有可能情况;(2)规定:若m、n都是方程x2﹣5x+6=0的解时,小明获胜;m、n都不是方程x2﹣5x+6=0的解时,小刚获胜,请说明此游戏规则是否公平?29.(2024•新华区二模)如图,A,B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是﹣6,﹣1,5,转盘B上的数字分别是6,﹣7,4(两个转盘除表面数字不同外,其他完全相同).小聪和小明同时转动A,B两个转盘,使之旋转(规定:指针恰好停留在分界线上,则重新转一次).(1)转动转盘,转盘A指针指向正数的概率是;(2)若同时转动两个转盘,转盘A指针所指的数字记为a,转盘B指针所指的数字记为b,若a+b>0,则小聪获胜;若a+b<0,则小明获胜;请用列表法或树状图法说明这个游戏是否公平.30.(2024•新乐市二模)打造书香文化,培养阅读习惯.崇德中学计划在各班建图书角,开展“我最喜欢的书籍”为主题的调查活动,学生根据自己的爱好选择一类书籍(A:科技类,B:文学类,C:政史类,D:艺术类,E:其他类).张老师组织数学兴趣小组对学校部分学生进行了问卷调查,根据收集到的数据,绘制了两幅不完整的统计图(如图所示).根据图中信息,请回答下列问题;(1)条形图中的m=,n=,文学类书籍对应扇形圆心角等于度;(2)若该校有2000名学生,请你估计最喜欢阅读政史类书籍的学生人数;(3)甲同学从A,B,C三类书籍中随机选择一种,乙同学从B,C,D三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.31.(2024•桥西区二模)为加强体育锻炼,某校体育兴趣小组,随机抽取部分学生,对他们在一周内体育锻炼的情况进行问卷调查,根据问卷结果,绘制成如下统计图.请根据相关信息,解答下列问题:某校学生一周体育锻炼调查问卷以下问题均为单选题,请根据实际情况填写(其中0~4表示大于等于0同时小于4)问题:你平均每周体育锻炼的时间大约是A.0~4小时B.4~6小时C.6~8小时D.8小时及以上问题2:你体育锻炼的动力是_____E.家长要求F.学校要求G.自己主动H.其他(1)参与本次调查的学生共有人,选择“自己主动”体育锻炼的学生有人;(2)已知该校有2600名学生,若每周体育锻炼8小时以上(含8小时)可评为“运动之星”,请估计全校可评为“运动之星”的人数;(3)请写出一条你对同学体育锻炼的建议.参考答案与试题解析一.选择题(共15小题)1.(2024•新华区二模)已知三个数﹣3、5、7,若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为()A.3 B.4 C.5 D.7【解答】解:∵﹣3<5<7∴若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为5.故选:C.2.(2024•新华区二模)某校八年级学生参加每分钟跳绳的测试,并随机抽取部分学生的成绩制成了频数分布直方图(如图),若取每组的组中值作为本小组的均值,则抽取的部分学生每分钟跳绳次数的平均数(结果取整数)为()A .87次B .110次C .112次D .120次【解答】解:x =62×2+87×8+112×12+137×6+162×22+8+12+6+2≈110次 故选:B .3.(2024•长安区二模)班主任邀请甲、乙、丙三位同学参加圆桌会议.如图,班主任坐在D 座位,三位同学随机坐在A 、B 、C 三个座位,则甲、乙两位同学座位相邻的概率是( )A .23B .13C .14D .12【解答】解:画树状图如下:共有6种等可能的结果,其中甲、乙两位同学座位相邻的结果有4种,即AB 、BA 、BC 、CB ∴甲、乙两位同学座位相邻的概率为46=23故选:A .4.(2024•桥西区二模)如图,某十字路口有交通信号灯,在东西方向上,红灯开启27秒后,紧接着绿灯开启30秒,再紧接着黄灯开启3秒,然后接着又是红灯开启27秒…按这样的规律循环下去,在不考虑其他因素的前提下,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是()A.920B.1019C.13D.12【解答】解:由题意得,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是3027+30+3= 12.故选:D.5.(2024•裕华区二模)为深入开展全民禁毒宣传教育,某校举行了禁毒知识竞赛,嘉嘉说:“我们班100分的同学最多,一半同学成绩在96分以上”,嘉嘉的描述所反映的统计量分别是()A.众数和中位数B.平均数和中位数C.众数和方差D.众数和平均数【解答】解:在一组数据中出现次数最多的数是这组数据的众数,中位数即位于中间位置的数故选:A.6.(2024•裕华区二模)某班开展了两次跳绳比赛,从班级里随机抽取了20名学生两次跳绳的成绩(单位:个/分钟),并对数据进行整理、描述和分析.如图是这些学生第一次和第二次比赛成绩情况统计图,设每名学生两次跳绳的平均成绩是x个/分钟,落在130<x⩽140的范围内的数据有()A .6个B .5个C .4个D .3个【解答】解:观察统计图,可以发现两次活动平均成绩在130<x ⩽140的范围内的数据有5个 故选:B .7.(2024•石家庄二模)一个不透明盒子里,共装有10个白球,5个红球,5个黄球,这些球仅颜色不同.小明从中任取一球,下列说法错误的是( ) A .摸到白球的可能性最大 B .摸到红球和黄球的可能性相同 C .摸到白球的可能性为12D .摸到白球、红球、黄球的可能性都为13【解答】解:∵一个不透明盒子里,共装有10个白球,5个红球,5个黄球 ∴共有20个球 ∴摸到白球的概率为1020=12,摸到红球的概率为520=14,摸到黄球的概率为520=14∵12>14∴摸到白球的可能性最大,摸到红球和黄球的可能性相同,摸到白球的可能性为12故选:D .8.(2024•藁城区二模)从分别写有“大”“美”“江”“汉”汉字的四张卡片中,随机抽出两张,抽出的卡片上的汉字能组成“江汉”的概率是( ) A .18B .16C .14D .12【解答】解:列表如下:大 美 江 汉 大 美大 江大 汉大 美 大美 江美 汉美 江 大江 美江 汉江 汉大汉美汉江汉由表知,共有12种等可能结果,其中抽出的卡片上的汉字能组成“江汉”的有2种结果 所以抽出的卡片上的汉字能组成“江汉”的概率为212=16故选:B .9.(2024•新华区二模)2024年河北省初中学业水平体育与健康科目考试的抽考项目包含①②③④共四项,由各市教育行政部门抽签决定.某市教育行政部门从四个项目中随机抽取一项,抽到项目①的概率为( ) A .12B .13C .14D .15【解答】解:∵市教育行政部门从四个项目中随机抽取一项的可能结果共有4种,抽到项目①的可能结果只有1种∴抽到项目①的概率为14.故选:C .10.(2024•新乐市二模)在一次体育课上,小明随机调查了30名同学投篮20次投中的次数,数据如表所示:投篮20次投中的次数 679 12人数67 10 7 则投篮20次投中的次数的中位数和众数分别是( ) A .8,9B .10,9C .7,12D .9,9【解答】解:将这30人投篮20次投中的次数从小到大排列后,处在之间位置的两个数的平均数为9+92=9(次),因此中位数是9次这30人投篮20次投中的次数是9次的出现的次数最多,共有10人,因此众数是9次 综上所述,中位数是9,众数是9故选:D .11.(2024•裕华区二模)七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的( ) A .平均数B .中位数C .极差D .众数【解答】解:去掉一个最高分和一个最低分一定会影响到平均数、极差,可能会影响到众数 一定不会影响到中位数 故选:B .12.(2024•新华区二模)掷两枚质地均匀的骰子,下列事件是随机事件的是( ) A .点数的和为1 B .点数的和为6 C .点数的和大于12D .点数的和小于13【解答】解:A 、两枚骰子的点数的和为1,是不可能事件,故不符合题意;B 、两枚骰子的点数之和为6,是随机事件,故符合题意;C 、点数的和大于12,是不可能事件,故不符合题意;D 、点数的和小于13,是必然事件,故不符合题意;故选:B .13.(2024•新华区二模)如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是( )A .1B .23C .13D .19【解答】解:∵任意将其中1张卡片正反面对调一次,有3种对调方式,其中只有对调反面朝上的2张卡片才能使3张卡片中出现2张正面朝上 ∴P =23 故选:B .14.(2024•桥西区二模)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是( )A .16B .14C .13D .12【解答】解:三位数有6个,是5的倍数的三位数是:465,645; 三位数是5的倍数的概率为:26=13;故选:C .15.(2024•石家庄二模)下列说法正确的是( ) A .了解一批灯泡的使用寿命,应采用抽样调查的方式B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则乙组数据较稳定 D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件【解答】解:A .了解一批灯泡的使用寿命,应采用抽样调查的方式,是正确的,因此选项A 符合题意;B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票也不一定会中奖,因此选项B 不符合题意;C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则甲组数据较稳定,因此选项C 不符合题意;D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是不可能事件,因此选项D 不符合题意;故选:A .二.填空题(共2小题)16.(2024•平山县二模)已知一个不透明的袋子中装有4个只有颜色不同的小球,其中1个白球,3个红球.(1)从袋子中随机摸出1个小球是红球的概率是34;(2)若在原袋子中再放入m 个白球和m 个红球(m >1),搅拌均匀后,使得随机从袋子中摸出1个小球是白球的概率为25,则m 的值为 3 .【解答】解:(1)由题意可得从袋子中随机摸出1个小球是红球的概率是31+3=34故答案为:34;(2)由题意可得1+m 1+m +3+m =25解得m =3 故答案为:3.17.(2024•石家庄二模)经过某T 字路口的汽车,可能向左转或向右转,如果两种可能性大小相同,则两辆汽车经过这个T 字路口时,“行驶方向相同”的概率是 12.【解答】解:画树状图为:共有4种等可能的结果数,其中行驶方向相同的有2种 ∴“行驶方向相同”的概率是 24=12故答案为:12.三.解答题(共14小题)18.(2024•石家庄二模)为了解甲、乙两个茶园种植的“龙井”茶叶的品质,现从两个茶园里分别随机抽取了20份茶叶样本,对它们的品质进行评分(满分100分,分数越高代表品质越好)评分用x 表示,共分为四组,A 组:60≤x <70,B 组:70≤x <80,C 组:80≤x <90,D 组:90≤x ≤100.甲茶园20份茶叶的评分从小到大分别为:65,68,72,75,78,80,82,85,85,88,90,90,90,92,95,95,95,95,98,100;乙茶园20份茶叶中有3份的评分为100分,评分在C 组中的数据是:85,88,80,85,82,83. 甲、乙两茶园随机抽取的茶叶评分数据统计分析如下表所示,乙茶园抽取的茶叶评分扇形统计图如图所示:甲茶园乙茶园平均数85.9 87.6中位数89 b众数a95根据以上信息解答下列问题:(1)直接写出统计表中a,b的值;(2)若甲、乙两茶园的茶叶总共有2400份,请估计甲、乙两茶园评分在D组的茶叶共有多少份;(3)本次抽取的40份茶叶样本中,评分为100分的视为“精品茶叶”.茶农要在“精品茶叶”中任选两份参加茶叶展销会,用列表法(或画树状图)求这两份茶叶全部来自乙茶园的概率.【解答】解:(1)由题意可得,a=95.由扇形统计图可知,乙茶园评分在A组有20×10%=2(份),在B组有20×20%=4(份).将乙茶园评分按照从小到大的顺序排列,排在第10和11的分数为85分和85分∴b=(85+85)÷2=85.(2)乙茶园评分在D组的茶叶有(1﹣10%﹣20%﹣30% )×20=8(份)甲茶园评分在D组的茶叶有10份∴估计甲、乙两茶园评分在D组的茶叶共约有2400×8+1020+20=1080(份).(3)由题意知,甲茶园评分为100分的有1个,乙茶园评分为100分的有3个.将甲茶园“精品茶叶”记为a,乙茶园“精品茶叶”分别记为b,c,d列表如下:a b c da(a,b)(a,c)(a,d)b(b,a)(b,c)(b,d)。
中考数学复习《概率》专题训练--附带参考答案
中考数学复习《概率》专题训练--附带参考答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列事件是必然事件的是()A.任意两个正方形都相似B.三点确定一个圆C.抛掷一枚骰子,朝上面的点数小于6 D.相等的圆心角所对的弧相等2.一个透明的袋子里装有3个白球,2个黄球和1个红球,这些球除颜色不同外其它完全相同则从袋子中随机摸出一个球是白球的概率是()A.12B.13C.14D.163.按小王、小李、小马三位同学的顺序从一个不透明的盒子中随机抽取一张标注“主持人”和两张空白的纸条,确定一位同学主持班级“交通安全教有”主题班会.下列说法中正确的是()A.小王的可能性最大B.小李的可能性最大C.小马的可能性最大D.三人的可能性一样大4.某学校在八年级开设了数学史、诗词赏析、陶艺三门课程,若小波和小睿两名同学每人随机选择其中一门课程,则小波和小睿选到同一门课程的概率是()A.12B.13C.16D.195.班长邀请A,B,C,D四位同学参加圆桌会议.如图所示,班长坐在⑤号座位,四位同学随机坐在①②③④四个座位,则A,B两位同学座位相邻的概率是()A.14B.13C.12D.236.在一个不透明的盒子里,装有5个黑球和若干个白球,这些球除颜色外都相同,将其摇匀后从中随机摸出一个球,记下颜色后再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,请估计盒子中白球的个数是()A.10个B.15个C.20个D.25个7.小明向如图所示的正方形ABCD区域内投掷飞镖,点E是以AB为直径的半圆与对角线AC的交点.如果小明投掷飞镖一次,则飞镖落在阴影部分的概率为()A.12B.14C.13D.188.某小组做“用频率估计概率”的实验时,给出的某一结果出现的频率分布折线图,则符合这一结果的实验可能是()A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,出现3点朝上C.从一个装有2个红球和1个黑球的袋子中任取一球,取到的是黑球D.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃二、填空题9.从√2,0,π,3.14,17中随机抽取一个数,抽到有理数的概率是.10.甲、乙、丙三个人相互传一个球,由甲开始发球,并作为第一次传球,则经过两次传球后,球回到甲手中的概率是。
中考数学专题训练统计与概率(含解析)
中考数学专题训练统计与概率(含解析)专题训练(统计与概率)(120分钟120分)一、选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.下列调查中,调查方式选择正确的是( )A.为了了解全市中学生课外阅读情况,选择全面调查B.为了了解全国中学生“母亲节”孝敬母亲的情况,选择全面调查C.为了了解一批手机的使用寿命,选择抽样调查D.旅客上飞机前的安检,选择抽样调查【解析】选C.为了了解全市中学生课外阅读情况,选择抽样调查,A错误;为了了解全国中学生“母亲节”孝敬母亲的情况,选择抽样调查,B错误;为了了解一批手机的使用寿命,选择抽样调查,C正确;旅客上飞机前的安检,选择全面调查,D错误.2.2019年我市近9万多名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是( )A.这1 000名考生是总体的一个样本B.1 000名考生是样本容量C.每位考生的数学成绩是个体D.近9万多名考生是总体【解析】选C.A.1 000名考生的数学成绩是总体的一个样本,故A错误;们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( ) A. B. C. D.【解析】选C.因为布袋里装有5个红球,2个白球,3个黄球,所以从袋中摸出一个球是黄球的概率是.7.(2019·邵阳中考)“救死扶伤”是我国的传统美德.某媒体就“老人摔倒该不该扶”进行了调查,将得到的数据经统计分析后绘制成如图所示的扇形统计图.根据统计图判断下列说法,其中错误的一项是( )A.认为依情况而定的占27%B.认为该扶的在统计图中所对应的圆心角是234°C.认为不该扶的占8%D.认为该扶的占92%【解析】选D.认为依情况而定的占27%,故A正确;认为该扶的在统计图中所对应的圆心角是65%×360°=234°,故B正确;认为不该扶的占1-27%-65%=8%,故C正确;认为该扶的占65%,故D错误.8.(2019·连云港中考)小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( )A.方差B.平均数C.众数D.中位数【解析】选A.根据方差的意义,可知方差越小,数据越稳定,因此可知比较两人成绩稳定性的数据为方差.9.(2019·成都中考)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分) 60 70 80 90 100人数(人) 7 12 10 8 3则得分的众数和中位数分别为( )A.70分,70分B.80分,80分C.70分,80分D.80分,70分【解析】选C.根据表格中的数据,可知70出现的次数最多,可知其众数为70分;把数据按从小到大排列,可知其中间的两个的平均数为80分,故其中位数为80分.10.九年级(1)班和(2)班的第一次模拟考试的数学成绩统计如下表:班级参加人数中位数方差平均分(1)班50 120 103 122(2)班49 121 201 122根据上表分析得出如下结论:①两班学生成绩的平均水平基本一致;②(2)班的两极分化比较严重;③若考试分数≥120分为优秀,则(2)班优秀的人数一定多于(1)班优秀的人数.上述结论正确的( )A.①②③B.①②C.①③D.②③【解析】选B.由两班的平均数可得两班学生成绩的平均水平基本一致,故①正确;(2)班方差大于(1)班,因此(2)班的两极分化比较严重,故②正确;(2)班中位数为121,(2)班比(1)班少1人,无法判断哪个班优秀的人数多,故③错误.11.(2019·南充中考)某校数学兴趣小组在一次数字课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:成绩/分36 37 38 39 40人数/人 1 2 1 4 2下列说法正确的是( )A.这10名同学体育成绩的中位数为38分B.这10名同学体育成绩的平均数为38分C.这10名同学体育成绩的众数为39分D.这10名同学体育成绩的方差为2【解析】选C.10名学生的体育成绩中39分出现的次数最多,众数为39分; 排序后第5和第6名同学的成绩的平均值为中位数,中位数为=39分; 平均数==38.4分,方差=[(36-38.4)2+2×(37-38.4)2+(38-38.4)2+4×(39-38.4)2+2×(40- 38.4)2]=1.64;所以选项A,B,D错误.12.在“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的( )A.中位数B.众数C.平均数D.方差【解析】选A.因为5位进入决赛者的分数肯定是5名参赛选手中最高的,而且5个不同的分数按从小到大排序后,中位数及中位数之前的共有3个数,故只要知道自己的分数和中位数就可以知道是否进入前3名了.13.若将30°,45°,60°的三角函数值填入表中,则从表中任意取一个值,是的概率为( )α30°45°60°sinαcosαtanαA. B. C. D.【解析】选D.∵表中共有9个数,有两个,∴从表中任意取一个值,是的概率为.α30°45°60°sinαcosαtanα 114.小洪根据演讲比赛中九位评委所给的分数制作了如下表格:平均数中位数众数方差8.5 8.3 8.1 0.15如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是A.平均数B.中位数C.众数D.方差【解析】选B.去掉一个最高分和一个最低分对中位数没有影响.15.(2019·金华中考)某校举行以“激情五月,唱响青春”为主题的演讲比赛.决赛阶段只剩下甲,乙,丙,丁四名同学,则甲,乙同学获得前两名的概率是( ) A. B. C. D.【解析】选D.画树状图得:所以一共有12种等可能的结果,甲,乙同学获得前两名的有2种情况,所以甲,乙同学获得前两名的概率是=.16.一个不透明的袋子中装有2个白球和若干个黑球,它们除颜色外完全相同,从袋子中随机摸出一球,记下颜色并放回,重复该实验多次,发现摸到白球的频率稳定在0.4,则可判断袋子中黑球的个数为( )A.2个B.3个C.4个D.5个【解析】选B.∵重复该试验多次,摸到白球的频率稳定在0.4,∴估计摸到白球的概率0.4,设袋子中黑球的个数为x,∴=0.4,解得x=3,∴可判断袋子中黑球的个数为3.17.(2019·眉山中考)下列说法错误的是( )A.给定一组数据,那么这组数据的平均数一定只有一个B.给定一组数据,那么这组数据的中位数一定只有一个C.给定一组数据,那么这组数据的众数一定只有一个D.如果一组数据存在众数,那么该众数一定是这组数据中的某一个【解析】选C.A.给定一组数据,那么这组数据的平均数一定只有一个,正确,不符合题意;B.给定一组数据,那么这组数据的中位数一定只有一个,正确,不符合题意;C.给定一组数据,那么这组数据的众数一定只有一个,错误,符合题意;D.如果一组数据存在众数,那么该众数一定是这组数据中的某一个,正确,不符合题意.18.一家鞋店在一段时间内销售了某种女式鞋子38双,其中各种尺码的鞋的销售量如表所示:鞋的尺码(单位:cm) 22.5 23 23.5 24 24.5销售量(单位:双) 3 6 12 9 8根据统计的数据,鞋店进货时尺寸码为23cm,23.5cm,24cm的鞋双数合理的比是A.1∶2∶4 B.2∶4∶5C.2∶4∶3D.2∶3∶4【解析】选C.鞋店进货时尺寸码为23cm,23.5cm,24cm的鞋双数合理的比为6∶12∶9=2∶4∶3.19.(2019·绍兴中考)下表记录了甲,乙,丙,丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙丁平均数(环) 9.14 9.15 9.14 9.15方差 6.6 6.8 6.7 6.6根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择A.甲 B.乙 C.丙 D.丁【解析】选D.比较四名射击运动员成绩的平均数可得,乙和丁的成绩更好,而乙的方差>丁的方差,所以丁的成绩更稳定些.20.学校食堂午餐有10元,12元、15元三种价格的盒饭供选择,若经过统计发现10元、12元、15元的盒饭卖出数量恰好分别占50%,30%,20%,则卖出盒饭价格的中位数是( )A.10元B.11元C.12元D.无法确定【解析】选B.∵10元,12元,15元的盒饭卖出数量恰好分别占50%,30%、20%, ∴最中间的两个数是10元,12元,∴中位数是10和12的平均数,(10+12)÷2=11(元).二、填空题(本大题共4小题,满分12分,只要求填写最后结果,每小题填对得3分)21.(2019·重庆模拟)某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是________小时.【解析】由统计图可知,一共有6+9+10+8+7=40(人),所以该班这些学生一周锻炼时间的中位数是第20个和第21个学生对应的数据的平均数,所以该班这些学生一周锻炼时间的中位数是11小时.答案:1122.甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为______ (填>或<).【解析】观察平均气温统计图可知:乙地的平均气温比较稳定,波动小,则乙地的日平均气温的方差小,故>.答案:>23.(2019·岱岳区模拟)从3,0,-1,-2,-3这五个数中,随机抽取一个数,作为函数y=(5-m2)x和关于x的方程(m+1)x2+mx+1=0中m的值,恰好使所得函数的图象经过第一、三象限,且方程有实数根的概率为________.【解析】因为所得函数的图象经过第一、三象限,所以5-m2>0,所以m2<5,所以3,0,-1,-2,-3中,3和-3均不符合题意,将m=0代入(m+1)x2+mx+1=0中得,x2+1=0,Δ=-4<0,无实数根;将m=-1代入(m+1)x2+mx+1=0中得,-x+1=0,x=1,有实数根;将m=-2代入(m+1)x2+mx+1=0中得,x2+2x-1=0,Δ=4+4=8>0,有实数根.故方程有实数根的概率为.答案:24.(2019·张店区一模)某校射击队从甲,乙,丙,丁四人中选拔一人参加市运会射击比赛.在选拔赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:甲乙丙丁平均数/环9.7 9.5 9.5 9.7方差 5.1 4.7 4.5 4.5请你根据表中数据选一人参加比赛,最合适的人选是________.【解析】因为=5.1,=4.7,=4.5,=4.5,所以>>=,因为丁的平均数大,所以最合适的人选是丁.答案:丁三、解答题(本大题共5个小题,满分48分.解答应写出必要的文字说明、证明过程或推演步骤)25.(8分)(2019·天津中考)某跳水队为了解运动员的年龄情况,做了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为________,图①中m的值为________.(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.【解析】(1)4030(2)观察所给的条形统计图,因为==15(岁),所以这组数据的平均数为15岁;因为在这组数据中,16出现了12次,出现的次数最多,所以这组数据的众数为16岁;因为将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有=15(岁),所以这组数据的中位数为15岁.26.(8分)(2019·连云港中考)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C 三类分别装袋投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率.(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.【解析】(1)一共有3类,所以甲投放的垃圾恰好是A类的概率为.(2)列出树状图如图所示:由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种.所以,P(乙投放的垃圾恰有一袋与甲投放的垃圾是同类)==.即乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是.27.(10分)(2019·安徽中考)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7;乙:5,7,8,7,8,9,7,9,10,10;丙:7,6,8,5,4,7,6,3,9,5.(1)根据以上数据完成下表:平均数中位数方差甲8 8乙8 8 2.2丙 6 3(2)依据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由.(3)比赛时三人依次出场,顺序由抽签方式决定.求甲、乙相邻出场的概率. 【解析】(1)平均数中位数方差甲 2乙丙 6(2)因为2<2.2<3,所以<<,这说明甲运动员的成绩最稳定.(3)三人的出场顺序有(甲乙丙),(甲丙乙),(乙甲丙),(乙丙甲),(丙甲乙),(丙乙甲)共6种,且每一种结果出现的可能性相等,其中,甲、乙相邻出场的结果有(甲乙丙),(乙甲丙),(丙甲乙),(丙乙甲)共4种,所以甲、乙相邻出场的概率P==. 28.(10分)在“书香八桂,阅读圆梦”读书活动中,某中学设置了书法、国学诵读、演讲、征文四个比赛项目(每人只参加一个项目),九(2)班全班同学都参加了比赛,该班班长为了了解本班同学参加各项比赛的情况,收集整理数据后,绘制以下不完整的折线统计图(图1)和扇形统计图(图2).根据图中的信息解答下列各题:(1)请求出九(2)班全班人数.(2)请把折线统计图补充完整.(3)南南和宁宁参加了比赛,请用“列表法”或“画树状图法”求出他们参加的比赛项目相同的概率.【解析】(1)全班总人数为=48(人).(2)由(1)可知,九(2)班全班人数为48人.从扇形统计图中可以得到国学诵读占总人数的百分比为50%,所以国学诵读的人数为48×50%=24(人).描点、连线,补充完整的折线统计图如图所示:(3)画树状图如图:列表如下:南南书法演讲国学诵读征文宁宁书法√演讲√国学诵读√征文√南南和宁宁参加比赛一共有16种可能的结果,每种结果出现的可能性相等,而他们参加比赛项目相同的情况有4种,记南南和宁宁参加相同比赛项目为事件A,则P(A)==.29.(12分)为全面开展“大课间”活动,某校准备成立“足球”“篮球”“跳绳”“踢毽”四个课外活动小组,学校体工处根据七年级学生的报名情况(每人限报一项)绘制了两幅不完整的统计图.请根据以上信息,完成下列问题:(1)m=________,n=________,并将条形统计图补充完整.(2)试问全校2019人中,大约有多少人报名参加足球活动小组?(3)根据活动需要,从“跳绳”小组的二男二女四名同学中随机选取两人到“踢毽”小组参加训练,请用列表或树状图的方法计算恰好选中一男一女两名同学的概率.【解析】(1)因为样本容量为15÷15%=100,所以“篮球”所占百分比为=25%,所以m=25;因为“跳绳”对应扇形的圆心角为×360°=108°,所以n=108.(2)全校报名参加足球活动小组的人数为2019×=600(人).(3)列表如下:男1 男2 女1 女2男1 ×(男1,男2) (男1,女1) (男1,女2)男2 (男2,男1) ×(男2,女1) (男2,女2)女1 (女1,男1) (女1,男2) ×(女1,女2)女2 (女2,男1) (女2,男2) (女2,女1) ×画树状图如下:因为所有可能出现的结果为12种,其中出现一男一女两名同学的结果为8种, 所以恰好选中一男一女两名同学的概率为=.。
2023年中考数学--统计与概率练习(解析)
专题28 统计与概率一、单选题1.(2022·辽宁沈阳·中考真题)下列说法正确的是( ) A .任意掷一枚质地均匀的骰子,掷出的点数一定是奇数 B .“从一副扑克牌中任意抽取一张,抽到大王”是必然事件 C .了解一批冰箱的使用寿命,采用抽样调查的方式D .若平均数相同的甲、乙两组数据,20.3s =甲,20.02s =乙,则甲组数据更稳定 【答案】C 【分析】依据随机事件、抽样调查以及方差的概念进行判断,即可得出结论. 【详解】解:A .任意掷一枚质地均匀的骰子,掷出的点数不一定是奇数,故原说法错误,不合题意;B .“从一副扑克牌中任意抽取一张,抽到大王”是随机事件,故原说法错误,不合题意;C .了解一批冰箱的使用寿命,适合采用抽样调查的方式,说法正确,符合题意;D .若平均数相同的甲、乙两组数据,20.3s =甲,20.02s =乙,则乙组数据更稳定,故原说法错误,不合题意;故选:C .2.(2022·全国九年级课时练习)已知一组数据2,6,5,2,4,则这组数据的中位数是( ) A .2 B .4C .5D .6【答案】B 【分析】将一组数据从小到大排列,处于最中间的数字就是中位数,本题有5个数字,则排在第三个的就是中位数. 【详解】把数据从小到大排列为:2,2,4,5,6, 中间的数是4, ∴中位数是4, 故选:B .3.(2022·江苏盐城·景山中学九年级月考)截止2022年3月,“费尔兹奖”得主中最年轻的8位数学家获奖时的年龄分别为:29,27,31,31,31,29,29,31,则由年龄组成的这组数据的众数是( )A.27 B.29 C.30 D.31【答案】D【分析】根据众数的定义:一组数据中出现次数最多的一个数或多个数,进行求解即可.【详解】解:由题意可知,这组数据中31出现了4次,出现的次数最多,∴这组数据的众数为31,故选D.4.(2022·东莞市东莞中学初中部九年级)如图,两个转盘被分成几个面积相等的扇形,分别自由转动一次,当转盘停止后,指针各指向一个数字所在的扇形(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止).将两指针所指的两个扇形中的数相加,和为6的概率是()A.16B.13C.12D.56【答案】B【分析】画树状图,共有6个等可能的结果,两指针所指的两个扇形中的数相加,和为6的结果有2个,再由概率公式求解即可.【详解】解:画树状图如图:共有6个等可能的结果,两指针所指的两个扇形中的数相加,和为6的结果有2个,∴两指针所指的两个扇形中的数相加,和为6的概率为26=13,故选B.5.(2022·重庆实验外国语学校九年级)为了比较甲乙两种水稻秧苗谁出苗更整齐,每种秧苗各随机抽取50株,分别量出每株长度,发现两组秧苗平均长度一样,甲、乙的方差分别是10.9、9.9,则下列说法正确是()A.甲秧苗出苗更整齐B.乙秧苗出苗更整齐C.甲、乙出苗一样整齐D.无法确定甲、乙出苗谁更整齐【答案】B【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲、乙的方差的分别为10.9、9.9,∴甲的方差大于乙的方差,∴乙秧苗出苗更整齐.故选:B.6.(2022·深圳市新华中学九年级期末)一个封闭的箱子中有两个红球和一个黄球,随机从中摸出两个球,即两个球均为红球的概率是()A.49B.23C.12D.13【答案】D【分析】根据题意画出树状图,由概率公式即可得两次都摸到红球的概率.【详解】解:画出树状图:根据树状图可知:所有等可能的结果共有6种,其中两次都摸到红球的有2种,∴两次都摸到红球的概率是26=13;故选:D.7.(2022·四川广元·中考真题)一组数据:1,2,2,3,若添加一个数据3,则不发生变化的统计量是( ) A .平均数 B .中位数 C .众数 D .方差【答案】B 【分析】依据平均数、中位数、众数、方差的定义和公式求解即可. 【详解】解:A 、原来数据的平均数是12234+++=2,添加数字3后平均数为122331155++++=,所以平均数发生了变化,故A 不符合题意;B 、原来数据的中位数是2,添加数字3后中位数仍为2,故B 与要求相符;C 、原来数据的众数是2,添加数字3后众数为2和 3,故C 与要求不符;D 、原来数据的方差=222211[(12)(22)(22)(32)]42-+-+-+-=,添加数字3后的方差=222221111111111114[(1)(2)(2)(3)+(3)]5555555-+-+-+--=,故方差发生了变化,故选项D 不符合题意. 故选:B .8.(2022·湖北随州·)如图,从一个大正方形中截去面积为23cm 和212cm 的两个小正方形,若随机向大正方形内投一粒米,则米粒落在图中阴影部分的概率为( )A .49B .59C .25D .35【答案】A 【分析】求出阴影部分的面积占大正方形的份数即可判断. 【详解】解:∵两个小正方形的面积为23cm 和212cm , ∴323 ∴3+23=33∴大正方形的面积为27=, ∴阴影部分的面积为2731212--=, ∴米粒落在图中阴影部分的概率为124=279, 故选:A .9.(2022·山东聊城·)为了保护环境加强环保教育,某中学组织学生参加义务收集废旧电池的活动,下面是随机抽取40名学生对收集废旧电池的数量进行的统计:请根据学生收集到的废旧电池数,判断下列说法正确的是( ) A .样本为40名学生 B .众数是11节 C .中位数是6节 D .平均数是5.6节【答案】D 【分析】根据样本定义可判定A ,利用众数定义可判定B ,利用中位数定义可判定C ,利用加权平均数计算可判定D 即可. 【详解】解:A . 随机抽取40名学生对收集废旧电池的数量是样本,故选项A 样本为40名学生不正确; B . 根据众数定义重复出现次数最多的数据是5节或6节,故选项B 众数是11节不正确, C . 根据中位数定义样本容量为40,中位数位于4020,212=两个位置数据的平均数,第20位、第21位两个数据为6节与7节的平均数676.52+=节,故选项C 中位数是6节不正确; D . 根据样本平均数()1495116117584 5.640x =⨯+⨯+⨯+⨯+⨯=节 故选项D 平均数是5.6节正确. 故选择:D .10.(2022·全国九年级课时练习)现在要选拔一人去参加全国青少年数学竞赛,小明和小刚的三次选拔成绩分别为:小明:96,85,89,小刚:90,91,89,最终决定选择小刚去参加,那么,最终依据是( ) A .小刚的平均分高 B .小刚的中位数高 C .小刚的方差小 D .小刚最低分高【答案】C利用平均数、中位数及方差的定义进行计算,再根据各统计量特点判断即可.【详解】解:A.平均数:小明的平均数=96+85+89=903,小刚的平均数=90+91+89=903,平均数相同,故此项错误;B.中位数:小明的中位数89,小刚的中位数90,89<90,但中位数不能代表平均水平,故此项错误;C.方差:小明的方差=()()()2229690+8590+899062=33---,小刚的方差=()()()2229090+9190+89902=33---,623>23,小刚的波动较小,故小刚的方差较小,故此项正确;D. 此时不能选择最低分来比较两人的水平,故此项错误.故选C.二、填空题11.(2022·上海宝山区·九年级)如果一组数a,2,4,0,5的中位数是4,那么a可以是_______(只需写出一个满足要求的数).【答案】4【分析】由于一共5个数,4一定排在第3个才能是中位数,所以a可以在第4个或第5个,从而确定a的取值即可.【详解】解:∵这组数据有5个数,且中位数是4,∴4必须在5个数从小到大排列的正中间,即这组数据的重新排列是0,2,4,a,5或0,2,4,5,a,∴a≥4或a≥5,故答案是4(答案不唯一).12.(2022·江苏镇江·中考真题)一只不透明的袋子中装有1个黄球,现放若干个红球,它们与黄球除颜色外都相同,搅匀后从中任意摸出两个球,使得P(摸出一红一黄)=P(摸出两红),则放入的红球个数为__.【答案】3【分析】分别假设放入的红球个数为1、2和3,画树状图列出此时所有等可能结果,从中找到摸出一红一黄和两个红球的结果数,从而验证红球的个数是否符合题意.解:(1)假设袋中红球个数为1,此时袋中由1个黄球、1个红球,搅匀后从中任意摸出两个球,P(摸出一红一黄)=1,P(摸出两红)=0,不符合题意.(2)假设袋中的红球个数为2,列树状图如下:由图可知,共有6种情况,其中两次摸到红球的情况有2种,摸出一红一黄的有4种结果,∴P(摸出一红一黄)=42=63,P(摸出两红)=21=63,不符合题意,(3)假设袋中的红球个数为3,画树状图如下:由图可知,共有12种情况,其中两次摸到红球的情况有6种,摸出一红一黄的有6种结果,∴P(摸出一红一黄)=P(摸出两红)=61=122,符合题意,所以放入的红球个数为3,故答案为:3.13.(2022·山东九年级期中)一个不透明的袋子中装有4个小球,小球上分别标有数字-3,122,它们除所标数字外完全相同,摇匀后从中随机摸出两个小球,则两球所标数字之积是正数的概率为______.【答案】12【分析】列表得出所有等可能的情况数,找出两球上所标数字之积是正数的情况,即可求出所求的概率.【详解】解:列表如下:所有等可能的情况有12种,其中两球上所标数字之积是正数的情况有6种,则两球所标数字之积是正数的概率为6÷12=12,故答案是:12.14.(2022·山东九年级期末)已知线段a的长度为11,现从1~10这10条整数线段中任取两条,能和线段a组成三角形的概率为___.【答案】4 9【分析】由10条线段中任意取2条,是一个列举法求概率问题,是无放回的问题,共有90种可能结果,每种结果出现的机会相同,满足两边之和大于第三边构成三角形的有40个结果.因而就可以求出概率.【详解】从1~10这10条整数线段中任意取1条,有10种可能结果;再从剩下9条线段中任意取1条,有9种可能结果;所以从1~10这10条整数线段中任意取2条有10×9=90种等可能的情况,三角形两边之和大于第三边,其中能和线段 a 组成三角形,即这2条线段的长度之和大于11的有:(2,10),(3,9),(3,10),(4,8),(4,9),(4,10),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,5),(7,6),(7,8),(7,9),(7,10),(8,4),(8,5),(8,6),(8,7),(8,9),(8,10)(9,3),(9,4),(9,5),(9,6),(9,7),(9,8),(9,10),(10,2),(10,3),(10,4),(10,5),(10,6),(10,7),(10,8),(10,9)一共有1+2+3+4十4+5+6+7+8=40种等可能的情况;故能和线段 a 组成三角形的概率为:404=909. 故答案为:49.15.(2022·铜陵市第十五中学九年级期末)如图,把一个转盘分成四等份,依次标上数字1、2、3、4,若连续自由转动转盘二次,指针指向的数字分别记作a 、b ,把a 、b 作为点A 的横、纵坐标;求点A (a ,b )的个数为:__________;点A (a ,b )在函数y x =的图象上的概率为:______.【答案】16 14【分析】(1)根据题意采用列表法,即可求得所有点的个数; (2)求得所有符合条件的情况,求其比值即可求得答案. 【详解】 解:(1)列表得:(1,4)(2,4) (3,4) (4,4)(1,3) (2,3) (3,3) (4,3) (1,2)(2,2) (3,2) (4,2)(1,1)(2,1)(3,1)(4,1)∴点(,)A a b 的个数是16;(2)当a b =时,(,)A a b 在函数y x =的图象上,∴点(,)A a b 在函数y x =的图象上的有4种,分别是:(1,1),(2,2),(3,3),(4,4), ∴点(,)A a b 在函数y x =的图象上的概率是41164=; 故答案是:16,14.三、解答题16.(2022·沭阳县怀文中学九年级月考)一个不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球1个.(1)现从中任意摸出一个球,求摸到黄球的概率;(2)现规定:摸到红球得5分,摸到蓝球得2分,摸到黄球得3分,甲同学先随机摸出一个小球(不放回),乙同学再随机摸出一个小球为一次游戏.请用画树状图或者列表法,求一次游戏甲、乙摸球所得分数之和不低于8分的概率.【答案】(1)14;(2)见解析,12【分析】(1)由概率公式即可得出答案;(2)画出树状图,共有16个等可能的结果,所得分数之和不低于8分的结果有8个,由概率公式即可得出答案.【详解】解:(1)任意摸出一个是黄球的概率为1211++=14;(2)画树状图如图:共有16个等可能的结果,甲、乙摸球所得分数之和不低于8分的结果有8个,∴一次游戏甲、乙摸球所得分数之和不低于8分的概率为816=12.17.(2022·云南师范大学实验中学九年级期末)从今年开始,云南将在全省集中开展为期一年半,以“清垃圾、扫厕所、勤洗手、净参观、常消毒、管集市、众参与”为主题的爱国卫生“7个专项行”为了动员广大师生朋友,争做爱国生的参与者,传播者,监督者,自觉投身爱国卫生专项行动.现做如下活动:在一个不透明的盒子中装有4张分别标有A、B、C、D的卡片,A、B、C、D四张卡片的背面分别写有“清垃圾、勤洗手、常消毒、众参与”,它们的形状、大小完全相同,现随机从盒子中摸出两张卡片.(1)请用树状图或列表法表示摸出的两张卡片可能出现的所有结果;(2)求摸出的两张卡片中的含有词语“众参与”卡片的概率.【答案】(1)见解析;(2)12【分析】(1)根据题意可以画出相应的树状图;(2)根据(1)中的树状图可以求得摸出的两张卡片中的含有词语“众参与”的概率.【详解】解:(1)树状图如下图所示,(2)由树状图得:共有12个等可能的结果,摸出的两张卡片中含有词语“众参与”的结果有6个,∴摸出的两张卡片中含有词语“众参与”的概率是61 122.18.(2022·全国九年级专题练习)某学生在篮球场对自己进行篮球定点投球测试,下表是他的测试成绩及相关数据:第一回投球第二回投球第三回投球第四回投球第五回投球第六回投球每回投球次数 5 10 15 20 25 30每回进球次数 3 8 6 16 17 18相应频率(1)请将数据表补充完整.(2)画出该同学进球次数的频率分布折线图.(3)如果这个测试继续进行下去,每回的投球次数不断增加,根据上表数据,测试的频率将稳定在他投球1次时进球的概率附近,请你估计这个概率是多少?(结果用小数表示)【答案】(1)0.6;0.8;0.4;0.8;0.68;0.6;(2)见解析;(3)0.65【分析】(1)根据频率计算方法:频率=每回进球次数÷每回的投球次数,即可求解;(2)利用描点法画图即可;(3)利用样本估计总体即可求解.【详解】(1)∵3÷5=0.6;8÷10=0.8;6÷15=0.4;16÷20=0.8;17÷25=0.68;18÷30=0.6;故将数据表补充如下:第一回投第二回投第三回投第四回投第五回投第六回投球球球球球球每回投球次数5 10 15 20 25 30每回进球次数3 8 6 16 17 18相应频率0.6 0.8 0.4 0.8 0.68 0.6 (2)如图:进球次数的频率分布折线图如下:(3)386161718 51015202530++++++++++≈0.65.答:估计这个概率是0.65.19.(2022·武汉一初慧泉中学九年级月考)某校为了了解学校女生的身高情况,抽查了部分女生的身高,并绘制了以下不完整的统计图.请根据以上图表信息,解答下列问题:(1)本次调查的女生共有______人,E组人数m=______;(2)扇形统计图中E部分所对应的扇形圆心角的大小是______;(3)该校共有女生550名,请你估计该校女生身高不低于160cm的人数.【答案】(1)50,10;(2)72°;(3)308人【分析】(1)从扇形统计图中获取D 部分的比重,从频数分布直方图中获取D 部分的人数,即可求解;求得C 组人数,即可求解.(2)求得E 组的所占的百分比,即可求解;(3)求得女生身高不低于160cm 所占的百分比,即可求解. 【详解】解:(1)从扇形统计图中获取D 部分的比重为26% 从频数分布直方图中获取D 部分的人数为13 总人数为1326%=50÷人 C 组的人数为5028%=14⨯人50261413510m =-----=故答案为:50,10(2)E 部分所对应的扇形圆心角的大小是103607250⨯︒=︒ 答:E 部分所对应的扇形圆心角的大小是72︒ (3)样本中女生身高不低于160cm 的人数有28人2855030850⨯= 答:估计该校女生身高不低于160cm 的有308人.20.(2022·全国九年级课时练习)某校拟派一名跳高运动员参加一项校际比赛,对甲、乙两名跳高运动员进行了8次选拔赛,他们的跳高成绩(单位:cm )如下: 甲:172 168 175 169 174 167 166 169 乙:164 175 174 165 162 173 172 175 (1)甲、乙两名运动员跳高的平均成绩分别是多少? (2)分别求出甲、乙跳高成绩的方差; (3)哪个人的成绩更为稳定?为什么?(4)经预测,跳高165cm 以上就很可能获得冠军,该校为了获取跳高比赛冠军,可能选哪位运动员参赛?若预测跳高170cm 方可获得冠军,又应该选哪位运动员参赛?【答案】(1)都是170cm ;(2)29.5s =甲,225.5s =乙;(3)甲运动员的成绩更为稳定,理由见解析;(4)跳高165cm 以上就很可能获得冠军的情况下,选甲运动员参加;跳高170cm 方可获得冠军的情况下,应选乙运动员参加 【分析】(1)根据平均数的计算方法,先将数据求和,再除以8即可得到甲乙两人各自的平均成绩; (2)根据方差的计算公式分别计算即可,(3)由题(2)的计算结果,根据方差的意义可知,方差越小,即波动越小,数据越稳定即可判断; (4)根据题意分情况分析数据即可判断. 【详解】(1)甲的平均成绩为:1(172168175169174167166169)170(cm)8⨯+++++++=,乙的平均成绩为:1(164175174165162173172175)170(cm)8⨯+++++++=,(2)()()()()()()22222221[1721701681701751701691701741701671708s =⨯-+-+-+-+-+-甲221(166170)(169170)769.58⎤+-+-=⨯=⎦22222221(164170)(175170)(174170)(165170)(162170)(173170)8s ⎡=⨯-+-+-+-+-+-⎣乙221(172170)(175170)20425.58⎤+-+-=⨯=⎦;(3)∵9.525.5<, ∴22s s<甲乙,∴甲运动员的成绩更为稳定;(4)若跳过165cm 以上就很可能获得冠军,则在8次成绩中,甲8次都跳过了165cm ,而乙只有5次,所以应选甲运动员参加;若跳过170cm 才能得冠军,则在8次成绩中,甲只有3次都跳过了170cm ,而乙有5次,所以应选乙运动员参加.21.(2022·湖北黄石八中)2022年,成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会,目前,运动会相关准备工作正在有序进行,比赛项目已经确定.某校体育社团随机抽查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如下两幅不完整的统计图(如图1).根据以上信息,解答下列问题:(1)这次被调查的同学共有______人;扇形统计图中“篮球”对应的扇形圆心角的度数为______.(2)请把图2的条形统计图补充完整;(3)现拟从甲、乙、丙、丁四人中任选两名同学担任大学生运动会的志愿者,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.【答案】(1)180,126°;(2)画图见解析;(3)1 6【分析】(1)根据跳水的人数及其百分比求得总人数;然后出田径及游泳的人数,再用总人数减去田径人数、游泳人数、跳水人数即可得到篮球人数,求出其所占总数的百分比,最后乘以360°即可得到结果;(2)根据(1)的计算结果补全统计图即可;(3)画树状图展示所有12种等可能的结果,再找出恰好选中甲、乙两位同学的结果数,然后根据概率公式求解..【详解】(1)54÷30%=180(人)田径人数:180×20%=36(人),游泳人数:180×15%=27(人),篮球人数为:180-54-36-27=63(人)图中“篮球”对应的扇形圆心角的度数为:360°63= 180126°,故答案为:180,126°;(2)补全统计图如下所示:(3)画树状图如下:由上图可知,共有12种等可能的结果,其中恰好选中甲、乙两位同学的结果有2种. 所以P (恰好选中甲、乙两位同学)=21=126. 22.(2022·靖江市靖城中学)对某篮球运动员进行3分球投篮测试结果如下表:(1)计算、直接填表:表中投篮150次、200次相应的命中率. (2)这个运动员投篮命中的概率约是_____. (3)估计这个运动员3分球投篮15次能得多少分? 【答案】(1)0.6,0.6;(2)0.6;(3)27分 【分析】(1)由命中次数除以投篮次数即可得到相应的命中率; (2)由大量实验是前提下,利用频率估计概率即可得到答案; (3)先计算15次投篮的命中数,从而可得答案. 【详解】解:(1)投篮150次、200次的命中率分别为:90120=0.6,=0.6.150200(2)随着投篮次数的增加,这个运动员投篮命中率稳定在0.6附近, 所以这个运动员投篮命中的概率约是0.6. 故答案为:0.6.(3)这个运动员3分球投篮15次大约投中150.6=9⨯次, 所以这个运动员3分球投篮15次的得分大约为:39=27⨯分.23.(2022·重庆实验外国语学校九年级月考)每年都有很多人因火灾丧失生命,某校为提高学生的逃生意识,开展了“防火灾,爱生命”的防火灾知识竞赛,现从该校七、八年级中各抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x 表示,共分成四组:A :8085x ≤<,B :8590x ≤<,C :9095x ≤<,D :95100x ≤≤),下面给出了部分信息:七年级抽取的10名学生的竞赛成绩是:100,81,84,83,90,89,89,98,97,99; 八年级抽取的10名学生的竞赛成绩是:100,80,85,83,90,95,92,93,93,99;七、八年级抽取的学生竞赛成绩统计表年级平均分 中位数 众数 方差七年级 91 a 89 45.2 八年级 9192.5b39.2八年级抽取的学生竞赛成绩频数分布直方图请根据相关信息,回答以下问题:(1)直接写出表格中a ,b 的值并补全八年级抽取的学生竞赛成绩频数分布直方图:(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防火安全知识较好?请说明理由(一条理由即可);(3)该校七年级有800人,八年级有1000人参加了此次竞赛活动,请估计参加此次竞赛活动成绩优秀(90x ≥)的学生人数是多少.【答案】(1)89.5;93;见解析;(2)八年级,见解析;(3)1100人 【分析】(1)根据中位数、众数的意义求解即可,求出“C 组”的频数才能补全频数分布直方图; (2)从中位数、众数、方差的角度比较得出结论; (3)分别计算七年级、八年级优秀人数即可. 【详解】解:(1)将七年级10名学生的成绩从小到大排列后,处在中间位置的两个数的平均数为: 899089.52+=, 因此中位数是89.5,即89.5a =;八年级10名学生成绩出现次数最多的是93,共出现2次,因此众数是93,即b =93, 八年级10名学生成绩处在“C 组”的有10-2-3-1=4(人), 补全频数分布直方图如下:(2)八年级学生掌握防火安全知识较好.因为七、八年级平均分相等,八年级中位数92.5大于七年级中位数89.5,所以八年级学生掌握防火安全知识较好.(3)17 80010001100210⨯+⨯=(人);答:参加此次竞赛活动成绩优秀的学生人数是1100人.。
中考数学专题复习《概率》知识点梳理及典型例题讲解课件
求随机事件的概率
1.概率:一般地,对于一个随机事件A,我们把刻画其发生可能
性大小的数值,称为随机事件A发生的概率,记作P(A).
2.概率的计算公式:
一般地,如果在一次试验中,有n种可能的结果,并且
这些结果发生的可能性相等,其中事件A发生的结果
公式法 有 m ( m ≤ n ) 种 , 那 么 事 件 A 发 生 的 概 率 为
5 000
2 650
盖面朝
上频率
0.5600 0.5400 0.5300 0.5267 0.5280 0.5270 0.5280 0.5290
0.5300
下面有三个推断:
①通过上述实验的结果,可以推断这枚瓶盖有很大的可能性不
是质地均匀的;
②第2 000次实验的结果一定是“盖面朝上”;
③随着实验次数的增大,“盖面朝上”的概率接近0.53.
从一个含有n个球的袋子
基本描述 中,先取出1个球,放回
中,先取出1个球,不放
再取出1个球
列表法
回再取出1个球
包 含 表 格 中 对 角 线 上 的 不包含表格中对角线上的
情况
情况
第一层的情况
画树状图法
第一层的情况数为n,第二层的情 数为n,第二层
况数为n×n
的情况数为n×
( n
率公式
注意点
①判断是使用列表法还是画树状图法:列表法一般适用于两步
求概率问题,画树状图法适用于两步及两步以上求概率问题;
②不重不漏地列举出所有可能出现的结果,并判断每种结果出
现的可能性是否相等;
③在摸球类游戏中,列表或画树状图时要注意“放回型”与
“不放回型”的区别:
类型
放回型
概率与统计(40题)-2023年中考数学真题分项汇编(全国通用)(解析版)全文
概率与统计(40题)一、单选题1.(2023·上海·统考中考真题)如图所示,为了调查不同时间段的车流量,某学校的兴趣小组统计了不同时间段的车流量,下图是各时间段的小车与公车的车流量,则下列说法正确的是()A.小车的车流量与公车的车流量稳定;B.小车的车流量的平均数较大;C.小车与公车车流量在同一时间段达到最小值;D.小车与公车车流量的变化趋势相同.【答案】B【分析】根据折线统计图逐项判断即可得.【详解】解:A、小车的车流量不稳定,公车的车流量较为稳定,则此项错误,不符合题意;B、小车的车流量的平均数较大,则此项正确,符合题意;C、小车车流量达到最小值的时间段早于公车车流量,则此项错误,不符合题意;D、小车车流量的变化趋势是先增加、再减小、又增加;大车车流量的变化趋势是先增加、再减小,则此项错误,不符合题意;故选:B.【点睛】本题考查了折线统计图,读懂折线统计图是解题关键.2.(2023·四川遂宁·统考中考真题)为增强班级凝聚力,吴老师组织开展了一次主题班会.班会上,他设计了一个如图的飞镖靶盘,靶盘由两个同心圆构成,小圆半径为10cm,大圆半径为20cm,每个扇形的圆心角为60度.如果用飞镖击中靶盘每一处是等可能的,那么小全同学任意投掷飞镖1次(击中边界或没有击中靶盘,则重投1次),投中“免一次作业”的概率是()【答案】B【分析】根据扇形面积公式求出免一次作业对应区域的面积,再根据投中“免一次作业”的概率=免一次作业对应区域的面积÷大圆面积进行求解即可【详解】解:由题意得,大圆面积为2220400cm ππ⨯=,免一次作业对应区域的面积为2226020601050cm 360360πππ⨯⨯⨯⨯−=,∴投中“免一次作业”的概率是5014008ππ=,故选:B .【点睛】本题主要考查了几何概率,扇形面积,正确求出大圆面积和免一次作业对应区域的面积是解题的关键.A .58B 【答案】B【分析】设小正方形的边长为1,则大正方形的边长为32,根据题意,分别求得阴影部分面积和总面积,根据概率公式即可求解.【详解】解:设小正方形的边长为1,则大正方形的边长为32,∴总面积为2231614169252⎛⎫⨯+⨯=+= ⎪⎝⎭,阴影部分的面积为2239132122222⎛⎫⨯+⨯=+=⎪⎝⎭,∴点P 落在阴影部分的概率为131322550=, 故选:B .【点睛】本题考查了几何概率,分别求得阴影部分的面积是解题的关键.根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( ) A .甲 B .乙 C .丙 D .丁【答案】D【分析】根据10次射击成绩的平均数x 可知淘汰乙;再由10次射击成绩的方差2S 可知1.8 1.20.4>>,也就是丁的射击成绩比较稳定,从而得到答案. 【详解】解:98>,∴由四人的10次射击成绩的平均数x 可知淘汰乙;1.8 1.20.4>>,∴由四人的10次射击成绩的方差2S 可知丁的射击成绩比较稳定;故选:D .【点睛】本题考查通过统计数据做决策,熟记平均数与方差的定义与作用是解决问题的关键.5.(2023·湖南怀化·统考中考真题)某县“三独”比赛独唱项目中,5名同学的得分分别是:9.6,9.2,9.6,9.7,9.4.关于这组数据,下列说法正确的是( )A .众数是9.6B .中位数是9.5C .平均数是9.4D .方差是0.3【答案】A【分析】先把5个数据按从小到大的顺序排列,而后用中位数,众数,平均数和方差的定义及计算方法逐一判断.【详解】解:5个数按从小到大的顺序排列9.2,9.4,9.6,9.6,9.7,A、9.6出现次数最多,众数是9.6,故正确,符合题意;B、中位数是9.6,故不正确,不符合题意;C、平均数是()19.2+9.4+9.62+9.7=9.55⨯,故不正确,不符合题意;D、方差是()()()()222219.29.5+9.49.5+29.69.5+9.79.5=0.0325⎡⎤⨯−−−−⎣⎦,故不正确,不符合题意.故选:A.【点睛】本题考查了中位数,众数,平均数和方差,熟练掌握这些定义及计算方法是解决此类问题的关键.A.该小组共统计了100名数学家的年龄B.统计表中m的值为5C.长寿数学家年龄在9293−岁的人数最多D.《数学家传略辞典》中收录的数学家年龄在9697−岁的人数估计有110人【答案】D【分析】利用年龄范围为9899−的人数为10人,对应的百分比为10%,即可判断A 选项;由A 选项可知该小组共统计了100名数学家的年龄,根据1005%5m =⨯=即可判断B 选项;由扇形统计图可知,长寿数学家年龄在9293−岁的占的百分比最大,即可判断C 选项;用2200乘以小组共统计了100名数学家的年龄中在9697−岁的百分比,即可判断D 选项.【详解】解:A .年龄范围为9899−的人数为10人,对应的百分比为10%,则可得1010%100÷=(人),即该小组共统计了100名数学家的年龄,故选项正确,不符合题意;B .由A 选项可知该小组共统计了100名数学家的年龄,则1005%5m =⨯=,故选项正确,不符合题意;C .由扇形统计图可知,长寿数学家年龄在9293−岁的占的百分比最大,即长寿数学家年龄在9293−岁的人数最多,故选项正确,不符合题意;D .《数学家传略辞典》中收录的数学家年龄在9697−岁的人数估计有112200242100⨯=人,故选项错误,符合题意. 故选:D .【点睛】此题考查了扇形统计图和统计表,从扇形统计图和统计表中获取正确信息,进行正确计算是解题的关键.二、填空题这种绿豆发芽的概率的估计值为________(精确到0.01). 【答案】0.93【分析】根据题意,用频率估计概率即可.【详解】解:由图表可知,绿豆发芽的概率的估计值0.93, 故答案为:0.93.【点睛】本题考查了利用频率估计概率.解题的关键在于明确:大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【答案】10【分析】根据概率公式计算即可得出结果. 【详解】解:该生体重“标准”的概率是350750010=, 故答案为:710.【点睛】本题考查了概率公式,熟练掌握概率=所求情况数与总情况数之比是本题的关键.【答案】1500吨【分析】由题意易得试点区域的垃圾收集总量为300吨,然后问题可求解. 【详解】解:由扇形统计图可得试点区域的垃圾收集总量为()60150129300÷−−−=%%%(吨),∴全市可收集的干垃圾总量为30050101500⨯⨯=%(吨); 故答案为1500吨.【点睛】本题主要考查扇形统计图,熟练掌握扇形统计图是解题的关键.10.(2023·浙江宁波·统考中考真题)一个不透明的袋子里装有3个绿球、3个黑球和6个红球,它们除颜色外其余相同.从袋中任意摸出一个球为绿球的概率为_____________.【答案】1 4【分析】从袋子里任意摸一个球有12种等可能的结果,其中是绿球的有3种,根据简单概率公式代值求解即可得到答案.【详解】解:由题意可知,从袋子里任意摸一个球有12种等可能的结果,其中是绿球的有3种,P∴(任意摸出一个球为绿球)31 124==,故答案为:1 4.【点睛】本题考查概率问题,弄清总的结果数及符合要求的结果数,熟记简单概率公式求解是解决问题的关键.三、解答题(1)阳阳已经对B,C型号汽车数据统计如表,请继续求出A型号汽车的平均里程、中位数和众数.(2)为了尽可能避免行程中充电耽误时间,又能经济实惠地用车,请你从相关统计量和符合行程要求的百分比等进行分析,给出合理的用车型号建议.【答案】(1)平均里程:200km ;中位数:200km ,众数:205km ;(2)见解析 【分析】(1)观察统计图,根据平均数、中位数和众数的计算方法求解即可; (2)根据各型号汽车的平均里程、中位数、众数和租金方面进行分析. 【详解】(1)解:由统计图可知: A 型号汽车的平均里程:31904195520062052210200(km)34562A x ⨯+⨯+⨯+⨯+⨯==++++,A 型号汽车的里程由小到大排序:最中间的两个数(第10、11个数据)是200、200,故中位数200200200(km)2+==,出现充满电后的里程最多的是205公里,共六次,故众数为205km .(2)选择B 型号汽车.理由:A 型号汽车的平均里程、中位数、众数均低于210km ,且只有10%的车辆能达到行程要求,故不建议选择;B ,C 型号汽车的平均里程、中位数、众数都超过210km ,其中B 型号汽车有90%符合行程要求,很大程度上可以避免行程中充电耽误时间,且B 型号汽车比C 型号汽车更经济实惠,故建议选择B 型号汽车.【点睛】本题考查了统计量的选择,平均数、中位数和众数,熟练掌握平均数、方差、中位数的定义和意义是解题的关键.根据以上信息,解答下列问题:(1)补全频数分布直方图;(2)抽取的40名学生成绩的中位数是___________;(3)如果测试成绩达到80分及以上为优秀,试估计该校800名学生中对安全知识掌握程度为优秀的学生约有多少人?【答案】(1)见解析;(2)82;(3)估计该校800名学生中对安全知识掌握程度为优秀的学生约有440人 【分析】(1)根据总人数减去其他组的人数求得7080x ≤<的人数,即可补全直方图; (2)根据中位数为第20、21个数据的平均数,结合直方图或分布表可得; (3)用样本估计总体即可得.【详解】(1)解:404612108−−−−=(人), 补全的频数分布直方图如下图所示,;(2)解:∵46818++=, ∴第20、21个数为81、83;∴抽取的40名学生成绩的中位数是()18183822+=;故答案为:82; (3)解:由题意可得:121080044040+⨯=(人),答:估计该校800名学生中对安全知识掌握程度为优秀的学生约有440人.【点睛】本题考查频数分布直方图、中位数,用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.13.(2023·浙江·统考中考真题)为全面提升中小学生体质健康水平,我市开展了儿童青少年“正脊行动”.人民医院专家组随机抽取某校各年级部分学生进行了脊柱健康状况筛查.根据筛查情况,李老师绘制了两幅不完整的统计图表,请根据图表信息解答下列问题: 抽取的学生脊柱健康情况统计表(1)求所抽取的学生总人数;(2)该校共有学生1600人,请估算脊柱侧弯程度为中度和重度的总人数;(3)为保护学生脊柱健康,请结合上述统计数据,提出一条合理的建议.【答案】(1)200人;(2)80人;(3)【分析】(1)利用抽取的学生中正常的人数除以对应的百分比即可得到所抽取的学生总人数;(2)用该校学生总数乘以抽取学生中脊柱侧弯程度为中度和重度的百分比即可得到答案;(3)利用图表中的数据提出合理建议即可.【详解】(1)解:17085%200÷=(人).∴所抽取的学生总人数为200人.(2)() 1600185%10%80⨯−−=(人).∴估算该校学生中脊柱侧弯程度为中度和重度的总人数有80人.(3)该校学生脊柱侧弯人数占比为15%,说明该校学生脊柱侧弯情况较为严重,建议学校要每天组织学生做护脊操等.【点睛】此题考查了统计表和扇形统计图,熟练掌握用部分除以对应的百分比求总数、用样本估计总体是解题的关键.【答案】(1)1,8;(2)23,;(3)优秀率高的年级不是平均成绩也高,理由见解析【分析】(1)根据扇形统计图得出七年级活动成绩为7分的学生数的占比为10%,即可得出七年级活动成绩为7分的学生数,根据扇形统计图结合众数的定义,即可求解;(2)根据中位数的定义,得出第5名学生为8分,第6名学生为9分,进而求得a,b的值,即可求解;(3)分别求得七年级与八年级的优秀率与平均成绩,即可求解.−−−【详解】(1)解:根据扇形统计图,七年级活动成绩为7分的学生数的占比为150%20%20%=10%´,∴样本中,七年级活动成绩为7分的学生数是1010%=1根据扇形统计图,七年级活动成绩的众数为8分, 故答案为:1,8.(2)∵八年级10名学生活动成绩的中位数为8.5分,∴第5名学生为8分,第6名学生为9分,∴5122a =−−=, 1012223b =−−−−=,故答案为:23,. (3)优秀率高的年级不是平均成绩也高,理由如下,七年级优秀率为20%20%=40%+,平均成绩为:710%850%920%1020%=8.5⨯+⨯+⨯+⨯,八年级优秀率为32100%50%10+⨯=40%>,平均成绩为:()167228392108.310⨯+⨯+⨯+⨯+⨯=8.5<, ∴优秀率高的年级为八年级,但平均成绩七年级更高, ∴优秀率高的年级不是平均成绩也高【点睛】本题考查了扇形统计图,统计表,中位数,众数,求一组数据的平均数,从统计图表获取信息是解题的关键.②若将车辆的外观造型,舒适程度、操控性能,售后服务等四项评分数据按2:3:3:2的比例统计,求A 款新能原汽车四项评分数据的平均数. (2)合理建议:请按你认为的各项“重要程度”设计四项评分数据的比例,并结合销售量,以此为依据建议小明的爸爸购买哪款汽车?说说你的理由.【答案】(1)①3015辆,②68.3分;(2)选B 款,理由见解析 【分析】(1)①根据中位数的概念求解即可; ②根据加权平均数的计算方法求解即可; (2)根据加权平均数的意义求解即可. 【详解】(1)①由中位数的概念可得,B 款新能源汽车在2022年9月至2023年3月期间月销售量的中位数为3015辆; ②172270367364268.32332x ⨯+⨯+⨯+⨯==+++分.∴A 款新能原汽车四项评分数据的平均数为68.3分; (2)给出1:2:1:2的权重时, 72170267164267.81212A x ⨯+⨯+⨯+⨯=≈+++(分),70171270168269.71212B x ⨯+⨯+⨯+⨯=≈+++(分),75165267161265.71212C x ⨯+⨯+⨯+⨯=≈+++(分),结合2023年3月的销售量, ∴可以选B 款.【点睛】此题考查了中位数和加权平均数,以及利用加权平均数做决策,解题的关键是熟练掌握以上知识点.16.(2023·江苏连云港·统考中考真题)如图,有4张分别印有Q 版西游图案的卡片:A 唐僧、B 孙悟空、C 猪八戒、D 沙悟净.现将这4张卡片(卡片的形状、大小、质地都相同)放在不透明的盒子中,搅匀后从中任意取出1张卡片,记录后放回、搅匀,再从中任意取出1张卡片求下列事件发生的概率: (1)第一次取出的卡片图案为“B 孙悟空”的概率为__________;(2)用画树状图或列表的方法,求两次取出的2张卡片中至少有1张图案为“A 唐僧”的概率.【答案】(1)14;(2)716【分析】(1)根据概率公式即可求解;(2)根据题意,画出树状图, 进而根据概率公式即可求解. 【详解】(1)解:共有4张卡片,第一次取出的卡片图案为“B 孙悟空”的概率为14 故答案为:14.(2)树状图如图所示:由图可以看出一共有16种等可能结果,其中至少一张卡片图案为“A 唐僧”的结果有7种. ∴P (至少一张卡片图案为“A 唐僧”)716=.答:两次取出的2张卡片中至少有一张图案为“A 唐僧”的概率为716.【点睛】本题考查了概率公式求概率,画树状图法求概率,熟练掌握求概率的方法是解题的关键.【答案】(1)100人;(2)270人【分析】(1)根据保山市腾冲市的员工人数除以所占百分比即可求出本次被抽样调查的员工人数;(2)用该公司总的员工数乘以样本中保山市腾冲市的员工人数除以所占百分比即可估计出该公司意向前往保山市腾冲市的员工人数.÷(人),【详解】(1)本次被抽样调查的员工人数为:3030.00%=100所以,本次被抽样调查的员工人数为100人;⨯(人),(2)90030.00%=270答:估计该公司意向前往保山市腾冲市的员工人数为270人.【点睛】本题考查扇形统计图及相关计算.熟练掌握用样本估计总体是解答本题的关键.18.(2023·新疆·统考中考真题)跳绳是某校体育活动的特色项目.体育组为了了解七年级学生1分钟跳绳次数情况,随机抽取20名七年级学生进行1分钟跳绳测试(单位:次),数据如下:请根据以上信息解答下列问题: (1)填空:=a ______,b =______;(2)学校规定1分钟跳绳165次及以上为优秀,请你估计七年级240名学生中,约有多少名学生能达到优秀? (3)某同学1分钟跳绳152次,请推测该同学的1分钟跳绳次数是否超过年级一半的学生?说明理由. 【答案】(1)165,150;(2)84;(3)见解析【分析】(1)根据众数与中位数的定义进行计算即可求解;(2)根据样本估计总体,用跳绳165次及以上人数的占比乘以总人数,即可求解; (3)根据中位数的定义即可求解;【详解】(1)解:这组数据中,165出现了4次,出现次数最多 ∴165a =,这组数据从小到大排列,第1011个数据分别为148,152, ∴1481521502b +==,故答案为:165,150.(2)解:∵跳绳165次及以上人数有7个, ∴估计七年级240名学生中,有72408420⨯=个优秀,(3)解:∵中位数为150,∴某同学1分钟跳绳152次,可推测该同学的1分钟跳绳次数超过年级一半的学生.【点睛】本题考查了求中位数,众数,样本估计总体,熟练掌握中位数、众数的定义是解题的关键. 19.(2023·甘肃武威·统考中考真题)某校八年级共有200名学生,为了解八年级学生地理学科的学习情况,从中随机抽取40名学生的八年级上、下两个学期期末地理成绩进行整理和分析(两次测试试卷满分均为35分,难度系数相同;成绩用x 表示,分成6个等级:A .10x <;B .10 1.5x ≤<;C .1520x ≤<;D .2025x ≤<;E .2530x ≤<;F .3035x ≤≤).下面给出了部分信息:b .八年级学生上学期期末地理成绩在C .1520x ≤<这一组的成绩是: 15,15,15,15,15,16,16,16,18,18c .八年级学生上、下两个学期期末地理成绩的平均数、众数、中位数如下:学期 平均数 众数 中位数八年级上学期 17.715 m【答案】(1)16;(2)35;(3)八年级,理由见解析【分析】(1)由中位数的概念,可知40人成绩的中位数是第20、21位的成绩; (2)根据样本估计总体即可求解; (3)根据平均成绩或中位数即可判断.【详解】(1)解:由中位数的概念,可知40人成绩的中位数是第20、21位的成绩,由统计图知A 组4人,B 组10人,C 组10人,则中位数在C 组,第20、21位的成绩分别是16,16, 则中位数是1616162+=;故答案为:16; (2)解:612003540+⨯=(人),这200名学生八年级下学期期末地理成绩达到优秀的约有35人,故答案为:35;(3)解:因为抽取的八年级学生的期末地理成绩的平均分(或中位数)下学期的比上学期的高,所以八年级学生下学期期末地理成绩更好.【点睛】本题考查了条形统计图,中位数,众数等知识,熟练掌握知识点并灵活运用是解题的关键. 平均数 众数 中位数七年级参赛学生成绩 85.5 m 87 八年级参赛学生成绩 85.5 85n根据以上信息,回答下列问题:(1)填空:m =________,n =________;(2)七、八年级参赛学生成绩的方差分别记为21S 、22S ,请判断21S ___________22S (填“>”“<”或“=”);(3)从平均数和中位数的角度分析哪个年级参赛学生的成绩较好. 【答案】(1)80,86;(2)>;(3)见解析【分析】(1)找到七年级学生的10个数据中出现次数最多的即为m 的值,将八年级的10个数据进行排序,第5和第6个数据的平均数即为n 的值;(2)根据折线统计图得到七年级的数据波动较大,根据方差的意义,进行判断即可; (3)利用平均数和中位数作决策即可.【详解】(1)解:七年级的10个数据中,出现次数最多的是:80,∴80m=;将八年级的10个数据进行排序:76,77,85,85,85,87,87,88,88,97;∴()18587862n=+=;故答案为:80,86;(2)由折线统计图可知:七年级的成绩波动程度较大,∵方差越小,数据越稳定,∴2212S S>;故答案为:>.(3)七年级和八年级的平均成绩相同,但是七年级的中位数比八年级的大,所以七年级参赛学生的成绩较好.【点睛】本题考查数据的分析.熟练掌握众数,中位数的确定方法,利用中位数作决策,是解题的关键.(1)A,B两班的学生人数分别是多少?(2)请选择一种适当的统计量,分析比较A,B两班的后测数据.(3)通过分析前测、后测数据,请对张老师的教学实验效果进行评价.【答案】(1)A ,B 两班的学生人数分别是50人,46人;(2)见解析;(3)见解析 【分析】(1)由统计表中的数据个数之和可得两个班的总人数;(2)先求解两个班成绩的平均数,再判断中位数落在哪个范围,以及15分以上的百分率,再比较即可; (3)先求解前测数据的平均数,判断前测数据两个班的中位数落在哪个组,计算15人数的增长百分率,再从这三个分面比较即可.【详解】(1)解: A 班的人数:28993150++++=(人) B 班的人数:251082146++++=(人) 答:A ,B 两班的学生人数分别是50人,46人. (2)14 2.5167.51212.5617.5222.59.150A x ⨯+⨯+⨯+⨯+⨯==,6 2.587.51112.51817.5322.512.946B x ⨯+⨯+⨯+⨯+⨯=≈, 从平均数看,B 班成绩好于A 班成绩.从中位数看,A 班中位数在510x <≤这一范围,B 班中位数在1015x <≤这一范围,B 班成绩好于A 班成绩. 从百分率看,A 班15分以上的人数占16%,B 班15分以上的人数约占46%,B 班成绩好于A 班成绩. (3)前测结果中: A 28 2.597.5912.5317.5122.56.550x ⨯+⨯+⨯+⨯+⨯'==B6.4x '=≈从平均数看,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好. 从中位数看,两班前测中位数均在05x <≤这一范围,后测A 班中位数在510x <≤这一范围,B 班中位数在1015x <≤这一范围,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好.从百分率看,A 班15分以上的人数增加了100%,B 班15分以上的人数增加了600%,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好.【点睛】本题考查的是从统计表中获取信息,平均数,中位数的含义,增长率的含义,选择合适的统计量作分析,熟练掌握基础的统计知识是解本题的关键.……结合调查信息,回答下列问题:本次调查共抽查了多少名学生?900名初中生中最喜爱篮球项目的人数.假如你是小组成员,请你向该校提一条合理建议.【答案】(1)100;(2)360;(3)见解析【分析】(1)根据乒乓球人数和所占比例,求出抽查的学生数;(2)先求出喜爱篮球学生比例,再乘以总数即可;(3)从图中观察或计算得出,合理即可.÷=,【详解】(1)被抽查学生数:3030%100答:本次调查共抽查了100名学生.⨯=,(2)被抽查的100人中最喜爱羽毛球的人数为:1005%5−−−−=,∴被抽查的100人中最喜爱篮球的人数为:100301015540∴40900360100⨯=(人).答:估计该校900名初中生中最喜爱篮球项目的人数为360.(3)答案不唯一,如:因为喜欢篮球的学生较多,建议学校多配置篮球器材、增加篮球场地等.【点睛】本题考查从条形统计图和扇形统计图获取信息的能力,并用所获取的信息反映实际问题.【答案】(1)8;(2)108︒;(3)5 6【分析】(1)用做饭的人数除以做饭点的百分比25%,得抽取的总人数,再减去“洗衣”、“拖地”、“刷碗”的人数即可求得到m值;(2)用360︒乘以“拖地”人数所占的百分比,即可求解;(3)画树状图或列表分析出所有可能的结果数和有男生的结果数,再用概率公式计算即可.【详解】(1)解:1025%1012108m=÷−−−=,故荅案为:8;(2)解:() 360121025%108︒⨯÷÷=︒,故荅案为:108°;(3)解:方法一:画树状图如下:由图可知所有可能的结果共的12种,有男生的结果有10种,所以所选同学中有男生的概率为105 126=.方法二:列表如下:由表可知所有可能的结果共的12种,有男生的结果有10种,所以所选同学中有男生的概率为105 126=.【点睛】本题考查统计表,扇形统计图,用画树状图或列表的方法求概率.熟练掌握从统计图表中获取有用信息和用画树状图或列表的方法求概率是解题的关键.(1)补全学生课外读书数量条形统计图;(2)请直接写出本次所抽取学生课外读书数量的众数、中位数和平均数;(3)该校有600名学生,请根据抽样调查的结果,估计本学期开学以来课外读书数量不少于【答案】(1)补全学生课外读书数量条形统计图见解析;(2)4,72,103;(3)450人【分析】(1)根据已知条件可知,课外读书数量为2本的有2人,4本的有4人,据此可以补全条形统计图;(2)根据众数,中位数和平均数的定义求解即可;(3)用该校学生总数乘以抽样调查的数据中外读书数量不少于3本的学生人数所占的比例即可.【详解】(1)补全学生课外读书数量条形统计图,如图:(2)∵本次所抽取学生课外读书数量的数据中出现次数最多的是4,∴众数是4.将本次所抽取的12名学生课外读书数量的数据,按照从小到大的顺序排列为:1,2,2,3,3,3,4,4,4,4,5,5.∵中间两位数据是3,4,∴中位数是:347 22+=.平均数为:112233445210123x⨯+⨯+⨯+⨯+⨯==.(3)3429 6006004501212++⨯=⨯=,∴该校有600名学生,估计本学期开学以来课外读书数量不少于3本的学生人数为450人.【点睛】本题主要考查了条形统计图,众数,中位数,平均数,以及用样本所占百分比估计总体的数量,熟练掌握众数,中位数,平均数的定义是解题的关键.25.(2023·四川达州·统考中考真题)在深化教育综合改革、提升区域教育整体水平的进程中,某中学以兴趣小组为载体,加强社团建设,艺术活动学生参与面达100%,通过调查统计,八年级二班参加学校社团的情况(每位同学只能参加其中一项):A.剪纸社团,B.泥塑社团,C.陶笛社团,D.书法社团,E.合唱社团,并绘制了如下两幅不完整的统计图.(1)该班共有学生_________人,并把条形统计图补充完整;(2)扇形统计图中,m =___________,n =___________,参加剪纸社团对应的扇形圆心角为_______度;(3)小鹏和小兵参加了书法社团,由于参加书法社团几位同学都非常优秀,老师将从书法社团的学生中选取2人参加学校组织的书法大赛,请用“列表法”或“画树状图法”,求出恰好是小鹏和小兵参加比赛的概率.【答案】(1)见解析;(2)20,10,144;(3)110【分析】(1)利用C 类人数除以所占百分比可得调查的学生人数;用总人数减去其它四项的人数可得到D 的人数,然后补图即可;(2)根据总数与各项人数比值可求出m ,n 的值,A 项目的人数与总人数比值乘360︒即可得出圆心角的度数;(3)画树状图展示所有20求解.【详解】(1)本次调查的学生总数:510%50÷=(人),D 、书法社团的人数为:5020105105−−−−=(人),如图所示故答案为:50;(2)由图知,105020%5010%2050360144÷=÷=÷⨯︒=︒,5,,。
中考数学专题复习《统计与概率》经典例题及测试题(含答案)
中考数学专题复习《统计与概率》经典例题及测试题(含答案)【专题分析】统计与概率在中考中的常考点有数据的收集方法,平均数、众数和中位数的计算与选择,方差和标准差的计算和应用,统计图的应用及信息综合分析;事件的分类,简单事件的概率计算,画树状图或列表求概率,对频率和概率的理解等.统计与概率在中考中一般以客观题的形式进行考查,选择题、填空题较多,同时考查多个考点的综合性题目一般以解答题的形式进行考查;统计与概率在中考中所占的比重约为6%~12%.【解题方法】解决统计与概率问题常用的数学思想是方程思想和分类讨论思想;常用的数学方法有分类讨论法,整体代入法等.【知识结构】【典例精选】为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果.居民(户)132 4月用电量(千瓦时/户)40505560误的是( )A.中位数是55 B.众数是60C.方差是29 D.平均数是54【思路点拨】根据众数、中位数、方差、平均数的定义及计算公式分别进行计算,即可得出答案.答案:C规律方法:解决此类题目的关键是准确掌握各个统计量的概念及计算方法,分别计算直接选择或排除.若一组数据1,2,x,4的众数是1,那么这组数据的方差是32 .【思路点拨】根据众数的定义求出x的值,再根据平均数的计算公式求出这组数据的平均数,再根据方差公式进行计算即可.【解析】根据众数的意义得到x=1,这组数据的平均数x=1+2+1+44=2,所以这组数据的方差是S2=14[(1-2)2+(2-2)2+(1-2)2+(4-2)2]=14×6=32.规律方法:为了准确而快速地记忆方差的计算公式,可以用下面12个字来理解性的记忆,即“先平均、再作差、平方后、再平均”,也就是说,先求出一组数据的平均数,再将每一个数据都与平均数作差,然后将这些差进行平方,最后求这些差的平方的平均数,其结果就是这组数据的方差.作为宁波市政府民生实事之一的公共自行车建设工作已基本完成,某部门对今年4月份中的7天进行了公共自行车日租车量的统计,结果如下:宁波市4月份某一周公共自行车日租车量统计图(1)求这7天日租车量的众数、中位数和平均数;(2)用(1)中的平均数估计4月份(30天)共租车多少万车次;(3)市政府在公共自行车建设项目中共投入9 600万元,估计2014年共租车3 200万车次,每车次平均收入租车费0.1元,求2014年租车费收入占总投入的百分率(精确到0.1%).【思路点拨】(1)根据众数、中位数和平均数的定义即可求出; (2)4月份天数与平均数的积;(3)租车的次数与每次的租车费的积为租车收入,由租车收入与投入的比即可求出百分率.【自主解答】解:(1)8,8,8.5.(2)30×8.5=255(万车次).(3)3 200×0.1÷9 600=1÷30≈3.3%.答:2014年租车费收入占总投入的3.3%.某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级一班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)【思路点拨】(1)由题意得,掷一枚质地均匀的骰子,向上一面的点数的等可能的情况共有6种,其中点数为奇数的情况有3种,所以P=36=12;(2)判断游戏是否公平,利用画树状图或列表法表示出所有等可能的情况,求出两人胜出的概率,若概率相同,则游戏公平,否则游戏不公平.【自主解答】解:(1)所求概率P=36=12.(2)游戏公平.理由如下:由上表可知,共有36种等可能的结果,其中小亮、小丽获胜各有9种结果,∴P(小亮胜)=936=14,P(小丽胜)=936=14.∴该游戏是公平的.规律方法:解决判断游戏是否公平的问题,首先应分别计算出两人获胜的概率,然后比较两个概率的大小,若相同则公平,若不相同则不公平.【能力评估检测】一、选择题1.下列事件是随机事件的是( D )A.明天太阳从东方升起B.任意画一个三角形,其内角和是360°C.通常温度降到0 ℃以下,纯净的水结冰D.射击运动员射击一次,命中靶心2.某校为纪念世界反法西斯战争70周年,举行了主题为“让历史照亮未来”的演讲比赛,其中九年级的5位参赛选手的比赛成绩(单位:分)分别为8.6,9.5,9.7,8.7,9,则这5个数据的中位数和平均分分别是( C )A.9.7,9.1 B.9.5,9.1C.9,9.1 D.8.7,93.甲、乙两名同学某学期的四次数学测试成绩(单位:分)如下表:第一次第二次第三次第四次甲 87 95 85 93乙 80 80 90 90S甲=17,S乙=25,下列说法正确的是( )A .甲同学四次数学测试成绩的平均数是89分B .甲同学四次数学测试成绩的中位数是90分C .乙同学四次数学测试成绩的众数是80分D .乙同学四次数学测试成绩较稳定答案: B4.一个袋子中装有6个黑球和3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机从这个袋子中摸出一个球,摸到白球的概率是( B ) A. 19 B. 13 C. 12 D. 235.如图,在一长方形内有对角线长分别为2和3的菱形、边长为1的正六边形和半径为1的圆,则一点随机落在这三个图形内的概率较大的是( B )A .落在菱形内B .落在圆内C .落在正六边形内D .一样大6.小李是9人队伍中的一员,他们随机排成一列队伍,从1开始按顺序报数,小李报到偶数的概率是( B )A. 23B. 49C. 12D. 197.为积极响应创建“全国卫生城市”的号召,某校 1 500名学生参加了卫生知识竞赛,成绩记为A ,B ,C ,D 四等.从中随机抽取了部分学生的成绩进行统计,绘制成如下两幅不完整的统计图,根据图中信息,以下说法不正确的是( )A.样本容量是200B.D等所在扇形的圆心角为15°C.样本中C等所占百分比是10%D.估计全校学生成绩为A等的有900人答案: B8.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如下表所示:候选人甲乙丙丁测试成绩(百分制)面试86929083 笔试90838392别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取( B ) A.甲 B.乙 C.丙 D.丁9.在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色……如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率稳定于30%;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是( B )A.①②③ B.①② C.①③ D.②③10.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数.如796就是一个“中高数”.若十位上的数字为7,则从3,4,5,6,8,9中任选两个数,与7组成“中高数”的概率是( C )A. 12B. 23C. 25D. 35二、填空题11.一组正整数2,3,4,x 从小到大排列,已知这组数据的中位数和平均数相等,那么x 的值是5 .12.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1,2,3,4,5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P (偶数),指针指向标有奇数所在区域的概率为 P (奇数),指针落在线上时重转,则P (偶数)< P (奇数)(填“>”“<”或“=”).13.“服务社会,提升自我.”凉山州某学校积极开展志愿者服务活动,来自九年级的5名同学(三男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰是一男一女的概率是 35. 三、解答题14.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲、乙这10次射击成绩的方差S 甲,S 乙 哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选7环参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选9环参赛更合适.解:(1)乙的平均成绩:(8+9+8+8+7+8+9+8+8+7)÷10=8(环).(2)根据图象可知,甲的波动小于乙的波动,则S甲<S乙.(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.15.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树状图列举出选手A获得三位评委评定的各种可能的结果;(2)求选手A晋级的概率.解:(1)根据题意画树状图如下:由树状图可知,选手A一共获得8种可能的结果,这些结果的可能性相等.(2)P(A晋级)=48=12.16.为推进“传统文化进校园”活动,某校准备成立“经典诵读”、“传统礼仪”、“民族器乐”和“地方戏曲”等四个课外活动小组.学生报名情况如图(每人只能选择一个小组).(1)报名参加课外活动小组的学生共有30人,将条形图补充完整;(2)扇形图中m=25,n=108;(3)根据报名情况,学校决定从报名“经典诵读”小组的甲、乙、丙、丁四人中随机安排两人到“地方戏曲”小组,甲、乙恰好都被安排到“地方戏曲”小组的概率是多少?请用列表或画树状图的方法说明.解:(1)∵由两种统计图可知,报名参加“地方戏曲”小组的有13人,占13%,∴报名参加课外活动小组的学生共有13÷13%=100(人),参加“民族乐器”小组的有100-32-25-13=30(人).(2)∵m%=25100×100%=25%.∴m=25.n=30100×360=108.(3)画树状图如下:∵共有12种等可能的结果,恰好选中甲、乙的有2种,∴P(选中甲、乙)=212=16.。
2023年中考数学复习---《统计与概率》知识总结与专项练习题(含答案解析)
2023年中考数学复习---《统计与概率》知识总结与专项练习题(含答案解析)知识总结1. 频数与频率:①频数:落在每一个小组的数据个数叫做每一组的频数。
②频率:频数与总数的比值叫做频率。
2. 相关计算:①各部分具体数量等于总体数量乘以各部分所占百分比。
②各部分在扇形中所占圆心角度数等于360°乘以百分比。
3. 画直方图的步骤:第一步:计算数据的极差。
即一组数据中的最大值减去最小值。
第二步:决定组数与组距。
①组数:通常自己决定,合理组数即可。
②组距:组距≥组数总数。
第三步:决定分组分点。
第四步:画频数分布表。
4. 平均数:①算术平均数:对于n 个数n x x x x ,,,...321,则()n x x x x nx ++++=−...1321表示这一组数据的平均数。
②加权平均数:对于n 个数n x x x x ,,,...321的权重分别是n w w w w ,,,,...321,则()n n w x w x w x w x nx ++++=−...1332211表示这一组数数据的加权平均数。
权重的表示一半用比的形式或者百分比占比的形式。
5. 中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。
6. 众数:一组数据中出现次数最多的数据就是这组数据的众数。
7. 极差:一组数据的最大值减去最小值。
8. 方差:若一组数是n x x x x ,,,...321,他们的平均数是−x ,则这组数据的方差为:⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛−++⎪⎪⎭⎫ ⎝⎛−+⎪⎪⎭⎫ ⎝⎛−=−−−222212...1x x x x x x n s n 。
方差表示这组数据的波动情况,方差越大,数据越波动,方差越小,数据越稳定。
9. 概率的计算 ①列表法:当试验中存在两个元素且出现的所有可能的结果较多时,我们常用列表的方式,不重不漏地列举出所有可能的结果,再求出概率。
中考数学专题知识点题型复习训练及答案解析(经典珍藏版):23 统计概率或规律探究
备考中考一轮复习点对点必考题型题型23 统计与概率或规律探究考点解析1.几何概率所谓几何概型的概率问题,是指具有下列特征的一些随机现象的概率问题:设在空间上有一区域G,又区域g包含在区域G内(如图),而区域G与g都是可以度量的(可求面积),现随机地向G内投掷一点M,假设点M必落在G中,且点M落在区域G的任何部分区域g内的概率只与g的度量(长度、面积、体积等)成正比,而与g的位置和形状无关.具有这种性质的随机试验(掷点),称为几何概型.关于几何概型的随机事件“向区域G中任意投掷一个点M,点M落在G内的部分区域g”的概率P定义为:g的度量与G的度量之比,即P=g的测度G的测度简单来说:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.2.规律型:数字的变化类探究题是近几年中考命题的亮点,尤其是与数列有关的命题更是层出不穷,形式多样,它要求在已有知识的基础上去探究,观察思考发现规律.(1)探寻数列规律:认真观察、仔细思考,善用联想是解决这类问题的方法.(2)利用方程解决问题.当问题中有多个未知数时,可先设出其中一个为x,再利用它们之间的关系,设出其他未知数,然后列方程.五年中考1.(2019•成都)一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同.再往该盒子中放入5个相同的白球,摇匀后从中随机摸出一个球,若摸到白球的概率为,则盒子中原有的白球的个数为2.(2018•成都)汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3.现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为.3.(2018•成都)已知a>0,S1,S2=﹣S1﹣1,S3,S4=﹣S3﹣1,S5,…(即当n为大于1的奇数时,S n;当n为大于1的偶数时,S n=﹣S n﹣1﹣1),按此规律,S2018=.4.(2017•成都)已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P2,则.5.(2015•成都)有9张卡片,分别写有1~9这九个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为a,则使关于x的不等式组有解的概率为.6.(2015•成都)已知菱形A1B1C1D1的边长为2,∠A1B1C1=60°,对角线A1C1,B1D1相交于点O,以点O为坐标原点,分别以OA1,OB1所在直线为x轴、y轴,建立如图所示的直角坐标系,以B1D1为对角线作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2为对角线作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2D2为对角线作菱形B2C3D2A3∽菱形A2B2C2D2,…,按此规律继续作下去,在x轴的正半轴上得到点A1,A2,A3,…,A n,则点A n的坐标为.一年模拟1.(2019•青羊二诊)2019年2月上旬某市空气质量指数(AQI)(单位:μg/m3)如下表所示,空气质量指数不大于100表示空气质量优良日期 1 2 3 4 5 6 7 8 9 10 AQI(μg/m3)28 36 45 43 36 50 80 117 61 47如图小王2月上旬到该市度假一次,那么他在该市度假3天空气质量都是优良的概率是.2.(2019•锦江二诊)已知a是正整数,且关于x的一元二次方程(a﹣2)x2+4x+1=0有实数解.则a使关于y的分式方程有正整数解的概率为.3.(2019•武侯二诊)两人一组,每人在纸上随机写一个不大于4的正整数,则两人所写的正整数恰好相同的概率是.4.(2019•双流二诊)已知a i≠0(i=1,2,…,2019),且满足1971,则直线y=a i x+i(i=1,2,…,2019)经过一、二、四象限的概率为.5.(2019•金牛二诊)我国魏晋时期的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式,后人借助这种分割方法所得的图形证明了勾股定理.如图所示,若a=2,b=3,现随机向该图形内掷一枚小针,则针尖落在阴影域内的概率为.6.(2019•郫都一诊)从﹣2,﹣1,0,1,2这5个数中随机抽取一个数记为a,则使直线与双曲线有1个交点的概率为.7.(2019•郫都二诊)一枚质地均匀的正六面体骰子,六个面分别标有1、2、3、4、5、6,连续投掷两次.记两次朝上的面上的数字分别为m、n,若把m、n分别作为点P的横坐标和纵坐标,则P(m,n)在双曲线y上的概率为.8.(2019•高新一诊)如图,这个图案是3世纪我国汉代数学家赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.已知AE=3,BE=2,若向正方形ABCD内随意投掷飞镖(每次均落在正方形ABCD 内,且落在正方形ABCD内任何一点的机会均等),则恰好落在正方形EFGH内的概率为.精准预测1.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝,如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为3:4,现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为.2.某班级中有男生和女生各若干,如果随机抽取1人,抽到男生的概率是,那么抽到女生的概率是.3.刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用圆内接或外切正多边形逐步逼近圆来近似计算圆的面积.下图是其中的一个图形,六边形ABCDEF是⊙O的外切正六边形,现随机向该图形掷一枚小针,则针尖落在⊙O内的概率是.(结果不取近似值).4.有6张正面分别标有数字﹣2,0,2,4,6,8的不透明卡片,它们除数不同外其余全部相同,先将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,则使关于x不等式组有实数解的概率为.5.在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1…按这样的规律进行下去,第2011个正方形的面积为.6.有七张正面标有数字﹣3,﹣2,﹣1,0,1,2,3的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗均后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程ax2﹣(2a﹣1)x+a﹣2=0有两个不相等的实数根,且方式方程的解为正数的概率为.7.小明上学经过两个路口,如果每个路口可直接通过或需等待的可能性相等,那么小明上学时在这两个路口都直接通过的概率为.8.如图,“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,大正方形与小正方形的边长之比是2:1,若随机在大正方形及其内部区域投针,则针孔扎到小正方形(阴影部分)的概率是.9.小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x,乙立方体朝上一面上的数字为y,这样就确定点P的一个坐标(x,y),那么点P落在双曲线y上的概率为.10.如图,一次函数y=kx+b的图象与反比例函数y的图象交于A(﹣2,1)、B(1,﹣2)两点.一次函数的值大于反比例函数的值时x的取值范围是.11.一个密码箱的密码,每个位数上的数都是从0到9的自然数,若要使不知道密码的一次就拨对密码的概率小于,则密码的位数至少需要位.12.已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…,依此类推,则a2019的值为.13.在一个不透明的口袋中装有除颜色外其它都相同的3个红球和2个黄球,任意从口袋中摸出两个球,摸到一个红球和一个黄球的概率为.14.如图,往正方形地面任意抛掷一个小球,则此球的着地点落在阴影部分的概率是.备考中考一轮复习点对点必考题型题型23 统计与概率或规律探究考点解析1.几何概率所谓几何概型的概率问题,是指具有下列特征的一些随机现象的概率问题:设在空间上有一区域G,又区域g包含在区域G内(如图),而区域G与g都是可以度量的(可求面积),现随机地向G内投掷一点M,假设点M必落在G中,且点M落在区域G的任何部分区域g内的概率只与g的度量(长度、面积、体积等)成正比,而与g的位置和形状无关.具有这种性质的随机试验(掷点),称为几何概型.关于几何概型的随机事件“向区域G中任意投掷一个点M,点M落在G内的部分区域g”的概率P定义为:g的度量与G的度量之比,即P=g的测度G的测度简单来说:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.2.规律型:数字的变化类探究题是近几年中考命题的亮点,尤其是与数列有关的命题更是层出不穷,形式多样,它要求在已有知识的基础上去探究,观察思考发现规律.(1)探寻数列规律:认真观察、仔细思考,善用联想是解决这类问题的方法.(2)利用方程解决问题.当问题中有多个未知数时,可先设出其中一个为x,再利用它们之间的关系,设出其他未知数,然后列方程.五年中考1.(2019•成都)一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同.再往该盒子中放入5个相同的白球,摇匀后从中随机摸出一个球,若摸到白球的概率为,则盒子中原有的白球的个数为20【点拨】设盒子中原有的白球的个数为x个,根据题意列出分式方程,解此分式方程即可求得答案.【解析】解:设盒子中原有的白球的个数为x个,根据题意得:,解得:x=20,经检验:x=20是原分式方程的解;∴盒子中原有的白球的个数为20个.故答案为:20;2.(2018•成都)汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3.现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为.【点拨】针尖落在阴影区域的概率就是四个直角三角形的面积之和与大正方形面积的比.【解析】解:设两直角边分别是2x,3x,则斜边即大正方形的边长为x,小正方形边长为x,所以S大正方形=13x2,S小正方形=x2,S阴影=12x2,则针尖落在阴影区域的概率为.故答案为:.3.(2018•成都)已知a>0,S1,S2=﹣S1﹣1,S3,S4=﹣S3﹣1,S5,…(即当n为大于1的奇数时,S n;当n为大于1的偶数时,S n=﹣S n﹣1﹣1),按此规律,S2018=.【点拨】根据S n数的变化找出S n的值每6个一循环,结合2018=336×6+2,即可得出S2018=S2,此题得解.【解析】解:S1,S2=﹣S1﹣11,S3,S4=﹣S3﹣11,S5(a+1),S6=﹣S5﹣1=(a+1)﹣1=a,S7,…,∴S n的值每6个一循环.∵2018=336×6+2,∴S2018=S2.故答案为:.4.(2017•成都)已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P2,则.【点拨】直接利用圆的面积求法结合正方形的性质得出P1,P2的值即可得出答案.【解析】解:设⊙O的半径为1,则AD,故S圆O=π,阴影部分面积为:π2π=2,则P1,P2,故.故答案为:.5.(2015•成都)有9张卡片,分别写有1~9这九个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为a,则使关于x的不等式组有解的概率为.【点拨】由关于x的不等式组有解,可求得a>5,然后利用概率公式求解即可求得答案.【解析】解:,由①得:x≥3,由②得:x,∵关于x的不等式组有解,∴3,解得:a>5,∴使关于x的不等式组有解的概率为:.故答案为:.6.(2015•成都)已知菱形A1B1C1D1的边长为2,∠A1B1C1=60°,对角线A1C1,B1D1相交于点O,以点O为坐标原点,分别以OA1,OB1所在直线为x轴、y轴,建立如图所示的直角坐标系,以B1D1为对角线作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2为对角线作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2D2为对角线作菱形B2C3D2A3∽菱形A2B2C2D2,…,按此规律继续作下去,在x轴的正半轴上得到点A1,A2,A3,…,A n,则点A n的坐标为(3n﹣1,0).【点拨】先根据菱形的性质求出A1的坐标,根据勾股定理求出OB1的长,再由锐角三角函数的定义求出OA2的长,故可得出A2的坐标,同理可得出A3的坐标,找出规律即可得出结论.【解析】解:∵菱形A1B1C1D1的边长为2,∠A1B1C1=60°,∴OA1=A1B1•sin30°=21,OB1=A1B1•cos30°=2,∴A1(1,0).∵B1C2D1A2∽菱形A1B1C1D1,∴OA23,∴A2(3,0).同理可得A3(9,0)…∴A n(3n﹣1,0).故答案为:(3n﹣1,0).一年模拟1.(2019•青羊二诊)2019年2月上旬某市空气质量指数(AQI)(单位:μg/m3)如下表所示,空气质量指数不大于100表示空气质量优良日期 1 2 3 4 5 6 7 8 9 10 AQI(μg/m3)28 36 45 43 36 50 80 117 61 47如图小王2月上旬到该市度假一次,那么他在该市度假3天空气质量都是优良的概率是.【点拨】根据表格中的数据和题意可以求得3天空气质量都是优良的概率.【解析】解:由表格可得,所有的可能性是:(1,2,3),(2,3,4),(3,4,5),(4,5,6),(5,6,7),(6,7,8),(7,8,9),(8,9,10),∴小王在该市度假3天空气质量都是优良的概率是,故答案为:.2.(2019•锦江二诊)已知a是正整数,且关于x的一元二次方程(a﹣2)x2+4x+1=0有实数解.则a使关于y的分式方程有正整数解的概率为.【点拨】利用一元二次方程的定义和判别式的意义得到a﹣2≠0且△=42﹣4(a﹣2)≥0,解得a≤6且a≠2,从而得到a的值为1,3,4,5,6,再把分式方程化为1﹣ay+4y﹣12=1,解得y,接着分别把a的值代入确定分式方程为整数解所对应的a的值,然后根据概率公式求解.【解析】解:∵关于x的一元二次方程(a﹣2)x2+4x+1=0有实数解.∴a﹣2≠0且△=42﹣4(a﹣2)≥0,解得a≤6且a≠2,∵a是正整数,∴a的值为1,3,4,5,6,分式方程化为1﹣ay+4y﹣12=1,解得y,∴4﹣a>0,解得a<4,当a=1时,y=4;当a=3时,y=12;∴a使关于y的分式方程有整数解的概率.故答案为.3.(2019•武侯二诊)两人一组,每人在纸上随机写一个不大于4的正整数,则两人所写的正整数恰好相同的概率是.【点拨】列出树状图即可得到和恰好相同的概率.【解析】解:画树状图如下:由树状图知,共有16种等可能结果,其中恰好相同的有4种,所以两人所写的正整数恰好相同的概率是,故答案为:.4.(2019•双流二诊)已知a i≠0(i=1,2,…,2019),且满足1971,则直线y=a i x+i(i=1,2,…,2019)经过一、二、四象限的概率为.【点拨】根据1971,判断出有24对1和﹣1相加为0,从而求解;【解析】解:∵1971,∵2019﹣1971=48,2019个数中,其中有24个1和24个﹣1相∵加为0,其它1971个都是1;∵直线y=a i x+i(i=1,2,…,2019)经过一、二、四象限,∴概率为;故答案.5.(2019•金牛二诊)我国魏晋时期的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式,后人借助这种分割方法所得的图形证明了勾股定理.如图所示,若a=2,b=3,现随机向该图形内掷一枚小针,则针尖落在阴影域内的概率为.【点拨】设小正方形的边长为x,根据已知条件得到AB=2+3=5,根据勾股定理列方程求得x=1,x=﹣6(不合题意舍去),根据三角形的面积公式即可得到结论.【解析】解:设小正方形的边长为x,∵a=2,b=3,∴AB=2+3=5,在Rt△ABC中,AC2+BC2=AB2,即(2+x)2+(x+3)2=52,解得:x=1,x=﹣6(不合题意舍去),∴S△ABC3×4=6,S阴影2×1×2=2,∴针尖落在阴影域内的概率,故答案为:.6.(2019•郫都一诊)从﹣2,﹣1,0,1,2这5个数中随机抽取一个数记为a,则使直线与双曲线有1个交点的概率为.【点拨】由两函数图象有一个交点得出a的值,根据概率公式即可得出结论.【解析】解:∵直线与双曲线有1个交点,∴x﹣a,整理得,x2﹣ax﹣(3a+2)=0,∴△=(﹣a)2+(3a+2)=0,解得a=﹣1或a=﹣2,∴使直线与双曲线有1个交点的概率为,故答案为.7.(2019•郫都二诊)一枚质地均匀的正六面体骰子,六个面分别标有1、2、3、4、5、6,连续投掷两次.记两次朝上的面上的数字分别为m、n,若把m、n分别作为点P的横坐标和纵坐标,则P(m,n)在双曲线y上的概率为.【点拨】先列表展示所有36种等可能的结果,利用反比例函数图象上点的坐标特点得到(2,6)、(6,2)、(3,4),(4,3)在y图象上,然后根据概率的定义即可得到P(m,n)在双曲线y上的概率.【解析】解:列表如下:共有36种等可能的结果,其中有(2,6)、(6,2)、(3,4),(4,3)在y图象上,所以P(m,n)在双曲线y上的概率.故答案为.8.(2019•高新一诊)如图,这个图案是3世纪我国汉代数学家赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.已知AE=3,BE=2,若向正方形ABCD内随意投掷飞镖(每次均落在正方形ABCD内,且落在正方形ABCD内任何一点的机会均等),则恰好落在正方形EFGH内的概率为.【点拨】根据几何概型概率的求法,飞镖扎在小正方形内的概率为小正方形内与大正方形的面积比,根据题意,可得小正方形的面积与大正方形的面积,进而可得答案.【解析】解:根据题意,AB2=AE2+BE2=13,∴S正方形ABCD=13,∵△ABE≌△BCF,∴AE=BF=3,∵BE=2,∴EF=1,∴S正方形EFGH=1,,故飞镖扎在小正方形内的概率为.故答案为.精准预测1.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝,如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为3:4,现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为.【点拨】针尖落在阴影区域的概率就是四个直角三角形的面积之和与大正方形面积的比.【解析】解:设两直角边分别是3x,4x,则斜边即大正方形的边长为5x,小正方形边长为x,所以S大正方形=25x2,S小正方形=x2,S阴影=24x2,则针尖落在阴影区域的概率为.故答案为:.2.某班级中有男生和女生各若干,如果随机抽取1人,抽到男生的概率是,那么抽到女生的概率是.【点拨】由于抽到男生的概率与抽到女生的概率之和为1,据此即可求出抽到女生的概率.【解析】解:∵抽到男生的概率是,∴抽到女生的概率是1.故答案为:.3.刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用圆内接或外切正多边形逐步逼近圆来近似计算圆的面积.下图是其中的一个图形,六边形ABCDEF是⊙O的外切正六边形,现随机向该图形掷一枚小针,则针尖落在⊙O内的概率是.(结果不取近似值).【点拨】用⊙O的面积除以正六边形的面积即可.【解析】解:设⊙O的半径为r,则正六边形的边长为,∴正六边形的面积为:6r=2r2,∴随机向该图形掷一枚小针,则针尖落在⊙O内的概率是,故答案为:.4.有6张正面分别标有数字﹣2,0,2,4,6,8的不透明卡片,它们除数不同外其余全部相同,先将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,则使关于x不等式组有实数解的概率为.【点拨】分别解两个不等式得到x<2和x,若不等式组有实数解,则2,解得a<1,然后根据概率公式求解.【解析】解:,解①得x<2,解②得x,不等式组有实数解,则2,解得a<1,所以任取一张,将该卡片上的数字记为a,则使关于x不等式组有实数解的概率,故答案为:.5.在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1…按这样的规律进行下去,第2011个正方形的面积为5()4020.【点拨】先利用ASA证明△AOD和△A1BA相似,根据相似三角形对应边成比例可以得到AB=2A1B,所以正方形A1B1C1C的边长等于正方形ABCD边长的,以此类推,后一个正方形的边长是前一个正方形的边长的,然后即可求出第2011个正方形的边长与第1个正方形的边长的关系,从而求出第2011个正方形的面积.【解析】解:如图,∵四边形ABCD是正方形,∴∠ABC=∠BAD=90°,AB=BC,∴∠ABA1=90°,∠DAO+∠BAA1=180°﹣90°=90°,又∵∠AOD=90°,∴∠ADO+∠DAO=90°,∴∠ADO=∠BAA1,在△AOD和A1BA中,,∴△AOD∽△A1BA,∴2,∴BC=2A1B,∴A1C BC,以此类推A2C1A1C,A3C2A2C1,即后一个正方形的边长是前一个正方形的边长的倍,∴第2011个正方形的边长为()2010BC,∵A的坐标为(1,0),D点坐标为(0,2),∴BC=AD,∴第2011个正方形的面积为[()2010BC]2=5()4020.故答案为:5()4020.6.有七张正面标有数字﹣3,﹣2,﹣1,0,1,2,3的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗均后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程ax2﹣(2a﹣1)x+a﹣2=0有两个不相等的实数根,且方式方程的解为正数的概率为.【点拨】首先根据关于x的一元二次方程ax2﹣(2a﹣1)x+a﹣2=0有两个不相等的实数根,且方式方程的解为正数,然后利用概率公式求解.【解析】解:∵使关于x的一元二次方程ax2﹣(2a﹣1)x+a ﹣2=0有两个不相等的实数根,∴a≠0,且[﹣(2a﹣1)]2﹣4×a(a﹣2)>0,解得:a,∵方式方程的解为正数,∴x=a+1>0,∴满足条件的a只有1和2和3,∴则使使关于x的一元二次方程ax2﹣(2a﹣1)x+a﹣2=0有两个不相等的实数根,且方式方程的解为正数的概率为,故答案为:.7.小明上学经过两个路口,如果每个路口可直接通过或需等待的可能性相等,那么小明上学时在这两个路口都直接通过的概率为.【点拨】根据题意先画出树状图得出所有等可能的结果数和在这两个路口都直接通过的结果数,然后根据概率公式即可得出答案.【解析】解:根据题意画图如下:21/ 25共有4种等可能结果,其中小明上学时在这三个路口都直接通过的只有1种结果,所以小明上学时在这两个路口都直接通过的概率为;故答案为:.8.如图,“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,大正方形与小正方形的边长之比是2:1,若随机在大正方形及其内部区域投针,则针孔扎到小正方形(阴影部分)的概率是.【点拨】设大正方形边长为2,则小正方形边长为1,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是.【解析】解:设大正方形边长为2,则小正方形边长为1,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是,故答案为.9.小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x,乙立方体朝上一面上的数字为y,这样就确定点P的一个坐标(x,y),那么点P落在双曲线y上的概率为.【点拨】列表得出所有等可能的情况数,找出P坐标落在双曲线上的情况数,即可求出所求的概率.【解析】解:列表得:1 2 3 4 5 61 (1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2 (1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3 (1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4 (1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5 (1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6 (1,6)(2,6)(3,6)(4,6)(5,6)(6,6)所有等可能的情况数有36种,其中P(x,y)落在双曲线y上的情况有4种,则P.故答案为:10.如图,一次函数y=kx+b的图象与反比例函数y的图象交于A(﹣2,1)、B(1,﹣2)两点.一次函数的值大于反比例函数的值时x的取值范围是x<﹣2或0<x<1.【点拨】根据图象即可求得.【解析】解:∵A(﹣2,1),B(1,﹣2),由图象可知:一次函数的值大于反比例函数的值时x的取值范围是x<﹣2或0<x<1.故答案为x<﹣2或0<x<1.11.一个密码箱的密码,每个位数上的数都是从0到9的自然数,若要使不知道密码的一次就拨对密码的23/ 25概率小于,则密码的位数至少需要3位.【点拨】分别求出取一位数、两位数、三位数、四位数时一次就拨对密码的概率,再根据小于所在的范围解答即可.【解析】解:因为取一位数时一次就拨对密码的概率为,取两位数时一次就拨对密码的概率为,取三位数时一次就拨对密码的概率为,故密码的位数至少需要3位.故答案为:3.12.已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…,依此类推,则a2019的值为﹣1009.【点拨】根据条件求出前几个数的值,再分n是奇数时,结果等于(n﹣1),n是偶数时,结果等于,然后把n的值代入进行计算即可得解.【解析】解:a1=0,a2=﹣|a1+1|=﹣|0+1|=﹣1,a3=﹣|a2+2|=﹣|﹣1+2|=﹣1,a4=﹣|a3+3|=﹣|﹣1+3|=﹣2,a5=﹣|a4+4|=﹣|﹣2+4|=﹣2,a6=﹣|a5+5|=﹣|﹣2+5|=﹣3,a7=﹣|a6+6|=﹣|﹣3+6|=﹣3,…,所以,n是奇数时,a n(n﹣1),n是偶数时,a n,∴a 2019(2019﹣1)=﹣1009.故答案为:﹣1009.13.在一个不透明的口袋中装有除颜色外其它都相同的3个红球和2个黄球,任意从口袋中摸出两个球,摸到一个红球和一个黄球的概率为.【点拨】根据题意可以用树状图法写出所有的可能性,从而可以求得到一个红球和一个黄球的概率.【解析】解:由题意可得,则摸到一个红球和一个黄球的概率为:,故答案为:.14.如图,往正方形地面任意抛掷一个小球,则此球的着地点落在阴影部分的概率是.【点拨】首先确定阴影部分的面积在整个正方形中占的比例,根据这个比例即可求出此球的着地点落在阴影部分的概率.【解析】解:由图可知正方形被均匀分成16块,阴影部分占4块,阴影部分的面积在整个正方形中占的比例为,故此球的着地点落在阴影部分的概率是.25/ 25。
初中数学概率与统计题知识点汇总中考
中考数学统计及概率试题汇编一、选择题1.〔福建福州4分〕从1,2,﹣3三个数中,随机抽取两个数相乘,积是正数的概率是A、0B、13C、23D、12.〔福建泉州3分〕以下事务为必定事务的是A、翻开电视机,它正在播广告B、抛掷一枚硬币,肯定正面朝上C、投掷一枚一般的正方体骰子,掷得的点数小于7D、某彩票的中奖时机是1%,买1张肯定不会中奖3.〔福建漳州3分〕以下事务中,属于必定事务的是A.翻开电视机,它正在播广告B.翻开数学书,恰好翻到第50页C.抛掷一枚匀称的硬币,恰好正面朝上D.一天有24小时【答案】D。
【考点】必定事务。
4.〔福建漳州3分〕九年级一班5名女生进展体育测试,她们的成果分别为70,80,85,75,85〔单位:分〕,这次测试成果的众数和中位数分别是A.79,85 B.80,79 C.85,80 D.85,85【答案】C。
【考点】众数,中位数。
5.〔福建三明4分〕有5张形态、大小、质地均一样的卡片,反面完全一样,正面分别印有等边三角形、平行四边形、菱形、等腰梯形和圆五种不同的图案.将这5张卡片洗匀后正面朝下放在桌面上,从中随机抽出一张,抽出的卡片正面图案是中心对称图形的概率为A.15B.25C.35D.45【答案】C 。
【考点】概率,中心对称图形。
6.〔福建厦门3分〕以下事务中,必定事务是A 、掷一枚一般的正方体骰子,骰子停顿后朝上的点数是1B 、掷一枚一般的正方体骰子,骰子停顿后朝上的点数是偶数C 、抛掷一枚一般的硬币,掷得的结果不是正面就是反面D 、从装有99个红球和1个白球的布袋中随机取出一个球,这个球是红球 【答案】C 。
【考点】必定事务。
7.〔福建龙岩4分〕数名射击运发动第一轮竞赛成果如下表所示;那么他们本轮竞赛的平均成果是【答案】C 。
【考点】加权平均数。
8.〔福建南平4分〕以下调查中,相宜采纳全面调查方式的是 A .理解南平市的空气质量状况 B .理解闽江流域的水污染状况 C .理解南平市居民的环保意识 D .理解全班同学每周体育熬炼的时间【答案】D 。
中考数学复习---《概率》知识点总结与专项练习题(含答案解析)
中考数学复习---《概率》知识点总结与专项练习题(含答案解析)知识点总结1. 事件:①确定事件:事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定事件。
②随机事件:在一定条件下,可能发生也可能不发生的事件,称为随机事件。
2. 事件的可能性(概率)大小:事件的可能性大小用概率来表示。
表示为()事件P 。
必然事件的概率为1;不可能事件的概率为0;随机事件的概率为10<<P 。
3. 概率的定义与计算公式:①概率的意义:一般地,在大量重复实验中,如果事件A 发生的频率n m 会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率,记为()A P =p②概率公式:随机事件A 的概率()所有可能出现的结果数随机事件出现的次数=A P 。
4. 几何概率:在几何中概率的求解皆用部分面积比总面积,或部分长度比总长度,或部分角度比整个大角角度。
专项练习题1.(2022•巴中)下列说法正确的是( )A .4是无理数B .明天巴中城区下雨是必然事件C .正五边形的每个内角是108°D .相似三角形的面积比等于相似比【分析】根据二次根式的化简可得=2,随机事件,正五边形每个内角是108°,相似三角形的性质,逐一判断即可解得.【解答】解:A.∵=2,∴是有理数,故A不符合题意;B.明天巴中城区下雨是随机事件,故B不符合题意;C.正五边形的每个内角是108°,故C符合题意;D.相似三角形的面积比等于相似比的平方,故D不符合题意;故选:C.2.(2022•宁夏)下列事件为确定事件的有()(1)打开电视正在播动画片(2)长、宽为m,n的矩形面积是m n(3)掷一枚质地均匀的硬币,正面朝上(4)π是无理数A.1个B.2个C.3个D.4个【分析】直接利用随机事件以及确定事件的定义分析得出答案.【解答】解:(1)打开电视正在播动画片,是随机事件,不合题意;(2)长、宽为m,n的矩形面积是mn,是确定事件,符合题意;(3)掷一枚质地均匀的硬币,正面朝上,是随机事件,不合题意;(4)π是无理数,是确定事件,符合题意;故选:B.3.(2022•辽宁)下列事件中,是必然事件的是()A.射击运动员射击一次,命中靶心B.掷一次骰子,向上一面的点数是6C.任意买一张电影票,座位号是2的倍数D.从一个只装有红球的盒子里摸出一个球是红球【分析】根据随机事件,必然事件,不可能事件的定义,逐一判断即可解答.【解答】解:A、射击运动员射击一次,命中靶心,是随机事件,故A不符合题意;B、掷一次骰子,向上一面的点数是6,是随机事件,故B不符合题意;C、任意买一张电影票,座位号是2的倍数,是随机事件,故C不符合题意;D、从一个只装有红球的盒子里摸出一个球是红球,是必然事件,故D符合题意;故选:D.4.(2022•广西)下列事件是必然事件的是()A.三角形内角和是180°B.端午节赛龙舟,红队获得冠军C.掷一枚均匀骰子,点数是6的一面朝上D.打开电视,正在播放神舟十四号载人飞船发射实况【分析】根据三角形内角和定理,随机事件,必然事件,不可能事件的定义,逐一判断即可解答.【解答】解:A、三角形内角和是180°,是必然事件,故A符合题意;B、端午节赛龙舟,红队获得冠军,是随机事件,故B不符合题意;C、掷一枚均匀骰子,点数是6的一面朝上,是随机事件,故C不符合题意;D、打开电视,正在播放神舟十四号载人飞船发射实况,是随机事件,故D不符合题意;故选:A.5.(2022•武汉)彩民李大叔购买1张彩票,中奖.这个事件是()A.必然事件B.确定性事件C.不可能事件D.随机事件【分析】根据随机事件,必然事件,不可能事件的定义,即可判断.【解答】解:彩民李大叔购买1张彩票,中奖.这个事件是随机事件,故选:D.6.(2022•贵阳)某校九年级选出三名同学参加学校组织的“法治和安全知识竞赛”.比赛规定,以抽签方式决定每个人的出场顺序、主持人将表示出场顺序的数字1,2,3分别写在3张同样的纸条上,并将这些纸条放在一个不透明的盒子中,搅匀后从中任意抽出一张,小星第一个抽,下列说法中正确的是()A.小星抽到数字1的可能性最小B.小星抽到数字2的可能性最大C.小星抽到数字3的可能性最大D.小星抽到每个数的可能性相同【分析】根据概率公式求出小星抽到各个数字的概率,然后进行比较,即可得出答案.【解答】解:∵3张同样的纸条上分别写有1,2,3,∴小星抽到数字1的概率是,抽到数字2的概率是,抽到数字3的概率是,∴小星抽到每个数的可能性相同;故选:D.7.(2022•襄阳)下列说法正确的是()A.自然现象中,“太阳东方升起”是必然事件B.成语“水中捞月”所描述的事件,是随机事件C.“襄阳明天降雨的概率为0.6”,表示襄阳明天一定降雨D .若抽奖活动的中奖概率为501,则抽奖50次必中奖1次 【分析】根据概率的意义,概率公式,随机事件,必然事件,不可能事件的特点,即可解答.【解答】解:A 、自然现象中,“太阳东方升起”是必然事件,故A 符合题意; B 、成语“水中捞月”所描述的事件,是不可能事件,故B 不符合题意;C 、襄阳明天降雨的概率为0.6”,表示襄阳明天降雨的可能性是60%,故C 不符合题意;D 、若抽奖活动的中奖概率为,则抽奖50次不一定中奖1次,故D 不符合题意;故选:A .8.(2022•长沙)下列说法中,正确的是( )A .调查某班45名学生的身高情况宜采用全面调查B .“太阳东升西落”是不可能事件C .为了直观地介绍空气各成分的百分比,最适合使用的统计图是条形统计图D .任意投掷一枚质地均匀的硬币26次,出现正面朝上的次数一定是13次【分析】根据概率的意义,全面调查与抽样调查,条形统计图,随机事件,逐一判断即可解答.【解答】解:A 、调查某班45名学生的身高情况宜采用全面调查,故A 符合题意; B 、“太阳东升西落”是必然事件,故B 不符合题意;C 、为了直观地介绍空气各成分的百分比,最适合使用的统计图是扇形统计图,故C 不符合题意;D 、任意投掷一枚质地均匀的硬币26次,出现正面朝上的次数可能是13次,故D 不符合题意;故选:A .9.(2022•东营)如图,任意将图中的某一白色方块涂黑后,能使所有黑色方块构成的图形是轴对称图形的概率是( )A .32B .21C .31D .61 【分析】根据轴对称图形的概念、概率公式计算即可.【解答】解:如图,当涂黑1或2或3或4区域时,所有黑色方块构成的图形是轴对称图形,则P (是轴对称图形)==,故选:A .10.(2022•丹东)四张不透明的卡片,正面标有数字分别是﹣2,3,﹣10,6,除正面数字不同外,其余都相同,将它们背面朝上洗匀后放在桌面上,从中随机抽取一张卡片,则这张卡片正面的数字是﹣10的概率是( )A .41B .21C .43D .1【分析】用﹣10的个数除以总数即可求得概率.【解答】解:由题意可知,共有4张标有数字﹣2,3,﹣10,6的卡片,摸到每一张的可能性是均等的,其中为﹣10的有1种,所以随机抽取一张,这张卡片正面的数字是﹣10的概率是,故选:A .11.(2022•益阳)在某市组织的物理实验操作考试中,考试所用实验室共有24个测试位,分成6组,同组4个测试位各有一道相同试题,各组的试题不同,分别标记为A ,B ,C ,D ,E ,F ,考生从中随机抽取一道试题,则某个考生抽到试题A 的概率为( )A .32B .41C .61D .241 【分析】根据抽到试题A 的概率=试题A 出现的结果数÷所有可能出现的结果数即可得出答案.【解答】解:总共有24道题,试题A 共有4道,P (抽到试题A )==,故选:C . 12.(2022•兰州)无色酚酞溶液是一种常用酸碱指示剂,广泛应用于检验溶液酸碱性,通常情况下酚酞溶液遇酸溶液不变色,遇中性溶液也不变色,遇碱溶液变红色.现有5瓶缺失标签的无色液体:蒸馏水、白醋溶液、食用碱溶液、柠檬水溶液、火碱溶液,将酚酞试剂滴入任意一瓶液体后呈现红色的概率是( )A .51B .52C .53D .54 【分析】总共5种溶液,其中碱性溶液有2种,再根据概率公式求解即可.【解答】解:∵总共5种溶液,其中碱性溶液有2种,∴将酚酞试剂滴入任意一瓶液体后呈现红色的概率是,故选:B .13.(2022•铜仁市)在一个不透明的布袋内,有红球5个,黄球4个,白球1个,蓝球3个,它们除颜色外,大小、质地都相同.若随机从袋中摸取一个球,则摸中哪种球的概率最大( )A .红球B .黄球C .白球D .蓝球【分析】根据概率的求法,因为红球的个数最多,所以摸到红球的概率最大.【解答】解:在一个不透明的布袋内,有红球5个,黄球4个,白球1个,蓝球3个,它们除颜色外,大小、质地都相同.若随机从袋中摸取一个球,因为红球的个数最多,所以摸到红球的概率最大,摸到红球的概率是:, 故选:A .14.(2022•百色)篮球裁判员通常用抛掷硬币的方式来确定哪一方先选场地,那么抛掷一枚均匀的硬币一次,正面朝上的概率是( )A .1B .21C .41D .61 【分析】根据概率的计算公式直接计算即可.一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率为P (A )=.【解答】解:抛硬币有两种结果:正面向上、反面向上,则正面向上的概率为.故选:B .15.(2022•呼和浩特)不透明袋中装有除颜色外完全相同的a 个白球、b 个红球,则任意摸出一个球是红球的概率是( )A .b a b +B .a bC .b a a +D .ba 【分析】根据概率的计算公式直接计算即可.一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率为P (A )=.【解答】解:不透明袋中装有除颜色外完全相同的a 个白球、b 个红球,则任意摸出一个球是红球的概率是.故选:A . 16.(2022•齐齐哈尔)在单词statistics (统计学)中任意选择一个字母,字母为“s ”的概率是( )A .101B .51C .103D .52 【分析】根据题意,可以写出任意选择一个字母的所有可能性和选择的字母是s 的可能性,从而可以求出相应的概率.【解答】解:在单词statistics (统计学)中任意选择一个字母一共有10种可能性,其中字母为“s ”的可能性有3种,∴任意选择一个字母,字母为“s ”的概率是, 故选:C .17.(2022•镇江)从2021、2022、2023、2024、2025这五个数中任意抽取3个数.抽到中位数是2022的3个数的概率等于 .【分析】列举得出共有10种等可能情况,其中中位数是2022有3种情况,再由概率公式求解即可.【解答】解:从2021、2022、2023、2024、2025这五个数中任意抽取3个数为:2021、2022、2023,2021、2022、2024,2021、2022、2025,2021、2023、2024,2021、2023、2025,2021、2024、2025,2022、2023、2024,2022、2023、2025,2022、2024、2025,2023、2024、2025,共有10种等可能情况,其中中位数是2022有3种情况,∴抽到中位数是2022的3个数的概率为,故答案为:.18.(2022•阜新)如图,是由12个全等的等边三角形组成的图案,假设可以随机在图中取点,那么这个点取在阴影部分的概率是( )A .41B .43C .32D .21 【分析】先设每个小等边三角的面积为x ,则阴影部分的面积是6x ,得出整个图形的面积是12x ,再根据几何概率的求法即可得出答案.【解答】解:先设每个小等边三角的面积为x ,则阴影部分的面积是6x ,得出整个图形的面积是12x ,则这个点取在阴影部分的概率是=.故选:D .19.(2022•徐州)将一枚飞镖任意投掷到如图所示的正六边形镖盘上,若飞镖落在镖盘上各点的机会相等,则飞镖落在阴影区域的概率为( )A .41B .31C .21D .33 【分析】如图,将整个图形分割成图形中的小三角形,令小三角形的面积为a ,分别表示出阴影部分的面积和正六边形的面积,根据概率公式求解即可.【解答】解:如图所示,设每个小三角形的面积为a ,则阴影的面积为6a ,正六边形的面积为18a ,∴将一枚飞镖任意投掷到镖盘上,飞镖落在阴影区域的概率为=,故选:B .20.(2022•朝阳)如图所示的是由8个全等的小正方形组成的图案,假设可以随意在图中取一点,那么这个点取在阴影部分的概率是( )A .83B .21C .85D .1【分析】根据阴影部分的面积所占比例得出概率即可.【解答】解:由图知,阴影部分的面积占图案面积的,即这个点取在阴影部分的概率是,故选:A .21.(2022•通辽)如图,正方形ABCD 及其内切圆O ,随机地往正方形内投一粒米,落在阴影部分的概率是( )A .4πB .1﹣4πC .8πD .1﹣8π 【分析】直接表示出各部分面积,进而得出落在阴影部分的概率.【解答】解:设圆的半径为a,则圆的面积为:πa2,正方形面积为:4a2,故随机地往正方形内投一粒米,落在阴影部分的概率为:.故选:B.22.(2022•黔东南州)如图,已知正六边形ABCDEF内接于半径为r的⊙O,随机地往⊙O 内投一粒米,落在正六边形内的概率为()A.π233B.π23C.π43D.以上答案都不对【分析】求出正六边形的面积占圆面积的几分之几即可.【解答】解:圆的面积为πr2,正六边形ABCDEF的面积为r×r×6=r2,所以正六边形的面积占圆面积的=,故选:A.23.(2022•苏州)如图,在5×6的长方形网格飞镖游戏板中,每块小正方形除颜色外都相同,小正方形的顶点称为格点,扇形OAB的圆心及弧的两端均为格点.假设飞镖击中每一块小正方形是等可能的(击中扇形的边界或没有击中游戏板,则重投1次),任意投掷飞镖1次,飞镖击中扇形OAB(阴影部分)的概率是()A .12πB .24πC .6010πD .605π 【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【解答】解:∵总面积为5×6=30,其中阴影部分面积为=, ∴飞镖落在阴影部分的概率是=,故选:A . 24.(2022•成都)如图,已知⊙O 是小正方形的外接圆,是大正方形的内切圆.现假设可以随意在图中取点,则这个点取在阴影部分的概率是 .【分析】作OD ⊥CD ,OB ⊥AB ,设⊙O 的半径为r ,根据⊙O 是小正方形的外接圆,是大正方形的内切圆,可得OB =OC =r ,△AOB 、△COD 是等腰直角三角形,即可得AE =2r ,CF =r ,从而求出答案.【解答】解:作OD ⊥CD ,OB ⊥AB ,如图:设⊙O的半径为r,∵⊙O是小正方形的外接圆,是大正方形的内切圆,∴OB=OC=r,△AOB、△COD是等腰直角三角形,∴AB=OB=r,OD=CD=r,∴AE=2r,CF=r,∴这个点取在阴影部分的概率是=,故答案为:.。
中考数学考点集训分类训练23 概率(含答案)
分类训练23概率命题点1事件的分类 1(2022武汉)彩民李大叔购买1张彩票,中奖.这个事件是( )A.必然事件B.确定性事件C.不可能事件D.随机事件2(2022扬州)下列成语所描述的事件属于不可能事件的是( )A.水落石出B.水涨船高C.水滴石穿D.水中捞月3(2022广西北部湾经济区)下列事件是必然事件的是( )A.三角形内角和是180°B.端午节赛龙舟,红队获得冠军C.掷一枚均匀骰子,点数是6的一面朝上D.打开电视,正在播放神舟十四号载人飞船发射实况4(2021贵阳)“一个不透明的袋中装有三个球,球上分别标有1,2,x 这三个号码,这些球除号码外都相同,搅匀后任意摸出一个球,摸出球上的号码小于5”是必然事件,则x 的值可能是( )A.4B.5C.6D.7命题点2一步概率的计算(含几何概型) 5(2022绍兴)在一个不透明的袋子里,装有3个红球、1个白球,它们除颜色外都相同,从袋中任意摸出一个球为红球的概率是( )A.34B.12C.13D.146(2022温州)9张背面相同的卡片,正面分别写有不同的从1到9的一个自然数.现将卡片背面朝上,从中任意抽出一张,正面的数是偶数的概率为( )A.19B.29C.49D.597(2022烟台)如图所示的电路,同时闭合两个开关能形成闭合电路的概率是( )A.13B.23C.12 D.18(2022苏州)如图,在5×6的长方形网格飞镖游戏板中,每块小正方形除颜色外都相同,小正方形的顶点称为格点,扇形OAB 的圆心及弧的两端均为格点.假设飞镖击中每一块小正方形是等可能的(击中扇形的边界或没有击中游戏板,则重投1次),任意投掷飞镖1次,飞镖击中扇形OAB (阴影部分)的概率是( )A.π12B.π24C.10π60D.5π609(2022株洲)某产品生产企业开展有奖促销活动,将每6件产品装成一箱,且使得每箱中都有2件能中奖.若从其中一箱中随机抽取1件产品,则能中奖的概率是 .(用最简分数表示)10(2022牡丹江)在九张质地都相同的卡片上分别写有数字-4,-3,-2,-1,0,1,2,3,4,从中任意抽取一张卡片,则所抽卡片上数字的绝对值不大于2的概率是 . 11(2022成都)如图,已知☉O 是小正方形的外接圆,是大正方形的内切圆.现假设可以随意在图中取点,则这个点取在阴影部分的概率是 .命题点3频率与概率 12(2022牡丹江)王老师对本班40名学生的血型进行统计,列出如下的统计表,则本班A 型血的人数是( )组别A 型B 型AB 型O 型频率0.40.350.10.15A.16人B.14人C.4人D.6人13(2022抚顺)质检部门对某批产品的质量进行随机抽检,结果如下表所示:抽检产品数n 1001502002503005001000合格产品89134179226271451904数m 合格率mn0.8900.8930.8950.9040.9030.9020.904在这批产品中任取一件,恰好是合格产品的概率约是(结果保留一位小数) .命题点4两步概率的计算 14(2022邵阳)假定按同一种方式掷两枚均匀硬币,如果第一枚出现正面朝上,第二枚出现反面朝上,就记为(正,反),如此类推,出现(正,正)的概率是( )A.1B.34C.12D.1415(2022北京)不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别.从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是( )A.14B.13C.12D.3416(2022常德)从1,2,3,4,5这五个数中任选两个数,其和为偶数的概率为( )A .15B .25C .35D .4517(2022武汉)班长邀请A,B,C,D 四位同学参加圆桌会议.如图,班长坐在⑤号座位,四位同学随机坐在①②③④四个座位,则A,B 两位同学座位相邻的概率是( )A.14B.13C.12D.2318(2022河南)为开展“喜迎二十大、永远跟党走、奋进新征程”主题教育宣讲活动,某单位从甲、乙、丙、丁四名宣讲员中随机选取两名进行宣讲,则恰好选中甲和丙的概率为 .19(2021荆州)有两把不同的锁和四把钥匙,其中两把钥匙分别能打开这两把锁,另外两把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是 .20(2022聊城)如图,两个相同的可以自由转动的转盘A 和B,转盘A 被三等分,分别标有数字2,0,-1;转盘B 被四等分,分别标有数字3,2,-2,-3.如果同时转动转盘A,B,转盘停止时,两个指针指向转盘A,B上的对应数字分别为x,y(当指针指向两个扇形的交线时,需重新转动转盘),那么点(x,y)落在直角坐标系第二象限的概率是 .21(2022吉林)长白山国家级自然保护区、松花湖风景名胜区和净月潭国家森林公园是吉林省著名的三个景区.甲、乙两人用抽卡片的方式决定一个自己要去的景区.他们准备了3张不透明的卡片,正面分别写上长白山、松花湖、净月潭.卡片除正面景区名称不同外其余均相同,将3张卡片正面向下洗匀,甲先从中随机抽取一张卡片,记下景区名称后正面向下放回,洗匀后乙再从中随机抽取一张卡片.请用画树状图或列表的方法,求两人都决定去长白山的概率.22(2022江西)某医院计划选派护士支援某地的防疫工作,甲、乙、丙、丁4名护士积极报名参加,其中甲是共青团员,其余3人均是共产党员.医院决定用随机抽取的方式确定人选.(1)“随机抽取1人,甲恰好被抽中”是 事件;A.不可能B.必然C.随机(2)若需从这4名护士中随机抽取2人,请用画树状图法或列表法求出被抽到的2名护士都是共产党员的概率.23(2022扬州)某超市为回馈广大消费者,在开业周年之际举行摸球抽奖活动.摸球规则如下:在一只不透明的口袋中装有1个白球和2个红球,这些球除颜色外都相同,搅匀后先从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球.(1)用树状图列出所有等可能出现的结果.(2)活动设置了一等奖和二等奖两个奖次,一等奖的获奖率低于二等奖.现规定摸出颜色不同的两球和摸出颜色相同的两球分别对应不同奖次,请写出它们分别对应的奖次,并说明理由.24(2022陕西)有5个封装后外观完全相同的纸箱,且每个纸箱内各装有一个西瓜,其中,所装西瓜的质量分别为6 kg,6 kg,7 kg,7 kg,8 kg.现将这5个纸箱随机摆放. (1)若从这5个纸箱中随机选1个,则所选纸箱里西瓜的质量为6 kg的概率是 ;(2)若从这5个纸箱中随机选2个,请利用列表或画树状图的方法,求所选2个纸箱里西瓜的质量之和为15 kg的概率.25(2022连云港)“石头、剪子、布”是一个广为流传的游戏,规则是:甲、乙两人都做出“石头”“剪子”“布”3种手势中的1种,其中“石头”赢“剪子”,“剪子”赢“布”,“布”赢“石头”,手势相同不分输赢.假设甲、乙两人每次都随意并且同时做出3种手势中的1种.(1)甲每次做出“石头”手势的概率为 ;(2)用画树状图或列表的方法,求乙不输的概率.26(2022青岛) 2022年3月23日下午,“天宫课堂”第二课开讲,航天员翟志刚、王亚平、叶光富相互配合进行授课,激发了同学们学习航天知识的热情.小冰和小雪参加航天知识竞赛时,均获得了一等奖,学校想请一位同学作为代表分享获奖心得.小冰和小雪都想分享,于是两人决定一起做游戏,谁获胜谁分享.游戏规则如下:甲口袋装有编号为1,2的两个球,乙口袋装有编号为1,2,3,4,5的五个球,两口袋中的球除编号外都相同,小冰先从甲口袋中随机摸出一个球,小雪再从乙口袋中随机摸出一个球,若两球编号之和为奇数,则小冰获胜,若两球编号之和为偶数,则小雪获胜.请用列表或画树状图的方法,说明这个游戏对双方是否公平.分类训练23 概率1.D2.D3.A4.A 【解析】 ∵“任意摸出一个球,摸出球上的号码小于5”是必然事件,∴x<5,故选A .5.A6.C7.B 【解析】 同时闭合两个开关,共有3种等可能的结果:S 1,S 2;S 1,S 3;S 2,S 3.其中能形成闭合电路的结果有2种,故所求概率为23 .8.A 【解析】 易知OA=OB=10,∠AOB=90°,故所求概率为S 扇形OABS 网格=90π×(10)23605×6=π12.9.13 【解析】 从一箱中随机抽取1件产品,共有6种可能,其中能中奖的可能有2种,故能中奖的概率为26=13.10.59 【解析】 这9个数中,绝对值不大于2的有-2,-1,0,1,2,共5个,故所求概率为59.11.π-24 【解析】 设小正方形的对角线的长为2a ,则小正方形的边长为2a ,圆的半径为a ,大正方形的边长为2a ,∴S 阴影=πa 2-(2a )2=πa 2-2a 2,S 大正方形=4a 2,∴点取在阴影部分的概率为S 阴影S 大正方形=πa 2-2a 24a 2=π-24.12.A 13.0.914.D 【解析】 画树状图如下.共有4种等可能的结果,其中出现(正,正)的结果有1种,∴出现(正,正)的概率为14.15.A 【解析】 根据题意列表如下:红绿红(红,红)(红,绿)绿(绿,红)(绿,绿)由表格可知,共有4种等可能的结果,其中第一次摸到红球、第二次摸到绿球的结果有1种,故所求概率为14.16.B 【解析】 根据题意,画树状图如下:由树状图可知,共有20种等可能的结果,其中两个数的和为偶数的有8种,故所求概率为820=25.故选B .17.C 【解析】 根据题意,列表如下:①②③④①①②①③①④②②①②③②④③③①③②③④④④①④②④③由表格可知共有12种等可能的情况,其中A,B 两位同学座位相邻的情况有6种(①②,②①,②③,③②,③④,④③),故A,B 两位同学座位相邻的概率是612=12.18.16 【解析】 根据题意,列表如下:甲乙丙丁甲(乙,甲)(丙,甲)(丁,甲)乙(甲,乙)(丙,乙)(丁,乙)丙(甲,丙)(乙,丙)(丁,丙)丁(甲,丁)(乙,丁)(丙,丁)由表格可知,共有12种等可能的情况,其中恰好选中甲和丙的情况有2种,故所求概率P=16.19.14 【解析】 记两把不同的锁分别为A,B,四把钥匙分别为a,b,c,d,设钥匙a,b 分别能打开锁A,B.根据题意,画树状图如下.由树状图可知,共有8种等可能的结果,其中随机取出一把钥匙开任意一把锁,一次打开锁的结果有2种,故所求概率为28,即14.20.16 【解析】 列表如下:20-13(2,3)(0,3)(-1,3)2(2,2)(0,2)(-1,2)-2(2,-2)(0,-2)(-1,-2)-3(2,-3)(0,-3)(-1,-3)由表可知,共有12种等可能的情况,其中点(x ,y )落在直角坐标系第二象限的情况有2种,故所求概率为212=16.21.【参考答案】 将正面写有长白山、松花湖、净月潭的卡片依次用字母A,B,C 表示.方法一:画树状图如下.由树状图可知,共有9种等可能的结果,其中甲、乙两人都决定去长白山的结果有1种,故所求概率为19.方法二:列表如下.A B C A (A,A)(A,B)(A,C)B (B,A)(B,B)(B,C)C(C,A)(C,B)(C,C)由表格可知,共有9种等可能的结果,其中甲、乙两人都决定去长白山的结果有1种,故所求概率为19.22.【参考答案】 (1)C (2)方法一:画树状图如下.从树状图可以看出,所有可能结果共有12种,且每种结果出现的可能性相等,其中抽到的2名护士都是共产党员的结果有6种,所以P (抽到的2名护士都是共产党员)=612=12.方法二:列表如下.甲乙丙丁甲(甲,乙)(甲,丙)(甲,丁)乙(乙,甲)(乙,丙)(乙,丁)丙(丙,甲)(丙,乙)(丙,丁)丁(丁,甲)(丁,乙)(丁,丙)由上表可知,所有可能结果共有12种,且每种结果出现的可能性相等,其中抽到的2名护士都是共产党员的结果有6种,所以P (抽到的2名护士都是共产党员)=612=12.23.【参考答案】 (1)根据题意,画树状图如下:(2)摸出颜色不同的两球对应的奖次为二等奖,摸出颜色相同的两球对应的奖次为一等奖.理由:由(1)可知,共有6种等可能的结果,其中摸出颜色不同的两球的结果有4种,摸出颜色相同的两球的结果有2种,∴摸出颜色不同的两球的概率为46=23,摸出颜色相同的两球的概率为26=13.∵一等奖的获奖率低于二等奖,13<23,∴摸出颜色不同的两球对应的奖次为二等奖,摸出颜色相同的两球对应的奖次为一等奖.24.【参考答案】 (1)25(2)列表如下:66778612131********131********157********814141515由表格可知,共有20种等可能的结果,其中2个西瓜的质量之和为15 kg 的结果有4种.∴P=420=15.名师点拨解决有关概率问题,需熟练掌握以下方法:1.公式法,P (A )=mn ,其中n 为所有事件发生的总次数,m 为事件A 发生的总次数.2.列举(列表或画树状图)法,其一般步骤为:①判断应使用列表法还是画树状图法,列表法一般适用于两步计算,画树状图法适用于两步及两步以上计算;②不重不漏地列举出所有可能出现的结果,并判断每种结果发生的可能性是否相等;③确定所有可能出现的结果数n 及所求事件A 出现的结果数m ;④用公式P (A )=m n 求事件A 发生的概率.25.【参考答案】 (1)13(2)树状图如图所示:由树状图可知,共有9种等可能的结果,其中乙不输的结果共有6种,∴P (乙不输)=69=23.答:乙不输的概率是23.26.【参考答案】 列表如下:123451(1,1)(1,2)(1,3)(1,4)(1,5)2(2,1)(2,2)(2,3)(2,4)(2,5)由表可知,共有10种等可能的结果,其中两球编号之和为奇数的结果有5种,两球编号之和为偶数的结果有5种,∴P (小冰获胜)=510=12,P (小雪获胜)=510=12.∵P (小冰获胜)=P (小雪获胜),∴这个游戏对双方都公平.。
中考数学 专题复习 统计与概率(原卷版+解析)
专题12 统计与概率一选择题1.(唐山市遵化市一模)下列说法正确的是()A. “367人中有2人同月同日生”为必然事件B. 检测某批次灯泡的使用寿命,适宜用全面调查C. 可能性是1%的事件在一次试验中一定不会发生D. 数据3,5,4,1,−2的中位数是42.(无锡市四校联考一模)某次数学考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我组成绩是87分的同学最多.”小英说:“我们组的7位同学成绩排在最中间的恰好也是87分.”上面两位同学的话能反映的统计量是()A. 众数和平均数B. 平均数和中位数C. 众数和方差D. 众数和中位数3.(南通市崇川区启秀中学一模)若一组数据1,2,3,4,x的平均数与中位数相同,则实数x的值不可能是()A. 0B. 2.5C. 3D. 54.(合肥市天鹅湖教育集团一模)下表是某班体育考试跳绳项目模拟考试时10名同学的测试成绩(单位:个/分钟)则关于这10名同学每分钟跳绳的测试成绩,下列说法错误的是()A. 方差是135B. 平均数是170C. 中位数是173.5D. 众数是1775.(合肥168中一模)甲、乙、丙、丁四位选手各射击10次,每人的平均成绩都是9.3环,方差如表:则这四个人中成绩发挥最稳定的是()A. 甲B. 乙C. 丙D. 丁6.(淮北市名校联考一模)一组数据:5,3,4,x,2,1的平均数是3,则这组数据的方差是()A. 16B. 53C. 10D. 6367.(江西省初中名校联盟一模)袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是()A. 3个B. 不足3个C. 4个D. 5个或5个以上8.(芜湖市一模)向一个半径为2的圆中投掷石子(假设石子全部投入圆形区域内),那么石子落在此圆的内接正方形中的概率是()A.B.C.D.二解答题9.(江西省初中名校联盟一模)张馨参加班长竞选,需要进行演讲、学生代表评分、答辩三个环节,其中学生代表评分项的得分以六位代表评分的平均数计分,她的各项得分如表所示:(1)求学生代表给张馨评分的众数和中位数.(2)根据竞选规则,将演讲、学生代表评分、答辩的得分按20%、50%,30%的比例计算成绩,求张馨的最后得分.10.(唐山市遵化市一模)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店,在其余蛋糕店数量不变的情况下,若要使甲公司经营的蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.11.(芜湖市一模)中华文明,源远流长,中华汉字,寓意深广,为了传承优秀传统文化,某校九年级组织600名学生参加了一次“汉字听写”大赛.赛后发现所有参赛学生的成绩均不低于60分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中若干名学生的成绩作为样本,成绩如下:90,92,81,82,78,95,86,88,72,66,62,68,89,86,93,97,100,73,76,80,77,81,86,89,82,85,71,68,74,98,90,97,100,84,87,73,65,92,96,60.对上述成绩进行了整理,得到下列不完整的统计图表:成绩x/分频数频率60≤x<7060.1570≤x<8080.280≤x<90a b90≤x≤100c d请根据所给信息,解答下列问题:(1)a=,b=,c=,d=;(2)请补全频数分布直方图;(3)若成绩在90分以上(包括90分)的为“优”等,请你估计参加这次比赛的600名学生中成绩“优”等的约有多少人?12.(天津市河北区一模)某校为了解初中学生每天在校体育活动的时间(单位:h),随机调査了该校的部分初中学生.根据调查结果,绘制出如下的统计图1和图2.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的初中学生人数为,图1中m的值为;(Ⅱ)求统计的这组每天在校体育活动时间数据的众数和中位数;(Ⅲ)根据统计的这组每天在校体育活动时间的样本数据,若该校共有1200名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.13.(无锡市四校联考一模)某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级(1)班学生即将所穿校服型号情况进行摸底调查,并根据调查结果绘制如图两个不完整的统计图(校服型号以身高作为标准,共分为6种号).根据以上信息,解答下列问题:(1)该班共有多少名学生?(2)在条形统计图中,请把空缺部分补充完整;在扇形统计图中,请计算185型校服所对应的扇形圆心角的大小;(3)求该班学生所穿校服型号的众数和中位数.如果该高中学校准备招收2000名高一新生,则估计需要准备多少套180型号的校服?14.(淮北市名校联考一模)某校九年级获得一个到高校体验的名额,从前期的选拔中,小明和小刚从众多报名者中脱颖而出:为公平起见,学校设计了如下的游戏:四张大小、质地相同的卡片上分别标有数字1、2、3、4.将标有数字的一面朝下,洗匀后从中抽取一张卡片,记下上面的数字,不放回,再从剩余的卡片中抽取一张卡片,记下上面的数字如果两次抽取卡片上数字之和是奇数,小明获胜:如果两次抽取卡片上数字之和是偶数,小刚获胜,获胜的同学将代表学校参加“高校体验”活动.请问:学校设计的这个游戏是否公平?说明理由.15.(无锡市四校联考一模)三辆汽车经过某收费站下高速时,在2个收费通道A,B中,可随机选择其中的一个通过.(1)一辆汽车经过此收费站时,选择A通道通过的概率是______;(2)求三辆汽车经过此收费站时,至少有两辆汽车选择B通道通过的概率.(请用画树状图的方法写出分析过程,并求出结果).16.(江西省初中名校联盟一模)为了满足学生的兴趣爱好,学校决定在七年级开设兴趣班,兴趣班设有四类:A围棋班;B象棋班;C书法班;D摄影班.为了便于分班,年级组随机抽查(每人选报一类),并绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:(1)求扇形统计图中m、n的值,并补全条形统计图.(2)已知该校七年级有600名学生,学校计划开设三个“围棋班”,每班要求不超过40人,实行随机分班.①学校的开班计划是否能满足选择“围棋班”的学生意愿,说明理由;②展鹏、展飞是一对双胞胎,他们都选择了“围棋班”,并且希望能分到同一个班,用树状图或列表法求他们的希望得以实现的概率.17.(宿州市一模)(10分)开展“不忘初心,牢记使命”主题教育,是新时代中国特色社会主义的迫切需要.某校从3名党员老师中随机抽取参加“不忘初心,牢记使命”的演讲比赛,其中男教师1名,女教师2名,求下列事件的概率:(1)抽取1名,恰好是男教师:(2)抽取2名,恰好是1名男教师和1名女教师.18..(合肥市天鹅湖教育集团一模)张老师把微信运动里“好友计步榜”排名前20的好友一天行走的步数做了整理,绘制了如下不完整的统计图表:根据信息解答下列问题:(1)填空:m=,n=;并补全条形统计图;(2)这20名朋友一天行走步数的中位数落在组;(填组别)(3)张老师准备随机给排名前4名的甲、乙、丙、丁中的两位点赞,请求出甲、乙被同时点赞的概率.19.(合肥168中一模)“端午”节前,小明爸爸去超市购买了大小、形状、重量等都相同的火腿粽子和豆沙;妈妈从盒中取出火腿粽子3只、粽子若干,放入不透明的盒中,此时从盒中随机取出火腿粽子的概率为13.豆沙粽子7只送给爷爷和奶奶后,这时随机取出火腿粽子的概率为25(1)请你用所学知识计算:爸爸买的火腿粽子和豆沙粽子各有多少只?(2)若小明一次从盒内剩余粽子中任取2只,问恰有火腿粽子、豆沙粽子各1只的概率是多少?(用列表法或树状图计算)20.(南通市崇川区启秀中学一模)在一个不透明的盒中有m个黑球和1个白球,这些球除颜色外无其他差别.(1)若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到黑球的频率稳定在0.75左右,则m的值应是______;(2)在(1)的条件下,用m个黑球和1个白球进行摸球游戏.先从盒中随机摸取一个球,再从剩下的球中再随机摸取一个球,求事件“先摸到黑球,再摸到白球”的概率.21.(广东省北江实验学校一模)为了了解班级学生数学课前预习的具体情况,郑老师对本班部分学生进行了为期一个月的跟踪调查,他将调查结果分为四类:A:很好;B:较好;C:一般;D:不达标,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)C类女生有________名,D类男生有________名,将上面条形统计图补充完整;(2)扇形统计图中“课前预习不达标”对应的圆心角度数是________;(3)为了共同进步,郑老师想从被调查的A类和D类学生中各随机机抽取一位同学进行“一帮一”互助学习,请用画树状图或列表的方法求出所选两位同学恰好是一男一女同学的概率,专题12 统计与概率一选择题2.(唐山市遵化市一模)下列说法正确的是()A. “367人中有2人同月同日生”为必然事件B. 检测某批次灯泡的使用寿命,适宜用全面调查C. 可能性是1%的事件在一次试验中一定不会发生D. 数据3,5,4,1,−2的中位数是4【解析】A、“367人中有2人同月同日生”为必然事件,正确;B、检测某批次灯泡的使用寿命,适宜用抽样调查,故此选项错误;C、可能性是1%的事件在一次试验中也有可能发生,故此选项错误;D、数据3,5,4,1,−2的中位数是3,故此选项错误;故选:A.2.(无锡市四校联考一模)某次数学考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我组成绩是87分的同学最多.”小英说:“我们组的7位同学成绩排在最中间的恰好也是87分.”上面两位同学的话能反映的统计量是()A. 众数和平均数B. 平均数和中位数C. 众数和方差D. 众数和中位数【解析】在一组数据中出现次数最多的数是这组数据的众数,排在中间位置的数是中位数,故选:D.3.(南通市崇川区启秀中学一模)若一组数据1,2,3,4,x的平均数与中位数相同,则实数x的值不可能是()A. 0B. 2.5C. 3D. 5【解析】(1)将这组数据从小到大的顺序排列为1,2,3,4,x,处于中间位置的数是3,∴中位数是3,平均数为(1+2+3+4+x)÷5,∴3=(1+2+3+4+x)÷5,解得x=5;符合排列顺序;(2)将这组数据从小到大的顺序排列后1,2,3,x,4,中位数是3,此时平均数是(1+2+3+4+x)÷5=3,解得x=5,不符合排列顺序;(3)将这组数据从小到大的顺序排列后1,x,2,3,4,中位数是2,平均数(1+2+3+4+x)÷5=2,解得x=0,不符合排列顺序;(4)将这组数据从小到大的顺序排列后x,1,2,3,4,中位数是2,平均数(1+2+3+4+x)÷5=2,解得x=0,符合排列顺序;(5)将这组数据从小到大的顺序排列后1,2,x,3,4,中位数,x,平均数(1+2+3+4+x)÷5=x,解得x=2.5,符合排列顺序;∴x的值为0、2.5或5.故选:C.4.(合肥市天鹅湖教育集团一模)下表是某班体育考试跳绳项目模拟考试时10名同学的测试成绩(单位:个/分钟)则关于这10名同学每分钟跳绳的测试成绩,下列说法错误的是()A. 方差是135B. 平均数是170C. 中位数是173.5D. 众数是177【解析】这组数据的平均数=(140+160+169+170×2+177×3+180×2)÷10=170;这组数据的方差=110[(140−170)2+(160−170)2+(169−170)2+2×(170−170)2+3×(177−170)2+2×(180−170)2]=134.8;∵共有10个数,∴中位数是第5个和6个数的平均数,∴中位数是:(170+177)÷2=173.5;∵177出现了三次,出现的次数最多,∴众数是177;∴说法错误的是A.故选A.5.(合肥168中一模)甲、乙、丙、丁四位选手各射击10次,每人的平均成绩都是9.3环,方差如表:则这四个人中成绩发挥最稳定的是()A. 甲B. 乙C. 丙D. 丁【解析】∵0.016<0.022<0.025<0.035,∴乙的成绩的方差最小,∴这四个人中成绩发挥最稳定的是乙.故选:B.6.(淮北市名校联考一模)一组数据:5,3,4,x,2,1的平均数是3,则这组数据的方差是()A. 16B. 53C. 10D. 636【解析】由平均数的公式得:(5+3+4+x+2+1)÷6=3,解得x=3;∴方差=[(5−3)2+(3−3)2+(4−3)2+(3−3)2+(2−3)2+(1−3)2]÷6=53.故选:B.7.(江西省初中名校联盟一模)袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是()A. 3个B. 不足3个C. 4个D. 5个或5个以上【解析】∵袋中有红球4个,取到白球的可能性较大,∴袋中的白球数量大于红球数量,即袋中白球的个数可能是5个或5个以上.故选:D.8.(芜湖市一模)向一个半径为2的圆中投掷石子(假设石子全部投入圆形区域内),那么石子落在此圆的内接正方形中的概率是()A.B.C.D.【解析】∵半径为2的圆内接正方形边长为2,∴圆的面积为4π,正方形的面积为8,则石子落在此圆的内接正方形中的概率是=,故选:D.二解答题9.(江西省初中名校联盟一模)张馨参加班长竞选,需要进行演讲、学生代表评分、答辩三个环节,其中学生代表评分项的得分以六位代表评分的平均数计分,她的各项得分如表所示:(1)求学生代表给张馨评分的众数和中位数.(2)根据竞选规则,将演讲、学生代表评分、答辩的得分按20%、50%,30%的比例计算成绩,求张馨的最后得分.【解析】(1)学生代表给张馨评分的众数和中位数分别为9.2,9.2.(2)学生代表给张馨评分的平均分=16(9.2+9.2+9.0+9.2+9.3+9.3)=9.2,张馨的最后得分=9.5×20%+9.2×50%+9.0×30%20%+50%+30%=9.2.10.(唐山市遵化市一模)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店,在其余蛋糕店数量不变的情况下,若要使甲公司经营的蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.=600家,【解析】(1)该市蛋糕店的总数为150÷90360=100家;甲公司经营的蛋糕店数量为600×60360(2)设甲公司增设x家蛋糕店,由题意得:20%×(600+x)=100+x,解得:x=25,答:甲公司需要增设25家蛋糕店.11.(芜湖市一模)中华文明,源远流长,中华汉字,寓意深广,为了传承优秀传统文化,某校九年级组织600名学生参加了一次“汉字听写”大赛.赛后发现所有参赛学生的成绩均不低于60分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中若干名学生的成绩作为样本,成绩如下:90,92,81,82,78,95,86,88,72,66,62,68,89,86,93,97,100,73,76,80,77,81,86,89,82,85,71,68,74,98,90,97,100,84,87,73,65,92,96,60.对上述成绩进行了整理,得到下列不完整的统计图表:成绩x/分频数频率60≤x<7060.1570≤x<8080.280≤x<90a b90≤x≤100c d请根据所给信息,解答下列问题:(1)a=,b=,c=,d=;(2)请补全频数分布直方图;(3)若成绩在90分以上(包括90分)的为“优”等,请你估计参加这次比赛的600名学生中成绩“优”等的约有多少人?【解析】(1)由题意知a=14,b=14÷40=0.35,c=12,d=12÷40=0.3,故答案为:14、0.35、12、0.3;(2)补全频数直方图如下:(3)600×0.3=180,答:估计参加这次比赛的600名学生中成绩“优”等的约有180人.12.(天津市河北区一模)某校为了解初中学生每天在校体育活动的时间(单位:h),随机调査了该校的部分初中学生.根据调查结果,绘制出如下的统计图1和图2.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的初中学生人数为,图1中m的值为;(Ⅱ)求统计的这组每天在校体育活动时间数据的众数和中位数;(Ⅲ)根据统计的这组每天在校体育活动时间的样本数据,若该校共有1200名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.【解析】(Ⅰ)本次接受调查的初中学生人数为:4÷10%=40,m%==25%,故答案为:40,25.(Ⅱ)由条形统计图得,4个0.9,8个1.2,15个1.5,10个1.8,3个2.1,∴1.5出现的次数最多,15次,∴众数是1.5,第20个数和第21个数都是1.5,∴中位数是1.5;(Ⅲ)1200×=1080(人),答:该校每天在校体育活动时间大于1h的学生有1080人.13.(无锡市四校联考一模)某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级(1)班学生即将所穿校服型号情况进行摸底调查,并根据调查结果绘制如图两个不完整的统计图(校服型号以身高作为标准,共分为6种号).根据以上信息,解答下列问题:(1)该班共有多少名学生?(2)在条形统计图中,请把空缺部分补充完整;在扇形统计图中,请计算185型校服所对应的扇形圆心角的大小;(3)求该班学生所穿校服型号的众数和中位数.如果该高中学校准备招收2000名高一新生,则估计需要准备多少套180型号的校服?【解析】(1)15÷30%=50(名),即该班共有50名学生;(2)穿175型校服的学生有50×20%=10(名),185型的学生有:50−3−15−15−10−5=2(名),补充完整的条形统计图如右图所示,=14.4°;185型校服所对应的扇形圆心角的度数是:360°×250(3)由统计图可知,该班学生所穿校服型号的众数是165和170,中位数170,=200(套)2000×550答:需要准备200套180型号的校服.14.(淮北市名校联考一模)某校九年级获得一个到高校体验的名额,从前期的选拔中,小明和小刚从众多报名者中脱颖而出:为公平起见,学校设计了如下的游戏:四张大小、质地相同的卡片上分别标有数字1、2、3、4.将标有数字的一面朝下,洗匀后从中抽取一张卡片,记下上面的数字,不放回,再从剩余的卡片中抽取一张卡片,记下上面的数字如果两次抽取卡片上数字之和是奇数,小明获胜:如果两次抽取卡片上数字之和是偶数,小刚获胜,获胜的同学将代表学校参加“高校体验”活动.请问:学校设计的这个游戏是否公平?说明理由.【解析】这个游戏不公平,画树状图如下:由树状图知,共有12种等可能结果,其中和为奇数的有8种结果,和为偶数的有4种结果, ∴小明获胜的概率为812=23,小刚获胜的概率为412=13, ∵23≠13, ∴此游戏不公平.15.(无锡市四校联考一模)三辆汽车经过某收费站下高速时,在2个收费通道A ,B 中,可随机选择其中的一个通过.(1)一辆汽车经过此收费站时,选择A 通道通过的概率是______;(2)求三辆汽车经过此收费站时,至少有两辆汽车选择B 通道通过的概率.(请用画树状图的方法写出分析过程,并求出结果).【解析】(1)∵在2个收费通道A ,B 中,可随机选择其中的一个通过. ∴一辆汽车经过此收费站时,选择A 通道通过的概率=12, 故答案为:12; (2)画树状图得:∵共有8种等可能的情况,其中至少有两辆汽车选择B 通道通过的有4种情况, ∴至少有两辆汽车选择B 通道通过的概率为48=12.16.(江西省初中名校联盟一模)为了满足学生的兴趣爱好,学校决定在七年级开设兴趣班,兴趣班设有四类:A 围棋班;B 象棋班;C 书法班;D 摄影班.为了便于分班,年级组随机抽查(每人选报一类),并绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题: (1)求扇形统计图中m 、n 的值,并补全条形统计图.(2)已知该校七年级有600名学生,学校计划开设三个“围棋班”,每班要求不超过40人,实行随机分班. ①学校的开班计划是否能满足选择“围棋班”的学生意愿,说明理由;②展鹏、展飞是一对双胞胎,他们都选择了“围棋班”,并且希望能分到同一个班,用树状图或列表法求他们的希望得以实现的概率.【解析】(1)总人数=15÷25%=60(人).A类人数=60−24−15−9=12(人).∵12÷60=0.2=20%,∴m=20,=54°,∴n°=360°×960则n=54;补图如下:(2)①∵600×20%÷3=40人,∴能满足选择“围棋班”的学生意愿;②根据题意画图如下:共有9种等可能的结果数,其中他们的希望得以实现的有3种,则他们的希望得以实现的概率是39=13.17.(宿州市一模)(10分)开展“不忘初心,牢记使命”主题教育,是新时代中国特色社会主义的迫切需要.某校从3名党员老师中随机抽取参加“不忘初心,牢记使命”的演讲比赛,其中男教师1名,女教师2名,求下列事件的概率:(1)抽取1名,恰好是男教师:(2)抽取2名,恰好是1名男教师和1名女教师.【解析】(1)∵男教师1名,女教师2名,∴抽取1名,恰好是男教师:;(2)抽取2名,恰好是1名男教师和1名女教师.所有等可能的结果有6个,恰好是1名男教师和1名女教师有4个,∴P==.18..(合肥市天鹅湖教育集团一模)张老师把微信运动里“好友计步榜”排名前20的好友一天行走的步数做了整理,绘制了如下不完整的统计图表:根据信息解答下列问题:(1)填空:m=,n=;并补全条形统计图;(2)这20名朋友一天行走步数的中位数落在组;(填组别)(3)张老师准备随机给排名前4名的甲、乙、丙、丁中的两位点赞,请求出甲、乙被同时点赞的概率.【解析】(1)2÷0.1=20,m=620=0.3,n=220=0.1;故答案为0.3;0.1;条形统计图如图(2)这20名朋友一天行走步数的中位数落在B组;故答案为B;(3)画树状图如下:共有12种等可能的结果数,其中甲、乙被同时点赞的结果数为2, ∴P (甲、乙被同时点赞)=212=16. 19.(合肥168中一模)“端午”节前,小明爸爸去超市购买了大小、形状、重量等都相同的火腿粽子和豆沙粽子若干,放入不透明的盒中,此时从盒中随机取出火腿粽子的概率为13;妈妈从盒中取出火腿粽子3只、豆沙粽子7只送给爷爷和奶奶后,这时随机取出火腿粽子的概率为25. (1)请你用所学知识计算:爸爸买的火腿粽子和豆沙粽子各有多少只?(2)若小明一次从盒内剩余粽子中任取2只,问恰有火腿粽子、豆沙粽子各1只的概率是多少?(用列表法或树状图计算)【解析】(1)设爸爸买的火腿粽子和豆沙粽子分别为x 只、y 只,根据题意得:{xx+y=13x−3x−3+y−7=25, 解得:{x =5y =10,经检验符合题意,答:爸爸买了火腿粽子5只、豆沙粽子10只;(2)由题可知,盒中剩余的火腿粽子和豆沙粽子分别为2只、3只,我们不妨把两只火腿粽子记为a 1、a 2;3只豆沙粽子记为b 1、b 2、b 3, 则可列出表格如下:一共有20种情况,恰有火腿粽子、豆沙粽子各1只的有12种情况, 所以,P(A)=1220=610=35.20.(南通市崇川区启秀中学一模)在一个不透明的盒中有m 个黑球和1个白球,这些球除颜色外无其他差别.(1)若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到黑球的频率稳定在0.75左右,则m的值应是______;(2)在(1)的条件下,用m个黑球和1个白球进行摸球游戏.先从盒中随机摸取一个球,再从剩下的球中再随机摸取一个球,求事件“先摸到黑球,再摸到白球”的概率.【解析】(1)根据题意得mm+1=0.75,解得:m=3,经检验:m=3是分式方程的解,故答案为:3;(2)画树状图如下:从树状图可知,“先从盒子中随机取出一个球,再从剩下的球中再随机摸取一个球”共12种等可能的结果,其中“先摸到黑球,再摸到白球”的结果有3种,∴P(先摸到黑球,再摸到白球)=312=14.21.(广东省北江实验学校一模)为了了解班级学生数学课前预习的具体情况,郑老师对本班部分学生进行了为期一个月的跟踪调查,他将调查结果分为四类:A:很好;B:较好;C:一般;D:不达标,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)C类女生有________名,D类男生有________名,将上面条形统计图补充完整;(2)扇形统计图中“课前预习不达标”对应的圆心角度数是________;(3)为了共同进步,郑老师想从被调查的A类和D类学生中各随机机抽取一位同学进行“一帮一”互助学习,请用画树状图或列表的方法求出所选两位同学恰好是一男一女同学的概率,【解析】(1)C类学生人数:20×25%=5(名)C类女生人数:5﹣2=3(名),D类学生占的百分比:1﹣15%﹣50%﹣25%=10%,D类学生人数:20×10%=2(名),D类男生人数:2﹣1=1(名),故C类女生有3名,D类男生有1名;补充条形统计图,故答案为:3,1(2)解:360°×(1﹣50%﹣25%﹣15%)=36°,答:扇形统计图中“课前预习不达标”对应的圆心角度数是36°;故答案为:36°(3)解:由题意画树形图如下:从树形图看出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选两位同学恰好是一位男同学和一位女同学的结果共有3种.所以P(所选两位同学恰好是一位男同学和一位女同学)=36=12.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国高中数学历届(2009-2019)联赛与各省市预赛试题汇编专题23概率与统计真题汇编与预赛典型例题1.【2019年全国联赛】在1,2,3…,10中随机选出一个数a,在-1,-2,-3.…,-10中随机选出一个数b,则a2+b被3整除的概率为.2.【2018年全国联赛】将1,2,3,4,5,6随机排成一行,记为a,b,c,d,e,f,则abc+def是偶数的概率为.3.【2016年全国联赛】袋子A中装有两张10元纸币和三张1元纸币,袋子B中装有四张5元纸币和三张1元纸币.现随机从两个袋子中各取出两张纸币.则A中剩下的纸币面值之和大于B中剩下的纸币面值之和的概率为________.4.【2015年全国联赛】在正方体中随机取三条棱,它们两两异面的概率为______.5.【2014年全国联赛】设A、B、C、D为空间四个不共面的点,以的概率在每对点之间连一条边,任意两对点之间是否连边是相互独立的,则点A与B可用(一条边或者若干条边组成的)空间折线连接的概率为_ ______.6.【2013年全国联赛】从1,2,…,20中任取五个不同的数,其中至少有两个是相邻数的概率是______. 7.【2012年全国联赛】某情报站有四种互不相同的密码,每周使用其中的一种密码,且每周都是从上周未使用的三种密码中等可能地随机选用一种.设第一周使用种密码.那么,第七周也使用种密码的概率是______(用最简分数表示).8.【2010年全国联赛】两人轮流投掷骰子,每人每次投掷两颗,第一个使两颗骰子点数和大于6者为胜,否则,由另一人投掷.则先投掷人的获胜概率是________.9.【2009年全国联赛】某车站每天早上8:00~9:00、9:00~10:00都恰有一辆客车到站,但到站的时刻是随机的,且两者到站的时间是相互独立的,其规律见表1.一旅客8:20到站.则他候车时间的数学期望为______(精确到分).表1到站时刻8:10~9:108:30~9:308:50~9:50概率1.【2016年陕西】从1,2,…,20这20个数中,任取三个不同的数.则这三个数构成等差数列的概率为().A.B.C.D.2.【2016年天津】掷两次色子,用X记两次掷得点数的最大值.则下列各数中,与期望最接近的数为( ) A.4B.C.5D.3.【2018年江苏】将1,2,3,4,5,6,7,8,9这9个数随机填入的方格表中,每个小方格恰填写一个数,且所填数各不相同,则使每行、每列所填数之和都是奇数的概率是________.4.【2018年重庆】从正九边形中任取三个顶点构成三角形,则正九边形的中心在三角形内的概率________.5.【2018年安徽】从1,2,…,10中随机抽取三个各不相同的数字,其样本方差的概率=_________. 6.【2018年甘肃】已知由甲、乙两位男生和丙、丁两位女生组成的四人冲关小组,参加由某电视台举办的知识类答题闯关活动,活动共有四关,设男生闯过一至四关的概率依次是,女生闯过一至四关的概率依次是.(1)求男生闯过四关的概率;(2)设表示四人冲关小组闯过四关的人数,求随机变量的分布列和期望.7.【2016年上海】设n为给定的大于2的整数。
有n个外表上没有区别的袋子,第k(k=1,2,··,n)个袋中有k 个红球,n-k个白球。
将这些袋子混合后,任选一个袋子,并且从中连续取出三个球(每次取出不放回)。
求第三次取出的为白球的概率。
8.【2016年甘肃】在某电视娱乐节目的游戏活动中,每人需完成A、B、C三个项目.已知选手甲完成A、B、C三个项目的概率分别为.每个项目之间相互独立.(1)选手甲对A、B、C三个项目各做一次,求甲至少完成一个项目的概率.(2)该活动要求项目A、B 各做两次,项目C做三次.若两次项目A均完成,则进行项目B,并获得积分a;两次项目B均完成,则进行项目C,并获积分3a;三次项目C只要两次成功,则该选手闯关成功并获积分6a(积分不累计),且每个项目之间互相独立.用X表示选手甲所获积分的数值,写出X的分布列并求数学期望.全国高中数学历届(2009-2019)联赛与各省市预赛试题汇编专题23概率与统计真题汇编与预赛典型例题1.【2019年全国联赛】在1,2,3…,10中随机选出一个数a,在-1,-2,-3.…,-10中随机选出一个数b,则a2+b被3整除的概率为.【答案】【解析】若a∈{1,2,4,5,7,8,10},.若.若a∈{3,6,9},.若.∴a2+b为3的倍数的概率为.2.【2018年全国联赛】将1,2,3,4,5,6随机排成一行,记为a,b,c,d,e,f,则abc+def是偶数的概率为.【答案】【解析】先考虑abc+def为奇数的情况,此时abc,def一奇一偶,若abc为奇数,则a,b,c为1,3,5的排列,进而d,e,f为2,4,6的排列,这样有3!×3!=36种情况,由对称性可知,使abc+def为奇数的情况数为36×2=72种.从而abc+def为偶数的概率为.3.【2016年全国联赛】袋子A中装有两张10元纸币和三张1元纸币,袋子B中装有四张5元纸币和三张1元纸币.现随机从两个袋子中各取出两张纸币.则A中剩下的纸币面值之和大于B中剩下的纸币面值之和的概率为________.【答案】【解析】一种取法符合要求,等价于从A中取走的两张纸币的总面值a小于从B中取走的两张纸币的总面值b,从而,.故只能从A中取走两张1元纸币,相应的取法数为.又此时,即从B中取走的两张纸币不能均为1元纸币,相应有种取法.因此,所求的概率为.4.【2015年全国联赛】在正方体中随机取三条棱,它们两两异面的概率为______.【答案】【解析】设正方体为,共12条棱,从中任意取出三条棱的方法有种.下面考虑使三条棱两两异面的取法数.由于正方体棱共确定三个互不平行的方向(即的方向),具有相同方向的四条棱两两共面,因此,取出的三条棱必属于三个不同的方向.可先取定方向的棱,这有四种取法.不妨设取的棱为.则方向只能取棱,共两种可能.当方向取棱时,方向取棱分别只能为.综上,三条棱两两异面的取法数为8.故所求概率为.5.【2014年全国联赛】设A、B、C、D为空间四个不共面的点,以的概率在每对点之间连一条边,任意两对点之间是否连边是相互独立的,则点A与B可用(一条边或者若干条边组成的)空间折线连接的概率为_______.【答案】【解析】每对点之间是否连边有2种可能,共有种情形.考虑其中点A、B可用折线连接的情形数.(1)有边AB:共种情形.(2)无边AB,但有边CD:此时,点A、B可用折线连接当且仅当点A与C、D中至少一点相连,且点B与C、D中至少一点相连,这样的情形数为.(3)无边AB,也无边CD:此时,AC与CB相连有种情形,AD与DB相连也有情形,但其中AC、CB、AD、DB均相连的情形被重复计了一次,故点A与B可用折线连接的情形数为.综上,情形数的总和为.故点A与B可用折线连接的概率为.6.【2013年全国联赛】从1,2,…,20中任取五个不同的数,其中至少有两个是相邻数的概率是______.【答案】【解析】设取自1,2, (20)若互不相邻,则.由此知从1,2,…,20中取五个互不相邻的数的选法与从1,2,…,16中取五个不同的数的选法相同,即种.于是,所求的概率为.7.【2012年全国联赛】某情报站有四种互不相同的密码,每周使用其中的一种密码,且每周都是从上周未使用的三种密码中等可能地随机选用一种.设第一周使用种密码.那么,第七周也使用种密码的概率是______(用最简分数表示).【答案】.【解析】用表示第周用种密码本的概率.则第周末用种密码的概率为.故.8.【2010年全国联赛】两人轮流投掷骰子,每人每次投掷两颗,第一个使两颗骰子点数和大于6者为胜,否则,由另一人投掷.则先投掷人的获胜概率是________.【答案】【解析】同时投掷两颗骰子点数和大于6的概率为,从而,先投掷人的获胜概率为.9.【2009年全国联赛】某车站每天早上8:00~9:00、9:00~10:00都恰有一辆客车到站,但到站的时刻是随机的,且两者到站的时间是相互独立的,其规律见表1.一旅客8:20到站.则他候车时间的数学期望为______(精确到分).表1到站时刻8:10~9:108:30~9:308:50~9:50概率【答案】27【解析】旅客候车时间的分布如下表.候车时间(分)1030507090概率候车时间的数学期望为.1.【2016年陕西】从1,2,…,20这20个数中,任取三个不同的数.则这三个数构成等差数列的概率为(). A.B.C.D.【答案】D【解析】从这20个数中任取三个数,可构成的数列共有个.若取出的三个数a、b、c成等差数列,则a+c=2b.故a与c的奇偶性相同,且a、c确定后,b随之而定.从而,所求概率为.选D.2.【2016年天津】掷两次色子,用X记两次掷得点数的最大值.则下列各数中,与期望最接近的数为( ) A.4B.C.5D.【答案】B【解析】易知,,,,,,,故,与最接近.3.【2018年江苏】将1,2,3,4,5,6,7,8,9这9个数随机填入的方格表中,每个小方格恰填写一个数,且所填数各不相同,则使每行、每列所填数之和都是奇数的概率是________.【答案】.【解析】要使每行、每列所填数之和都是奇数,必须使每行或每列中要么只有一个奇数,要么三个全为奇数,故满足条件的填法共有种.因此所求的概率为.故答案为:4.【2018年重庆】从正九边形中任取三个顶点构成三角形,则正九边形的中心在三角形内的概率________.【答案】【解析】如图,正9边形中包含中心的三角形有以下三种形状:对于(1),有3种情况;对于(2),有9种情况:对于(3);有18种情况;故所求概率为,故答案为:5.【2018年安徽】从1,2,…,10中随机抽取三个各不相同的数字,其样本方差的概率=_________.【答案】【解析】的样本方差,当且仅当是连续的正整数.故.故答案为:6.【2018年甘肃】已知由甲、乙两位男生和丙、丁两位女生组成的四人冲关小组,参加由某电视台举办的知识类答题闯关活动,活动共有四关,设男生闯过一至四关的概率依次是,女生闯过一至四关的概率依次是.(1)求男生闯过四关的概率;(2)设表示四人冲关小组闯过四关的人数,求随机变量的分布列和期望.【答案】(1);(2)见解析【解析】分析:(1)利用相互独立事件的概率计算公式即可得出;(2)记女生四关都闯过为事件,则的取值可能为0,1,2,3,4,利用相互独立事件的概率公式即可得出.详解:(1)记男生四关都闯过为事件,则;(2)记女生四关都闯过为事件,则,因为,,,,所以的分布如下:.点睛:本题考查了相互独立与互斥事件的概率计算公式,随机变量的分布列与数学期望计算公式,考查了推理能力与计算能力.7.【2016年上海】设n为给定的大于2的整数。