最新平面直角坐标系知识梳理及经典题型(学生版)

合集下载

(完整版)平面直角坐标系知识点归纳及例题

(完整版)平面直角坐标系知识点归纳及例题

X平面直角坐标系知识点归纳1、在平面内,两条互相垂直且有公共原点的数轴组成了平面直角坐标系;2、坐标平面上的任意一点 P 的坐标,都和惟一的一对有序实数对(a,b )一一对应;其中,a 为横坐标,b 为纵坐标坐标;3、 x 轴上的点,纵坐标等于 0; y 轴上的点,横坐标等于 0; 坐标轴上的点 不属于任何象限;4、 四个象限的点的坐标具有如下特征:小结:(1 )点P ( x, y )所在的象限 —►横、纵坐标X 、y 的取值的正负性;(2 )点P ( X, y )所在的数轴 —*■横、纵坐标X 、y 中必有一数为零;5、 在平面直角坐标系中,已知点p (a,b ),则(1) 点P 到X 轴的距离为b ;( 2 )点P 到y 轴的距离为(3) 点P 到原点o 的距离为PO = .a 2 b 26、 平行直线上的点的坐标特征:a )在与x 轴平行的直线上,所有点的纵坐标相等;b )在与y 轴平行的直线上,所有点的横坐标相等;d bJ_____ P(a,b) 1____________ 1-3 -2 -1 0 -1-2 -31a X点A 、B 的纵坐标都等于m ;象限 横坐标X 纵坐标y 第一象限 正 正 第二象限 负 正 第三象限负 负 第四象限正负点C、D的横坐标都等于n ;X7、对称点的坐标特征:8、两条坐标轴夹角平分线上的点的坐标的特征:a) 若点P ( m,n )在第一、三象限的角平分线上,则 b)若点P ( m,n )在第二、四象限的角平分线上,则习题1、在平面直角坐标系中,线段 BC// x 轴,则 A.点B 与C 的横坐标相等 BC •点B 与C 的横坐标与纵坐标分别相等D 2 •若点P (x, y)的坐标满足xy 0则点P 必在A.原点 B . x 轴上 C . y 轴上 D . x 轴或y 轴上 3.点P在x 轴上,且到y 轴的距离为5,则点P 的坐标是 (A. (5,0) B . (0,5) C . (5,0)或(-5,0) D . (0,5)或(0,-5) 4.平面上的点(2,-1)通过上下平移不能与之重合的是 (A . (2,-2)B . (-2,-1)C . (2,0)D . 2,-3)5. 将△ ABC 各顶点的横坐标分别减去3,纵坐标不变,得到的厶ABC 相应顶点的坐标,则 △ A 'B 'C '可以看成厶ABCi 卜y1 y匸y n P--------- —--•P2 • __ n P _ ___ 亠n -------- * P1m ;亠 1 11 ----- T P U f imII V 1 ""O ' XHm O ------------ X 1 1 O mn __ _ ▲1Rb-n关于x 轴对称 关于y 轴对称关于原点对称点P (m,n)关于y 轴的对称点为 b) 点P (m,n)关于原点的对称点为P 3( m, n),即横、纵坐标都互为相反数; c) XP 2( m,n),即纵坐标不变,横坐标互为相反数; a)点P (m, n)关于x 轴的对称点为 R(m, n),即横坐标不变,纵坐标互为相反数;m n ,即横、纵坐标相等;m n ,即横、纵坐标互为相反数;( •点B 与C 的纵坐标相等 •点B 与C 的横坐标、纵坐标都不相等 )) ) )y在第一、三象限的角平分线上在第二、四象限的角平分线上A.向左平移3个单位长度得到B .向右平移三个单位长度得到C•向上平移3个单位长度得到 D •向下平移3个单位长度得到6•线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标是A . (2,9)B . (5,3)C . (1,2)D . (-9,-4)7•在坐标系内,点P (2, -2)和点Q(2,4 )之间的距离等于______________ 单位长度,线段PQ和中点坐标是____________8. 将点M(2,-3)向左平移2个单位长度,再向下平移1个单位长度,得到的点的坐标为9. 在直角坐标系中,若点P(a 2,b 5)在y轴上,则点P的坐标为___________________10. 已知点P( 2,a),Q(b,3),且PQ// x 轴,则a ___________ ,b ____________11. 将点P( 3,y)向下平移3个单位,并向左平移2个单位后得到点Q(x, 1),则xy = _______12. 则坐标原点0( 0,0 ),A (-2,0 ) ,B(-2,3)三点围成的△ ABO勺面积为_______________13. 点P(a,b)在第四象限,则点Q(b, a)在第_________ 限14. 已知点P在第二象限两坐标轴所成角的平分线上,且到x轴的距离为3,则点P的坐标为 ____________15. 在同一坐标系中,图形a是图形b向上平移3个单位长度得到的,如果在图形a中点A的坐标为(5, 3),则图形b中与A对应的点A'的坐标为______________16. 在平面直角坐标系中,将坐标为(0,0),(2,0),(3,4),(1,4) 的点用线段依次连接起来形成一个图像,并说明该图像是什么图形。

平面直角坐标系知识梳理及经典题型(学生版)

平面直角坐标系知识梳理及经典题型(学生版)

平面直角坐标系知识结构图:一、知识要点:(一)有序数对:有顺序的两个数a与b组成的数对。

记作(a ,b)(二)平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成了平面直角坐标系;a,)一一对应;其1、坐标平面上的任意一点P的坐标,都和惟一的一对有序实数对(b中,a为横坐标,b为纵坐标坐标;2、x轴上的点,纵坐标等于0;y轴上的点,横坐标等于0;坐标轴上的点不属于任何象限(三)四个象限的点的坐标具有如下特征:1、点P (y x ,)所在的象限 横、纵坐标x 、y 的取值的正负性;2、点P (y x ,)所在的数轴 横、纵坐标x 、y 中必有一数为零; (四)在平面直角坐标系中,已知点P ),(b a ,则 1、点P 到x 轴的距离为b ; 2、点P 到y 轴的距离为a ;3、点P 到原点O 的距离为PO = 22b a +(五)平行直线上的点的坐标特征:1、在与x 轴平行的直线上, 所有点的纵坐标相等;点A 、B 的纵坐标都等于m ;2、在与y 轴平行的直线上,所有点的横坐标相等;点C 、D 的横坐标都等于n ;(六)对称点的坐标特征:1、点P ),(n m 关于x 轴的对称点为),(1n m P -, 即横坐标不变,纵坐标互为相反数;象限 横坐标x纵坐标y第一象限 正 正 第二象限 负 正 第三象限 负 负 第四象限正负P (b a ,)abxy OXYA BmXYC Dn2、点P ),(n m 关于y 轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为相反数;3、点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;关于x 轴对称 关于y 轴对称 关于原点对称(七)两条坐标轴夹角平分线上的点的坐标的特征:1、若点P (n m ,)在第一、三象限的角平分线上,则n m =,即横、纵坐标相等;2、若点P (n m ,)在第二、四象限的角平分线上,则n m -=,即横、纵坐标互为相反数;在第一、三象限的角平分线上 在第二、四象限的角平分线上(八)利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:1、建立坐标系,选择一个适当的参照点为原点,确定x 轴、y 轴的正方向;2、根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;3、在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。

中考复习——平面直角坐标系、一次函数、反比例函数及其图象 知识点汇总及典例分析

中考复习——平面直角坐标系、一次函数、反比例函数及其图象 知识点汇总及典例分析

中考复习——平面直角坐标系、一次函数、反比例函数【知识梳理】一、平面直角坐标系1. 坐标平面上的点与 有序实数对 构成一一对应;2. 各象限点的坐标的符号;3. 坐标轴上的点的坐标特征.4. 点P (a ,b )关于x 轴对称的点的坐标为 ;关于y 轴对称的点的坐标为 ;关于原点对称的点的坐标为5.两点之间的距离二、函数的概念1.概念:在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有 的值与它对应,那么就说x 是自变量,y 是x 的函数.2.自变量的取值范围: (1)使解析式 (2)实际问题具有 意义3.函数的表示方法; (1) (2) (3) 三、一次函数的概念、图象、性质1.正比例函数的一般形式是 ( ),一次函数的一般形式是 (k≠0). 2. 一次函数y kx b =+的图象是经过( , )和( , )两点的一条直线.4.若两个一次函数解析式中,k 相等,表示两直线 ;若两直线垂直,则 。

5.的大小决定直线的倾斜程度,越大,直线越 ;四、反比例函数的概念、图象、性质1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y = 或 或 (k 为常数,k≠0)的形式,那么称y 是x 的反比例函数. 2. 反比例函数的图象和性质k >0,b >0k >0,b <0k <0,b >0k <0,21212211P P )0()0()2(y y y P y P -=, ,,,21212211P P )0()0()1(x x x P x P -=, , ,, 3.k 的几何含义:反比例函数y =k x(k≠0)中比例系数k 的几何意义,即过双曲线y =k x(k≠0)上任意一点P 作x 轴、y 轴垂线,设垂足分别为A 、B ,则所得矩形OAPB 的面积为 。

【例题精讲】 例1.函数22y x =-中自变量x 的取值范围是 ;函数y =x 的取值范围是 .例2.已知点(13)A m -,与点(21)B n +,关于x 轴对称,则m = ,n = . 例3.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的 坐标为(8,0),点C 、D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形,点C 的坐标为例4.一次函数y=(3a+2)x -(4-b),求满足下列条件的a 、b 的取值范围。

平面直角坐标系基础(学生版)

平面直角坐标系基础(学生版)

平面直角坐标系(基础)知识讲解【学习目标】1.理解平面直角坐标系概念,能正确画出平面直角坐标系.2.能在平面直角坐标系中,根据坐标确定点,以及由点求出坐标,掌握点的坐标的特征.3.由数轴到平面直角坐标系,渗透类比的数学思想.【要点梳理】要点一、有序数对定义:把有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b).要点诠释:有序,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,如电影院的座位是6排7号,可以写成(6,7)的形式,而(7,6)则表示7排6号.要点二、平面直角坐标系与点的坐标的概念1. 平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系.水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1).要点诠释:平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的.2. 点的坐标平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b 分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标,记作:P(a,b),如图2.要点诠释:(1)表示点的坐标时,约定横坐标写在前,纵坐标写在后,中间用“,”隔开.(2)点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离.(3) 对于坐标平面内任意一点都有唯一的一对有序数对(x,y)和它对应,反过来对于任意一对有序数对,在坐标平面内都有唯一的一点与它对应,也就是说,坐标平面内的点与有序数对是一一对应的.要点三、坐标平面1. 象限建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限,如下图.要点诠释:(1)坐标轴x轴与y轴上的点(包括原点)不属于任何象限.(2)按方位来说:第一象限在坐标平面的右上方,第二象限在左上方,第三象限在左下方,第四象限在右下方.2. 坐标平面的结构坐标平面内的点可以划分为六个区域:x轴,y轴、第一象限、第二象限、第三象限、第四象限. 这六个区域中,除了x轴与y轴有一个公共点(原点)外,其他区域之间均没有公共点.要点四、点坐标的特征1.各个象限内和坐标轴上点的坐标符号规律要点诠释:(1)对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上.(2)坐标轴上点的坐标特征:x轴上的点的纵坐标为0;y轴上的点的横坐标为0.(3)根据点的坐标的符号情况可以判断点在坐标平面上的大概位置;反之,根据点在坐标平面上的位置也可以判断点的坐标的符号情况.2.象限的角平分线上点坐标的特征第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a).3.关于坐标轴对称的点的坐标特征P(a,b)关于x轴对称的点的坐标为 (a,-b);P(a,b)关于y轴对称的点的坐标为 (-a,b);P(a,b)关于原点对称的点的坐标为 (-a,-b).4.平行于坐标轴的直线上的点平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同.【典型例题】类型一、有序数对1.如果将一张“13排10号”的电影票简记为(13,10),那么(10,13)表示的电影票是排号.类型二、平面直角坐标系与点的坐标的概念2.如图,写出点A、B、C、D各点的坐标.举一反三:【变式】在平面直角坐标系中,如果点A既在x轴的上方,又在y轴的左边,且距离x轴,y轴分别为5个单位长度和4个单位长度,那么点A的坐标为( ).A.(5,-4) B.(4,-5) C.(-5,4) D.(-4,5)3.在平面直角坐标系中,描出下列各点A(4,3),B(-2,3),C(-4,1),D(2,-2).举一反三:【变式】在平面直角坐标系中,O为坐标原点,已知:A(3,2),B(5,0),则△AOB的面积为.类型三、坐标平面及点的特征4.(2014春•夏津县校级期中)根据要求解答下列问题:设M(a,b)为平面直角坐标系中的点.(1)当a>0,b<0时,点M位于第几象限?(2)当ab>0时,点M位于第几象限?(3)当a为任意实数,且b<0时,点M位于何处?举一反三:【变式】(2015•威海)若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在()A.第一象限B.第二象限C.第三象限D.第四象限5.(2016春•宜阳县期中)已知点P(2m+4,m﹣1).试分别根据下列条件,求出点P的坐标.(1)点P的纵坐标比横坐标大3;(2)点P在过A(2,﹣3)点,且与x轴平行的直线上.举一反三:【变式】在直角坐标系中,点P(x,y)在第二象限且P到x轴,y轴的距离分别为2,5,则P 的坐标是_________;若去掉点P在第二象限这个条件,那么P的坐标是________.平面直角坐标系(基础)巩固练习【巩固练习】一、选择题1.为确定一个平面上点的位置,可用的数据个数为( ).A.1个 B.2个 C.3个 D.4个2.下列说法正确的是( ).A.(2,3)和(3,2)表示的位置相同B.(2,3)和(3,2)是表示不同位置的两个有序数对C.(2,2)和(2,2)表示两个不同的位置D.(m,n)和(n,m)表示的位置不同3. (2016•大连)在平面直角坐标系中,点M(1,5)所在的象限是( ).A.第一象限 B.第二象限 C.第三象限 D.第四象限4.若点P(m,n)在第三象限,则点Q(-m,-n)在( ).A.第一象限 B.第二象限 C.第三象限 D.第四象限5.已知点P(m+3,2m+4)在y轴上,那么点P的坐标是( ).A.(-2,0) B.(0,-2) C.(1,0) D.(0,1)二、填空题7.已知有序数对(2x-1,5-3y)表示出的点为(5,2),则x=________,y=________.8.(2015春•德州校级期中)两条平行线中一条直线上的点到另一条直线的垂线段的长度叫做两条平行线间的距离定义:平面内的直线l1与l2相交于点O,对于该平面内任意一点M,点M到直线l1,l2的距离分别为a、b,则称有序非负实数对(a,b)是点M的“距离坐标”.根据上述定义,距离坐标为(2,3)的点的个数是.9.点P(-3,4)到x轴的距离是________,到y轴的距离是________.10.指出下列各点所在象限或坐标轴:点A(5,-3)在_______,点B(-2,-1)在_______,点C(0,-3)在_______,点D(4,0)在_______,点E(0,0)在_______.11.点A(1,-2)关于x轴对称的点的坐标是______;点A关于y轴对称的点坐标为______.12.(2016•衡阳)点P(x﹣2,x+3)在第一象限,则x的取值范围是.三、解答题13.在图中建立适当的平面直角坐标系,使A、B两点的坐标分别为(-4,1)和(-1,4),写出点C、D的坐标,并指出它们所在的象限.15. 已知A,B,C,D的坐标依次为(4,0),(0,3),(-4,0),(0,-3),在平面直角坐标系中描出各点,并求四边形ABCD的面积.。

(完整版)平面直角坐标系知识点总结

(完整版)平面直角坐标系知识点总结

平面直角坐标系二、知识要点梳理知识点一:有序数对比如教室中座位的位置,常用“几排几列”来表示,而排数和列数的先后顺序影响座位的位置,因此用有顺序的两个数a与b组成有序数时,记作(a,b),表示一个物体的位置。

我们把这种有顺序的两个数a与b组成的数对叫做有序数对,记作: (a,b).要点诠释:对“有序”要准确理解,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,表示不同位置。

知识点二:平面直角坐标系以及坐标的概念1.平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系。

水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1)。

注:我们在画直角坐标系时,要注意两坐标轴是互相垂直的,且有公共原点,通常取向右与向上的方向分别为两坐标轴的正方向。

平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的。

2.点的坐标点的坐标是在平面直角坐标系中确定点的位置的主要表示方法,是今后研究函数的基础。

在平面直角坐标系中,要想表示一个点的具体位置,就要用它的坐标来表示,要想写出一个点的坐标,应过这个点A分别向x轴和y轴作垂线,垂足M在x轴上的坐标是a,垂足N在y轴上的坐标是b,我们说点A的横坐标是a,纵坐标是b,那么有序数对(a,b)叫做点A的坐标.记作:A(a,b).用(a,b)来表示,需要注意的是必须把横坐标写在纵坐标前面,所以这是一对有序数。

注:①写点的坐标时,横坐标写在前面,纵坐标写在后面。

横、纵坐标的位置不能颠倒。

②由点的坐标的意义可知:点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离。

知识点三:点坐标的特征l.四个象限内点坐标的特征:两条坐标轴将平面分成4个区域称为象限,按逆时针顺序分别叫做第一、二、三、四象限,如图2.这四个象限的点的坐标符号分别是(+,+),(-,+),(-,-),(+,-).2.数轴上点坐标的特征:x轴上的点的纵坐标为0,可表示为(a,0);y轴上的点的横坐标为0,可表示为(0,b).注意:x轴,y轴上的点不在任何一个象限内,对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上。

平面直角坐标系知识梳理及经典题型

平面直角坐标系知识梳理及经典题型

平面直角坐标系知识结构图:一、知识要点:(一)有序数对:有顺序的两个数a与b组成的数对。

记作(a ,b)(二)平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成了平面直角坐标系;a,)一一对应;其1、坐标平面上的任意一点P的坐标,都和惟一的一对有序实数对(b中,a为横坐标,b为纵坐标坐标;2、x轴上的点,纵坐标等于0;y轴上的点,横坐标等于0;坐标轴上的点不属于任何象限(三)四个象限的点的坐标具有如下特征:1、点P (y x ,)所在的象限 横、纵坐标x 、y 的取值的正负性;2、点P (y x ,)所在的数轴 横、纵坐标x 、y 中必有一数为零;(四)在平面直角坐标系中,已知点P ),(b a ,则 1、点P 到x 轴的距离为b ; 2、点P 到y 轴的距离为a ; 3、点P 到原点O 的距离为PO = 22b a(五)平行直线上的点的坐标特征:1、在与x 轴平行的直线上, 所有点的纵坐标相等;点A 、B 的纵坐标都等于m ;2、 2、在与y 轴平行的直线上,所有点的横坐标相等;点C 、D 的横坐标都等于n ;(六)对称点的坐标特征:XX1、点P ),(n m 关于x 轴的对称点为),(1n m P -, 即横坐标不变,纵坐标互为相反数;2、点P ),(n m 关于y 轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为相反数;3、点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;关于x 轴对称 关于y轴对称 关于原点对称(七)两条坐标轴夹角平分线上的点的坐标的特征:1、若点P (n m ,)在第一、三象限的角平分线上,则n m =,即横、纵坐标相等; 2、若点P (n m ,)在第二、四象限的角平分线上,则n m -=,即横、纵坐标互为相反数;在第一、三象限的角平分线上 在第二、四象限的角平分线上(八)利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:1、建立坐标系,选择一个适当的参照点为原点,确定x 轴、y 轴的正方向;2、根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;3、在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。

平面直角坐标系复习讲义(知识点+典型例题)

平面直角坐标系复习讲义(知识点+典型例题)

D、第四象限.
【例 3】点 P(m,1)在第二象限内,则点 Q(-m,0)在( )
A.x 轴正半轴上 B.x 轴负半轴上 C.y 轴正半轴上 D.y 轴负半轴上
【例 4】(1)在平面直角坐标系内,已知点(1-2a,a-2)在第三象限的角平分线上,则 a= ,点的坐标为

(2)当 b=______时,点 B(-3,|b-1|)在第二、四象限角平分线上.
电量为 8 千瓦时,则应交电费 4.4 元;④若所交电费为 2.75 元,则用电量为 6 千瓦时,其中正确的有( )
A.4 个 B.3 个 C.2 个 D.1 个
【例 7】小明骑自行车上学,开始以正常速度匀速行驶,途中自行车出了故障,他只好停下来修车.车修好后,因怕
耽误上课,故加快速度继续匀速行驶赶往学校.如图是行驶路程 S(米)与时间 t(分)的函数图象,那么符合小明骑
D. .
11、星期天,小明从家里出发到图书馆去看书,再回到家.他离家的距离 y(千米)与时间 t(分钟)的关系如图所示.根 据图象回答下列问题:
2
2
巩固练习
5
1、下列 各曲线中表示 y 是 x 的函数的是( )
A.
B.
C.
D.
2、下列平面直角坐标系中的图象,不能表示 y 是 x 的函数的是( )
A.
B.
C.
D.
3、下列四个选项中,不是 y 关于 x 的函数的是( )
A.|y|=x﹣1 B.y=
C.y=2x﹣7 D.y=x2
4、下列四个关系式:(1)y=x;(2) y x2 ;(3) y x3 ;(4) y x ,其中 y 不是 x 的函数的是( )

【例 8】在坐标系内,点 P(2,-2)和点 Q(2,4)之间的距离等于

(完整版)初一平面直角坐标系所有知识点总结和常考题提高难题压轴题练习(含答案解析)

(完整版)初一平面直角坐标系所有知识点总结和常考题提高难题压轴题练习(含答案解析)

初一平面直角坐标系所有知识点总结和常考题提高难题压轴题练习(含答案解析)知识点:1、对应关系:平面直角坐标系内的点与有序实数对一一对应。

2、平面内两条互相垂直、原点重合组成的数轴组成平面直角坐标系。

水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴为y轴或纵轴,取向上为正方向;两个坐标轴的交点为平面直角坐标系的原点。

坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。

象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。

坐标轴上的点不在任何一个象限内3、三大规律(1)平移规律:点的平移规律左右平移→纵坐标不变,横坐标左减右加;上下平移→横坐标不变,纵坐标上加下减。

图形的平移规律找特殊点(2)对称规律关于x轴对称→横坐标不变,纵坐标互为相反数;关于y轴对称→横坐标互为相反数,纵坐标不变;关于原点对称→横纵坐标都互为相反数。

常考题:一.选择题(共15小题)1.点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为()A.(﹣4,3)B.(﹣3,﹣4)C.(﹣3,4)D.(3,﹣4)2.如图,小手盖住的点的坐标可能为()A.(5,2) B.(﹣6,3)C.(﹣4,﹣6)D.(3,﹣4)3.如图,已知棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()A.(3,2) B.(3,1) C.(2,2) D.(﹣2,2)4.在平面直角坐标系中,点(﹣1,m2+1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限5.线段CD是由线段AB平移得到的.点A(﹣1,4)的对应点为C(4,7),则点B (﹣4,﹣1)的对应点D的坐标为()A.(2,9) B.(5,3) C.(1,2) D.(﹣9,﹣4)6.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.57.点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A.(﹣3,0)B.(﹣1,6)C.(﹣3,﹣6)D.(﹣1,0)8.如果点P(m+3,m+1)在直角坐标系的x轴上,P点坐标为()A.(0,2) B.(2,0) C.(4,0) D.(0,﹣4)9.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4) B.(4,5) C.(3,4) D.(4,3)10.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,2)重合,则点A的坐标是()A.(2,5) B.(﹣8,5)C.(﹣8,﹣1)D.(2,﹣1)11.在平面直角坐标系中,若点P(m﹣3,m+1)在第二象限,则m的取值范围为()A.﹣1<m<3 B.m>3 C.m<﹣1 D.m>﹣112.若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在()A.第一象限B.第二象限C.第三象限D.第四象限13.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n 被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)14.小明的家,学校和书店依次坐落在一条南北方向的大街上,学校在家南边20米,书店在家北边100米,小明从家出来向北走了50米,又向北走了﹣70米,此时,小明的位置在()A.家B.学校C.书店D.不在上述地方15.如图为小杰使用手机内的通讯软件跟小智对话的纪录.根据图中两人的对话纪录,若下列有一种走法能从邮局出发走到小杰家,则此走法为何?()A.向北直走700公尺,再向西直走100公尺B.向北直走100公尺,再向东直走700公尺C.向北直走300公尺,再向西直走400公尺D.向北直走400公尺,再向东直走300公尺二.填空题(共10小题)16.在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:(1)f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);(2)g(m,n)=(﹣m,﹣n),如g (2,1)=(﹣2,﹣1)按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]=.17.已知点M(3,﹣2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是.18.如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C 点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B的坐标是.19.若第二象限内的点P(x,y)满足|x|=3,y2=25,则点P的坐标是.20.如图的围棋盘放在某个平面直角坐标系内,白棋②的坐标为(﹣7,﹣4),白棋④的坐标为(﹣6,﹣8),那么黑棋①的坐标应该是.21.如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标分别变为原来的,那么点A的对应点A′的坐标是.22.如图,这是台州市地图的一部分,分别以正东、正北方向为x轴、y轴的正方向建立直角坐标系,规定一个单位长度表示1km,甲、乙两人对着地图如下描述路桥区A处的位置.则椒江区B处的坐标是.23.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(用n表示).24.一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是.25.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)(4,0)根据这个规律探索可得,第100个点的坐标为.三.解答题(共15小题)26.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A(,)、B(,)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(,)、B′(,)、C′(,).(3)△ABC的面积为.27.王霞和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴.只知道游乐园D的坐标为(2,﹣2),你能帮她求出其他各景点的坐标吗?28.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+3),从B到A记为:A→B(﹣1,﹣3),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A→C(,),B→D(,),C→(+1,);(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程;(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置.29.如图所示的直角坐标系中,四边形ABCD各顶点的坐标分别为A(0,0)、B(9,0)、C(7,5)、D(2,7).求四边形ABCD的面积.30.小明的爷爷退休生活可丰富了!下表是他某日的活动安排.和平广场位于爷爷家东400米,老年大学位于爷爷家西600米.从爷爷家到和平路小学需先向南走300米,再向西走400米.早晨6:00﹣7:00与奶奶一起到和平广场锻炼上午9:00﹣11:00与奶奶一起上老年大学下午4:30﹣5:30到和平路小学讲校史(1)请依据图示中给定的单位长度,在图中标出和平广场A、老年大学B与和平路小学的位置;(2)求爷爷家到和平路小学的直线距离.31.已知点A(﹣1,﹣2),点B(1,4)(1)试建立相应的平面直角坐标系;(2)描出线段AB的中点C,并写出其坐标;(3)将线段AB沿水平方向向右平移3个单位长度得到线段A1B1,写出线段A1B1两个端点及线段中点C1的坐标.32.在平面直角坐标系中,点M的坐标为(a,﹣2a).(1)当a=﹣1时,点M在坐标系的第象限;(直接填写答案)(2)将点M向左平移2个单位,再向上平移1个单位后得到点N,当点N在第三象限时,求a的取值范围.33.已知:A(0,1),B(2,0),C(4,3)(1)求△ABC的面积;(2)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.34.如图,在下面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式|a﹣2|+(b﹣3)2=0,(c﹣4)2≤0(1)求a、b、c的值;(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由.35.如图,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3)(1)求点C到x轴的距离;(2)求△ABC的面积;(3)点P在y轴上,当△ABP的面积为6时,请直接写出点P的坐标.36.有趣玩一玩:中国象棋中的马颇有骑士风度,自古有“马踏八方”之说,如图,按中国象棋中“马”的行棋规则,图中的马下一步有A、B、C、D、E、F、G、H八种不同选择,它的走法就象一步从“日”字形长方形的对角线的一个端点到另一个端点,不能多也不能少.要将图中的马走到指定的位置P处,即从(四,6)走到(六,4),现提供一种走法:(四,6)→(六,5)→(四,4)→(五,2)→(六,4)(1)下面是提供的另一走法,请你填上其中所缺的一步:(四,6)→(五,8)→(七,7)→→(六,4)(2)请你再给出另一种走法(只要与前面的两种走法不完全相同即可,步数不限),你的走法是:.你还能再写出一种走法吗.37.如图,在直角坐标系中,四边形ABCD 各个顶点的坐标分别是A (﹣2,﹣3)、B (5,﹣2)、C (2,4)、D (﹣2,2),求这个四边形的面积.38.如图,在平面直角坐标系中,点A ,B 的坐标分别为(﹣1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD .(1)求点C ,D 的坐标及四边形ABDC 的面积S 四边形ABDC ;(2)在y 轴上是否存在一点P ,连接PA ,PB ,使S △PAB =S 四边形ABDC ?若存在这样一点,求出点P 的坐标;若不存在,试说明理由.39.如图,长方形OABC 中,O 为平面直角坐标系的原点,A 点的坐标为(4,0),C 点的坐标为(0,6),点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O ﹣A ﹣B ﹣C ﹣O 的路线移动(即:沿着长方形移动一周).(1)写出点B 的坐标( ).(2)当点P 移动了4秒时,描出此时P 点的位置,并求出点P 的坐标.(3)在移动过程中,当点P 到x 轴距离为5个单位长度时,求点P 移动的时间.40.先阅读下列一段文字,在回答后面的问题.已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离公式,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4)、B(﹣3,﹣8),试求A、B两点间的距离;(2)已知A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A、B两点间的距离.(3)已知一个三角形各顶点坐标为A(0,6)、B(﹣3,2)、C(3,2),你能判定此三角形的形状吗?说明理由.初一平面直角坐标系所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一.选择题(共15小题)1.(2007•舟山)点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为()A.(﹣4,3)B.(﹣3,﹣4)C.(﹣3,4)D.(3,﹣4)【分析】先根据P在第二象限内判断出点P横纵坐标的符号,再根据点到坐标轴距离的意义即可求出点P的坐标.【解答】解:∵点P在第二象限内,∴点的横坐标<0,纵坐标>0,又∵P到x轴的距离是4,即纵坐标是4,到y轴的距离是3,横坐标是﹣3,∴点P的坐标为(﹣3,4).故选:C.【点评】解答此题的关键是熟记平面直角坐标系中各个象限内点的坐标符号,及点的坐标的几何意义.2.(2007•长春)如图,小手盖住的点的坐标可能为()A.(5,2) B.(﹣6,3)C.(﹣4,﹣6)D.(3,﹣4)【分析】根据题意,小手盖住的点在第四象限,结合第四象限点的坐标特点,分析选项可得答案.【解答】解:根据图示,小手盖住的点在第四象限,第四象限的点坐标特点是:横正纵负;分析选项可得只有D符合.故选D.【点评】解决本题解决的关键是记住各象限内点的坐标的符号,进而对号入座,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.(2007•盐城)如图,已知棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()A.(3,2) B.(3,1) C.(2,2) D.(﹣2,2)【分析】根据已知两点的坐标确定符合条件的平面直角坐标系,然后确定其它点的坐标.【解答】解:由棋子“车”的坐标为(﹣2,3)、棋子“马”的坐标为(1,3)可知,平面直角坐标系的原点为底边正中间的点,以底边为x轴,向右为正方向,以左右正中间的线为y轴,向上为正方向;根据得出的坐标系可知,棋子“炮”的坐标为(3,2).故选:A.【点评】此题考查了点的坐标解决实际问题的能力和阅读理解能力,解决此类问题需要先确定原点的位置,再求未知点的位置.或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.4.(2002•江西)在平面直角坐标系中,点(﹣1,m2+1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】应先判断出点的横纵坐标的符号,进而判断点所在的象限.【解答】解:因为点(﹣1,m2+1),横坐标<0,纵坐标m2+1一定大于0,所以满足点在第二象限的条件.故选B.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.(2017春•潮阳区期末)线段CD是由线段AB平移得到的.点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为()A.(2,9) B.(5,3) C.(1,2) D.(﹣9,﹣4)【分析】直接利用平移中点的变化规律求解即可.【解答】解:平移中,对应点的对应坐标的差相等,设D的坐标为(x,y);根据题意:有4﹣(﹣1)=x﹣(﹣4);7﹣4=y﹣(﹣1),解可得:x=1,y=2;故D的坐标为(1,2).故选:C.【点评】本题考查点坐标的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变.平移中,对应点的对应坐标的差相等.6.(2016•菏泽)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.5【分析】直接利用平移中点的变化规律求解即可.【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.7.(2015•安顺)点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A.(﹣3,0)B.(﹣1,6)C.(﹣3,﹣6)D.(﹣1,0)【分析】根据平移时,坐标的变化规律“上加下减,左减右加”进行计算.【解答】解:根据题意,得点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,所得点的横坐标是﹣2﹣1=﹣3,纵坐标是﹣3+3=0,即新点的坐标为(﹣3,0).故选A.【点评】此题考查了平移时,点的坐标变化规律:横坐标右移加,左移减;纵坐标上移加,下移减.8.(2013秋•平川区期末)如果点P(m+3,m+1)在直角坐标系的x轴上,P点坐标为()A.(0,2) B.(2,0) C.(4,0) D.(0,﹣4)【分析】因为点P(m+3,m+1)在直角坐标系的x轴上,那么其纵坐标是0,即m+1=0,m=﹣1,进而可求得点P的横纵坐标.【解答】解:∵点P(m+3,m+1)在直角坐标系的x轴上,∴m+1=0,∴m=﹣1,把m=﹣1代入横坐标得:m+3=2.则P点坐标为(2,0).故选B.【点评】本题主要考查了点在x轴上时纵坐标为0的特点,比较简单.9.(2017春•和县期末)课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4) B.(4,5) C.(3,4) D.(4,3)【分析】根据已知两点的坐标确定平面直角坐标系,然后确定其它各点的坐标.【解答】解:如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,所以小刚的位置为(4,3).故选D.【点评】本题利用平面直角坐标系表示点的位置,是学数学在生活中用的例子.10.(2015•钦州)在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,2)重合,则点A的坐标是()A.(2,5) B.(﹣8,5)C.(﹣8,﹣1)D.(2,﹣1)【分析】逆向思考,把点(﹣3,2)先向右平移5个单位,再向下平移3个单位后可得到A点坐标.【解答】解:在坐标系中,点(﹣3,2)先向右平移5个单位得(2,2),再把(2,2)向下平移3个单位后的坐标为(2,﹣1),则A点的坐标为(2,﹣1).故选:D.【点评】本题考查了坐标与图形变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.11.(2008•菏泽)在平面直角坐标系中,若点P(m﹣3,m+1)在第二象限,则m的取值范围为()A.﹣1<m<3 B.m>3 C.m<﹣1 D.m>﹣1【分析】根据点P(m﹣3,m+1)在第二象限及第二象限内点的符号特点,可得一个关于m的不等式组,解之即可得m的取值范围.【解答】解:∵点P(m﹣3,m+1)在第二象限,∴可得到,解得m的取值范围为﹣1<m<3.故选A.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号以及不等式组的解法,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).12.(2015•威海)若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据第二象限内的点的横坐标小于零,纵坐标大于零,可得关于a、b的不等式,再根据不等式的性质,可得B点的坐标符号.【解答】解:由A(a+1,b﹣2)在第二象限,得a+1<0,b﹣2>0.解得a<﹣1,b>2.由不等式的性质,得﹣a>1,b+1>3,点B(﹣a,b+1)在第一象限,故选:A.【点评】本题考查了点的坐标,利用第二象限内点的横坐标小于零,纵坐标大于零得出不等式,又利用不等式的性质得出B点的坐标符号是解题关键.13.(2014•株洲)在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)【分析】根据走法,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,用100除以3,然后根据商和余数的情况确定出所处位置的横坐标与纵坐标即可.【解答】解:由题意得,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,∵100÷3=33余1,∴走完第100步,为第34个循环组的第1步,所处位置的横坐标为33×3+1=100,纵坐标为33×1=33,∴棋子所处位置的坐标是(100,33).故选:C.【点评】本题考查了坐标确定位置,点的坐标位置的规律变化,读懂题目信息并理解每3步为一个循环组依次循环是解题的关键.14.(2009秋•杭州期末)小明的家,学校和书店依次坐落在一条南北方向的大街上,学校在家南边20米,书店在家北边100米,小明从家出来向北走了50米,又向北走了﹣70米,此时,小明的位置在()A.家B.学校C.书店D.不在上述地方【分析】以家为坐标原点建立坐标系,根据题意即可确定小明的位置.【解答】解:根据题意:小明从家出来向北走了50米,又向北走了﹣70米,即向南走了20米,而学校在家南边20米.故此时,小明的位置在学校.故选B.【点评】本题考查了类比点的坐标及学生的解决实际问题的能力和阅读理解能力,画出平面示意图能直观地得到答案.15.(2014•台湾)如图为小杰使用手机内的通讯软件跟小智对话的纪录.根据图中两人的对话纪录,若下列有一种走法能从邮局出发走到小杰家,则此走法为何?()A.向北直走700公尺,再向西直走100公尺B.向北直走100公尺,再向东直走700公尺C.向北直走300公尺,再向西直走400公尺D.向北直走400公尺,再向东直走300公尺【分析】根据题意先画出图形,可得出AE=400,AB=CD=300,再得出DE=100,即可得出邮局出发走到小杰家的路径为:向北直走AB+AE=700,再向西直走DE=100公尺.【解答】解:依题意,OA=OC=400=AE,AB=CD=300,DE=400﹣300=100,所以邮局出发走到小杰家的路径为,向北直走AB+AE=700,再向西直走DE=100公尺.故选:A.【点评】本题考查了坐标确定位置,根据题意画出图形是解题的关键.二.填空题(共10小题)16.(2014•黔西南州)在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:(1)f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);(2)g(m,n)=(﹣m,﹣n),如g (2,1)=(﹣2,﹣1)按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]=(3,2).【分析】由题意应先进行f方式的运算,再进行g方式的运算,注意运算顺序及坐标的符号变化.【解答】解:∵f(﹣3,2)=(﹣3,﹣2),∴g[f(﹣3,2)]=g(﹣3,﹣2)=(3,2),故答案为:(3,2).【点评】本题考查了一种新型的运算法则,考查了学生的阅读理解能力,此类题的难点是判断先进行哪个运算,关键是明白两种运算改变了哪个坐标的符号.17.(2013•天水)已知点M(3,﹣2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是(﹣1,1).【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:原来点的横坐标是3,纵坐标是﹣2,向左平移4个单位,再向上平移3个单位得到新点的横坐标是3﹣4=﹣1,纵坐标为﹣2+3=1.则点N的坐标是(﹣1,1).故答案填:(﹣1,1).【点评】解题关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.18.(2013•绵阳)如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B的坐标是(3,3).【分析】先确定右眼B的坐标,然后根据向右平移几个单位,这个点的横坐标加上几个单位,纵坐标不变,由此可得出答案.【解答】解:∵左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),∴右眼的坐标为(0,3),向右平移3个单位后右眼B的坐标为(3,3).故答案为:(3,3).【点评】本题考查了平移变换的知识,注意左右平移纵坐标不变,上下平移横坐标不变.19.(2015•广元)若第二象限内的点P(x,y)满足|x|=3,y2=25,则点P的坐标是(﹣3,5).【分析】根据绝对值的意义和平方根得到x=±5,y=±2,再根据第二象限的点的坐标特点得到x<0,y>0,于是x=﹣5,y=2,然后可直接写出P点坐标.【解答】解:∵|x|=3,y2=25,∴x=±3,y=±5,∵第二象限内的点P(x,y),∴x<0,y>0,∴x=﹣3,y=5,∴点P的坐标为(﹣3,5),故答案为:(﹣3,5).【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).20.(2005•杭州)如图的围棋盘放在某个平面直角坐标系内,白棋②的坐标为(﹣7,﹣4),白棋④的坐标为(﹣6,﹣8),那么黑棋①的坐标应该是(﹣3,﹣7).【分析】根据已知两点的坐标建立坐标系,然后确定其它点的坐标.【解答】解:由白棋②的坐标为(﹣7,﹣4),白棋④的坐标为(﹣6,﹣8)得出:棋盘的y轴是右侧第一条线,横坐标从右向左依次为﹣1,﹣2,﹣3,…;纵坐标是以上边第一条线为﹣1,向下依次为﹣2,﹣3,﹣4,….∴黑棋①的坐标应该是(﹣3,﹣7).故答案为:(﹣3,﹣7).【点评】考查类比点的坐标解决实际问题的能力和阅读理解能力.根据已知条件建立坐标系是关键,或者直接利用坐标系中的移动法则右加左减,上加下减来确定坐标.21.(2015•青岛)如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标分别变为原来的,那么点A的对应点A′的坐标是(2,3).【分析】先写出点A的坐标为(6,3),横坐标保持不变,纵坐标分别变为原来的,即可判断出答案.【解答】解:点A变化前的坐标为(6,3),将横坐标保持不变,纵坐标分别变为原来的,则点A的对应点的坐标是(2,3),故答案为(2,3).【点评】此题考查了坐标与图形性质的知识,根据图形得到点A的坐标是解答本题的关键.22.(2015•台州)如图,这是台州市地图的一部分,分别以正东、正北方向为x轴、y 轴的正方向建立直角坐标系,规定一个单位长度表示1km,甲、乙两人对着地图如下描述路桥区A处的位置.则椒江区B处的坐标是(10,8).【分析】根据A点坐标,可建立平面直角坐标系,根据直角三角形的性质,可得AC 的长,根据勾股定理,BC的长.【解答】解:如图:连接AB,作BC⊥x轴于C点,由题意,得AB=16,∠ABC=30°,AC=8,BC=8.OC=OA+AC=10,B(10,8).【点评】本题考查了坐标确定位置,利用A点坐标建立平面直角坐标系是解题关键,利用了直角三角形的性质:30°的角所对的直角边是斜边的一半.23.(2013•聊城)如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(2n,1)(用n 表示).的坐标,然后根据变化规律写【分析】根据图形分别求出n=1、2、3时对应的点A4n+1出即可.。

初一数学七下平面直角坐标所有知识点总结和常考题型练习题

初一数学七下平面直角坐标所有知识点总结和常考题型练习题

一、平面直角坐标系 1、平面直角坐标系、平面直角坐标系①在平面内画两条互相垂直且有公共原点的数轴,就组平面直角坐标系。

①在平面内画两条互相垂直且有公共原点的数轴,就组平面直角坐标系。

②水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

③把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

④注意:x 轴和y 轴上的点,不属于任何象限。

轴上的点,不属于任何象限。

2、点的坐标的概念、点的坐标的概念点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。

平面内点的坐标是有序实数对,当b a ¹时,(a ,b )和(b ,a )是两个不同点的坐标。

)是两个不同点的坐标。

二、不同位置的点的坐标的特征 1、关于x 轴、y 轴或原点对称的点的坐标的特征轴或原点对称的点的坐标的特征①点P 与点p ’关于x 轴对称Û横坐标相等,纵坐标互为相反数。

(a ,b )和(a ,-b ) ②点P 与点p ’关于y 轴对称Û纵坐标相等,横坐标互为相反数。

(a ,b )和(-a ,b )③点P 与点p ’关于原点对称Û横、纵坐标均互为相反数。

(a ,b )和(-a ,-b ) 2、点到坐标轴及原点的距离、点到坐标轴及原点的距离点P(x,y)到坐标轴及原点的距离:到坐标轴及原点的距离: (1)点P(x,y)到x 轴的距离等于y (2)点P(x,y)到y 轴的距离等于x (3)点P(x,y)到原点的距离等于22y x +三、坐标的平移三、坐标的平移坐标轴上 点P (x ,y ) 连线平行于坐标轴的点 点P (x ,y )在各象限 的坐标特点 象限角平分线上 的点X 轴Y 轴原点原点平行X 轴平行Y 轴第一象限第二象限 第三象限 第四象限 第一、第一、 三象限三象限 第二、四象限象限 (x,0) (0,y) (0,0) 纵坐标相同横坐标不同 横坐标相同纵坐标不同 x >0y >0x <0 y >0x <0 y <0x >0 y <0(m,m)(m,-m)P (x ,y )P (x ,y -a )P (x -a ,y )P (x +a ,y )P (x ,y +a )向上平移a 个单位向下平移a 个单位向右平移a 个单位向左平移a 个单位一、选择题一、选择题1.气象台为预报台风,首先要确定它的位置,下列说法能确定台风位置的是(气象台为预报台风,首先要确定它的位置,下列说法能确定台风位置的是( ) A.西太平洋西太平洋 B.北纬26º,东经133º C.距台湾300海里海里 D.台湾与冲绳之间台湾与冲绳之间2.右图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图。

平面直角坐标系知识点归纳

平面直角坐标系知识点归纳

平面直角坐标系知识点归纳平面直角坐标系的知识点同学们归纳过吗?如果还没有,请来小编这里瞧瞧。

下面是由小编为大家整理的“平面直角坐标系知识点归纳”,仅供参考,欢迎大家阅读。

平面直角坐标系知识点归纳一、基本概念1、有序数对:我们把这种有顺序的两个数a与b组成的数队,叫做有序数对。

2、平面直角坐标系:我们可以在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,习惯上取向右为正方向竖直的数轴称为y轴或纵轴,取向上方向为正方向两坐标轴的交战为平面直角坐标系的原点3、象限:坐标轴上的点不属于任何象限第一象限:x>0,y>0第二象限:x0第三象限:x0,y纵坐标轴上的点:(0,y)4、距离问题:点(x,y)距x轴的距离为y的绝对值距y轴的距离为x的绝对值坐标轴上两点间距离:点A(x1,0)点B(x2,0),则AB距离为x1-x2的绝对值点A(0,y1)点B(0,y2),则AB距离为y1-y2的绝对值5、绝对值相等的代数问题:a与b的绝对值相等,可推出1)a=b或者2)a=-b6、角平分线问题若点(x,y)在一、三象限角平分线上,则x=y若点(x,y)在二、四象限角平分线上,则x=-y7、平移:在平面直角坐标系中,将点(x,y)向右平移a个单位长度,可以得到对应点(x+a,y)向左平移a个单位长度,可以得到对应点(x-a,y)向上平移b个单位长度,可以得到对应点(x,y+b)向下平移b个单位长度,可以得到对应点(x,y-b)二、平面直角坐标特点1、平行于坐标轴的直线的点的坐标特点:平行于x轴(或横轴)的直线上的点的纵坐标相同;平行于y轴(或纵轴)的直线上的点的横坐标相同。

2、各象限的角平分线上的点的坐标特点:第一、三象限角平分线上的点的横纵坐标相同;第二、四象限角平分线上的点的横纵坐标相反。

3、与坐标轴、原点对称的点的坐标特点:关于x轴对称的点的横坐标相同,纵坐标互为相反数关于y轴对称的点的纵坐标相同,横坐标互为相反数关于原点对称的点的横坐标、纵坐标都互为相反数4、特殊位置点的特殊坐标:5、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。

1.平面直角坐标系(学生版)

1.平面直角坐标系(学生版)

第一讲 坐标系 1. 平面直角坐标系主备: 审核:学习目标:1.理解平面直角坐标系的意义,掌握在平面直角坐标系中描述点或线的方法;2.掌握坐标法解决几何问题的方法步骤;3.体会坐标系的作用.学习重点:坐标系解决几何问题的方法步骤.学习难点:坐标系解决几何问题的方法步骤.学习过程:一、课前准备阅读教材14P P -的内容,体会平面直角坐标系在解决实际问题和几何问题中的作用.并思考以下问题:(一)概念回顾刻画一个几何图形的位置,需要设定一个参照系1.数轴:它使直线上任一点P 都可以由惟一的实数x 确定;2.平面直角坐标系:在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系.它使平面上任一点P 都可以由惟一的实数对(,)x y 确定.3.空间直角坐标系在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系.它使空间上任一点P 都可以由惟一的实数对(,,)x y z 确定.(二)练习1. 三角形ABC 中,(2,1)A -,(3,2)B -,(4,5)C ,则三角形的重心坐标是 ( )A.(1,2)B. (1,2)--C. (2,1)D. (2,1)--2. 圆22420x y x y F +-++=与y 轴交于,A B 两点,圆心为C ,若90ACB ∠= ,则F 的值是 ( )A .22-B .22C .3D .3-3. 已知∆的三个顶点,(4,0)B -,(6,0)C ,则AB 边上的中线CD 所在直线的方程为 .4. 若点P Q 、的横坐标分别为12,x x ,直线PQ 的斜率为k ,则PQ =若点P Q 、的横坐标分别为12,x x ,直线PQ 的斜率为k ,则PQ = .二、典型例题【例1】已知B 村位于A 村的正西方1公里处,原计划经过B 村沿着北偏东60的方向设一条地下管线l . 但在A 村的西北方向400米处.发现一古代文物遗址W .根据初步勘探的结果,文物管理部门将遗址W 周围100米范围划为禁区. 试问:埋设地下管线l 的计划需要修改吗?【分析】【解析】【例2】建立适当的直角坐标系,证明:等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高.【分析】要证明的结论中涉及的都是点到直线的距离,故可考虑用点到直线的距离公式计算距离,因此必须建立直角坐标系.【证明】*【例3】在面积为1的PMN ∆中,1tan 2PMN ∠=,tan 2MNP ∠=-,建立适当的坐标系,求以M ,N 为焦点并过点P 的椭圆方程.【分析】建立适当坐标系,使得椭圆为标准形式;构造直角三角形,充分利用正切值,求出O y x F E P C B A椭圆的主要参数.【解析】三、总结提升:1.坐标系是联系代数与几何的桥梁,有了坐标系,很多几何问题便有了代数解法,并且简单明了;2.建立适当的直角坐标系,是我们解决几何问题的关键,只要坐标系建立得合理,适当,运算便简单,要通过一定量的训练,体会坐标系的建立方法.四、反馈练习:1. 原点在直线l 上的射影是(2,1)P -,则l 的方程为 ( )A .20x y += B .240x y +-= C . 250x y -+= D .230x y ++=2. 直线3230x +=被圆224x y +=截得的弦长是 .3. 若直线y x b =+与曲线24x y =-b 的取值范围是.4. 已知正方形的一个顶点为(1,0)A -,一边所在的直线方程为350x y +-=,求以A 为端点的两边所在直线的方程.【解析】5. 如图,圆1O 和圆2O 的半径都是1,124OO =,过动点P 分别做圆1O 和圆2O 的切线,(,PM PN M N 分别是切点),使PM =,试建立适当的坐标系,求动点P的轨迹方程.【解析】五、学后反思:。

初二平面直角坐标系典型题

初二平面直角坐标系典型题

初二平面直角坐标系典型题1. 引言嘿,大家好!今天咱们聊聊平面直角坐标系。

别担心,这个听起来像高深莫测的数学术语,其实就像我们日常生活中的小帮手。

想象一下,如果没有这些坐标,咱们连个路都找不到!说到这,我就忍不住想起那次跟朋友逛街,完全不记得哪个商场在哪儿,最后居然用手机地图找到了路!不过,话说回来,坐标系可不仅仅是找路的工具哦,今天我们就来好好研究一下它的奥秘。

2. 坐标系的基本概念2.1 什么是坐标系?首先,平面直角坐标系就是我们在数学课上见到的那个,有横轴(X轴)和纵轴(Y轴)组成的“十”字。

这个“十”字在纸上看起来平平无奇,但一旦开始用它来定位,就像开启了一扇神秘的大门。

就拿我们在课堂上画的那个点来说,X轴和Y轴的交点就是原点,其他的点则可以通过它们的坐标来找到。

你可以把它想成一个寻宝图,坐标就是你找到宝藏的线索!2.2 坐标的表示方法说到坐标,咱们就不能不提坐标的表示方法。

一个点的坐标一般用(X, Y)的方式表示,X代表这个点在水平方向的位置,而Y则是它在垂直方向上的位置。

比如,点A的坐标是(3, 2),这就意味着它在X轴上走了3步,在Y轴上爬了2步。

简直就像在做一个小小的探险,走一步算一步,乐趣无穷!3. 坐标系的应用3.1 日常生活中的坐标生活中其实处处都能看到坐标系的影子。

比如,想象一下你去游乐园,坐过山车的轨道就是一种坐标的运用。

坐标帮助设计师把每一段轨道的高度和位置精准地标记出来,保证你在高速旋转的时候不飞出轨道。

这样想来,坐标系就像是游乐园的守护神,确保大家的快乐体验。

3.2 数学题中的应用当然,坐标系在数学题里更是屡见不鲜。

比如有一道题,要求找出两点之间的距离,听起来就有点儿复杂。

但其实只要记住一个简单的公式:距离公式是√(x2 x1)² + (y2y1)²,就能轻松搞定。

把两个点的坐标代入,动动手指,答案就出来了,简直像魔术一样!这时候,你会觉得,坐标系简直就是数学小魔法,让难题瞬间变简单。

平面直角坐标系必考点归纳总结最新版

平面直角坐标系必考点归纳总结最新版

平面直角坐标系必考点题型归纳最新版必考点1: 象限的判断掌握第1~4象限内点的坐标符号特点分别是:(+,+)、(-,+)、(-,-)、(+,-).例题1: 如果P (ab ,a +b )在第四象限,那么Q (a ,﹣b )在( )A .第一象限B .第二象限C .第三象限D .第四象限【分析】直接利用各象限内点的坐标特点得出a ,b 的符号进而得出答案.【解析】∵P (ab ,a +b )在第四象限,∴ab >0,a +b <0,∴a <0,b <0,∴﹣b >0,∴Q (a ,﹣b )在第二象限.故选:B .【小结】此题主要考查了点的坐标,正确掌握各象限内点的坐标特点是解题关键.变式1: 对于任意实数m ,点P (m ﹣1,9﹣3m )不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限【分析】根据点所在象限中横纵坐标的符号即可列不等式组,若不等式组无解,则不能在这个象限.【解析】A 、当点在第一象限时{m −1>09−3m >0解得1<m <3,故选项不符合题意; B 、当点在第二象限时{m −1<09−3m >0,解得m <3,故选项不符合题意; C 、当点在第三象限时{m −1<09−3m <0,不等式组无解,故选项符合题意; D 、当点在第四象限时{m −1>09−3m <0,解得m >1,故选项不符合题意. 故选:C .【小结】本题主要考查了点的坐标,解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限(+,+),第二象限(﹣,+),第三象限(﹣,﹣),第四象限(+,﹣).变式2: 在平面直角坐标系xOy 中,若点A (m 2﹣4,m +1)在y 轴的非负半轴上,则点B (m ﹣1,1﹣2m )在( )A .第一象限B .第二象限C .第三象限D .第四象限 【分析】根据点A (m 2﹣4,m +1)在y 轴的非负半轴上可得{m 2−4=0m +1>0,据此求出m 的值,再根据各象限内点的坐标的符号进行判断即可.【解析】∵点A (m 2﹣4,m +1)在y 轴的非负半轴上,∴{m 2−4=0m +1>0,解得m =2, ∴m ﹣1=1,1﹣2m =﹣3,∵(1,﹣3)在第四象限,∴点B (m ﹣1,1﹣2m )在第四象限.故选:D .【小结】本题考查了点的坐标,根据y 轴上的点的坐标特点求出m 的值是解答本题的关键,注意:四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).变式3: 如图,平面直角坐标系中有P 、Q 两点,其坐标分别为P (4,a )、Q (b ,6).根据图中P 、Q 两点的位置,判断点(9﹣2b ,a ﹣6)落在第( )象限A .一B .二C .三D .四【分析】直接利用Q ,P 的位置进而得出a <6,b <4,进而得出9﹣2b >0,a ﹣6<0,求出答案即可.【解析】如图所示:a <6,b <4,则9﹣2b >0,a ﹣6<0,故点(9﹣2b ,a ﹣6)落在第四象限.故选:D .【小结】此题主要考查了点的坐标,正确得出a ,b 的取值范围是解题关键.必考点2: 坐标轴上点的特征坐标系内点的坐标特点:坐标原点(0,0)、x 轴(x ,0)、y 轴(0,y ).注意若点在坐标轴上,则要分成在x 轴、y 轴上两种情况来讨论.例题2: 已知点P (3a ,a +2)在y 轴上,则点P 的坐标是( )A .(0,2)B .(0,﹣6)C .(2,0)D .(0,6)【分析】直接利用y 轴上点的坐标特点得出其横坐标为零,进而得出答案.【解析】∵点P (3a ,a +2)在y 轴上,∴3a =0,解得:a =0,故a +2=2.则点P 的坐标是(0,2).故选:A .【小结】此题主要考查了点的坐标,正确掌握y 轴上点的坐标特点是解题关键.变式4: 已知A (a ﹣5,2b ﹣1)在y 轴上,B (3a +2,b +3)在x 轴上,则C (a ,b )的坐标为 .【分析】直接利用x,y轴上点的坐标特点得出a,b的值进而得出答案.【解析】∵A(a﹣5,2b﹣1)在y轴上,B(3a+2,b+3)在x轴上,∴a﹣5=0,b+3=0,解得:a=5,b=﹣3,∴C(a,b)的坐标为:(5,﹣3).【小结】此题主要考查了点的坐标,正确得出a,b的值是解题关键.变式5:如图,在平面直角坐标系xOy中,点A(a2﹣4,3)在y轴上,点B在x轴上,且横坐标为a,则点B的坐标为.【分析】直接利用y轴上点的坐标特点得出a的值,进而得出答案.【解析】∵点A(a2﹣4,3)在y轴上,∴a2﹣4=0,解得:a=2或﹣2,∵点B在x轴上,且横坐标为a,∴点B的坐标为:(2,0)和(﹣2,0).【小结】此题主要考查了点的坐标,正确掌握坐标轴上点的坐标特点是解题关键.变式6:在平面直角坐标系中,已知点A(0,0),|AB|=3,且点B和点A在同一坐标轴上,则点B的坐标为.【分析】根据数轴上到一点距离相等的点有两个,可得答案.【解析】B在x轴上时点B的坐标为(3,0)或(﹣3,0),B在y轴上时点B的坐标为(0,3)或(0,﹣3);故答案为:(3,0)或(﹣3,0)或(0,3)或(0,﹣3).【小结】本题考查了点的坐标.解题的关键能够正确确定出点的坐标,利用数轴上到一点距离相等的点有两个,以防遗漏.必考点3:点到坐标轴的距离点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值.例题3:若M在平面直角坐标系第二象限,且M到x轴的距离为4,到y轴距离为3,则点M的坐标为()A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)【分析】若M在平面直角坐标系第二象限,且M到x轴的距离为4,到y轴距离为3,则点M的坐标为【解析】由题意可得,|x|=3,|y|=4,∵点M在第二象限,∴x=﹣3,y=4,即M(﹣3,4),故选:D.【小结】本题考查了直角坐标系,正确理解横坐标与纵坐标的意义是解题的关键.变式7:已知点P(x,y)到x轴的距离为2,到y轴的距离为3,且x+y>0,x<0,则点P的坐标为()A.(﹣2,3)B.(2,3)C.(3,﹣2)D.(3,2)【分析】由点P(x,y)到X轴距离为2,到Y轴距离为3,可得x,y的可能的值,由x+y>0,xy<0,可得两数异号,且正数的绝对值较大;根据前面得到的结论即可判断点P的坐标.【解析】∵点P(x,y)到x轴距离为2,到y轴距离为3,∴|x|=3,|y|=2,∴x=±3,y=±2;∵x+y>0,xy<0,∴x=3,y=﹣2,∴P的坐标为(3,﹣2),故选:C.【小结】本题涉及到的知识点为:点到x轴的距离为点的纵坐标的绝对值;点到y轴的距离为点的横坐标的绝对值;两数相乘,异号得负;异号两数相加,结果的符号和绝对值较大的加数的符号相同.变式8:在平面直角坐标系中,点A的坐标是(3a﹣5,a+1).若点A到x轴的距离与到y轴的距离相等,且点A在y轴的右侧,则a的值为()A.1B.2C.3D.1 或3【分析】根据点A到x轴的距离与到y轴的距离相等可得3a﹣5=a+1或3a﹣5=﹣(a+1),解出a的值,再由点A在y轴的右侧可得3a﹣5>0,进而可确定a的值.【解析】∵点A到x轴的距离与到y轴的距离相等,∴3a﹣5=a+1或3a﹣5=﹣(a+1),解得:a=3或1,∵点A在y轴的右侧,∴点A的横坐标为正数,∴3a﹣5>0,∴a>53,∴a=3,故选:C.【小结】此题主要考查了点的坐标,关键是掌握到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值.变式9:若点P(2x,x﹣3)到两坐标轴的距离之和为5,则x的值为.【分析】分别利用P点在第一、二、三、四象限以及在坐标轴上分别分析得出答案.【解析】当点P在第一象限,x﹣3>0,解得:x>3,且2x+x﹣3=5,解得:x=83<3,不合题意;当点P在第二象限,{2x<0x−3>0,不等式组无解,不合题意;当点P在第三象限,{2x<0x−3<0,不等式组的解集为:x<0,则﹣2x﹣x+3=5,解得:x=−23;当点P 在第四象限,则{2x >0x −3<0,不等式组的解集为:0<x <3,故2x ﹣(x ﹣3)=5,解得:x =2, 当点P 在x 轴上,则x ﹣3=0,解得:x =3,此时2x =6,不合题意;当点P 在y 轴上,则2x =0,解得:x =0,此时|x ﹣3|=3,不合题意;综上所述:x =−23或x =2.【小结】此题主要考查了点的坐标,正确掌握各象限内点的坐标特点是解题关键. 必考点4: 角平分线上点的特征象限角平分线上点的坐标特点:第1、3象限中x =y ,第二、四象限中x +y =0.例题4: 已知点A (m 2﹣2,5m +4)在第一象限的角平分线上,则m 的值为( )A .6B .﹣1C .﹣1或6D .2或3【分析】根据第一象限角平分线上点的横坐标与纵坐标相等列方程求解,再根据第一象限点的横坐标与纵坐标都是正数作出判断.【解析】∵点A (m 2﹣2,5m +4)在第一象限的角平分线上,∴m 2﹣2=5m +4,∴m 2﹣5m ﹣6=0,解得m 1=﹣1,m 2=6,当m =﹣1时,m 2﹣2=﹣1,点A (﹣1,﹣1)在第三象限,不符合题意,所以m 的值为6.故选:A .【小结】本题考查了点的坐标,熟记第一象限平分线上的点的横坐标与纵坐标相等是解题的关键,易错点在于要注意对求出的解进行判断.变式10: 若点N 在第一、三象限的角平分线上,且点N 到y 轴的距离为2,则点N 的坐标是( )A .(2,2)B .(﹣2,﹣2)C .(2,2)或(﹣2,﹣2)D .(﹣2,2)或(2,﹣2)【分析】根据角平分线上的点到角的两边的距离相等可得点M 的横坐标与纵坐标的长度相等,再分点M 在第一、三象限两种情况解答.【解析】∵点N 在第一、三象限的角平分线上,∴点N 到y 轴的距离也为2,当点N 在第一象限时,点N 的坐标为(2,2);点N 在第三象限时,点N 的坐标为(﹣2,﹣2). 所以,点N 的坐标为(2,2)或(﹣2,﹣2).故选:C .【小结】本题考查了坐标与图形的性质,主要利用了角平分线上的点到角的两边的距离相等的性质,要注意分情况讨论.变式11: 若点P (3a ﹣2,2a +7)在第二、四象限的角平分线上,则点P 的坐标是 .【分析】根据第二、第四象限坐标轴夹角平分线上的点,横纵坐标互为相反数,由此就可以得到关于a 的方程,解出a的值,即可求得P点的坐标.【解析】∵点P(3a﹣2,2a+7)在第二、四象限的角平分线上,∴3a﹣2+2a+7=0,解得:a=﹣1,∴P(﹣5,5).【小结】本题考查了点的坐标的知识,注意掌握知识点:第二、四象限的夹角角平分线上的点的横纵坐标互为相反数.变式12:在平面直角坐标系xOy中,有一点P(a,b),实数a,b,m满足以下两个等式:2a﹣6m+4=0,b+2m﹣8=0.(1)当a=1时,点P到x轴的距离为;(2)若点P在第一、三象限的角平分线上,求点P的坐标;(3)当a<b时,则m的取值范围是.【分析】(1)把a=1代入2a﹣6m+4=0中求出m值,再把m值代入b+2m﹣8=0中即可求出b的值,再根据点到x轴的距离是纵坐标的绝对值即可求解;(2)借助两个等式,用m把a、b分别表示出来,再根据题意可知P点的横、纵坐标相等,列关于m的方程求出m的值,最后求出a、b值.(3)把a、b用m表示出来,代入a<b,则m的取值范围可求.【解析】(1)当a=1时,则2×1﹣6m+4=0,解得m=1.把m=1代入b+2m﹣8=0中,得b=6.所以P点坐标为(1,6),所以点P到x轴的距离为6.(2)当点P在第一、三象限的角平分线上时,根据点的横、纵坐标相等,可得a=b.由2a﹣6m+4=0,可得a=3m﹣2;由b+2m﹣8=0,可得b=﹣2m+8.则3m﹣2=﹣2m+8,解得m=2.把m=2分别代入2a﹣6m+4=0,b+2m﹣8=0中,解得a=b=4,所以P点坐标为(4,4).(3)由(2)中解答过程可知a=3m﹣2,b=﹣2m+8.若a<b,即3m﹣2<﹣2m+8,解得m<2.故答案为m<2.【小结】本题主要考察了点的坐标特征及解不等式,熟知特殊点的坐标特征是解题的关键.必考点5:点的坐标与象限之新定义问题例题5:若定义:f(a,b)=(﹣a,b),g(m,n)=(m,﹣n),例如f(1,2)=(﹣1,2),g(﹣4,﹣5)=(﹣4,5),则g(f(3,﹣4))的值为()A.(3,﹣4)B.(﹣3,4)C.(3,4)D.(﹣3,﹣4)【分析】根据f(a,b)=(﹣a,b),g(m,n)=(m,﹣n),可得答案.【解析】g(f(3,﹣4))=g(﹣3,﹣4)=(﹣3,4),故选:B.【小结】本题考查了点的坐标,利用f(a,b)=(﹣a,b),g(m,n)=(m,﹣n)是解题关键.变式13:如图,平面中两条直线l1和l2相交于点O,对于平面上任意点M,若p,q分别是M到直线l1和l2的距离,则称有序非负实数对(p,q)是点M的“距离坐标”.根据上述定义,有以下几个结论:①“距离坐标”是(0,2)的点有1个;②“距离坐标”是(3,4)的点有4个;③“距离坐标”(p,q)满足p=q的点有4个.其中正确的有()A.0个B.1个C.2个D.3个【分析】根据(p,q)是点M的“距离坐标”,得出①若pq≠0,则“距离坐标”为(p、q)的点有且仅有4个.②若pq=0,且p+q≠0,则“距离坐标”为(p、q)的点有且仅有2个,进而得出解集确定答案.【解析】①p=0,q=2,则“距离坐标”为(0,2)的点有且仅有2个;故此选项①“距离坐标”是(0,2)的点有1个错误;②正确,四个交点为与直线L1相距为3的两条平行线和与直线L2相距为4的两条平行线的交点;③“距离坐标”(p,q)满足p=q的点有无数个,在角平分线上,故此选项错误;故正确的有:1个,故选:B.【小结】此题考查了坐标确定位置;解题的关键是要注意两条直线相交时有四个区域,本题是一个好题目,有创新性,但是难度较小,理解题意不难解答,考查学生的逻辑思维能力.变式14:对于平面坐标系中任意两点A(x1,y1),B(x2,y2)定义一种新运算“*”为:(x1,y1)*(x2,y2)=(x1y2,x2y1).根据这个規则计算:(3,5)*(﹣1,2)=;若A(x1,y1)在第三象限,B(x2,y2)在第四象限,则A*B在第象限.【分析】直接利用已知运算公式结合各象限内点的坐标特点得出答案.【解析】∵(x1,y1)*(x2,y2)=(x1y2,x2y1),∴(3,5)*(﹣1,2)=(3×2,﹣1×5)=(6,﹣5)∵A(x1,y1)在第三象限,B(x2,y2)在第四象限,∴x1<0,y1<0,x2>0,y2<0,A*B=(x1y2,x2y1),∴x1y2>0,x2y1<0,∴A*B在第四象限.【小结】此题主要考查了点的坐标以及数字变化规律,正确利用已知运算法则是解题关键.变式15:在平面直角坐标系xOy中,对于点P(x,y),如果点Q(x,y′)的纵坐标满足y′={x−y(当x≥y时)y−x(当x<y时),那么称点Q为点P的“关联点”.请写出点(3,5)的“关联点”的坐标;如果点P(x,y)的关联点Q坐标为(﹣2,3),则点P的坐标为.【分析】根据关联点的定义,可得答案.【解析】∵3<5,根据关联点的定义,∴y′=5﹣3=2,点(3,5)的“关联点”的坐标(3,2);∵点P(x,y)的关联点Q坐标为(﹣2,3),∴y′=y﹣x=3或x﹣y=3,即y﹣(﹣2)=3或(﹣2)﹣y=3,解得y=1或y=﹣5,∴点P的坐标为(﹣2,1)或(﹣2,﹣5).【小结】本题主要考查了点的坐标,理清“关联点”的定义是解答本题的关键.必考点6:点的坐标确定位置首先由点的坐标确定坐标系,进而可确定所求位置的坐标.例题6:棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图是局象棋残局,若在中国象棋盘上建立平面直角坐标系,使表示棋子“馬”和“車”的点的坐标分别为(4,3),(﹣2,1),则表示“炮”的点的坐标为()A.(1,3)B.(3,1)C.(2,3)D.(1,2)【分析】直接利用已知点坐标得出原点位置进而得出答案.【解析】如图所示:“炮”的点的坐标为(1,3).故选:A.【小结】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.变式16:如图所示,某战役缴获敌人防御工事坐标地图碎片,依稀可见,一号暗堡的坐标为(4,2),四号暗堡的坐标为(﹣2,4),原有情报得知:敌军指挥部的坐标为(0,0),你认为敌军指挥部的位置大约是()A.A处B.B处C.C处D.D处【分析】直接利用已知点坐标得出原点位置进而得出答案.【解析】如图所示:敌军指挥部的位置大约是B处.故选:B.【小结】此题主要考查了坐标确定位置,正确建立平面直角坐标系是解题关键.变式17:如图为东明一中新校区分布图的一部分,方格纸中每个小方格都是边长为1个单位的正方形,若教学楼的坐标为A(1,2),图书馆的位置坐标为B(﹣2,﹣1),解答以下问题:(1)在图中找到坐标系中的原点,并建立直角坐标系;(2)若体育馆的坐标为C(1,﹣3),食堂坐标为D(2,0),请在图中标出体育馆和食堂的位置;(3)顺次连接教学楼、图书馆、体育馆、食堂得到四边形ABCD,求四边形ABCD的面积.【分析】(1)根据点A的坐标,向左1个单位,向下2个单位为坐标原点,建立平面直角坐标系即可;(2)根据平面直角坐标系标注体育馆和食堂即可;(3)根据四边形所在的矩形的面积减去四周四个小直角三角形的面积列式计算即可得解.【解析】(1)建立平面直角坐标系如图所示;(2)体育馆C(1,﹣3),食堂D(2,0)如图所示;(3)四边形ABCD的面积=4×5−12×3×3−12×2×3−12×1×3−12×1×2,=20﹣4.5﹣3﹣1.5﹣1,=20﹣10,=10.【小结】本题考查了坐标确定位置,平面直角坐标系的定义,网格结构中不规则四边形的面积的求解,熟记概念并熟练运用网格结构是解题的关键.变式18:如图,在边长为1个单位长度的小正方形组成的网格中,小明家可用坐标(﹣1,2)表示,汽车站可用坐标(3,﹣1)表示.(1)建立平面直角坐标系,画出x轴和y轴;(2)某星期日早晨,小明同学从家出发,沿(0,1)→(﹣2,﹣1)→(﹣1,﹣2)→(0,﹣1)→(1,0)→(2,﹣1)→(2,2)的路线转了一圈,又回到家里,写出他路上经过的地方;(3)连接他在上一问中经过的地点,你得到了什么图形?【分析】(1)根据平面直角坐标系的定义建立即可;(2)根据平面直角坐标系找出各点的位置,然后连接即可,再写出各地方的名称;(3)根据图形形状解答.【解析】(1)如图,建立平面直角坐标系;(2)小明家﹣学校﹣奶奶家﹣宠物店﹣医院﹣公园﹣邮局﹣游乐场﹣消防站﹣小明家;(3)连接他在上一问中经过的地点,得到“箭头”状的图形.【小结】本题考查了坐标确定位置,主要是平面直角坐标系的建立与点的坐标位置的确定方法,是基础题.必考点7:坐标与图形(平行于坐标轴)与坐标轴平行的直线上点的坐标特点:与x轴平行,纵坐标y相等;与y轴平行,横坐标x相等.例题7:在平面直角坐标系中,已知线段MN∥x轴,且MN=3,若点M的坐标为(﹣2,1),则点N的坐标为.【解析】∵线段MN∥x轴,点M的坐标为(﹣2,1),∴点N的纵坐标为1,∵MN=3,∴点N的横坐标为﹣2+3=1或﹣2﹣3=﹣5,∴点N的坐标为(1,1)或(﹣5,1),变式19:已知A(1,2),B(x,y),AB∥x轴,且B到y轴距离为2,则点B的坐标是.【分析】根据平行于x轴的直线上点的纵坐标相等求出点B的纵坐标,再根据点到y轴的距离等于横坐标的长度求出点B的横坐标,然后写出即可.【解析】∵AB∥x轴,∴y=2,∵点B到y轴距离为2,∴x=±2,∴点B的坐标为(2,2)或(﹣2,2).变式20:已知点A(3a﹣6,a+4),B(﹣3,2),AB∥y轴,点P为直线AB上一点,且P A=2PB,则点P的坐标为.【分析】由AB∥y轴可知AB的横坐标相等,故3a﹣6=﹣3,即可求出a=1,得AB=3,根据已知P A=2PB,分P在线段AB上和在线段AB延长线两种情况求出P A,即可得到两种情况下P的坐标.【解析】∵AB∥y轴,∴3a﹣6=﹣3,解得a=1,∴A(﹣3,5),∵B点坐标为(﹣3,2),∴AB=3,B在A的下方,①当P 在线段AB上时,∵P A=2PB∴P A=23AB=2,∴此时P坐标为(﹣3,3),②当P在AB延长线时,∵P A=2PB,即AB=PB,∴P A=2AB,∴此时P坐标为(﹣3,﹣1);故答案为(﹣3,3)或(﹣3,﹣1).【小结】本题主要考查了坐标与图形的性质,掌握平行于y轴的直线上所有点横坐标相等是解题的关键,并根据A、B两点的距离及相对位置,分类求解.变式21:平面立角坐标系中,点A(﹣2,3),B(2,﹣1),经过点A的直线a∥x轴,点C是直线a 上的一个动点,当线段BC的长度最短时,点C的坐标为()A.(0,﹣1)B.(﹣1,﹣2)C.(﹣2,﹣1)D.(2,3)【分析】根据经过点A的直线a∥x轴,可知点C的纵坐标与点A的纵坐标相等,可设点C的坐标(x,3),根据点到直线垂线段最短,当BC⊥a时,点C的横坐标与点B的横坐标相等,即可得出答案.【解析】如右图所示,∵a∥x轴,点C是直线a上的一个动点,点A(﹣2,3),∴设点C(x,3),∵当BC⊥a时,BC的长度最短,点B(2,﹣1),∴x=2,∴点C的坐标为(2,3).故选:D.【小结】本题主要考查了平面直角坐标系中点的特征和点到直线垂线段最短.必考点8:点的平移平面直角坐标内点的平移规律,设a>0,b>0(1)一次平移:P(x,y)P'(x+a,y)P(x,y)P'(x,y -b)(2)二次平移:例题8:在平面直角坐标系中,点A'(2,﹣2)可以由点A(﹣2,3)通过两次平移得到,则正确的是()A.先向左平移4个单位长度,再向上平移5个单位长度B.先向右平移4个单位长度,再向上平移5个单位长度C.先向左平移4个单位长度,再向下平移5个单位长度向右平移a个单位向下平移b个单位P(x,y)P(x-a,y+b)向左平移a个单位再向上平移b个单D .先向右平移4个单位长度,再向下平移5个单位长度【分析】利用点A 与点A ′的横纵坐标的关系确定平移的方向和平移的距离.【解析】把点A (﹣2,3)先向右平移4个单位长度,再向下平移5个单位长度得到点A ′(2,﹣2). 故选:D .【小结】本题考查了坐标与图形变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a ,相应的新图形就是把原图形向上(或向下)平移a 个单位长度.变式22: 已知A (3,﹣2),B (1,0),把线段AB 平移至线段CD ,其中点A 、B 分别对应点C 、D ,若C (5,x ),D (y ,0),则x +y 的值是( )A .﹣1B .0C .1D .2【分析】根据A 、B 两点平移后对应点的位置可得图形的平移方法,进而可得x 、y 的值,再计算出x +y【解析】∵A (3,﹣2),B (1,0)平移后的对应点C (5,x ),D (y ,0),∴平移方法为向右平移2个单位,∴x =﹣2,y =3,∴x +y =1,故选:C .【小结】此题主要考查了坐标与图形的变化﹣﹣平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.变式23: 在平面直角坐标系中,将点A (m ,m +9)向右平移4个单位长度,再向下平移2个单位长度,得到点B ,若点B 在第二象限,则m 的取值范围是( )A .﹣11<m <﹣4B .﹣7<m <﹣4C .m <﹣7D .m >﹣4【分析】首先根据平移表示出B 点坐标,再根据B 点所在象限列出不等式组,再解即可.【解析】∵点A (m ,m +9)向右平移4个单位长度,再向下平移2个单位长度,得到点B ,∴B (m +4,m +7),∵点B 在第二象限,∴{m +4<0,m +7>0,解得:﹣7<m <﹣4,故选:B . 【小结】此题主要考查了点的平移,以及一元一次不等式组的应用,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.变式24: 在平面直角坐标系中,将A (m 2,1)沿着x 的正方向向右平移m 2+3个单位后得到B 点.有四个点M (﹣m 2,1)、N (m 2,m 2+3)、P (m 2+2,1)、Q (3m 2,1),一定在线段AB 上的是( )A .点MB .点NC .点PD .点Q【分析】根据平移的过程以及四个点的坐标进行分析比较即可判断.【解析】∵将A(m2,1)沿着x的正方向向右平移m2+3个单位后得到B点,∴B(2m2+3,1),∵m2≥0,∴2m2+3>0,∴线段AB在第一象限,点B在点A右侧,且与x轴平行,距离x轴1个单位,因为点M(﹣m2,1)在点A左侧,不在线段AB上;点N(m2,m2+3)距离x轴(m2+3)个单位,不在线段AB上;点P(m2+2,1)在点A右侧,且距离x轴1个单位,在线段AB上;点Q(3m2,1)是将A(m2,1)沿着x的正方向向右平移2m2个单位后得到的,不一定在线段AB上,有可能在线段AB延长线上.所以一定在线段AB上的是点P.故选:C.【小结】本题考查了坐标与图形的变化﹣平移,解决本题的关键是掌握平移的性质.必考点9:图形的平移解题的关键是掌握在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)例题9:如图,三角形ABC经过一定的平移变换得到三角形A'B'C',若三角形ABC上一点M的坐标为(m,n),那么M点的对应点M'的坐标为.【分析】由图形得出△ABC向右平移4个单位,再向上平移2个单位得到△A′B′C′,从而得到△ABC 上任意一点平移后的对应点的坐标.【解析】由图形知,△ABC向右平移4个单位,再向上平移2个单位得到△A′B′C′,∴△ABC上的一点M(m,n)平移后的对应点M′坐标为(m+4,n+2)【小结】本题主要考查坐标与图形的变化﹣平移,解题的关键是掌握在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)变式25:如图,三角形ABC中任意一点P(x,y),经过平移后对应点为P1(x+4,y﹣2),将三角形ABC作同样的平移得到三角形A1B1C1,若点A的坐标为(﹣4,5),则点A1的坐标为.【分析】直接利用P点平移规律,进而得出A点平移规律.【解析】∵三角形ABC中任意一点P(x,y),经过平移后对应点为P1(x+4,y﹣2),∴点A1的坐标为:(﹣4+4,5﹣2),即(0,3).【小结】此题主要考查了坐标与图形的变化,正确得出平移规律是解题关键.变式26:已知△ABC内任意一点P(a,b)经过平移后对应点P1(c,d),已知A(﹣3,2)在经过此次平移后对应点A1(4,﹣3),则a﹣b﹣c+d的值为()A.2B.﹣2C.12D.﹣12【分析】由A(﹣3,2)在经过此次平移后对应点A1的坐标为(4,﹣3),可得△ABC的平移规律为:向右平移7个单位,向下平移5个单位,由此得到结论.【解析】∵A(﹣3,2)在经过此次平移后对应点A1的坐标为(4,﹣3),∴△ABC的平移规律为:向右平移7个单位,向下平移5个单位,∵点P(a,b)经过平移后对应点P1(c,d),∴a+7=c,b﹣5=d,∴a﹣c=﹣7,b﹣d=5,∴a﹣b﹣c+d=a﹣c﹣(b﹣d)=﹣7﹣5=﹣12,故选:D.【小结】本题考查的是坐标与图形变化﹣平移,牢记平面直角坐标系内点的平移规律:上加下减、右加左减是解题的关键.变式27:如图,三角形A'B'C'是由三角形ABC经过某种平移得到的,点A与点A',点B与点B',点C 与点C'分别对应,观察点与点坐标之间的关系,解答下列问题.(1)分别写出点A、点B、点C、点A'、点B'、点C'的坐标,并说明三角形A'B'C'是由三角形ABC经过怎样的平移得到的.(2)若点M(a+2,4﹣b)是点N(2a﹣3,2b﹣5)通过(1)中的平移变换得到的,求(b﹣a)2的值.【解析】(1)由图知,A(0,3),B(2,1),C(3,4),A′(﹣3,0),B′(﹣1,﹣2),C′(0,1),且△ABC向左平移3个单位,向下平移3个单位可以得到△A′B′C′;(2)由(1)中的平移变换的2a﹣3﹣3=a+2,2b﹣5﹣3=4﹣b,解得a=8,b=4,则(b﹣a)2=(4﹣8)2=(﹣4)2=16.必考点10:坐标系中的面积问题直角坐标系中不规则图形面积的求法,一般需要作x轴(y轴)的垂线,将原图形分割为可求面积的图形,再求其面积和.例题10:如图,右边坐标系中四边形的面积是()A.4B.5.5C.4.5D.5【解析】如图,作AE⊥BC,垂足为E,则:S四边形ABCD=S△OCD+S梯形ODAE+S△ABE=12×1×1+12×(1+2)×2+12×1×2=4.5,故选:C.【小结】本题考查了直角坐标系中不规则图形面积的求法,一般需要作x轴(y轴)的垂线,将原图形分割为可求面积的图形,再求其面积和.变式28: 如图,A 、B 两点的坐标分别为(2,4),(6,0),点P 是x 轴上一点,且△ABP 的面积为6,则点P 的坐标为 .【解析】设P 点坐标为(x ,0),根据题意得12•4•|6﹣x |=6,解得x =3或9,所以P 点坐标为(3,0)或(9,0). 变式29: 已知:在平面直角坐标系中,A (0,1),B (2,0),C (4,3)(1)求△ABC 的面积;(2)设点P 在x 轴上,且△ABP 与△ABC 的面积相等,求点P 的坐标.【解析】(1)过点C 作CD ⊥x 轴,CE ⊥y ,垂足分别为D 、E .S △ABC =S 四边形CDEO ﹣S △AEC ﹣S △ABO ﹣S △BCD =3×4−12×2×4−12×1×2−12×2×3=4.(2)设点P 的坐标为(x ,0),则BP =|x ﹣2|.∵△ABP 与△ABC 的面积相等,∴12×1×|x ﹣2|=4.解得:x =10或x =﹣6. 所以点P 的坐标为(10,0)或(﹣6,0).变式30: 如图,在平面直角坐标系中,同时将点A (﹣1,0)、B (3,0)向上平移2个单位长度再向右平移1个单位长度,分别得到A 、B 的对应点C 、D .连接AC ,BD(1)求点C 、D 的坐标,并描出A 、B 、C 、D 点,求四边形ABDC 面积;(2)在坐标轴上是否存在点P ,连接P A 、PC 使S △P AC =S 四边形ABDC ?若存在,求点P 坐标;若不存在,请说明理由.【分析】(1)根据向右平移横坐标加,向上平移纵坐标加写出点C 、D 的坐标即可,再根据平行四边形的面积公式列式计算即可得解;(2)分点P 在x 轴和y 轴上两种情况,依据S △P AC =S 四边形ABDC 求解可得.【解析】(1)由题意知点C 坐标为(﹣1+1,0+2),即(0,2),点D 的坐标为(3+1,0+2),即(4,2),如图所示,S 四边形ABDC =2×4=8;(2)当P 在x 轴上时,∵S △P AC =S 四边形ABDC ,∴12AP ⋅OC =8, ∵OC =2,∴AP =8,∴点P 的坐标为 (7,0)或 (﹣9,0);当P 在y 轴上时,∵S △P AC =S 四边形ABDC ,∴12CP ⋅OA =8, ∵OA =1,∴CP =16,∴点P 的坐标为(0,18)或 (0,﹣14);综上,点P 的坐标为(7,0)或 (﹣9,0)或(0,18)或 (0,﹣14).【小结】本题考查了坐标与图形性质,三角形的面积,坐标与图形变化﹣平移,熟记各性质是解题的关键. 必考点11: 点的坐标规律问题之周期性例题11: 在平面直角坐标系中,对于点P (x ,y ),我们把点P '(1﹣y ,x ﹣1)叫做点P 的友好点,已知点A 1的友好点为A 2,点A 2的友好点为A 3,点A 3的友好点为A 4,…,这样依次得到点A 1、A 2、A 3、A 4…,若点A 1的坐标为(3,2),则点A 2020的坐标为( )A .(3,2)B .(﹣1,2)C .(﹣1,﹣2)D .(3,﹣2)【分析】根据点P (x ,y )的友好点是点P '(1﹣y ,x ﹣1),点A 1的友好点为A 2,点A 2的友好点为A 3,点。

平面直角坐标系知识清单(超经典,全面)

平面直角坐标系知识清单(超经典,全面)

平面直角坐标系知识清单
1.认识平面直角坐标系:
(1)x 轴上原点右边的部分是, (填“包括”或“不包括”)原点. (2)y 轴上原点下边的部分是, (填“包括”或“不包括”)原点. (3)横、纵坐标符号相同的点在. (4)横、纵坐标符号相反的点在.
2.坐标轴及平行于坐标轴的直线上的点的坐标特征:
3.各象限角平分线上的点的坐标特征:
(1)横、纵坐标相同的点在.
(2)横、纵坐标互为相反数的点在.
4.点),(y x 到坐标轴的距离:
(1)点(x (2)点
),(y x 到y 轴的距离是.
5.点),(y x 关于坐标轴及原点的对称点:
(1)点(x (2)点),(y x 关于y 轴的对称点是; (3)点),(y x 关于原点的对称点是.
6.将点),(y x 向左(或右)平移a 个单位,横坐标(或),纵坐标.
将点),(y x 向上(或下)平移b 个单位,横坐标,纵坐标(或).
例:点),(y x 向右平移2个单位得到点, 再向下平移3个单位得到点.
7.中点坐标公式:
已知点A ),(11y x 和点B ),(22y x ,则线段AB 的中点坐标为.
8.两点间的距离公式:
已知点A ),(11y x 和点B ),(22y x ,则A 、B 两点间的距离为AB=.
特别地,若21x x =,则AB=;
若21y y =,则AB=;
第二象限 ( ) 第一象限
( ) x y
O
第三象限 ( ) 第四象限
( ) )
1y x ((),y (x )
y -++,+-,--,-+,)
2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面直角坐标系知识结构图:一、知识要点:(一)有序数对:有顺序的两个数a与b组成的数对。

记作(a ,b)(二)平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成了平面直角坐标系;a,)一一对应;其1、坐标平面上的任意一点P的坐标,都和惟一的一对有序实数对(b中,a为横坐标,b为纵坐标坐标;2、x轴上的点,纵坐标等于0;y轴上的点,横坐标等于0;坐标轴上的点不属于任何象限(三)四个象限的点的坐标具有如下特征:1、点P (y x ,)所在的象限 横、纵坐标x 、y 的取值的正负性;2、点P(y x ,)所在的数轴 横、纵坐标x 、y 中必有一数为零;(四)在平面直角坐标系中,已知点P ),(b a ,则 1、点P 到x 轴的距离为b ; 2、点P 到y 轴的距离为a ;3、点P 到原点O 的距离为PO = 22b a +(五)平行直线上的点的坐标特征:1、在与x 轴平行的直线上, 所有点的纵坐标相等;点A 、B 的纵坐标都等于m ;2、在与y 轴平行的直线上,所有点的横坐标相等;点C 、D 的横坐标都等于n ;(六)对称点的坐标特征:1、点P ),(n m 关于x 轴的对称点为),(1n m P -, 即横坐标不变,纵坐标互为相反数;XX2、点P ),(n m 关于y 轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为相反数;3、点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;关于x 轴对称 关于y 轴对称 关于原点对称(七)两条坐标轴夹角平分线上的点的坐标的特征:1、若点P (n m ,)在第一、三象限的角平分线上,则n m =,即横、纵坐标相等; 2、若点P (n m ,)在第二、四象限的角平分线上,则n m -=,即横、纵坐标互为相反数;在第一、三象限的角平分线上 在第二、四象限的角平分线上(八)利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:1、建立坐标系,选择一个适当的参照点为原点,确定x 轴、y 轴的正方向;2、根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;3、在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。

二、题型分析:XXP X-X题型一: 代数式与点坐标象限判定此类问题通常与不等式(组)联系在一起,或由点所在的象限确定字母的取值范围,或由字母的取值范围确定点所在的象限.【例1】在平面直角坐标系中,点()32-,在( ) A.第一象限B.第二象限C.第三象限D.第四象限【例2】若点P (12m m -,)的横坐标与纵坐标互为相反数,则点P 一定在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【例3】若点P (a ,b )在第四象限,则点M (b-a ,a-b )在 ( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 【例4】如果a -b <0,且ab <0,那么点(a ,b)在 ( )A 、第一象限B 、第二象限C 、第三象限,D 、第四象限【例5】对任意实数x ,点P (x ,x 2-2x )一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限 【例7】点P (x ,y )在第四象限,且|x|=3,|y|=2,则P 点的坐标是 。

【例8】若点M (1 – x ,x + 2 ) 在第二象限内,则x 的取值范围为 ;习题演练:1、在平面直角坐标系中,点P (4,22-+m )一定在 象限。

2、点P (x -1,x +1)不可能在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 3、如果点M (a +b ,ab )在第二象限,那么点N (a ,b )在第________象限。

4、点Q (3 – a ,5 – a )在第二象限,则a 2- 4a + 4 + a 2- 10a + 25 = 5、点M (a ,a -1)不可能在 ( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 6、如果xy<0,那么点P (x ,y )在 ( ) A 、 第二象限 B 、第四象限 C 、第四象限或第二象限 D 、第一象限或第三象限题型二:用代数式求坐标轴上的点坐标例1:在平面直角坐标系中,已知点P (2,5-+m m )在x 轴上,则P 点坐标为 例2:已知:A(1,2),B(x,y),AB ∥x 轴,且B 到y 轴距离为2,则点B 的坐标是 .习题演练:1、已知点A (m ,-2),点B (3,m-1),且直线AB ∥x 轴,则m 的值为 。

2、已知线段AB=3,AB ∥x 轴,若点A 的坐标为(1-,2),则B 点的坐标为 ;3、已知点P (x 2-3,1)在一、三象限夹角平分线上,则x= .题型三:求对称点的坐标解答此类问题所需知识点是:点(a,b )关于x 轴的对称点是(a,-b),关于y 轴的对称点是(-a,b),关于原点的对称点是(-a,-b ).【例1】在如图1所示的方格纸中,每个小正方形的边长为1,如果以MN 所在的直线为y 轴,以小正方形的边长为单位长度建立平面直角坐标系,使A 点与B 点关于原点对称,则这时C 点的坐标可能是( ) A.(13), B.(21)-,C.(21),D.(31),【解析】根据题意,A 点与B 点关于原点对称,MN 所在直线为y 轴,于是可确定原点为图中O 点位置,即x 轴为过O 点的一条横线,于是C 点的坐标为(2,-1),即选B . 【点评】本题逆向考查了两点关于原点对称问题,求C 点坐标的关键是确定直角坐标系的原点所在.例1:点M (2,-3)关于x 轴的对称点N 的坐标为 ; 关于y 轴的对称点P的坐标为 ;关于原点的对称点Q 的坐标为 。

答案:(2,3) ; (-2,-3) ; (3,-2)例2 已知点A (a ,-5),B (8,b )根据下列要求,确定a ,b 的值.(1)A ,B 两点关于y 轴对称;(2)A ,B 两点关于原点对称;(3)AB ∥x 轴; (4)A ,B 两点在一,三象限两坐标轴夹角的平分线上.【分析】(1)两点关于y 轴对称时,它们的横坐标互为相反数,而纵坐标相同; (2)两点关于原点对称时,两点的横纵坐标都互为相反数; (3)两点连线平行于x 轴时,这两点纵坐标相同(但横坐标不同);(4)当两点位于一,三象限两坐标轴夹角的平分线上时,每个点的横纵坐标相同. 【解答】(1)当点A (a ,-5),B (8,b )关于y 轴对称时有:85A BA B x x a y y b =-=-⎧⎧∴⎨⎨==-⎩⎩ (2)当点A (a ,-5),B (8,b )关于原点对称时有85A BA Bx x a y y b =-=-⎧⎧∴⎨⎨=-=⎩⎩图1(3)当AB ∥x 轴时,有85A B A B x x a y y b ≠≠⎧⎧∴⎨⎨==-⎩⎩ (4)当A ,B 两点位于一,三象限两坐标轴夹角平分线上时有:x A =y B 且x A =y B 即a=-5,b=8.【点评】运用对称点的坐标之间的关系是解答本题的关键.习题演练:1、点P(1-,2)关于x 轴的对称点的坐标是 ,关于y 轴的对称点的坐标是 ,关于原点的对称点的坐标是 ;2、在平面直角坐标系下,下列各组中关于原点对称又关于y 轴对称的点是( )A 、(3,-2)(-3,-2)B 、(0,3)(0,-3)C 、(3,0)(-3,0)D 、(3,-2)(-3,2)题型四:根据坐标对称求代数式的值例1:已知点P (23,3)a -和点A )23,1(+-b 关于x 轴对称,那么b a += ; 答案:23- 习题演练:1、已知点A (2a+3b ,-2)和点B (8,3a+2b )关于x 轴对称,那么a+b=( ) A 、2 B 、-2 C 、0 D 、4 答案:A2、已知:点P 的坐标是(m ,1-),且点P 关于x 轴对称的点的坐标是(3-,n 2),则_________,==n m ;答案:-3 ;12题型五:根据到坐标轴的距离求坐标例1:过点A (2,-3)且垂直于y 轴的直线交y 轴于点B ,则点B 坐标为 ( ).A 、(0,2)B 、(2,0)C 、(0,-3)D 、(-3,0) 答案:C例2:已知点M 到x 轴的距离为3,到y 轴的距离为2,则M 点的坐标为( ).A 、(3,2)B 、(-3,-2)C 、(3,-2)D 、(2,3),(2,-3),(-2,3),(-2,-3) 答案:D例3:若点P (a ,b )到x 轴的距离是2,到y 轴的距离是3,则这样的点P 有 ( )A、1个 B、2个 C、3个 D、4个 答案:D习题演练:1、点P位于x轴下方,y轴左侧,距离x轴4个单位长度,距离y轴2个单位长度,那么点P的坐标是()A、(4,2)B、(-2,-4)C、(-4,-2)D、(2,4)答案:B2、点E(a,b)到x轴的距离是4,到y轴距离是3,则有()A、a=3, b=4B、a=±3,b=±4C、a=4, b=3D、a=±4,b=±3答案:D3、已知点P的坐标为(2 – a,3a + 6),且点P到两坐标轴的距离相等,则点P坐标是 ( )A、(3,3)B、(3,—3)C、(6,一6)D、(3,3)或(6,一6)答案:D题型六:根据图形的其他顶点坐标求点坐标例1:在平面直角坐标系中,A,B,C三点的坐标分别为(0,0),(0,-5),(-2,-2),•以这三点为平行四边形的三个顶点,则第四个顶点不可能在第_______象限.答案:一习题演练:1、一个长方形在平面直角坐标系中三个顶点的坐标为(–1,–1)、(–1,2)、(3,–1),则第四个顶点的坐标为()A、(2,2)B、(3,2)C、(3,3)D、(2,3)答案:B题型七:根据点的坐标求图形的面积例1:已知点A(-2,0)B(4,0)C(-2,-3)。

(1)求A、B两点之间的距离。

(2)求点C 到X轴的距离。

(3)求△ABC的面积。

答案:(1)6 ;(2)3 ;(3)9习题演练:1、在坐标系中,已知A(2,0),B(-3,-4),C(0,0),则△ABC的面积为()A、4B、6C、8D、3答案:A技巧:割补法求面积题型八:求平移后的坐标例1:已知三角形的三个顶点坐标分别是(-1,4)、(1,1)、(-4,-1),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是()A、(-2,2),(3,4),(1,7)B、(-2,2),(4,3),(1,7)C、(2,2),(3,4),(1,7)D、(2,-2),(3,3),(1,7)答案:A例2:线段CD是由线段AB平移得到的.点A(–1,4)的对应点为C(4,7),则点B(– 4,– 1)的对应点D的坐标为()A、(2,9)B、(5,3)C、(1,2)D、(– 9,– 4)答案:C习题演练:1、已知点()M-,,将它先向左平移4个单位,再向上平移3个单位后得到点32,则点的坐标是.答案:(-1,1)题型九:图形变换后点的坐标【例4】将点(22)P -,沿x 轴的正方向平移4个单位得到点P '的坐标是( ) A.(26)-,B.(62)-,C.(22),D.(22)-,【解析】将点P 沿x 轴的正方向平移时,横坐标发生变化,然纵坐标是不变化的,于是点P '的坐标为(2,2),即选C .【点评】处理类似问题不妨新建一个直角坐标系草图分析一下,沿x 轴正方向平移时,纵坐标的不变性就很直观了.【例5】如图2,将AOB △绕点O 逆时针旋转90o, 得到A OB ''△.若点A 的坐标为()a b ,, 则点A '的坐标为.【解析】从图形上可以看出,逆时针旋转90o后,得到的A OB ''△所在位置也很特殊,即B`恰好落在y 轴上,于是点A '的纵坐标为a,横坐标应该为-b;故点A '的坐标为(-b,a ).【点评】本题分析出得到的A OB ''△所在位置很特殊还算容易,但在处理坐标时更容易粗心致错,即认为点A '的横坐标应该为b ,忽视逆时针旋转后点A`所在象限变化到第二象限了.例1:如图4所示,将边长为1的正方形OAPB 沿x 轴正方向连续翻转2006次,点P 依次落在点P 1,P 2,P 3,P 4,…,P 2006的位置,则P 2006的横坐标x 2006=_______. 答案:2006图1 图2图2yA 'B 'OB ()A a b ,x例2:已知△ABC 在平面直角坐标系中的位置如图8所示,将△ABC 向右平移6个单位,则平移后A 的坐标是( )A .(-2,1)B .(2,1)C .(2,-1)D .(-2,-1) 答案:B题型十:寻点构造等腰三角形例1:在平面直角坐标系中,O 是坐标原点,已知A 点的坐标为(1,1),请你在坐标轴上找出点B ,使△AOB 为等腰三角形,则符合条件的点B 共有( ) A .6个 B .7个 C .8个 D .9个 答案:C题型十一、平面直角坐标系下的作图问题【例8】如图6,网络中每个小正方形的边长为1,点C 的坐标为(01),.(1)画出直角坐标系(要求标出x 轴,y 轴和原点)并写出点A 的坐标;(2)以ABC △为基本图形,利用轴对称或旋转或平移设计一个图案,说明你的创意. A B C图6精品文档精品文档 【解析】(1)由题意,分析给出的点C 的坐标为(01),,可以确定出直角坐标系数的原点及坐标轴所在(如下图), 于是点A 的坐标可确定为(-4,3);(2)此题较开放,如下图,图案设计的创意为:“比冀双飞”.【点评】本题是一道新课标下的开放性试题,可以充分发挥考生的主观能动性,培养发散思维,值得同学们在今后学习时重视.。

相关文档
最新文档