导数与函数的单调性练习题
导数与函数的单调性练习题
导数与函数的单调性练习题2.2.1 导数与函数的单调性基础巩固题:1.已知函数 $f(x)=\frac{ax+1}{x+2}$ 在区间 $(-2,+\infty)$ 上为增函数,求实数 $a$ 的取值范围。
解析:由题意可得 $f(x)$ 在 $(-2,+\infty)$ 上单调递增,因此$a>-\frac{1}{2}$。
又因为$f(x)$ 的定义域为$(-2,+\infty)$,所以 $a$ 的取值范围为 $a\geq -\frac{1}{2}$ 或 $a\leq -2$,即$a\geq -\frac{1}{2}$ 或 $a\leq -2$。
2.已知函数 $f(x)=x^2+2x+a\ln x$ 在区间 $(0,1)$ 上单调,求实数 $a$ 的取值范围。
解析:由题意可得 $f(x)$ 在 $(0,1)$ 上单调,因此$f'(x)=2x+2+\frac{a}{x}$ 在 $(0,1)$ 上恒大于等于零或恒小于等于零。
化简可得 $a\geq -(2x^2+2x)$ 或 $a\leq -(2x^2+2x)$ 在$(0,1)$ 上恒成立。
记 $g(x)=-(2x^2+2x)$,则 $g(x)$ 在$(0,1)$ 上单调递增,且 $-4<g(x)<0$。
因此,$a\geq -4$ 或$a\leq -4$,即 $a\geq -4$ 或 $a\leq -4$。
3.已知函数$f(x)=\frac{x}{2x-9}$,求$f(x)$ 的单调区间。
解析:求导得 $f'(x)=\frac{9}{(2x-9)^2}$,$f'(x)>0$ 当且仅当 $x\frac{9}{2}$。
因此,$f(x)$ 在 $(-\infty,\frac{9}{2})$ 上单调递减,在 $(\frac{9}{2},+\infty)$ 上单调递增。
所以$f(x)$ 的单调区间为 $(-\infty,\frac{9}{2})$ 和$(\frac{9}{2},+\infty)$。
高考数学必考点专项第8练 导数与函数的单调性(练习及答案)(全国通用)(新高考专用)
高考数学必考点专项第8练 导数与函数的单调性习题精选一、单选题1. 函数21()9ln 2f x x x =-在区间上单调递减,则实数m 的取值范围是( )A.B. C.D.2. 若函数()sin()sin(2)cos()2f x x x a x πππ=+---在区间(0,]2π上单调递增,则实数a 的取值范围是( )A. (,1]-∞-B. (-∞C. D. [1,)+∞3. 若函数在其定义域上不单调,则实数a 的取值范围为( )A. 1a <或4a >B. 4aC. 14a <<D. 14a4. 若函数2()ln 2f x x ax =+-在区间1(,2)2内存在单调递增区间,则实数a 的取值范围是( )A. (-,-2]∞B. 1(-,+)8∞C. 1(-2,-)8D. (-2,+)∞5. 已知函数()f x 是定义在R 上的偶函数,设函数()f x 的导函数为()f x ',若对任意0x >都有2()()0f x xf x +'>成立,则( )A. 4(2)9(3)f f -<B. 4(2)9(3)f f ->C. 2(3)3(2)f f >-D. 3(3)2(2)f f -<-(2,1)m m +(0,1)(0,2)6. 定义在(0,)+∞上的函数()f x 满足()10xf x '+>,(3)=-ln 3f ,则不等式()+0x f e x >的解集为( )A. 3(,+)e ∞B. 3(0,)eC. (ln 3,)+∞D. 3(ln 3,)e7. 已知函数,若存在1[,2]2x ∈,使得()()0f x xf x +'>,则实数b 的取值范围是( )A.B. 9(,)4-∞C. (,3)-∞D. (,2)-∞8. 已知4ln 3a π=,3ln 4b π=,34ln c π=,则a ,b ,c 的大小关系是( ) A. c b a <<B. b c a <<C. b a c <<D. a b c <<9. 已知是函数的导数,且,当0x 时,,则不等式的解集是( )A.B.C.D.10. 设函数()f x 在R 上存在导函数()f x ',对任意的实数x 都有()()2f x f x x =-+,当0x >时,()2 1.f x x '>+若(1)()21f a f a a +-++,则实数a 的取值范围是( )A. 1[,)2-+∞B. 3[,)2-+∞C. [1,)-+∞D. [2,)-+∞二、填空题11. 函数2()24ln f x x x x =--,则()f x 的单调递增区间为__________12. 设函数()x x f x e ae -=+ (a 为常数),若()f x 为奇函数,则a =__________;若()f x 是R 上的增函数,则a 的取值范围是__________.13. 写出一个同时具有下列性质①②③的函数__________.()f x '()f x①;②当(0,)x ∈+∞时,()0f x '>;③()f x '是奇函数.三、解答题14. 已知函数2()sin sin 2.f x x x =(1)讨论()f x 在区间(0,)π的单调性; (2)证明:33|()|8f x ; (3)设*n N ∈,证明:222sin sin 2sin 4x x x (2)3sin 2.4nnn x15. 已知0a >且1a ≠,函数()(0).ax x f x x a =>(1)当2a =时,求()f x 的单调区间;(2)若曲线()y f x =与直线1y =有且仅有两个交点,求a 的取值范围.16. 已知函数()2ln 1af x x x x=--+,()(2ln ).x g x e x x =- (1)若函数()f x 在定义域上是增函数,求a 的取值范围; (2)求()g x 的单调区间.17. 已知函数21()ln (1)(0).2f x a x a x x a =-++->(1)讨论()f x 的单调性; (2)若21()2f x x ax b -++恒成立,求实数ab 的最大值.18. (本小题12.0分)已知函数2().xf x e ax x =+-(1)当1a =时,讨论()f x 的单调性; (2)当0x 时,31()12f x x +,求a 的取值范围.19. 已知函数(1)令,讨论的单调区间;(2)若2a =-,正实数12,x x 满足,证明1251.2x x -+()g x 1212()()0f x f x x x ++=20. 已知函数2()(2)x x f x ae a e x =+--,().a R ∈(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.答案和解析1.【答案】A解:()f x 的定义域是(0,)+∞,9(3)(3)()x x f x x x x+-'=-=, 令()0f x '>,解得:3x >,令()0f x '<,解得:03x <<, 故()f x 在(0,3)递减,在(3,)+∞递增, 若函数21()9ln 2f x x x =-在区间(2,1)m m +上单调递减, 则20m 且013m <+且21m m <+,解得:01m <, 故选:.A2.【答案】A解:因为1()sin()sin(2)cos()cos sin cos sin 2cos 22f x x x a x x x a x x a x πππ=+---=+=+在(0,]2π上是增函数,所以当(0,]2x π∈时,,即212sin sin 0x a x --,因为当(0,]2x π∈时,sin (0,1],x ∈所以12sin sin a x x-+, 令1()2sin sin g x x x =-+,(0,],2x π∈则22cos 1()2cos cos (2)0sin sin x g x x x x x '=--=--<,所以()g x 在(0,]2π单调递减,所以,即(,1],a ∈-∞-故选.A3.【答案】A解:求导可得,()f x ∴在其定义域上不单调等价于方程有两个解,,解得1a <或 4.a >故选.A4.【答案】D解:根据题意得1()2f x ax x'=+, ()f x 在区间1(,2)2内存在单调递增区间,则()0f x '在内有解,,故min 21()2a x-,,令21()=-2g x x ,,则()g x 在1(,2)2单调递增,1()(2,)8g x ∈--, 故-2.a > 故选.D5. 【答案】A解:1()||f x x =时,3(3)1f -=,2(2)1f -=,可以排除D ; ()||f x x =时,2(3)6f =,3(2)3(2)6f f -==,可排除C ;设2()()g x x f x =,22()(())2()()(2()())g x x f x xf x x f x x f x xf x '='=+'=+',0x >时,2()()0f x xf x +'>,0x ∴>时()0g x '>,()g x 为(0,)+∞上的单调增函数;(2)(3)g g ∴<,4(2)9(3)f f ∴<,又()f x 为偶函数,4(2)9(3)f f ∴-<,A ∴对,A ,B 矛盾,故B 错,故选.A6.【答案】C解:令()()ln g x f x x =+,(0,).x ∈+∞ 在(0,)+∞上的函数()f x 满足()10xf x '+>,1()1()()0xf x g x f x x x'''+∴=+=>,∴函数()g x 在(0,)+∞上单调递增,(3)(3)ln 30g f =+=,而不等式,所以3x e >,即ln3x >,∴不等式()0x f e x +>的解集为(ln3,).+∞故选.C7.【答案】B解:,,∴,∴,存在,使得,即,∴,设,∴.而,当时,解得:,当时,即时,函数单调递增,当时,即时,函数单调递减,因为,所以,∴,故选:.B8.【答案】B解: 令ln ()xf x x=,0x >, 则21ln (),0xf x x x-'=>, 令()0f x '>,得0x e <<,令()0f x '<,得x e >, 所以()f x 在(0,)e 单调递增,在(,)e +∞单调递减, 又3e π>>, 所以()(3)f f π<,即ln ln 33ππ<, 所以3ln ln 3ππ<, 又4ln 3a π=,34ln c π=, 所以a c >, 又由()f x 的单调性得ln 4ln 4ππ<,即4ln 4ln ππ<, 因为343ln 4,4ln 3ln b c πππ===, 所以b c <, 综合得.b c a << 故选.B9.【答案】D解:设,则因为当0x 时,,所以当0x 时,,即在上单调递增. 因为,所以,所以是偶函数. 因为,所以,即,,则,解得1.2x <故选.D10.【答案】A解:设()()g x f x x =-,则()()()[()]0g x g x f x x f x x --=---+=,()()g x g x ∴=-,()g x ∴是偶函数,当0x >时,()()1g x f x '='-,而()21f x x '>+,则()()120g x f x x '='->>,()g x ∴在(0,)+∞上是增函数, (1)()21f a f a a +-++, (1)(1)()()f a a f a a ∴+-+---,即(1)()g a g a +-,|1|||a a ∴+-,()g x ()g x即12a -, 故选:.A11.【答案】(2,)+∞解:()f x 定义域为(0,)+∞,242(2)2(2)(1)()22x x x x f x x x x x---+'=--==,故当02x <<时,()0f x '<,()f x 单调递减, 当2x >时,()0f x '>,()f x 单调递增, 故()f x 的单调递增区间为(2,).+∞ 故答案为(2,).+∞12.【答案】1-(,0]-∞解:根据题意,函数()xxf x e ae-=+,若()f x 为奇函数,则()()f x f x -=-, 即()xx x x eae e ae --+=-+,变形可得1a =-,经检验,1a =-满足()f x 为奇函数,()f x 是R 上的增函数,()0f x '∴对x R ∀∈恒成立,即0x xae e -对x R ∀∈恒成立,2()x a e ∴恒成立. 2()0x e >,0.a ∴故答案为1-;(,0].-∞13.【答案】2()(f x x =答案不唯一,均满足)解:取2()f x x =,则22212121212()()()()f x x x x x x f x f x ===,满足①,()2f x x '=,0x >时有,满足②,()2f x x '=的定义域为R ,又()2()f x x f x ''-=-=-,故是奇函数,满足③. 故答案为:2()(f x x =答案不唯一,均满足)14.【答案】解:23(1)()sin sin 22sin cos f x x x x x ==,222222()2sin (3cos sin )2sin (34sin )2sin [32(1cos 2)]f x x x x x x x x ∴'=-=-=--22sin (12cos 2)x x =+,令()0f x '=,解得,3x π=,或23x π=, 当(0,)3x π∈或2(,)3ππ时,()0f x '>,当2(,)33x ππ∈时,()0f x '<, ()f x ∴在(0,)3π,2(,)3ππ上单调递增,在2(,)33ππ上单调递减.证明:(2)(0)()0f f π==,由(1)可知2()()3f x f π==极小值()()3f x f π==极大值()0f x '>()f x 'max 33()8f x ∴=,min 33()8f x =-, ,()f x 为周期函数,33|()|8f x ∴; (3)由(2)可知322333sin sin 2()84x x =,322333sin 2sin 4()84x x =,32232333sin 2sin 2()84x x =,…,3212333sin 2sin 2()84n nx x -=, 334sin sin 2sin 4x x x ∴……313233sin 2sin 2sin (sin sin 2sin 4n n x x x x x x -=……331223sin 2sin 2)sin 2()4nn nnx x x -,222sin sin 2sin 4x x x ∴……23sin 2.4nnn x15.【答案】解:(1)2a =时,2()2x x f x =,222ln 2()222ln 2(2ln 2)ln 2()(2)22x x x xxx x x x x x f x ⋅-⋅-⋅-'===, 当2(0,)ln 2x ∈时,()0f x '>,当2(,)ln 2x ∈+∞时,()0f x '<, 故()f x 在2(0,)ln 2上单调递增,在2(,)ln 2+∞上单调递减. (2)由题知()1f x =在(0,)+∞有两个不等实根,ln ln ()1ln ln a x x af x x a a x x a x a=⇔=⇔=⇔=, 令ln ()x g x x =,21ln ()xg x x-'=,()g x 在(0,)e 上单调递增,在(,)e +∞上单调递减,所以max 1()()g x g e e==, 又(1)0g =,当x 趋近于+∞时,()g x 趋近于0,所以曲线()y f x =与直线1y =有且仅有两个交点,即曲线()y g x =与直线ln ay a=有两个交点的充分必要条件是ln 10a a e<<,即0()()g a g e <<,解得1a >且a e ≠, 所以a 的取值范围是(1,)(,).e e ⋃+∞16.【答案】解:(1)由题意得0x >,22()1af x x x'=-+,由函数()f x 在定义域上是增函数得,()0f x ', 即222(1)1(0)a x x x x -=--+>恒成立, 因为2(1)11(x --+当1x =时,取等号), 所以a 的取值范围是[1,).+∞2(2)()(2ln 1)x g x e x x x'=---+,由(1)得2a =时,2()2ln 1f x x x x=--+, 此时()f x 在定义域上是增函数,又(1)0f =, 所以,当(0,1)x ∈时,()0f x <, 当(1,)x ∈+∞时,()0.f x > 所以,当(0,1)x ∈时,()0g x '>, 当(1,)x ∈+∞时,()0.g x '< 所以()g x 的单调递增区间是(0,1),()g x 的单调递减区间是(1,).+∞17.【答案】解:,(0,0)a x >>,①1a =时,,()f x ∴在(0,)+∞上单调递减;②01a <<时,由()0f x '>,解得:1a x <<,()f x ∴在(,1)a 上单调递增,在(0,)a ,(1,)+∞上单调递减;③1a >时,同理()f x 在(1,)a 上单调递增,在(0,1),(,)a +∞上单调递减;21(2)()2f x x ax b -++恒成立,ln 0a x x b ∴-+恒成立,令()ln g x a x x b =-+,则()a xg x x-'=, ()g x ∴在(0,)a 上单调递增,在(,)a +∞上单调递减.max ()()ln 0g x g a a a a b ∴==-+,ln b a a a ∴-,22ln ab a a a ∴-,令22()ln (0)h x x x x x =->,则()(12ln )h x x x '=-,()h x ∴在上单调递增,在)+∞上单调递减,max ()2e h x h e e ∴==-=, .2e ab∴ 即ab 的最大值为.2e18.【答案】解:(1)当1a =时,2()x f x e x x =+-,()21x f x e x '=+-,记()()g x f x =',因为()20xg x e '=+>,所以()()21xg x f x e x ='=+-在R 上单调递增, 又(0)0f '=,得当0x >时()0f x '>,即2()xf x e x x =+-在(0,)+∞上单调递增; 当0x <时()0f x '<,即2()xf x e x x =+-在(,0)-∞上单调递减. 所以2()xf x e x x =+-在(,0)-∞上单调递减,在(0,)+∞上单调递增.(2)①当0x =时,a ∈R ;②当0x >时,31()12f x x +即32112xx x e a x++-, 令32112()x x x e h x x++-=,231(2)(1)2()x x e x x h x x ----'= 记21()12x m x e x x =---,()1x m x e x '=-- 令()1xq x e x =--,因为0x >,所以()10xq x e '=->,所以()()1xm x q x e x '==--在(0,)+∞上单调递增,即()1(0)0xm x e x m ''=-->=所以21()12x m x e x x =---在(0,)+∞上单调递增,即21()1(0)02x m x e x x m =--->=, 故当(0,2)x ∈时,()0h x '>,32112()xx x e h x x ++-=在(0,2)上单调递增; 当(2,)x ∈+∞时,()0h x '<,32112()xx x e h x x++-=在(2,)+∞上单调递减;所以2max7[()](2)4e h x h -==,所以274e a -,综上可知,实数a 的取值范围是27[,).4e -+∞19.【答案】(1)解:21()()(1)ln (1)12g x f x ax x ax a x =--=-+-+,所以21(1)1()(1)ax a x g x ax a x x-+-+'=-+-=,当0a 时,因为0x >,所以()0.g x '> 所以()g x 在(0,)+∞上是递增函数;当0a >时,1()(1)()a x x a g x x--+'=, 令()0g x '=,得1x a=, 所以当1(0,)x a∈时,()0g x '>;当1(,)x a∈+∞时,()0g x '<,因此函数()g x 在1(0,)a 是增函数,在1(,)a+∞是减函数,综上,当0a 时,()g x 的单调递增区间是(0,)+∞,无单调递减区间; 当0a >时,()g x 的单调递增区间是1(0,)a ,单调递减区间是1(,).a+∞(2)证明:当2a =-时,2()ln ,0f x x x x x =++>,由1212()()0f x f x x x ++=,即2211122212ln ln 0x x x x x x x x ++++++=,从而212121212()()ln()x x x x x x x x +++=-,令12t x x =,则由()ln t t t ϕ=-,得1()t t tϕ-'=,0t >, 可知,()t ϕ在区间(0,1)上单调递减,在区间(1,)+∞上单调递增, 所以()(1)1t ϕϕ=,所以21212()()1x x x x +++,解得12512x x -+或12512x x --+, 又因为10x >,20x >,因此12512x x -+成立.20.【答案】解:(1)()f x 的定义域为(,)-∞+∞,2()2(2)1(1)(21)x x x x f x ae a e ae e '=+--=-+,(i)若0a ,则在(,)x ∈-∞+∞时()0f x '<,所以()f x 在(,)-∞+∞单调递减. (ii)若0a >,则由()0f x '=得ln .x a =-当(,ln )x a ∈-∞-时,()0f x '<;当(ln ,)x a ∈-+∞时,()0f x '>, 所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增.(2)(i)若0a ,由(1)知,()f x 在(,)-∞+∞上单调递减,故()f x 至多有一个零点,不合题意.(ii)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln .f a a a-=-+①当1a =时,由于(ln )0,f a -=故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0.f a -< 又422(2)(2)2220f aea e e ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln(1)n a>-,则0000()(2)n n f n e ae a n =+-- 000020.n n e n n >->-> 由于3ln(1)ln a a ->-,因此()f x 在(ln ,)a -+∞有一个零点. 综上,a 的取值范围为(0,1).。
(完整版)导数与单调性习题
导数与单调性习题1、函数x e x x f )3()(-=的单调递增区间是( )A .)2,(-∞B .(0,3)C .(1,4)D .),2(+∞2、设函数()y f x =在定义域内可导,()y f x =的图象如图1所示,则导函数()y f x '=可能为( )3函数x x y 142+=的单调递增区间是( )A .),0(+∞ B .),21(+∞ C .)1,(--∞ D .)21,(--∞ 4.求函数2()2ln f x x x =-的单调区间.5. 已知函数2()ln 3,f x x x x a R =+-∈.求()f x 的单调区间6.已知函数y =f (x )(x ∈R )上任一点(x 0,f (x 0))处的切线斜率k =(x 0-2)(x 0+1)2,则该函数的单调递减区间为( )A .[-1,+∞) B .(-∞,2] C .(-∞,-1)和(1,2) D .[2,+∞)7.已知函数y =xf ′(x )的图象如图(1)所示(其中f ′(x )是函数f (x )的导函数),下面四个图象中,y =f (x )的图象大致是( )8.函数y =x sin x +cos x ,x ∈(-π,π)的单调增区间是( )A.⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2B.⎝⎛⎭⎫-π2,0和⎝⎛⎭⎫0,π2C.⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫π2,πD.⎝⎛⎭⎫-π2,0和⎝⎛⎭⎫π2,π 9.x y O 图1x y O A x y O B x y O C y OD x10.已知函数()2ln ()f x x ax a a R =-+∈.讨论()f x 的单调性11.f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意正数a 、b ,若a <b ,则必有( )A .af (a )≤f (b )B .bf (b )≤f (a )C .af (b )≤bf (a )D .bf (a )≤af (b )12.对于R 上可导的任意函数f (x ),若满足(x -1)f ′(x )≥0,则必有( )A .f (0)+f (2)<2f (1)B .f (0)+f (2)≤2f (1)C .f (0)+f (2)≥2f (1)D .f (0)+f (2)>2f (1)13.已知对任意实数x ,有f (-x )=-f (x ),g (-x )=g (x ),且x >0时,f ′(x )>0,g ′(x )>0,则x <0时( )A .f ′(x )>0,g ′(x )>0B .f ′(x )>0,g ′(x )<0C .f ′(x )<0,g ′(x )>0D .f ′(x )<0,g ′(x )<014.已知y =13x 3+bx 2+(b +2)x +3在R 上不是单调增函数,则b 的范围为________. 15.已知函数f (x )=ax -ln x ,若f (x )>1在区间(1,+∞)内恒成立,实数a 的取值范围为________.16.若函数y =x 3-ax 2+4在(0,2)内单调递减,则实数a 的取值范围是____________.17.设函数f (x )=x 3-3ax 2+3bx 的图象与直线12x +y -1=0相切于点(1,-11).(1)求a 、b 的值;(2)讨论函数f (x )的单调性.18.设函数f (x )=x (e x -1)-12x 2. 求f (x )的单调区间;19、函数3()f x ax x =-在R 上为减函数,则实数a 的取值范围是______________.20. 已知函数()22ln f x x a x x=++在区间[2,3]上单调递增,求实数a 的取值范围21.已知函数32()f x x ax bx c =+++,()124g x x =-,若(1)0f -=,且()f x 的图象在点(1,(1))f 处的切线方程为()y g x =.(1)求实数a ,b ,c 的值;(2)求单调区间。
导数与函数的单调性训练题
导数与函数的单调性训练题一、题点全面练1.下列函数中,在(0,+∞)上为增函数的是( ) A .f (x )=sin 2x B .f (x )=x e xC .f (x )=x 3-xD .f (x )=-x +ln x解析:选B 对于A ,f (x )=sin 2x 的单调递增区间是⎣⎢⎡⎦⎥⎤k π-π4,k π+π4(k ∈Z);对于B ,f ′(x )=e x (x +1),当x ∈(0,+∞)时,f ′(x )>0,∴函数f (x )=x e x在(0,+∞)上为增函数;对于C ,f ′(x )=3x 2-1,令f ′(x )>0,得x >33或x <-33,∴函数f (x )=x 3-x 在⎝ ⎛⎭⎪⎫-∞,-33和⎝ ⎛⎭⎪⎫33,+∞上单调递增;对于D ,f ′(x )=-1+1x =-x -1x ,令f ′(x )>0,得0<x <1,∴函数f (x )=-x +ln x 在区间(0,1)上单调递增.综上所述,应选B.2.已知函数f (x )=x 2+2cos x ,若f ′(x )是f (x )的导函数,则函数f ′(x )的大致图象是( )解析:选A 设g (x )=f ′(x )=2x -2sin x ,则g ′(x )2-2cos x ≥0,所以函数f ′(x )在R 上单调递增,结合选项知选A.3.若函数f (x )=(x 2-cx +5)e x在区间⎣⎢⎡⎦⎥⎤12,4上单调递增,则实数c 的取值范围是( )A .(-∞,2]B .(-∞,4]C .(-∞,8]D .[-2,4]解析:选B f ′(x )=[x 2+(2-c )x -c +5]e x,∵函数f (x )在区间⎣⎢⎡⎦⎥⎤12,4上单调递增,∴x 2+(2-c )x -c +5≥0对任意x ∈⎣⎢⎡⎦⎥⎤12,4恒成立,即(x +1)c ≤x 2+2x +5对任意x ∈⎣⎢⎡⎦⎥⎤12,4恒成立,∴c ≤x 2+2x +5x +1对任意x ∈⎣⎢⎡⎦⎥⎤12,4恒成立,∵x ∈⎣⎢⎡⎦⎥⎤12,4,∴x 2+2x +5x +1=x +1+4x +1≥4,当且仅当x =1时等号成立,∴c ≤4.4.(2019·咸宁联考)设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是( )A .(1,2]B .(4,+∞)C .(-∞,2)D .(0,3]解析:选A ∵f (x )=12x 2-9ln x ,∴f ′(x )=x -9x (x >0),由x -9x ≤0,得0<x ≤3,∴f (x )在(0,3]上是减函数,则[a -1,a +1]⊆(0,3],∴a -1>0且a +1≤3,解得1<a ≤2.5.(2019·南昌联考)已知函数f (x +1)是偶函数,当x ∈(1,+∞)时,函数f (x )=sinx -x ,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (3),c =f (0),则a ,b ,c 的大小关系为( )A .b <a <cB .c <a <bC .b <c <aD .a <b <c解析:选A ∵函数f (x +1)是偶函数,∴函数f (x )的图象关于直线x =1对称,∴a =f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52,b =f (3),c =f (0)=f (2).又∵当x ∈(1,+∞)时,函数f (x )=sin x -x ,∴当x ∈(1,+∞)时,f ′(x )=cos x -1≤0,即f (x )=sin x -x 在(1,+∞)上为减函数,∴b <a <c .6.已知函数y =f (x )(x ∈R)的图象如图所示,则不等式xf ′(x )≥0的解集为________________.解析:由f (x )图象特征可得,在⎝ ⎛⎦⎥⎤-∞,12和[2,+∞)上f ′(x )≥0, 在 ⎝ ⎛⎭⎪⎫12,2上f ′(x )<0,所以xf ′(x )≥0⇔⎩⎪⎨⎪⎧x ≥0,f x 或⎩⎪⎨⎪⎧x ≤0,f x ⇔0≤x ≤12或x ≥2,所以xf ′(x )≥0的解集为⎣⎢⎡⎦⎥⎤0,12∪[2,+∞).答案:⎣⎢⎡⎦⎥⎤0,12∪[2,+∞) 7.(2019·岳阳模拟)若函数f (x )=x 2-e x-ax 在R 上存在单调递增区间,则实数a 的取值范围是________.解析:∵函数f (x )=x 2-e x-ax 在R 上存在单调递增区间, ∴f ′(x )=2x -e x-a >0,即a <2x -e x有解. 设g (x )=2x -e x,则g ′(x )=2-e x, 令g ′(x )=0,得x =ln 2,则当x <ln 2时,g ′(x )>0,g (x )单调递增,当x >ln 2时,g ′(x )<0,g (x )单调递减,∴当x =ln 2时,g (x )取得最大值,且g (x )max =g (ln 2)=2ln 2-2,∴a <2ln 2-2. 答案:(-∞,2ln 2-2)8.设f (x )=a (x -5)2+6ln x ,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线与y 轴相交于点(0,6).(1)确定a 的值;(2)求函数f (x )的单调区间.解:(1)因为f (x )=a (x -5)2+6ln x , 所以f ′(x )=2a (x -5)+6x.令x =1,得f (1)=16a ,f ′(1)=6-8a ,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -16a =(6-8a )(x -1), 由点(0,6)在切线上,可得6-16a =8a -6,解得a =12.(2)由(1)知,f (x )=12(x -5)2+6ln x (x >0),f ′(x )=x -5+6x=x -x -x.令f ′(x )=0,解得x =2或x =3. 当0<x <2或x >3时,f ′(x )>0; 当2<x <3时,f ′(x )<0,故函数f (x )的单调递增区间是(0,2),(3,+∞),单调递减区间是(2,3).9.已知e 是自然对数的底数,实数a 是常数,函数f (x )=e x-ax -1的定义域为(0,+∞).(1)设a =e ,求函数f (x )的图象在点(1,f (1))处的切线方程; (2)判断函数f (x )的单调性. 解:(1)∵a =e ,∴f (x )=e x-e x -1, ∴f ′(x )=e x-e ,f (1)=-1,f ′(1)=0.∴当a =e 时,函数f (x )的图象在点(1,f (1))处的切线方程为y =-1. (2)∵f (x )=e x-ax -1,∴f ′(x )=e x-a . 易知f ′(x )=e x -a 在(0,+∞)上单调递增.∴当a ≤1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增; 当a >1时,由f ′(x )=e x-a =0,得x =ln a ,∴当0<x <ln a 时,f ′(x )<0,当x >ln a 时,f ′(x )>0, ∴f (x )在(0,ln a )上单调递减,在(ln a ,+∞)上单调递增. 综上,当a ≤1时,f (x )在(0,+∞)上单调递增;当a >1时,f (x )在(0,ln a )上单调递减,在(ln a ,+∞)上单调递增.二、专项培优练(一)易错专练——不丢怨枉分1.(2019·南昌模拟)已知函数f (x )=x sin x ,x 1,x 2∈⎝ ⎛⎭⎪⎫-π2,π2,且f (x 1)<f (x 2),那么( )A .x 1-x 2>0B .x 1+x 2>0C .x 21-x 22>0D .x 21-x 22<0解析:选D 由f (x )=x sin x ,得f ′(x )=sin x +x cos x =cos x (tan x +x ),当x∈⎝ ⎛⎭⎪⎫0,π2时,f ′(x )>0,即f (x )在⎝⎛⎭⎪⎫0,π2上为增函数,又∵f (-x )=-x sin(-x )=x sinx =f (x ),∴f (x )为偶函数,∴当f (x 1)<f (x 2)时,有f (|x 1|)<f (|x 2|),∴|x 1|<|x 2|,x 21-x 22<0,故选D.2.函数f (x )=12x 2-ln x 的单调递减区间为________.解析:由题意知,函数f (x )的定义域为(0,+∞),由f (x )=x -1x<0,得0<x <1,所以函数f (x )的单调递减区间为(0,1).答案:(0,1)3.(2019·郴州模拟)已知函数f (x )=-12x 2+4x -3ln x 在区间[t ,t +1]上不单调,则实数t 的取值范围是________.解析:由题意知f ′(x )=-x +4-3x=-x -x -x,由f ′(x )=0得函数f (x )的两个极值点为1和3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,∴1∈(t ,t +1)或3∈(t ,t +1)⇔⎩⎪⎨⎪⎧t <1,t +1>1或⎩⎪⎨⎪⎧t <3,t +1>3⇔0<t <1或2<t <3.答案:(0,1)∪(2,3) (二)素养专练——学会更学通4.[直观想象]已知函数y =xf ′(x )的图象如图所示(其中f ′(x )是函数f (x )的导函数),下面四个图象中,y =f (x )的图象大致是( )解析:选C 当0<x <1时,xf ′(x )<0,∴f ′(x )<0,故y =f (x )在(0,1)上为减函数;当x >1时,xf ′(x )>0,∴f ′(x )>0,故y =f (x )在(1,+∞)上为增函数,因此排除A 、B 、D ,故选C.5.[逻辑推理]已知函数f (x )=x 3-2x +e x-1e x ,其中e 是自然对数的底数.若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.解析:由f (x )=x 3-2x +e x-1e x ,得f (-x )=-x 3+2x +1e x -e x=-f (x ),所以f (x )是R 上的奇函数.又f ′(x )=3x 2-2+e x +1e x ≥3x 2-2+2e x ·1ex =3x 2≥0,当且仅当x =0时取等号,所以f (x )在其定义域内单调递增. 因为f (a -1)+f (2a 2)≤0,所以f (a -1)≤-f (2a 2)=f (-2a 2), 所以a -1≤-2a 2,解得-1≤a ≤12,故实数a 的取值范围是⎣⎢⎡⎦⎥⎤-1,12. 答案:⎣⎢⎡⎦⎥⎤-1,126.[逻辑推理、数学运算]已知f (x )=ax -1x,g (x )=ln x ,x >0,a ∈R 是常数.(1)求函数y =g (x )的图象在点P (1,g (1))处的切线方程; (2)设F (x )=f (x )-g (x ),讨论函数F (x )的单调性. 解:(1)因为g (x )=ln x (x >0),所以g (1)=0,g ′(x )=1x,g ′(1)=1,故函数g (x )的图象在P (1,g (1))处的切线方程是y =x -1. (2)因为F (x )=f (x )-g (x )=ax -1x-ln x (x >0),所以F ′(x )=a +1x 2-1x =a +⎝ ⎛⎭⎪⎫1x -122-14.①当a ≥14时,F ′(x )≥0,F (x )在(0,+∞)上单调递增;②当a =0时,F ′(x )=1-xx2,F (x )在(0,1)上单调递增,在(1,+∞)上单调递减;③当0<a <14时,由F ′(x )=0,得x 1=1-1-4a 2a >0,x 2=1+1-4a2a>0,且x 2>x 1, 故F (x )在⎝ ⎛⎭⎪⎫0,1-1-4a 2a ,⎝ ⎛⎭⎪⎫1+1-4a 2a ,+∞上单调递增,在⎝ ⎛⎭⎪⎫1-1-4a 2a ,1+1-4a 2a 上单调递减;④当a <0时,由F ′(x )=0,得x 1=1-1-4a 2a >0,x 2=1+1-4a2a<0, F (x )在⎝ ⎛⎭⎪⎫0,1-1-4a 2a 上单调递增,在⎝ ⎛⎭⎪⎫1-1-4a 2a ,+∞上单调递减. (三)难点专练——适情自主选7.已知函数f (x )=ax -ln x ,g (x )=e ax+2x ,其中a ∈R. (1)当a =2时,求函数f (x )的极值;(2)若存在区间D ⊆(0,+∞),使得f (x )与g (x )在区间D 上具有相同的单调性,求实数a 的取值范围.解:(1)当a =2时,f (x )=2x -ln x ,定义域为(0,+∞),则f ′(x )=2-1x,故当x ∈⎝ ⎛⎭⎪⎫0,12时,f ′(x )<0,f (x )单调递减;当x ∈⎝ ⎛⎭⎪⎫12,+∞ 时,f ′(x )>0,f (x )单调递增.所以f (x )在x =12处取得极小值,且f ⎝ ⎛⎭⎪⎫12=1+ln 2,无极大值.(2)由题意知,f ′(x )=a -1x,g ′(x )=a e ax+2,①当a >0时,g ′(x )>0,即g (x )在R 上单调递增,而f (x )在⎝ ⎛⎭⎪⎫1a,+∞上单调递增,故必存在区间D ⊆(0,+∞),使得f (x )与g (x )在区间D 上单调递增;②当a =0时,f ′(x )=-1x<0,故f (x )在(0,+∞)上单调递减,而g (x )在(0,+∞)上单调递增,故不存在满足条件的区间D ;③当a <0时,f ′(x )=a -1x<0,即f (x )在(0,+∞)上单调递减,而g (x )在⎝ ⎛⎭⎪⎫-∞,1a ln ⎝ ⎛⎭⎪⎫-2a 上单调递减,在⎝ ⎛⎭⎪⎫1a ln ⎝ ⎛⎭⎪⎫-2a ,+∞上单调递增,若存在区间D ⊆(0,+∞),使得f (x )与g (x )在区间D 上有相同的单调性,则有1a ln ⎝ ⎛⎭⎪⎫-2a >0,解得a <-2.综上可知,实数a 的取值范围为(-∞,-2)∪(0,+∞).。
利用导数探究函数的单调性(共10种题型)
利用导数探究函数的单调性一.求单调区间例1:已知函数2()ln (0,1)x f x a x x a a a =+->≠,求函数)(x f 的单调区间 解:()ln 2ln 2(1)ln x x f x a a x a x a a '=-=-++.则令()()g x f x '=因为当0,1a a >≠ 所以2()2ln 0x g x a a '=+> 所以()f x '在R 上是增函数, 又(0)0f '=,所以不等式()0f x '>的解集为(0,)∞+,故函数()f x 的单调增区间为(0,)∞+ 减区间为:(0)-∞,变式:已知()x f x e ax =-,求()f x 的单调区间解:'()x f x e a =- 当0a ≤时,'()0f x >,()f x 单调递增当0a >时,由'()0x f x e a =->得:ln x a >,()f x 在(ln ,)a +∞单调递增由'()0x f x e a =-<得:ln x a <,()f x 在(ln )a -∞,单调递增 综上所述:当0a ≤时,()f x 的单调递增区间为:-∞+∞(,),无单调递减区间当0a >时,()f x 的单调递增区间为:(ln ,)a +∞,递减区间为:(ln )a -∞,二.函数单调性的判定与逆用例2.已知函数32()25f x x ax x =+-+在1132(,)上既不是单调递增函数,也不是单调递减函数,求正整数a 的取值集合 解:2()322f x x ax '=+-因为函数32()25f x x ax x =+-+在1132(,)上既不是单调递增函数,也不是单调递减函数 所以2()322=0f x x ax '=+-在1132(,)上有解 所以''11()()032f f <又*a N ∈ 解得:5542a << 所以正整数a 的取值集合{2}三.利用单调性求字母取值范围 例3. 已知函数()ln xf x ax x=-,若函数()y f x =在1+?(,)上是减函数,求实数a 的最小值. 解:因为()ln xf x ax x=-在1+?(,)上是减函数 所以'2ln 1()0(ln )x f x a x -=-?在1+?(,)上恒成立 即2ln 1(ln )x a x -³在1+?(,)上恒成立令ln ,(1)t x x =>,则0t >21()(0)t h t t t -=> 则max ()a h t ³因为222111111()=()()24t h t t t t t -=-+=--+ 所以max 1()=(2)4h t h =所以14a ³变式:若函数3211()(1)132f x x ax a x =-+-+在区间1,4()上为减函数,在区间(6,)+?上为增函数,试求实数a 的取值范围. 解:2'()=1f x x ax a -+-因为函数()y f x =在区间1,4()上为减函数,在区间(6,)+?上为增函数 所以''()0(1,4)()0,(6,)f x x f x x ìï??ïíï???ïî,恒成立即2210(1,4)10,(6,)x ax a x x ax a x ì-+-??ïïíï-+-???ïî, 所以2211,(1,4)111,(6,)1x a x x x x a x x x ì-ïï?+"?ïï-íï-ï?+"??ïï-ïî所以4161a a ì?ïïíï?ïî所以57a #四.比较大小例4. 设a 为实数,当ln 210a x >->且时,比较x e 与221x ax -+的大小关系. 解:令2()21(0)x f x e x ax x =-+-> 则'()=22x f x e x a -+ 令'()()g x f x = 则'()e 2x g x =- 令'()0g x =得:ln 2x =当ln 2x >时,'()0g x >;当ln 2x <时,'()0g x <所以ln2min ()()=(ln2)2ln2222ln22g x g x g e a a ==-+=-+极小值 因为ln 21a >- 所以'()()0g x f x =>所以()f x 在0+?(,)上单调递增所以()(0)0f x f >= 即2210x e x ax -+-> 所以221x e x ax >-+变式:对于R 上的可导函数()y f x =,若满足'(3)()0x f x ->,比较(1)(11)f f +与2(3)f 的大小关系.解:因为'(3)()0x f x ->所以当3x >时,'()0f x >,()f x 单调递增,故(11)(3)f f >当3x <时,'()0f x <,()f x 单调递减,故(1)(3)f f > 所以(1)(11)2(3)f f f +> 五.证明不等式例5.已知函数|ln |)(x x f =,()(1)g x k x =- (R)k ∈.证明:当1k <时,存在01x >,使得对任意的0(1,)x x ∈,恒有()()f x g x >. 证明:令()|ln |(1)=ln (1),(1,)G x x k x x k x x =----∈+∞ 则有'11(),(1,)kx G x k x x x-=-=∈+∞ 当01k k ≤≥或时,'()0G x >,故 ()G x 在1+∞(,)上单调递增,()G(1)0G x >=.故任意实数 (1,)x ∈+∞ 均满足题意.当 01k << 时,令'()=0G x ,得11x k=>. 当1(1,)x k ∈时,'()0G x >,故 ()G x 在1(1,)k上单调递增当1()x k∈+∞,时,'()0G x <,故 ()G x 在1()k +∞,上单调递减 取01x k=,对任意0(1,)x x ∈,有'()0G x >,故()G x 在0(1,)x 上单调递增所以()G(1)0G x >= 即()()f x g x >综上所述:当1k <时,存在01x >,使得对任意的0(1,)x x ∈,恒有()()f x g x >.变式:已知关于x 的方程2(1)x x e ax a --=有两个不同的实数根12x x 、.求证:120x x <+ 证明:因为2(1)x x e ax a --=所以2(1)1xx e a x -=+令2(1)()1xx e f x x -=+则222222(23)[(1)2]()11x xx x x e x x e f x x x --+--+'==++()()当0x >时()0f x '<,()f x 单调递减 当0x <时()0f x '>,()f x 单调递增因为关于x 的方程2(1)x x e ax a --=有两个不同的实数根12x x 、所以不妨设12(,0),(0,)x x ∈-∞∈+∞ 要证:120x x <+ 只需证:21x x <-因为210x x -∈+∞(,),且函数()f x 在0+∞(,)上单调递减 所以只需证:21()()f x f x >-,又因为21()=()f x f x 所以只需证:11()()f x f x >-即证:11112211(1)(1)11x x x e x e x x --+>++ 即证:(1)(1)0x x x e x e ---+>对0x ∈-∞(,)恒成立 令g()(1)(1)x x x x e x e -=--+,0x ∈-∞(,)则g ()()x x x x e e -'=-因为0x ∈-∞(,)所以0x x e e -->所以g ()()0x x x x e e -'=-<恒成立所以g()(1)(1)x x x x e x e -=--+在0-∞(,)上单调递减所以g()(0)0x g >= 综上所述:120x x <+ 六.求极值例6.已知函数2()()x f x x ax a e =++,是否存在实数a ,使得函数()f x 的极大值为3?若存在,求出a 的值,若不存在,请说明理由.解:'22()(2)()[(2)2]=()(2)x x x x f x x a e x ax a e x a x a e x a x e =++++=+++++ 令'()=0f x 得:2x a x =-=-或当2a =时,'()0f x ≥恒成立,无极值,舍去当2a <时,2a ->-由表可知:2()=(2)(42)3f x f a a e --=-+=极大值 解得:2432a e =-< 当2a >时,2a -<-由表可知:22()=()()3a f x f a a a a e --=-+=极大值,即3a ae -= 所以:=3a a e 令()3(2)a g a e a a =-> 则'2()31310a g a e e =->->所以()y g a =在2+∞(,)上单调递增又2(2)320g e =->所以函数()y g a =在2+∞(,)上无零点即方程=3a a e 无解综上所述:存在实数a ,使得函数()f x 的极大值为3,此时243a e =- 七.求最值例7. 已知函数2()ln (0,1)x f x a x x a a a =+->≠,若存在]1,1[,21-∈x x ,使得12()()e 1f x f x -≥-(其中e 是自然对数的底数),求实数a 的取值范围. 解:因为存在12,[1,1]x x ∈-,使得12()()e 1f x f x --≥成立, 而当[1,1]x ∈-时,12max min ()()()()f x f x f x f x --≤, 所以只要max min ()()e 1f x f x --≥即可又因为x ,()f x ',()f x 的变化情况如下表所示:所以()f x 在[1,0]-上是减函数,在[0,1]上是增函数,所以当[1,1]x ∈-时,()f x 的最小值()()m i n 01f x f ==,()f x 的最大值()max f x 为()1f -和()1f 中的最大值.因为11(1)(1)(1ln )(1ln )2ln f f a a a a a aa--=--=--+++,令1()2ln (0)g a a a a a =-->,因为22121()1(1)0g a a a a '=-=->+,所以1()2ln g a a a a=--在()0,a ∈+∞上是增函数.而(1)0g =,故当1a >时,()0g a >,即(1)(1)f f >-; 当01a <<时,()0g a <,即(1)(1)f f <-所以,当1a >时,(1)(0)e 1f f --≥,即ln e 1a a --≥,函数ln y a a =-在(1,)a ∈+∞上是增函数,解得e a ≥;当01a <<时,(1)(0)e 1f f ---≥,即1ln e 1a a+-≥,函数1ln y a a=+在(0,1)a ∈上是减函数,解得10ea <≤.综上可知,所求a 的取值范围为1(0,][e,)ea ∈∞+ 我变式:已知函数()ln()(0)x a f x e x a a -=-+>在区间0+∞(,)上的最小值为1,求实数a 的值.解:1()=x a f x e x a-'-+ 令()()g x f x '=则21()=0(x a g x e x a -'+>+)所以()y g x =在区间0+∞(,)单调递增所以存在唯一的00x ∈+∞(,),使得0001()0x a g x e x a-=-=+ 即001=x a e x a-+ 所以当0(0,)x x ∈时,()()0g x f x '=<,()y f x =单调递减当0()x x ∈+∞,时,()()0g x f x '=>,()y f x =单调递增 所以0min 00()()ln()x a f x f x e x a -==-+ 由001=x a e x a-+得:00=ln()x a x a --+ 所以0min 00001()()ln()=x a f x f x e x a x a x a-==-++-+001=()2222x a a x aa a++-+≥=- 当且仅当001=x a x a++即0=1x a +,min 0()()22f x f x a ==- 由22=1a -得12a =,此时01=2x ,满足条件 所以12a =八.解不等式例8. 函数2)0())((=∈f R x x f ,,对任意1)()('>+∈x f x f R x ,,解不等式:1)(+>x x e x f e 解:令()()x x g x e f x e =-则()()()(()()1)x x x x g x e f x e f x e e f x f x '''=+-=+-因为对任意1)()('>+∈x f x f R x , 所以()0g x '>,所以()y g x =为R 上的单调递增函数 又(0)(0)11g f =-=所以当1)(+>x x e x f e 即()1x x e f x e -> 所以()(0)g x g > 所以0x >即不等式:1)(+>x x e x f e 的解集为0+∞(,)变式:已知定义在R 上的可导函数()y f x =满足'()1f x <,若(12)()13f m f m m -->-,求m 的取值范围.解:令()()g x f x x =- 则()()1g x f x ''=- 因为'()1f x <所以()()10g x f x ''=-<所以()()g x f x x =-为R 上递减函数 由(12)()13f m f m m -->- 得:(12)()f m m f m m ---(1-2)> 即(12)()g m g m -> 所以12m m ->即13m <九.函数零点个数(方程根的个数)例9. 已知2()2ln()f x x a x x =+--在0x =处取得极值.若关于x 的方程()0f x b +=在区间[1,1]-上恰有两个不同的实数根,求实数b 的取值范围.解: '2()21f x x x a=--+ 因为2()2ln()f x x a x x =+--在0x =处取得极值 所以'2(0)1=0f a=-, 即2a =,检验知2a =符合题意.令2()()2ln(2)[1,1]g x f x b x x x b x =+=+--+∈-,'52()22()21(11)x x g x x x +=--=--≤≤ 所以()=(0)2ln 2g x g b =+极大值因为方程()0f x b +=在区间[1,1]-上恰有两个不同的实数根所以(1)0(0)0(1)0g g g -≤⎧⎪>⎨⎪≤⎩,即02ln 202ln 320b b b ≤⎧⎪+>⎨⎪-+≤⎩解得:2ln 222ln 3b -<≤-所以实数b 的取值范围是:2ln 222ln3]--(, 变式:已知函数()y f x =是R 上的可导函数,当0x ¹时,有'()()0f x f x x+>,判断函数13()()F x xf x x=+的零点个数解:当0x ¹时,有'()()0f x f x x+> 即'()()0xf x f x x+> 令()()g x xf x =,则'()()()g x xf x f x ¢=+所以当0x >时,'()()()0g x xf x f x ¢=+>,函数()y g x =在0+∞(,)单调递增 且()g(0)=0g x >所以当0x >时,13()()0F x xf x x=+>恒成立,函数()y F x =无零点 当0x <时,'()()()0g x xf x f x ¢=+<,函数()y g x =在0∞(-,)单调递减 且()g(0)=0g x >恒成立 所以13()()F x xf x x=+在0∞(-,)上为单调递减函数 且当0x →时,()0xf x ®,所以13()0F x x? 当x →-∞时,10x®,所以()()0F x xf x ? 所以13()()F x xf x x=+在0∞(-,)上有唯一零点 综上所述:13()()F x xf x x =+在0∞∞(-,)(0,+)上有唯一零点 十.探究函数图像例10.设函数在定义域内可导,()y f x =的图像如图所示,则导函数()y f x '=的图像可能为下列图像的 .解:由()y f x =的图像可判断出:()f x 在(,0)-∞递减,在(0)+∞,上先增后减再增 所以在(,0)-∞上()0f x '<,在(0)+∞,上先有()0f x '>,后有()0f x '<,再有()0f x '>. 所以图(4)符合.变式:已知函数ln(2)()x f x x =,若关于x 的不等式2()()0f x af x +>只有两个整数解,求实数a 的取值范围. 解:21ln(2)()=x f x x -',令()=0f x '得2e x = 所以当02e x <<时,()0,()f x f x '>单调递增 当2e x >时,()0,()f x f x '<单调递减 由当12x <时,()0f x <,当12x >时,()0f x >(1)(2)(3)(4)作出()f x 的大致函数图像如图所示: 因为2()()0f x af x +>(1)若0a =,即2()0f x >,显然不等式有无穷多整数解,不符合题意;(2)若0a >,则()()0f x a f x <->或,由图像可知,()0f x >,有无穷多整数解(舍)(3)若0a <则()0()f x f x a <>-或,由图像可知,()0f x <无整数解, 所以()f x a >-有两个整数解因为(1)(2)ln 2f f ==,且()f x 在(,)2e +∞上单调递减 所以()f x a >-的两个整数解为:1,2x x == 又ln 6(3)3f =所以ln 6ln 23a ≤-< 所以ln 6ln 23a -<≤-。
高中数学同步练习 导数与函数的单调性
第3章 §1 第1课时 导数与函数的单调性A 级 基础巩固一、选择题1.在下列结论中,正确的有( A ) (1)单调增函数的导数也是单调增函数; (2)单调减函数的导数也是单调减函数; (3)单调函数的导数也是单调函数; (4)导函数是单调的,则原函数也是单调的. A .0个 B .2个 C .3个D .4个[解析] 分别举反例:(1)y =lnx,(2)y =1x (x>0),(3)y =2x,(4)y =x 2,故选A.2.若函数f(x)=kx -lnx 在区间(1,+∞)单调递增,则k 的取值范围是( D ) A .(-∞,-2] B .(-∞,-1] C .[2,+∞)D .[1,+∞)[解析] 由条件知f′(x)=k -1x ≥0在(1,+∞)上恒成立,∴k≥1.把函数的单调性转化为恒成立问题是解决问题的关键.3.(2019·宣城高二检测)函数f(x)=2x+x 3-2在区间(0,1)内的零点个数是( B ) A .0 B .1 C .2D .3[解析] 本小题考查函数的零点与用导数判断函数的单调性,考查分析问题、解决问题的能力. ∵f(x)=2x+x 3-2,0<x<1,∴f ′(x)=2xln2+3x 2>0在(0,1)上恒成立,∴f(x)在(0,1)上单调递增. 又f(0)=20+0-2=-1<0,f(1)=2+1-2=1>0,f(0)·f(1)<0,则f(x)在(0,1)内至少有一个零点, 又函数y =f(x)在(0,1)上单调递增,则函数f(x)在(0,1)内有且仅有一个零点. 4.下列函数中,在(0,+∞)内为增函数的是( B ) A .y =sinx B .y =xe 2C .y =x 3-xD .y =lnx -x[解析] 对于B,y =xe 2,则y′=e 2,∴y =xe 2在R 上为增函数,在(0,+∞)上也为增函数,选B. 5.(2019·临沂高二检测)已知函数y =f(x)的图像是如图四个图像之一,且其导函数y =f′(x)的图像如图所示,则该函数的图像是( B )[解析] 由导函数图像可知函数在[-1,1]上为增函数,又因导函数值在[-1,0]递增,原函数在[-1,1]上切线的斜率递增,导函数的函数值在[0,1]递减,原函数在[0,1]上切线的斜率递减,选B.6.若f(x)=lnxx ,e<a<b,则( A )A .f(a)>f(b)B .f(a)=f(b)C .f(a)<f(b)D .f(a)f(b)>1[解析] 因为f′(x)=1-lnxx2, ∴当x>e 时,f′(x)<0,则f(x)在(e,+∞)上为减函数,因为e<a<b, 所以f(a)>f(b).选A. 二、填空题7.(2019·烟台高二检测)函数y =ln(x 2-x -2)的单调递减区间为(-∞,-1). [解析] 函数y =ln(x 2-x -2)的定义域为 (2,+∞)∪(-∞,-1),令f(x)=x 2-x -2,f ′(x)=2x -1<0,得x<12,∴函数y =ln(x 2-x -2)的单调减区间为(-∞,-1).8.已知函数f(x)=x 3-ax 2-3x 在区间[1,+∞)上是增函数,则实数a 的取值范围是(-∞,0]. [解析] ∵f(x)=x 3-ax 2-3x,∴f ′(x)=3x 2-2ax -3, 又因为f(x)=x 3-ax 2-3x 在区间[1,+∞)上是增函数, f ′(x)=3x 2-2ax -3≥0在区间[1,+∞)上恒成立, ∴⎩⎪⎨⎪⎧a 3≤1,f ′(1)=3×12-2a -3≥0,解得a≤0,故答案为(-∞,0]. 三、解答题9.(2018·天津理,20(1))已知函数f(x)=a x,g(x)=log a x,其中a>1.求函数h(x)=f(x)-xln a 的单调区间.[解析] 由已知,h(x)=a x-xln a, 有h′(x)=a xln a -ln a. 令h′(x)=0,解得x =0.由a>1,可知当x 变化时,h′(x),h(x)的变化情况如下表:所以函数10.(2019·长沙高二检测)已知a≥0,函数f(x)=(x 2-2ax)·e x.设f(x)在区间[-1,1]上是单调函数,求a 的取值范围.[解析] ∵f(x)=(x 2-2ax)e x, ∴f′(x)=(2x -2a)e x+(x 2-2ax)e x=e x[x 2+2(1-a)x -2a]令f′(x)=0,即x 2+2(1-a)x -2a =0, 解x 1=a -1-1+a 2,x 2=a -1+1+a 2, 其中x 1<x 2,当x 变化时,f′(x),f(x)的变化情况如下表∵a≥0,∴x 1212∴x 2≥1,即a -1+1+a 2≥1, ∴a≥34.B 级 素养提升一、选择题1.(2018·和平区二模)已知f(x)是定义在R 上的函数,它的图像上任意一点P(x 0,y 0)处的切线方程为y =(x 20-x 0-2)x +(y 0-x 30+x 20+2x 0),那么函数f(x)的单调递减区间为( A )A .(-1,2)B .(-2,1)C .(-∞,-1)D .(2,+∞)[解析] 因为函数f(x),(x ∈R)上任一点(x 0,y 0)的切线方程为y =(x 20-x 0-2)x +(y 0-x 30+x 20+2x 0),即函数在任一点(x 0,y 0)的切线斜率为k =x 20-x 0-2, 即知任一点的导数为f ′(x)=x 2-x -2=(x -2)(x +1),由f ′(x)<0,得-1<x <2,即函数f(x)的单调递减区间是(-1,2). 故选A.2.函数f(x)的定义域为R,f(-2)=2017,对任意x ∈R,都有f ′(x)<2x 成立,则不等式f(x)>x 2+2013的解集为( C )A .(-2,2)B .(-2,+∞)C .(-∞,-2)D .(-∞,+∞)[解析] 令F(x)=f(x)-x 2-2013,则F ′(x)=f ′(x)-2x<0,∴F(x)在R 上为减函数, 又F(-2)=f(-2)-4-2013=2017-2017=0, ∴当x<-2时,F(x)>F(-2)=0,∴不等式f(x)>x 2+2013的解集为(-∞,-2). 二、填空题3.若函数f(x)=x -13sin2x +asinx 在(-∞,+∞)单调递增,则a 的取值范围是[-13,13].[解析] 函数f(x)=x -13sin2x +asinx 在(-∞,+∞)单调递增,等价于f ′(x)=1-23cos2x +acosx=-43cos 2x +acosx +53≥0在(-∞,+∞)恒成立.设cosx =t,则g(t)=-43t 2+at +53≥0在[-1,1]恒成立,所以⎩⎪⎨⎪⎧g (1)=-43+a +53≥0g (-1)=-43-a +53≥0,解得-13≤a≤13.4.已知函数f(x)=x 3+ax 2+(2a -3)x -1.(1)若f(x)的单调减区间为(-1,1),则a 的取值集合为{0}; (2)若f(x)在区间(-1,1)内单调递减,则a 的取值集合为{a|a<0}. [解析] f ′(x)=3x 2+2ax +2a -3 =(x +1)(3x +2a -3).(1)∵f(x)的单调减区间为(-1,1), ∴-1和1是方程f ′(x)=0的两根,∴3-2a3=1,∴a =0,∴a 的取值集合为{0}. (2)∵f(x)在区间(-1,1)内单调递减,∴f ′(x)<0在(-1,1)内恒成立,又二次函数y =f ′(x)开口向上,一根为-1,∴必有3-2a3>1,∴a<0,∴a 的取值集合为{a|a<0}. 三、解答题5.已知函数f(x)=(ax 2+x -1)·e x,其中e 是自然对数的底数,a ∈R. (1)若a =1,求曲线f(x)在点(1,f(1))处的切线方程; (2)若a =-1,求f(x)的单调区间.[解析] (1)因为f(x)=(x 2+x -1)e x,所以f′(x)=(2x +1)e x+(x 2+x -1)e x=(x 2+3x)e x,所以曲线f(x)在点(1,f(1))处的切线斜率为k =f′(1)=4e.又因为f(1)=e,所以所求切线方程为y -e =4e(x -1), 即4ex -y -3e =0.(2)f(x)=(-x 2+x -1)e x,因为f′(x)=-x(x +1)e x, 令f′(x)<0,得x<-1或x>0;f′(x)>0 得-1<x<0.所以f(x)的减区间为(-∞,-1),(0,+∞),增区间为(-1,0).6.(2019·山师附中高二检测)已知函数f(x)=alnx +2a2x +x(a>0).若函数y =f(x)在点(1,f(1))处的切线与直线x -2y =0垂直.(1)求实数a 的值;(2)求函数f(x)的单调区间. [解析] (1)f ′(x)=a x -2a2x2+1,∵f ′(1)=-2,∴2a 2-a -3=0,∵a>0,∴a =32.(2)f ′(x)=32x -92x 2+1=2x 2+3x -92x 2=(2x -3)(x +3)2x2, ∵当x ∈(0,32)时,f ′(x)<0;当x ∈(32,+∞)时,f ′(x)>0,∴f(x)的单调递减区间为(0,32),单调递增区间为(32,+∞).C 级 能力拔高(2019·广德高二检测)已知函数f(x)=x 2+2alnx. (1)求函数f(x)的单调区间;(2)若函数g(x)=2x +f(x)在[1,2]上是减函数,求实数a 的取值范围.[解析] (1)f ′(x)=2x +2a x =2x 2+2ax ,函数f(x)的定义域为(0,+∞).①当a≥0时,f ′(x)>0,f(x)的单调递增区间为(0,+∞); ②当a<0时f ′(x)=2(x +-a )(x --a )x .当x 变化时,f ′(x),f(x)的变化情况如下:(2)由g(x)=2x +x 2+2alnx,得g′(x)=-2x 2+2x +2ax ,由已知函数g(x)为[1,2]上的单调减函数, 则g′(x)≤0在[1,2]上恒成立, 即-2x 2+2x +2ax ≤0在[1,2]上恒成立.即a≤1x-x 2在[1,2]上恒成立.令h(x)=1x -x 2,x ∈[1,2],则h′(x)=-1x 2-2x =-(1x 2+2x)<0,∴h(x)在[1,2]上为减函数.h(x)min =h(2)=-72,∴a≤-72,故a 的取值范围为{a|a≤-72}.。
高中数学 2-2导数与函数的单调性练习(一) 试题
某某省毫州市蒙城县坛城镇芮集高中数学 2-2导数与函数的单调性练习(一)1.若函数y =f(x)在R 上可导,且满足不等式xf ′(x)>-f(x)恒成立,且常数a ,b 满足a>b ,则下列不等式一定成立的是________.①af(b)>bf(a); ②af(a)>bf(b); ③af(a)<bf(b); ④af(b)<bf(a)2.函数f(x)的定义域为(0,π2),f ′(x)是它的导函数,且f(x)<f ′(x)tan x 恒成立,则下列结论正确的是________. ①3f(π4)>2f(π3); ②f(1)<2f(π6)sin 1; ③2f(π6)>f(π4); ④3f(π6)<f(π3).3.函数f(x)在定义域R 内可导,若f(x)=f(2-x),且当x ∈(-∞,1)时,(x -1)f′(x)<0,设a =f(0),b =f ⎝⎛⎭⎫12,c =f(3),则( )A .a<b<cB .c<b<aC .c<a<bD .b<c<a4.若函数f(x)=x2+ax +1x 在⎝⎛⎭⎫12,+∞上是增函数,则a 的取值X 围是( ) A .[-1,0] B .[-1,+∞)C .[0,3] D .[3,+∞)5.已知函数f(x)=x2+mx +ln x 是单调递增函数,则m 的取值X 围是________.6.若函数f(x)=13x3-32x2+ax +4恰在[-1,4]上单调递减,则实数a 的值为________. 7.已知函数f(x)=ln x +k ex(k 为常数,e 是自然对数的底数),曲线y =f(x)在点(1,f(1))处的切线与x 轴平行.(1)求k 的值;(2)求f(x)的单调区间.8.函数f(x)=ax3+3x2+3x(a ≠0).(1)讨论f(x)的单调性;(2)若f(x)在区间(1,2)是增函数,求a 的取值X 围.9.已知a∈R,函数f(x)=(-x2+ax)ex(x∈R,e为自然对数的底数).(1)当a=2时,求函数f(x)的单调递增区间;(2)函数f(x)是否为R上的单调函数?若是,求出a的取值X围;若不是,请说明理由.10.已知函数f(x)=ax+x2-xln a-b(a,b∈R,a>1),e是自然对数的底数.(1)试判断函数f(x)在区间(0,+∞)上的单调性;(2)当a=e,b=4时,求整数k的值,使得函数f(x)在区间(k,k+1)上存在零点.11.已知函数f(x)=ln x+mx2(m∈R).(1)求函数f(x)的单调区间;(2)若A,B是函数f(x)图像上不同的两点,且直线AB的斜率恒大于1,某某数m的取值X 围.1.答案 ②解析 令F(x)=xf(x),则F ′(x)=xf ′(x)+f(x),由xf ′(x)>-f(x),得xf ′(x)+f(x)>0 即F ′(x)>0,所以F(x)在R 上为递增函数.因为a>b ,所以af(a)>bf(b).2.答案 ④解析 f(x)<f ′(x)tan x ⇔f(x)cos x<f ′(x)sin x ,构造函数g(x)=f(x)sin x, 则g ′(x)=f ′(x)sin x -f(x)cos x sin2x, 根据已知f(x)cos x<f ′(x)sin x ,5.答案 [-22,+∞)解析 依题意知,x>0,f ′(x)=2x2+mx +1x, 令g(x)=2x2+mx +1,x ∈(0,+∞),当-m 4≤0时,g(0)=1>0恒成立,∴m ≥0成立, 当-m 4>0时,则Δ=m2-8≤0,∴-22≤m<0, 综上,m 的取值X 围是m ≥-2 2. 6.解析:∵f(x)=13x3-32x2+ax +4, ∴f′(x)=x2-3x +a ,又函数f(x)恰在[-1,4]上单调递减,∴-1,4是f′(x)=0的两根,∴a =(-1)×4=-4.7.解:(1)由题意得f′(x)=1x -ln x -k ex 又f′(1)=1-k e =0,故k =1.(2)由(1)知,f′(x)=1x -ln x -1ex.设h(x)=1x -ln x -1(x>0),则h′(x)=-1x2-1x<0,即h(x)在(0,+∞)上是减函数.由h(1)=0知,当0<x<1时,h(x)>0,从而f′(x)>0;当x>1时,h(x)<0,从而f′(x)<0. 综上可知,f(x)的单调递增区间是(0,1),单调递减区间是(1,+∞).8.解 (1)f ′(x)=3ax2+6x +3,f ′(x)=0的判别式Δ=36(1-a).①若a ≥1,则f ′(x)≥0,且f ′(x)=0当且仅当a =1,x =-1,故此时f(x)在R 上是增函数. ②由于a ≠0,故当a<1时,f ′(x)=0有两个根x1=-1+1-a a ,x2=-1-1-a a. 若0<a<1,则当x ∈(-∞,x2)或x ∈(x1,+∞)时,f ′(x)>0,故f(x)分别在(-∞,x2),(x1,+∞)是增函数;当x ∈(x2,x1)时,f ′(x)<0,故f(x)在(x2,x1)是减函数;若a<0,则当x ∈(-∞,x1)或x ∈(x2,+∞)时,f ′(x)<0,故f(x)分别在(-∞,x1),(x2,+∞)是减函数;当x ∈(x1,x2)时,f ′(x)>0,故f(x)在(x1,x2)是增函数.(2)当a>0,x>0时,f ′(x)=3ax2+6x +3>0,故当a>0时,f(x)在区间(1,2)是增函数.当a<0时,f(x)在区间(1,2)是增函数当且仅当f ′(1)≥0且f ′(2)≥0,解得-54≤a<0. 综上,a 的取值X 围是[-54,0)∪(0,+∞).9.解:(1)当a =2时,f(x)=(-x2+2x)ex ,∴f′(x)=(-2x +2)ex +(-x2+2x)ex =(-x2+2)ex.令f′(x)>0,即(-x2+2)ex>0, ∵ex>0,∴-x2+2>0,解得-2<x<2, ∴函数f(x)的单调递增区间是(-2,2).(2)若函数f(x)在R 上单调递减,则f′(x)≤0对任意x ∈R 都成立.即[-x2+(a -2)x +a]ex≤0对任意x ∈R 都成立.∵ex>0,∴x2-(a -2)x -a≥0对任意x ∈R 都成立.∴Δ=(a -2)2+4a≤0,即a2+4≤0,这是不可能的.故函数f(x)不可能在R 上单调递减.若函数f(x)在R 上单调递增,则f′(x)≥0对任意x ∈R 都成立,即[-x2+(a -2)x +a]ex≥0对任意x ∈R 都成立.∵ex>0,∴x2-(a -2)x -a≤0对任意x ∈R 都成立.而Δ=(a -2)2+4a =a2+4>0, 故函数f(x)不可能在R 上单调递增.综上可知函数f(x)不是R 上的单调函数.10.解:(1)f′(x)=axln a +2x -ln a =2x +(ax -1)ln a.∵a>1,∴当x ∈(0,+∞)时, ln a>0,ax -1>0,∴f′(x)>0,∴函数f(x)在(0,+∞)上单调递增.(2)∵f(x)=ex +x2-x -4,∴f′(x)=ex +2x -1,∴f′(0)=0,当x>0时,ex>1,∴f′(x)>0,∴f(x)是(0,+∞)上的增函数;同理,f(x)是(-∞,0)上的减函数.又f(0)=-3<0,f(1)=e -4<0,f(2)=e2-2>0,当x>2时,f(x)>0,∴当x>0时,函数f(x)的零点在(1,2)内,∴k =1满足条件;f(0)=-3<0,f(-1)=1e -2<0,f(-2)=1e2+2>0, 当x<-2时,f(x)>0,∴当x<0时,函数f(x)的零点在(-2,-1)内,∴k =-2满足条件.综上所述,k =1或-2.11.解:(1)f(x)的定义域为(0,+∞),。
(完整版)导数与函数的单调性练习题
2.2.1导数与函数的单调性基础巩固题:1.函数f(x)=21++x ax 在区间(-2,+∞)上为增函数,那么实数a 的取值范围为( ) A.0<a<21 B.a<-1或a>21 C.a>21D.a>-2答案:C 解析:∵f(x)=a+221+-x a 在(-2,+∞)递增,∴1-2a<0,即a>21.2.已知函数f (x )=x 2+2x +a ln x ,若函数f (x )在(0,1)上单调,则实数a 的取值范围是( )A .a ≥0B .a <-4C .a ≥0或a ≤-4D .a >0或a <-4答案:C 解析:∵f ′(x )=2x +2+ax ,f (x )在(0,1)上单调, ∴f ′(x )≥0或f ′(x )≤0在(0,1)上恒成立,即2x 2+2x +a ≥0或2x 2+2x +a ≤0在(0,1)上恒成立, 所以a ≥-(2x 2+2x )或a ≤-(2x 2+2x )在(0,1)上恒成立.记g (x )=-(2x 2+2x ),0<x <1,可知-4<g (x )<0, ∴a ≥0或a ≤-4,故选C.3.函数f (x )=x +9x 的单调区间为________.答案:(-3,0),(0,3) 解析:f ′(x )=1-9x 2=x 2-9x2,令f ′(x )<0,解得-3<x <0或0<x <3,故单调减区间为(-3,0)和(0,3).4 函数32x x y -=的单调增区间为 ,单调减区间为___________________答案:2(0,)3 ; 2(,0),(,)3-∞+∞ 解析: '22320,0,3y x x x x =-+===或 5.确定下列函数的单调区间:(1)y =x 3-9x 2+24x (2)y =3x -x 3 (1)解:y ′=(x 3-9x 2+24x )′=3x 2-18x +24=3(x -2)(x -4) 令3(x -2)(x -4)>0,解得x >4或x <2.∴y =x 3-9x 2+24x 的单调增区间是(4,+∞)和(-∞,2) 令3(x -2)(x -4)<0,解得2<x <4.∴y =x 3-9x 2+24x 的单调减区间是(2,4)(2)解:y ′=(3x -x 3)′=3-3x 2=-3(x 2-1)=-3(x +1)(x -1) 令-3(x +1)(x -1)>0,解得-1<x <1. ∴y =3x -x 3的单调增区间是(-1,1).令-3(x +1)(x -1)<0,解得x >1或x <-1.∴y =3x -x 3的单调减区间是(-∞,-1)和(1,+∞) 6.函数y =ln(x 2-x -2)的单调递减区间为__________.[答案] (-∞,-1) [解析] 函数y =ln(x 2-x -2)的定义域为(2,+∞)∪(-∞,-1),令f (x )=x 2-x -2,f ′(x )=2x -1<0,得x <12,∴函数y =ln(x 2-x -2)的单调减区间为(-∞,-1)7.已知y =13x 3+bx 2+(b +2)x +3在R 上不是单调增函数,则b 的范围为________.[答案] b <-1或b >2 [解析] 若y ′=x 2+2bx +b +2≥0恒成立,则Δ=4b 2-4(b +2)≤0,∴-1≤b ≤2,由题意b <-1或b >2.8.已知x ∈R,求证:e x ≥x +1.证明:设f (x )=e x -x -1,则f ′(x )=e x -1.∴当x =0时,f ′(x )=0,f (x )=0.当x >0时,f ′(x )>0,∴f (x )在(0,+∞)上是增函数.∴f (x )>f (0)=0. 当x <0时,f ′(x )<0,f (x )在(-∞,0)上是减函数,∴f (x )>f (0)=0.9.已知函数y =x +x1,试讨论出此函数的单调区间. 解:y ′=(x +x 1)′=1-1·x -2=222)1)(1(1x x x x x -+=- 令2)1)(1(xx x -+>0. 解得x >1或x <-1.∴y =x +x 1的单调增区间;是(-∞,-1)和(1,+∞).令2)1)(1(xx x -+<0,解得-1<x <0或0<x <1. ∴y =x +x1的单调减区间是(-1,0)和(0,1)10.已知函数32()f x x bx cx d =+++的图象过点P (0,2),且在点M (-1,f (-1))处的切线方程为076=+-y x .(Ⅰ)求函数y=f(x)的解析式;(Ⅱ)求函数y=f(x)的单调区间. 解:(Ⅰ)由f(x)的图象经过P (0,2),知d=2, 所以,2)(23+++=cx bx x x f .23)(2c bx x x f ++=' 由在M(-1,f(-1))处的切线方程是76=+-y x , 知.6)1(,1)1(,07)1(6=-'=-=+---f f f 即{{326,23,12 1.0,3.b c b c b c b c b c -+=-=-∴-+-+=-===-即解得 故所求的解析式是 .233)(23+--=x x x x f (Ⅱ)22()36 3.3630,f x x x x x '=----=令2210.x x --=即 解得 .21,2121+=-=x x当;0)(,21,21>'+>-<x f x x 时或 当.0)(,2121<'+<<-x f x 时故)21,()(--∞在x f 内是增函数,在)21,21(+-内是减函数,在),21(+∞+内是增函数. 点拨:本题考查函数的单调性、导数的应用等知识,考查运用数学知识分析问题和解决问题的能力.11.已知函数f(x)=x 3-21x 2+bx+c.(1)若f(x)在(-∞,+∞)上是增函数,求b 的取值范围;解 (1))(x f '=3x 2-x+b,因f(x)在(-∞,+∞)上是增函数,则)(x f '≥0.即3x 2-x+b≥0,∴b≥x -3x 2在(-∞,+∞)恒成立.设g(x)=x-3x 2.当x=61时,g(x)max =121,∴b≥121. 12.已知函数f(x)=x(x-1)(x-a)在(2,+∞)上是增函数,试确定实数a 的取值范围.解 f(x)=x(x-1)(x-a)=x 3-(a+1)x 2+ax ∴)(x f '=3x 2-2(a+1)x+a 要使函数f(x)=x(x-1)(x-a)在(2,+∞)上是增函数,只需)(x f '=3x 2-2(a+1)x+a 在(2,+∞)上满足)(x f '≥0即可.∵)(x f '=3x 2-2(a+1)x+a 的对称轴是x=31+a ,∴a 的取值应满足:⎪⎩⎪⎨⎧≥'≤+0(2)231f a 或⎪⎪⎩⎪⎪⎨⎧≥+'>+0)31(231a f a 解得:a≤38.∴a 的取值范围是a≤38.13.已知函数 232()4()3f x x ax x x R =+-∈在区间[]1,1-上是增函数,求实数a 的取值范围.解:'2()422f x ax x =+-,因为()f x 在区间[]1,1-上是增函数,所以'()0f x ≥对[]1,1x ∈-恒成立,即220x ax --≤对[]1,1x ∈-恒成立,解之得:11a -≤≤所以实数a 的取值范围为[]1,1-.点拨:已知函数的单调性求参数的取值范围是一种常见的题型,常利用导数与函数单调性关系:即“若函数单调递增,则'()0f x ≥;若函数单调递减,则'()0f x ≤”来求解,注意此时公式中的等号不能省略,否则漏解.14.已知函数d ax bx x x f +++=23)(的图象过点P (0,2),且在点M (-1,)1(-f )处的切线方程076=+-y x ,(1)求函数)(x f y =的解析式;(2)求函数)(x f y =的单调区间。
高三数学函数的单调性与导数试题
高三数学函数的单调性与导数试题1.(本小题满分13分)已知函数(1)求函数的导函数;(2)当时,若函数是R上的增函数,求的最小值;(3)当时,函数在上存在单调递增区间,求m的取值范围。
【答案】(Ⅰ).(Ⅱ)的最小值(Ⅲ).【解析】本试题主要是考查了导数在研究函数中的运用。
求解导函数,以及函数的最值,以及函数的单调性求解参数的范围的逆向解题的综合运用。
(1)根据已知的定义域求解函数的导函数;(2)当时,因为函数是R上的增函数,说明了导数恒大于等于零,得到的最小值;(3)当时,函数在上存在单调递增区间,说明了导数恒大于等于零,从而求m的取值范围。
(Ⅰ)解:.(Ⅱ)因为函数是上的增函数,所以在上恒成立.则有,即.可用圆面的几何意义解得的最小值(Ⅲ)①当时,是开口向上的抛物线,显然在上存在子区间使得,所以的取值范围是.②当时,显然成立.③当时,是开口向下的抛物线,要使在上存在子区间使,应满足或解得,或,所以的取值范围是.则的取值范围是.2.(本小题满分15分)已知函数(R)的一个极值点为.(1) 求的值和的单调区间;(2)若方程的两个实根为, 函数在区间上单调,求的取值范围。
【答案】(1)函数在上单调递增, 在上单调递减,在上单调递增. (2)实数的取值范围为.【解析】本试题主要是考查了导数在研究函数中的运用。
(1)因为函数的一个极值点为x=1.可以知道该点的导数值为零,得到a的值,并进而求解导数,得到f(x)的单调区间;(2)因为方程的两个实根为, 函数f(x)在区间上单调,利用单调性判定区间只能是已知单调区间的子区间而已,进而求解得到范围。
解:(1)∵,∴.∵的一个极值点为,∴.∴. ————————3分∴,当时, ;当时, ;当时, ;∴函数在上单调递增, 在上单调递减,在上单调递增. 6分(2)∵方程的两个不等实根为,∴△=b2-4b>0, b<0或b>4 (*)∵函数在区间上是单调的,∴区间只能是区间,,之一的子区间.记,的对称轴为x=,①., 则,解得无解;————————9分②,则,解得———————12分③则解得b>4∴实数的取值范围为. ------------------------------------------------15分3.(本题满分12分)已知函数.(Ⅰ)若,令函数,求函数在上的极大值、极小值;(Ⅱ)若函数在上恒为单调递增函数,求实数的取值范围.【答案】(1)函数在处取得极小值;在处取得极大值;(2)【解析】第一问中利用导数的正负求解函数的极值问题。
高考数学复习练习题导数与函数的单调性理
课时作业(十四)第14讲导数与函数的单调性时间/ 45分钟分值/ 100分基础热身1.函数f(x)=x2-sin x,x∈(0,π2)的单调递减区间是()A.(0,π6)B.(0,π3)C.(π6,π2)D.(π3,π2)2.下列函数中,在(0,+∞)上为增函数的是()A.f(x)=sin 2xB.g(x)=x3-xC.h(x)=x e xD.m(x)=-x+ln x图K14-13.已知函数y=-xf'(x)的图像如图K14-1所示,其中f'(x)是函数f(x)的导函数,则函数y=f(x)的大致图像可以是()A BC D图K14-24.对于R上可导的任意函数f(x),若满足(1-x)f'(x)≥0,则必有()A.f(0)+f(2)<2f(1)B.f(0)+f(2)≤2f(1)C.f(0)+f(2)>2f(1)D.f(0)+f(2)≥2f(1)5.[2019·贵港联考]若函数f(x)=kx-2ln x在区间(1,+∞)上单调递增,则k的取值范围是.能力提升6.[2019·甘肃静宁一中模拟] 已知函数f (x )=x 2+xx ,若函数f (x )在[2,+∞)上单调递增,则实数a 的取值范围为 ( )A .(-∞,8)B .(-∞,16]C .(-∞,-8)∪(8,+∞)D .(-∞,-16]∪[16,+∞)7.[2018·浙江台州中学模拟] 当0<x<1时,f (x )=ln xx,则下列大小关系正确的是 ( )A .[f (x )]2<f (x 2)<f (x ) B .f (x 2)<[f (x )]2<f (x ) C .f (x )<f (x 2)<[f (x )]2D .f (x 2)<f (x )<[f (x )]28.已知m 是实数,函数f (x )=x 2(x-m ),若f'(-1)=-1,则函数f (x )的单调递增区间是 ( ) A .(-∞,-43),(0,+∞) B .(-∞,-43)∪(0,+∞)C .(-43,0)D .(0,43)9.已知在R 上可导的函数f (x )的导函数为f'(x ),满足f'(x )<f (x ),且f (x+5)为偶函数,f (10)=1,则不等式f (x )<e x 的解集为 ( ) A .(0,+∞) B .(1,+∞) C .(5,+∞) D .(10,+∞)10.[2018·西宁二模] 设函数f'(x )是定义在(0,π)上的函数f (x )的导函数,且f'(x )cosx-f (x )sin x>0.若a=12f (π3),b=0,c=-√32f (5π6),则a ,b ,c 的大小关系是 ( )A .a<b<cB .b<c<aC .c<b<aD .c<a<b11.[2018·包头一模] 已知函数f (x )=2x 3-4x+2(e x -e -x ),若f (5a-2)+f (3a 2)≤0,则实数a 的取值范围是 ( )A.[-13,2]B.[-1,-23]C.[23,1]D.[-2,13]12.[2018·无锡期末]若函数f(x)=(x+1)2|x-a|在区间[-1,2]上单调递增,则实数a的取值范围是.13.[2018·唐山模拟]已知定义在实数集R上的函数f(x)满足f(1)=4,且f(x)的导函数f'(x)<3,则不等式f(ln x)>3ln x+1的解集为.14.(12分)已知函数f(x)=12ax2+2x-ln x(a∈R).(1)当a=3时,求函数f(x)的单调区间;(2)若函数f(x)存在单调递增区间,求实数a的取值范围.15.(13分)[2019·日照期中]已知函数f(x)=kx-xx-2ln x.(1)若函数f(x)的图像在点(1,f(1))处的切线方程为2x+5y-2=0,求f(x)的单调区间;(2)若函数f(x)在(0,+∞)上为增函数,求实数k的取值范围.难点突破16.(5分)[2018·昆明一模]已知函数f(x)=(x2-2x)e x-a ln x(a∈R)在区间(0,+∞)上单调递增,则a的最大值是()A.-eB.eC.-e22D.4e217.(5分)已知函数f(x)=x-2(e x-e-x),则不等式f(x2-2x)>0的解集为.课时作业(十四)1.B [解析] f'(x )=12-cos x ,x ∈(0,π2),令f'(x )<0,得x ∈(0,π3),故f (x )在(0,π2)上的单调递减区间为(0,π3),故选B .2.C [解析] 显然f (x )=sin 2x 在(0,+∞)上不是增函数,不符合题意. 由g'(x )=3x 2-1<0,得-√33<x<√33,所以g (x )=x 3-x 在(-√33,√33)上单调递减,不符合题意. 因为h'(x )=(x+1)e x,所以当x>0时,h'(x )>0,所以h (x )=x e x在(0,+∞)上单调递增,符合题意.由m'(x )=-1+1x <0,得x>1,所以m (x )=-x+ln x 在(1,+∞)上单调递减,不符合题意. 故选C .3.A [解析] 由函数y=-xf'(x )的图像可得: 当x<-1时,f'(x )<0,f (x )是减函数; 当-1<x<0时,f'(x )>0,f (x )是增函数; 当0<x<1时,f'(x )>0,f (x )是增函数; 当x>1时,f'(x )<0,f (x )是减函数.由此得到函数y=f (x )的大致图像可以是选项A . 4.B [解析] (1-x )f'(x )≥0.若f'(x )=0恒成立,则f (x )为常函数,则f (0)+f (2)=2f (1). 若f'(x )=0不恒成立,则当x<1时,f'(x )≥0,f (x )单调递增,当x>1时,f'(x )≤0,f (x )单调递减,∴f (0)<f (1),f (2)<f (1), ∴f (0)+f (2)<2f (1).故选B .5.[2,+∞) [解析] 因为f (x )=kx-2ln x ,所以f'(x )=k-2x .因为f (x )在区间(1,+∞)上单调递增,所以f'(x )=k-2x ≥0在区间(1,+∞)上恒成立,即k ≥2x 在区间(1,+∞)上恒成立.因为当x ∈(1,+∞)时,0<2x <2,所以k ≥2. 6.B [解析] 因为f (x )=x2+x x 在[2,+∞)上单调递增,所以f'(x )=2x-x x 2=2x 3-xx 2≥0在[2,+∞)上恒成立,则a ≤2x 3在[2,+∞)上恒成立,所以a ≤16.故选B . 7.D [解析] 由0<x<1得0<x 2<x<1.易得f'(x )=1-ln xx 2,根据对数函数的单调性可知,当0<x<1时,1-ln x>0,从而可得f'(x )>0,函数f (x )在(0,1)上单调递增,所以f (x 2)<f (x )<f (1)=0, 又[f (x )]2=(ln x x)2>0,所以f (x 2)<f (x )<[f (x )]2,故选D .8.A [解析] f'(x )=2x (x-m )+x 2,∵f'(-1)=-1,∴-2(-1-m )+1=-1,解得m=-2,∴f'(x )=2x (x+2)+x 2. 令2x (x+2)+x 2>0,解得x<-43或x>0,∴函数f (x )的单调递增区间是(-∞,-43),(0,+∞).9.A [解析] 设g (x )=x (x )e x,则g'(x )=x '(x )-x (x )e x,由f'(x )<f (x )得g'(x )<0,∴g (x )在R 上是减函数.∵f (x+5)是偶函数,∴f (x )的图像关于直线x=5对称, ∴f (0)=f (10)=1,∴g (0)=x (0)e 0=1.由f (x )<e x ,得x (x )e x<1,即g (x )<g (0).又g (x )在R 上是减函数,∴x>0,即f (x )<e x的解集为(0,+∞). 10.A [解析] 令g (x )=cos x ·f (x ).因为f'(x )cos x-f (x )sin x>0在(0,π)上恒成立, 所以g'(x )=f'(x )cos x-f (x )sin x>0在(0,π)上恒成立, 所以g (x )在(0,π)上单调递增, 所以g (π3)<g (π2)<g (5π6),即12f (π3)<0<-√32f (5π6),即a<b<c ,故选A .11.D [解析] 由函数f (x )=2x 3-4x+2(e x -e -x),可得f (-x )=2(-x )3-4(-x )+2(e -x -e x )=-[2x 3-4x+2(e x -e -x)]=-f (x ), 所以函数f (x )为奇函数.f'(x )=6x 2-4+2(e x +1e x ),因为e x +1e x ≥2√e x ·1e x =2,当且仅当x=0时取等号,所以f'(x )≥0,所以函数f (x )为R 上的增函数.因为f (5a-2)+f (3a 2)≤0,所以f (3a 2)≤-f (5a-2)=f (2-5a ), 所以3a 2≤2-5a ,即3a 2+5a-2≤0,解得-2≤a ≤13,故选D .12.(-∞,-1]∪[72,+∞) [解析] 由已知可得f (x )={(x +1)2(x -x ),x <x ,(x +1)2(x -x ),x ≥x .当x ≥a 时,f'(x )=(x+1)(3x-2a+1),由题意知需满足2x -13≤-1,∴a ≤-1;当x<a时,f'(x )=-(x+1)(3x-2a+1),由题意知需满足2x -13≥2,∴a ≥72.综上可知a ∈(-∞,-1]∪[72,+∞).13.(0,e) [解析] 设g (x )=f (x )-3x ,则g'(x )=f'(x )-3<0,所以函数g (x )在R 上单调递减. 将不等式变形为f (ln x )-3ln x>4-3,即g (ln x )>g (1), 由g (x )的单调性可得ln x<1,解得0<x<e .14.解:(1)当a=3时,f (x )=32x 2+2x-ln x ,其定义域为(0,+∞), 所以f'(x )=3x+2-1x =(3x -1)(x +1)x.易知当x ∈(0,13)时,f'(x )<0,f (x )单调递减; 当x ∈(13,+∞)时,f'(x )>0,f (x )单调递增.所以f (x )的单调递减区间为(0,13),单调递增区间为(13,+∞). (2)f (x )=12ax 2+2x-ln x (a ∈R)的定义域为(0,+∞),f'(x )=ax+2-1x =xx 2+2x -1x(a ∈R).因为函数f (x )存在单调递增区间,所以f'(x )>0在区间(0,+∞)上有解, 即ax 2+2x-1>0在区间(0,+∞)上有解. 分离参数得a>1-2xx 2,令g (x )=1-2xx 2,则只需a>g (x )min 即可.因为g (x )=1-2xx 2=(1x -1)2-1,所以g (x )min =-1,即所求实数a 的取值范围为(-1,+∞).15.解:(1)f (x )的定义域为(0,+∞),f'(x )=k+x x 2-2x =xx 2-2x +xx 2. 由题意可知f'(1)=2k-2=-25,解得k=45,所以f'(x )=4x 2-10x +45x 2=2(2x -1)(x -2)5x 2.由f'(x )>0,得0<x<12或x>2,由f'(x )<0,得12<x<2,所以函数f (x )的单调递增区间是(0,12),(2,+∞),单调递减区间是(12,2). (2)函数f (x )的定义域为(0,+∞),要使函数f (x )在定义域内为增函数,只需f'(x )≥0在区间(0,+∞)上恒成立, 即kx 2-2x+k ≥0在区间(0,+∞)上恒成立, 即k ≥2xx 2+1在区间(0,+∞)上恒成立. 令g (x )=2xx 2+1,x ∈(0,+∞),则g (x )=2x +1x≤1,当且仅当x=1时取等号,所以k ≥1,即实数k 的取值范围为[1,+∞).16.A [解析] 因为函数f (x )=(x 2-2x )e x-a ln x (a ∈R), 所以f'(x )=e x (x 2-2x )+e x(2x-2)-xx=e x (x 2-2)-x x.因为函数f (x )=(x 2-2x )e x-a ln x (a ∈R)在区间(0,+∞)上单调递增, 所以f'(x )=e x (x 2-2)-x x≥0在区间(0,+∞)上恒成立, 即a ≤e x (x 3-2x )在区间(0,+∞)上恒成立. 令h (x )=e x (x 3-2x ),则h'(x )=e x (x 3-2x )+e x (3x 2-2)=e x (x 3-2x+3x 2-2)=e x (x-1)(x 2+4x+2). 因为x ∈(0,+∞),所以x 2+4x+2>0,e x>0, 令h'(x )>0,可得x>1;令h'(x )<0,可得0<x<1.所以函数h (x )在区间(1,+∞)上单调递增,在区间(0,1)上单调递减. 所以h (x )min =h (1)=e 1(1-2)=-e, 所以a ≤-e .17.(0,2)[解析] 由函数的解析式可得f'(x)=1-2(e x+e-x),因为e x+e-x≥2√e x·e-x=2,当且仅当e x=e-x,即x=0时等号成立, 所以f'(x)=1-2(e x+e-x)≤-3,则函数f(x)是R上的减函数.因为f(0)=0,所以原不等式等价于f(x2-2x)>f(0),结合函数f(x)的单调性可得x2-2x<0,解得0<x<2,即不等式的解集为(0,2).。
导数判断函数单调性例题.docx
导数判断函数单调性例题一.利用导数求函数单调性1. 若/(X )= X 2 - 2x - 41nx,求f(x)的单调递增区间2. 己知函数f (兀)=—%2- ax - lnx(a G R)•当a = -3时,求f(x)的单调递减区间;乙 3. 已知函数/'(x) = x 2e x .(1) 求函数n>)的单调区间.(2) 求函数门无)在区间[-3,i]±的最大值和最小值.4. 已知函数/"(X )= x\nx,gM = % + a.设虹兀)=f(x) 一 g(x),求函数y =人(兀)的单调区间; 5•如果函数y = /(%)的图象如图所示,那么导函数y = f(%)的图象可能是C.6.已知函数y = /(%)的图象是下列四个图象乙一,且其导函数y = f'(x)的图象如图所示,()则该函数的图象可能是(& 己知函数/'(X )= £% + ax + b(a,b G R)在兀=ln2处的切线方程为y = x - 21n2. 求函数门尢)的单调区间;9. 已知函数/'(%) = lnx — a 2x + 2a.讨论/'(尤)的单调性;10. 已知函数f(x)=咒 +a (a —i )_ [口兀(a < 0).X(1)当a = _l 时,求曲线y = f(x)在点(1J(1))处的切线方程;(2) 求函数y = 的单调区间;11. 设/(%) = ax 3 4-划nx (aWR).求函数0(咒)=丛丸的单调区间;X 7.函数y = /(%)的导函数y = f(%)的图象如图所示,函数y = f(%)图象可 能是()J'A二.己知单调性求参数的取值范围12.已知函数/'(X)= a2lnx + ax — x2 a.讨论f (x)在(1, +8)上的单调性;13.已知函数f(x) = e x— x2 + 2ax1)若a=l,求曲线y = f(x)在点(1J(1))处的切线方程(2)若门x)在R上单调递增,求实数a的取值范围14.已知函数f(x) = lnx + |x2 -ax + a, (a G R).若函数f(x)在(0,+oo)时上为单调递增函数,求实数a的取值范围;15.己知幣数f(X)= |x3一ax2 - 3% 4-1在区间(-1,2)上为减函数(1)求a的取值范围;(2)当a = l时,方程/(%) = 0有几个不同的实根?说明理由.16.已知函数f(x) = x2 4- (m + 2)x + n (m,n为常数).(1)当兀=1时,讨论函数g(x) = "f(x)的单调性;(2)当?1 = 2吋,若函数/i(x) = % 4-在[0,+8)上单调递增,求m的取值范围.练习• 1 •已知函数f(x) = -|x3 + ;x2 + 2ax.(1)若函数在(I,+8)上存在单调增区间,求实数a的取值范圉.(2)若函数在(|,1)上单调递增,求实数a的取值范围.2.函数/(x) = a\nx + x在区间[2, 3]上单调递增,则实数a的収值范围为( )。
高中数学--函数的单调性与导数-Word版含答案
函数的单调性与导数选择题1、函数f(x)=xlnx的单调递增区间是( )A(01) B(1+∞)C D【解析】选D因为f(x)=xlnx(x>0)所以f′(x)=lnx+1令f′(x)>0得lnx+1>0即x>所以函数f(x)的单调递增区间是2、下列函数中在(0+∞)内为增函数的是( )Ay=sinx By=xe2Cy=x3-x Dy=lnx-x【解析】选B对于Ay=sinx在(0+∞)内有增有减对于By′=(xe2)′=e2>0故y=xe2在(0+∞)内是增函数;对于Cy′=3x2-1=3当x∈时y′<0;故y=x3-x在上是减函数对于Dy′=-1=当x∈(1+∞)时y′<0故y=lnx-x在(1+∞)上是减函数3、(2016·临沂高二检测)已知函数y=f(x)的图象是如图四个图象之一且其导函数y=f′(x)的图象如图所示则该函数的图象是( )【解析】选B由函数y=f(x)的导函数y=f′(x)的图象知f(x)的图象是上升的且先由“平缓”变“陡峭”再由“陡峭”变“平缓”观察图象可得B正确4、若f(x)=e<a<b则( )Af(a)>f(b) Bf(a)=f(b)Cf(a)<f(b) Df(a)f(b)>1【解题指南】先判断f(x)的单调性再比较f(a)与f(b)的大小【解析】选A因为f′(x)==当x∈(e+∞)时1-lnx<0所以f′(x)<0所以f(x)在(e+∞)内为单调递减函数故f(a)>f(b)5、(2016·烟台高二检测)若a>0且f(x)=x3-ax在B(-11]C(-11) D上是单调函数求a的取值范围【解析】f′(x)=(2x-2a)e x+(x2-2ax)e x=e x令f′(x)=0即x2+2(1-a)x-2a=0解得x1=a-1-x2=a-1+其中x1<x2当x变化时f′(x)f(x)的变化情况见下表:x (-∞x1) x1(x1x2) x2(x2+∞) f′(x) + 0 - 0 +f(x) ↗↘↗因为a≥0所以x1<-1x2≥0f(x)在(x1x2)上单调递减由此可得f(x)在上是单调函数的充要条件为x2≥1即a-1+≥1解得a≥故所求a的取值范围为10(2016·青岛高二检测)已知函数y=f(x)=x3+bx2+cx+d的图象经过点P(02)且在点M(-1f(-1))处的切线方程为6x-y+7=0(1)求函数y=f(x)的解析式(2)求函数y=f(x)的单调区间【解析】(1)由y=f(x)的图象经过点P(02)知d=2所以f(x)=x3+bx2+cx+2f′(x)=3x2+2bx+c由在点M(-1f(-1))处的切线方程为6x-y+7=0知-6-f(-1)+7=0即f(-1)=1f′(-1)=6所以即解得b=c=-3故所求的解析式是y=f(x)=x3-3x2-3x+2(2)f′(x)=3x2-6x-3令f′(x)>0得x<1-或x>1+;令f′(x)<0得1-<x<1+故f(x)=x3-3x2-3x+2的单调递增区间为(-∞1-)和(1++∞)单调递减区间为(1-1+)1已知对任意实数x有f(-x)=-f(x)g(-x)=g(x)且当x>0时有f′(x)>0g′(x)>0则当x<0时有( )Af′(x)>0g′(x)>0 Bf′(x)>0g′(x)<0Cf′(x)<0g′(x)>0 Df′(x)<0g′(x)<0【解析】选B由题知f(x)是奇函数g(x)是偶函数根据奇偶函数图象特点知当x<0时f(x)的单调性与x>0时相同g(x)的单调性与x>0时恰好相反因此当x<0时有f′(x)>0g′(x)<0 2(2016·南昌高二检测)设f(x)g(x)分别是定义在R上的奇函数和偶函数当x<0时f′(x)g(x)+f(x)g′(x)>0且g(-3)=0则不等式f(x)g(x)<0的解集是( )A(-30)∪(3+∞) B(-30)∪(03)C(-∞-3)∪(3+∞) D(-∞-3)∪(03)【解析】选D因为′=f′(x)g(x)+f(x)g′(x)所以当x<0时′>0所以f(x)·g(x)在(-∞0)上是增函数又g(-3)=0所以f(-3)g(-3)=0所以当x∈(-∞-3)时f(x)g(x)<0;当x∈(-30)时f(x)g(x)>0又因为f(x)g(x)分别是定义在R上的奇函数和偶函数所以f(x)g(x)在R上是奇函数其图象关于原点对称所以当x∈(03)时f(x)g(x)<0综上选D【补偿训练】(2015·全国卷Ⅱ)设函数f′(x)是奇函数f(x)(x∈R)的导函数f(-1)=0当x>0时xf′(x)-f(x)<0则使得f(x)>0成立的x的取值范围是( )A(-∞-1)∪(01) B(-10)∪(1+∞)C(-∞-1)∪(-10) D(01)∪(1+∞)【解析】选A记函数g(x)=则g′(x)=因为当x>0时xf′(x)-f(x)<0故当x>0时g′(x)<0所以g(x)在(0+∞)上单调递减;又因为函数f(x)(x∈R)是奇函数故函数g(x)是偶函数所以g(x)在(-∞0)上单调递增且g(-1)=g(1)=0当0<x<1时g(x)>0则f(x)>0;当x<-1时g(x)<0则f(x)>0综上所述使得f(x)>0成立的x的取值范围是(-∞-1)∪ (01)二、填空题(每小题5分共10分)3(2016·泰安模拟)如果函数f(x)=2x2-lnx在定义域内的一个子区间(k-1k+1)上不是单调函数那么实数k的取值范围是【解析】显然函数f(x)的定义域为(0+∞)y′=4x-=由y′>0得函数f(x)的单调递增区间为;由y′<0得函数f(x)的单调递减区间为由于函数在区间(k-1k+1)上不是单调函数所以解得1≤k<答案:4(2016·盐城高二检测)若函数f(x)=(mx-1)e x在(0+∞)上单调递增则实数m的取值范围是【解析】因为f′(x)=(mx+m-1)e x由题意得f′(x)≥0在(0+∞)上恒成立令g(x)=mx+m-1则解得m≥1答案:令f′(x)=0得x1=1x2=a-1因为f(x)在(14)内为减函数所以当x∈(14)时f′(x)≤0;因为f(x)在(6+∞)内为增函数所以当x∈(6+∞)时f′(x)≥0所以4≤a-1≤6解得5≤a≤7所以实数a的取值范围为方法二:f′(x)=x2-ax+a-1因为f(x)在(14)内为减函数所以当x∈(14)时f′(x)≤0;因为f(x)在(6+∞)内为增函数所以当x∈(6+∞)时f′(x)≥0所以即解得5≤a≤7所以实数a的取值范围为6(2015·驻马店高二检测)已知函数f(x)=(ax2+x-1)e x其中e是自然对数的底数a∈R(1)若a=1求曲线f(x)在点(1f(1))处的切线方程(2)若a=-1求f(x)的单调区间【解析】(1)因为f(x)=(x2+x-1)e x所以f′(x)=(2x+1)e x+(x2+x-1)e x=(x2+3x)e x所以曲线f(x)在点(1f(1))处的切线斜率为k=f′(1)=4e又因为f(1)=e所以所求切线方程为y-e=4e(x-1)即4ex-y-3e=0(2)f(x)=(-x2+x-1)e x因为f′(x)=-x(x+1)e x令f′(x)<0得x<-1或x>0f′(x)>0得-1<x<0所以f(x)的减区间为(-∞-1)(0+∞)增区间为(-10)关闭Word文档返回原板块。
3.2 利用导数求函数单调性试题
3.2 利用导数求函数单调性考向一 利用导数求单调性【例1】(1)函数f (x )=x ·e x -e x+1的单调增区间是________.(2)已知函数f (x )=x ln x ,则f (x )的单调减区间是________.(3)已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调增区间是_______. 【答案】(1)(e -1,+∞)(2)⎝⎛⎭⎫0,1e (3) ⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2 【解析】(1)由f (x )=x ·e x -e x +1,得f ′(x )=(x +1-e)·e x ,令f ′(x )>0,解得x >e -1, 所以函数f (x )的单调增区间是(e -1,+∞).(2)因为函数f (x )=x ln x 的定义域为(0,+∞),所以f ′(x )=ln x +1(x >0),思维导图考向分析当f ′(x )<0时,解得0<x <1e ,即函数f (x )的单调减区间为⎝⎛⎭⎫0,1e . (3)f ′(x )=sin x +x cos x -sin x =x cos x .令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝⎛⎭⎫-π,-π2∪⎝⎛⎭⎫0,π2,即f (x )的单调增区间为⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2. 【举一反三】1.(2019·黑龙江铁人中学)已知()22()2ln 2f x x x x x x =--+,则函数()f x 的单调递减区间为( ).A .10,2⎛⎫ ⎪⎝⎭B .1,12⎛⎫ ⎪⎝⎭C .(1,)+∞D .(0,)+∞【答案】B【解析】函数()y f x =的定义域为()0,∞+,()()()()42ln 222242ln f x x x x x x x '=-+--+=-,令()0f x '<,得112x <<,因此,函数()y f x =的单调递减区间为1,12⎛⎫⎪⎝⎭,故选:B 。
高中数学利用导数研究函数的单调性精选练习题
利用导数研究函数的单调性精选题24道一.选择题(共7小题) 1.设函数()f x '是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x>时,()()0x f x f x '-<,则使得()0f x >成立的x 的取值范围是()A .(-∞,1)(0-⋃,1) B .(1-,0)(1⋃,)+∞C .(-∞,1)(1--⋃,0)D .(0,1)(1⋃,)+∞2.若函数1()s in 2s in 3f x x x a x=-+在(,)-∞+∞单调递增,则a 的取值范围是() A .[1-,1] B .[1-,1]3C .1[3-,1]3D .[1-,1]3-3.函数32()f x a x b x c x d=+++的图象如图所示,则下列结论成立的是( )A .0a >,0b <,0c >,0d >B .0a >,0b <,0c <,0d >C .0a<,0b<,0c<,0d>D .0a>,0b>,0c>,0d<4.已知奇函数()f x 在R 上是增函数,()()g x x f x =.若2(log 5.1)ag =-,0.8(2)bg =,cg=(3),则a ,b ,c 的大小关系为( )A .ab c<<B .cb a<< C .ba c<< D .bc a<<5.若函数21()f x xa x x=++在1(,)2+∞是增函数,则a 的取值范围是()A .[1-,0]B .[1-,)+∞C .[0,3]D .[3,)+∞6.若定义在R 上的函数()f x 满足(0)1f =-,其导函数()f x '满足()1f x k '>>,则下列结论中一定错误的是( )A .11()f k k <B .11()1f k k >-C .11()11f k k <-- D .1()11k f k k >--7.已知21()s in ()42f x xx π=++,()f x '为()f x 的导函数,则()f x '的图象是()A .B .C .D .二.填空题(共12小题)8.已知函数31()2xxf x x x ee=-+-,其中e 是自然对数的底数.若2(1)(2)0f a f a -+….则实数a 的取值范围是 . 9.函数()f x 的定义域为R ,(1)2f -=,对任意x R∈,()2f x '>,则()24f x x >+的解集为 . 10.设函数()f x '是奇函数()()f x x R ∈的导函数,(1)f -=,当0x>时,()()0x f x f x '-<,则使得()0f x >成立的x 的取值范围是 .11.已知函数3(21)34,(),a x a x tf x x x x t-+-⎧=⎨->⎩…,无论t 取何值,函数()f x 在区间(,)-∞+∞总是不单调.则a 的取值范围是 . 12.已知()f x 的定义域为(-∞,0)(0⋃,)+∞,()f x '是()f x 的导函数,且满足()2()0x f x f x '->,若()f x 是偶函数,f(1)1=,则不等式2()f x x>的解集为 .13.函数()(3)xf x x e=-的单调递增区间是 .14.设函数()f x 在R 上存在导数()f x ',对任意的x R∈有2()()f x f x x-+=,且在(0,)+∞上()f x x'>.若(2)f a f--(a )22a-…,则实数a 的取值范围是 .15.已知三次函数32()()32a b f x x xc xd a b =+++<在R 上单调递增,则a b c b a++-的最小值为 . 16.已知函数21()22f x m xln x x=+-在定义域内是增函数,则实数m 的取值范围为 .17.函数212yxln x=-的单调递减区间为 .18.已知函数321()242f x x xx =+-+,则函数的单调减区间为 .19.设定义域为R 的函数()f x 满足()()f x f x '>,则不等式1()(21)x e f x f x -<-的解为 .三.解答题(共5小题) 20.已知函数1()f x x a ln xx=-+.(1)讨论()f x 的单调性;(2)若()f x 存在两个极值点1x ,2x ,证明:1212()()2f x f x a x x -<--.21.设函数2()(1)xf x x e=-⋅.(1)讨论()f x 的单调性;(2)当0x …时,()1f x a x +…,求实数a 的取值范围.22.已知函数2()(2)(1)x f x x e a x =-+-.(Ⅰ)讨论()f x 的单调性;(Ⅱ)若()f x 有两个零点,求a 的取值范围.24.已知函数()1f x x a ln x=--.(1)若()0f x …,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111(1)(1)(1)222nm++⋯+<,求m 的最小值.利用导数研究函数的单调性精选题24道参考答案与试题解析一.选择题(共7小题) 1.设函数()f x '是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x>时,()()0x f x f x '-<,则使得()0f x >成立的x 的取值范围是()A .(-∞,1)(0-⋃,1) B .(1-,0)(1⋃,)+∞C .(-∞,1)(1--⋃,0)D .(0,1)(1⋃,)+∞【分析】由已知当0x >时总有()()0x f x f x '-<成立,可判断函数()()f xg x x=为减函数,由已知()f x 是定义在R 上的奇函数,可证明()g x 为(-∞,0)(0⋃,)+∞上的偶函数,根据函数()g x 在(0,)+∞上的单调性和奇偶性,模拟()g x 的图象,而不等式()0f x >等价于()0x g x ⋅>,数形结合解不等式组即可.【解答】解:设()()f x g x x =,则()g x 的导数为:2()()()x f x f x g x x'-'=,当0x >时总有()()xf x f x '<成立,即当0x>时,()g x '恒小于0, ∴当0x>时,函数()()f xg x x =为减函数,又()()()()()f x f x f xg x g x xxx---====--,∴函数()g x 为定义域上的偶函数又(1)(1)01f g --==-,∴函数()g x 的图象性质类似如图:数形结合可得,不等式()0()0f x xg x >⇔⋅>⇔0()0x g x >⎧⎨>⎩或0()0x g x <⎧⎨<⎩,01x ⇔<<或1x <-.故选:A .【点评】本题主要考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式,属于综合题. 2.若函数1()s in 2s in 3f x x x a x=-+在(,)-∞+∞单调递增,则a 的取值范围是() A .[1-,1] B .[1-,1]3C .1[3-,1]3D .[1-,1]3-【分析】求出()f x 的导数,由题意可得()0f x '…恒成立,设c o s (11)t x t=-剟,即有25430ta t -+…,对t 讨论,分0t=,01t <…,10t -<…,分离参数,运用函数的单调性可得最值,解不等式即可得到所求范围. 【解答】解:函数1()s in 2s in 3f x x x a x=-+的导数为2()1c o s 2c o s 3f x x a x'=-+,由题意可得()0f x '…恒成立,即为21c o s 2c o s 03x a x -+…, 即有254c o s c o s 033x a x -+…,设co s (11)t x t =-剟,即有25430ta t -+…,当0t =时,不等式显然成立;当01t <…时,534a t t-…,由54tt-在(0,1]递增,可得1t =时,取得最大值1-,可得31a -…,即13a -…;当10t -<…时,534a t t-…,由54tt-在[1-,0)递增,可得1t=-时,取得最小值1,可得31a …,即13a ….综上可得a 的范围是1[3-,1]3.另解:设co s (11)tx t =-剟,即有25430ta t -+…,由题意可得5430a -+…,且5430a --…,解得a 的范围是1[3-,1]3.故选:C .【点评】本题考查导数的运用:求单调性,考查不等式恒成立问题的解法,注意运用参数分离和换元法,考查函数的单调性的运用,属于中档题. 3.函数32()f x a x b x c x d=+++的图象如图所示,则下列结论成立的是()A .0a >,0b <,0c >,0d >B .0a >,0b <,0c <,0d >C .0a<,0b<,0c<,0d>D .0a>,0b>,0c>,0d<【分析】根据函数的图象和性质,利用排除法进行判断即可. 【解答】解:(0)0f d =>,排除D ,当x→+∞时,y →+∞,0a ∴>,排除C , 函数的导数2()32f x a x b x c'=++,则()0f x '=有两个不同的正实根,则12203b x x a+=->且123c x x a=>,(0)a>,b ∴<,0c>,方法22:()32f x a x b x c'=++,由图象知当当1x x <时函数递增,当12x x x <<时函数递减,则()f x '对应的图象开口向上,则0a>,且12203b x x a+=->且123c x x a=>,(0)a >,b ∴<,0c>,方法3:(0)0f d =>,排除D ,函数的导数2()32f x a x b x c'=++,则(0)0f c '=>,排除B ,C ,故选:A .【点评】本题主要考查函数图象的识别和判断,根据函数图象的信息,结合函数的极值及(0)f 的符号是解决本题的关键.4.已知奇函数()f x 在R 上是增函数,()()g x x f x =.若2(log 5.1)ag =-,0.8(2)bg =,cg=(3),则a ,b ,c 的大小关系为( )A .ab c<<B .cb a<< C .ba c<< D .bc a<<【分析】由奇函数()f x 在R 上是增函数,则()()g x x f x =偶函数,且在(0,)+∞单调递增,则22(lo g 5.1)(lo g 5.1)a g g =-=,则22lo g 5.13<<,0.8122<<,即可求得ba c<< 【解答】解:奇函数()f x 在R 上是增函数,当0x>,()(0)0f x f >=,且()0f x '>,()()g x xf x ∴=,则()()()0g x f x xf x '=+'>,()g x ∴在(0,)+∞单调递增,且()()g x x f x =偶函数,22(lo g 5.1)(lo g 5.1)a g g ∴=-=, 则22lo g 5.13<<,0.8122<<,由()g x 在(0,)+∞单调递增,则0.82(2)(lo g 5.1)g g g<<(3),b a c∴<<,故选:C .【点评】本题考查函数奇偶性,考查函数单调性的应用,考查转化思想,属于基础题. 5.若函数21()f x xa x x=++在1(,)2+∞是增函数,则a 的取值范围是()A .[1-,0]B .[1-,)+∞C .[0,3]D .[3,)+∞【分析】由函数21()f x xa x x=++在1(2,)+∞上是增函数,可得21()20f x x a x'=+-…在1(2,)+∞上恒成立,进而可转化为212a xx-…在1(2,)+∞上恒成立,构造函数求出212xx-在1(2,)+∞上的最值,可得a 的取值范围.【解答】解:21()f x x a x x=++在1(2,)+∞上是增函数,故21()20f x x a x'=+-…在1(2,)+∞上恒成立,即212a x x-…在1(2,)+∞上恒成立,令21()2h x x x=-, 则32()2h x x'=--,当1(2x ∈,)+∞时,()0h x '<,则()h x 为减函数.1()()32h x h ∴<=3a ∴….故选:D .【点评】本题考查的知识点是利用导数研究函数的单调性,恒成立问题,是导数的综合应用,难度中档.6.若定义在R 上的函数()f x 满足(0)1f =-,其导函数()f x '满足()1f x k '>>,则下列结论中一定错误的是( )A .11()f k k<B .11()1f k k >- C .11()11f k k <-- D .1()11k f k k >-- 【分析】根据导数的概念得出()(0)1f x f k x->>,用11x k =-代入可判断出11()11f k k >--,即可判断答案. 【解答】解;()(0)(0)limx f x f f x →-'=-()1f x k '>>, ∴()(0)1f x f k x ->>,即()11f x k x+>>,当11xk =-时,11()1111k f k k k k +>⨯=---,即11()1111k f k k k >-=---故11()11f k k >--,所以11()11f k k <--,一定出错,另解:设()()1g x f x kx =-+,(0)0g =,且()()0g x f x k '='->,()g x 在R 上递增,1k >,对选项一一判断,可得C错.故选:C .【点评】本题考查了导数的概念,不等式的化简运算,属于中档题,理解了变量的代换问题. 7.已知21()s in ()42f x xx π=++,()f x '为()f x 的导函数,则()f x '的图象是()A .B .C .D .【分析】先化简2211()s in ()c o s 424f x xx xxπ=++=+,再求其导数,得出导函数是奇函数,排除B ,D .再根据导函数的导函数小于0的x 的范围,确定导函数在(3π-,)3π上单调递减,从而排除C ,即可得出正确答案. 【解答】解:由2211()s in ()c o s 424f x xx xxπ=++=+,1()s in 2f x x x ∴'=-,它是一个奇函数,其图象关于原点对称,故排除B ,D . 又1()c o s 2f x x''=-,当33x ππ-<<时,1c o s 2x>,()0f x ∴''<,故函数()yf x ='在区间(3π-,)3π上单调递减,故排除C .故选:A .【点评】本题主要考查函数的单调性与其导函数的正负之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减. 二.填空题(共12小题)8.已知函数31()2xxf x x x ee=-+-,其中e 是自然对数的底数.若2(1)(2)0f a f a -+….则实数a 的取值范围是 [1-,1]2.【分析】求出()f x 的导数,由基本不等式和二次函数的性质,可得()f x 在R 上递增;再由奇偶性的定义,可得()f x 为奇函数,原不等式即为221a a-…,运用二次不等式的解法即可得到所求范围. 【解答】解:函数31()2xxf x x x ee=-+-的导数为: 211()3220xxxxf x x e ee'=-++-+=…,可得()f x 在R 上递增;又331()()()220xxxxf x f x x x e ex x ee--+=-++-+-+-=,可得()f x 为奇函数,则2(1)(2)0f a f a -+…, 即有2(2)(1)f a f a --… 由((1))(1)f a f a --=--,2(2)(1)f a f a -…,即有221a a -…, 解得112a-剟,故答案为:[1-,1]2.【点评】本题考查函数的单调性和奇偶性的判断和应用,注意运用导数和定义法,考查转化思想的运用和二次不等式的解法,考查运算能力,属于中档题. 9.函数()f x 的定义域为R ,(1)2f -=,对任意x R∈,()2f x '>,则()24f x x >+的解集为(1,)-+∞ .【分析】构建函数()()(24)F x f x x =-+,由(1)2f -=得出(1)F -的值,求出()F x 的导函数,根据()2f x '>,得到()F x 在R 上为增函数,根据函数的增减性即可得到()F x 大于0的解集,进而得到所求不等式的解集. 【解答】解:设()()(24)F x f x x =-+,则(1)(1)(24)220F f -=---+=-=,又对任意x R∈,()2f x '>,所以()()20F x f x '='->,即()F x 在R 上单调递增, 则()0F x >的解集为(1,)-+∞,即()24f x x >+的解集为(1,)-+∞.故答案为:(1,)-+∞【点评】本题考查学生灵活运用函数思想求解不等式,解题的关键是构建函数,确定函数的单调性,属于中档题. 10.设函数()f x '是奇函数()()f x x R ∈的导函数,(1)f -=,当0x>时,()()0x f x f x '-<,则使得()0f x >成立的x 的取值范围是(-∞,1)(0-⋃,1) .【分析】构造函数()()f x g x x=,利用()g x 的导数判断函数()g x 的单调性与奇偶性,画出函数()g x 的大致图象,结合图形求出不等式()0f x >的解集.【解答】解:设()()f xg x x=,则()g x 的导数为:2()()()x f x f x g x x'-'=,当0x >时总有()()xf x f x '<成立,即当0x>时,()g x '恒小于0, ∴当0x>时,函数()()f xg x x =为减函数,又()()()()()f x f x f xg x g x xxx---====--,∴函数()g x 为定义域上的偶函数又(1)(1)01f g --==-,∴函数()g x 的大致图象如图所示:数形结合可得,不等式()0()0f x xg x >⇔⋅>⇔0()0x g x >⎧⎨>⎩或0()0x g x <⎧⎨<⎩,01x ⇔<<或1x <-.()0f x ∴>成立的x 的取值范围是(-∞,1)(0-⋃,1).故答案为:(-∞,1)(0-⋃,1).【点评】本题考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式的应用问题,是综合题目. 11.已知函数3(21)34,(),a x a x tf x x x x t-+-⎧=⎨->⎩…,无论t 取何值,函数()f x 在区间(,)-∞+∞总是不单调.则a 的取值范围是 12a ….【分析】首先分析3()f x x x=-,其单调区间.然后根据无论t 取何值,函数()f x 在区间(,)-∞+∞总是不单调,判断()(21)34f x a x a =-+-的单调性,求出a 的取值范围即可.【解答】解:对于函数3()f x x x=-,2()31f x x '=-x t>当2310x ->时,即3x>或3x<-此时3()f x x x=-,为增函数当2310x -<时,33x -<<x t>,3()f x x x∴=-,一定存在单调递增区间要使无论t 取何值, 函数()f x 在区间(,)-∞+∞总是不单调()(21)34f x a x a ∴=-+-不能为增函数210a ∴-…∴12a …故答案为:12a ….【点评】本题考查函数单调性的判定与应用,3次函数与1次函数的单调性的判断,属于中档题. 12.已知()f x 的定义域为(-∞,0)(0⋃,)+∞,()f x '是()f x 的导函数,且满足()2()0x f x f x '->,若()f x 是偶函数,f(1)1=,则不等式2()f x x>的解集为(-∞,1)(1-⋃,)+∞ .【分析】构造函数2()()(0)f xg x x x=≠,依题意可知它是偶函数且在(0,)+∞上单调递增,于是2()f x x>等价转化为()g x g>(1),即(||)(|1|)||1g x g x >⇒>,从而可得答案.【解答】解:令2()()(0)f xg x x x=≠,则243()2()()2()()x f x x f x x f x f x g x xx'-'-'==,因为足()2()0x f x f x '->,所以,当0x>时,()0g x '>,所以()g x 在(0,)+∞上单调递增. 又()f x 是偶函数,故2()()(0)f xg x x x=≠也是偶函数,而f(1)1=,故g (1)2(1)1f f==(1)1=,因此,2()f x x>⇔2()1f x x>,即()g x g >(1),即(||)(|1|)g x g >所以,||1x >,解得:1x >或1x<-.则不等式2()f x x>的解集为(-∞,1)(1-⋃,)+∞,故答案为:(-∞,1)(1-⋃,)+∞.【点评】本题考查利用导数研究函数的单调性,构造函数2()()(0)f xg x x x=≠,并判断它为偶函数且在(0,)+∞上单调递增是关键,考查等价转化思想与逻辑思维能力及运算能力,属于中档题. 13.函数()(3)xf x x e=-的单调递增区间是(2,)+∞ .【分析】先求出函数的导数,令导函数大于0,解不等式求出即可.【解答】解:()(2)xf x x e'=-,令()0f x '>,解得:2x >,()f x ∴在(2,)+∞递增,故答案为:(2,)+∞.【点评】本题考查了函数的单调性,导数的应用,是一道基础题. 14.设函数()f x 在R 上存在导数()f x ',对任意的x R∈有2()()f x f x x-+=,且在(0,)+∞上()f x x'>.若(2)f a f --(a )22a-…,则实数a 的取值范围是(-∞,1] .【分析】令21()()2g x f x x=-,由()()g x g x -+=,可得函数()g x 为奇函数.利用导数可得函数()g x 在R 上是增函数,(2)f a f--(a )22a-…,即(2)g a g-…(a ),可得2a a-…,由此解得a 的范围. 【解答】解:令21()()2g x f x x=-,2211()()()()022g x g x f x xf x x-+=--+-=,∴函数()g x 为奇函数.(0,)x ∈+∞时,()()0g x f x x '='->,故函数()g x 在(0,)+∞上是增函数,故函数()g x 在(,0)-∞上也是增函数, 由(0)0f =,可得()g x 在R 上是增函数. (2)f a f--(a )22a-…,等价于2(2)(2)2a f a f---…(a )22a-,即(2)g a g-…(a ),2a a∴-…,解得1a …,故答案为:(-∞,1].【点评】本题主要考查函数的奇偶性、单调性的应用,体现了转化的数学思想,属于中档题. 15.已知三次函数32()()32a b f x x xc xd a b =+++<在R 上单调递增,则a b c b a++-的最小值为3 .【分析】由题意得2()f x a x b x c'=++在R 上恒大于或等于0,得0a>,△240ba c =-…,将此代入a b c b a++-,将式子进行放缩,以b a为单位建立函数关系式,最后构造出运用基本不等式的模型使问题得到解决. 【解答】解:由题意2()0f x a x b x c '=++…在R 上恒成立,则0a>,△240ba c =-….∴222222111()441b b a a b ba b c aa b a c aa b b aa b aa b aa++++++++==----…令(1)b tt a=>,222111(2)1(13)194(16)31414141t ta b c t t t b at t t t +++++-+===-++-----厖.(当且仅当4t =,即4bc a==时取“=” )故答案为:3【点评】本题考查了利用导数工具研究三次函数的单调性以及函数与方程的综合应用问题,属于中档题. 16.已知函数21()22f x m xln x x=+-在定义域内是增函数,则实数m 的取值范围为[1,)+∞ .【分析】函数21()22f x m xl nx x =+-在定义域(0)x >内是增函数⇔2121()20f x m x mxx x'=+-⇔-厖对于任意0x>.⇔221()m a xm xx-….利用导数即可得出.【解答】解:函数21()22f x m x l n xx =+-在定义域(0)x >内是增函数,∴1()20f x m x x'=+-…,化为221m xx-….令221()g x xx=-,233222(1)()x g x xxx-'=-+=-,解()g x '>,得01x <<;解()0g x '<,得1x >.因此当1x =时,()g x 取得最大值,g (1)1=.1m ∴….故答案为[1,)+∞.【点评】正确把问题等价转化、利用导数研究函数的单调性、极值与最值是解题的关键. 17.函数212yxln x=-的单调递减区间为(0,1] .【分析】根据题意,先求函数212yxln x=-的定义域,进而求得其导数,即211xy x x x-'=-=,令其导数小于等于0,可得210x x -…,结合函数的定义域,解可得答案. 【解答】解:对于函数212yxln x=-,易得其定义域为{|0}x x>,211x y x xx-'=-=,令210x x-…,又由0x>,则221010x x x-⇔-剟,且0x>;解可得01x <…,即函数212yxln x=-的单调递减区间为(0,1],故答案为(0,1]【点评】本题考查利用导数求函数的单调区间,注意首先应求函数的定义域. 18.已知函数321()242f x x xx =+-+,则函数的单调减区间为2[1,]3- .【分析】对函数进行求导即可求出单调区间. 【解答】解:31()242f x x x x =+-+2()32(32)(1)f x x x x x ∴'=+-=-+令2()0,13f x x '-剟?.∴函数的单调减区间为2[1,]3-.【点评】此题较为容易,考查了导数与函数的单调性问题,注意区间端点的取值就可以了. 19.设定义域为R的函数()f x 满足()()f x f x '>,则不等式1()(21)x ef x f x -<-的解为(1,)+∞ .【分析】令()()xf xg x e=,求出函数的导数,根据函数的单调性得到关于x 的不等式,解出即可.【解答】解:令()()xf xg x e=,则()()()xf x f xg x e'-'=>,故()g x 在R 递增, 不等式1()(21)x e f x f x -<-,即21()(21)xx f x f x ee--<,故()(21)g x g x <-,故21xx <-,解得:1x >,故答案为:(1,)+∞【点评】本题考查了函数的单调性问题,考查导数的应用以及转化思想,是一道常规题. 三.解答题(共5小题) 20.已知函数1()f x x a ln xx=-+.(1)讨论()f x 的单调性;(2)若()f x 存在两个极值点1x ,2x ,证明:1212()()2f x f x a x x -<--.【分析】(1)求出函数的定义域和导数,利用函数单调性和导数之间的关系进行求解即可. (2)将不等式进行等价转化,构造新函数,研究函数的单调性和最值即可得到结论. 【解答】解:(1)函数的定义域为(0,)+∞, 函数的导数22211()1a xa x f x xxx-+'=--+=-,设2()1g x x a x =-+,当0a …时,()0g x >恒成立,即()0f x '<恒成立,此时函数()f x 在(0,)+∞上是减函数,当0a>时,判别式△24a =-,①当02a <…时,△0…,即()0g x …,即()0f x '…恒成立,此时函数()f x 在(0,)+∞上是减函数, ②当2a>时,x ,()f x ',()f x 的变化如下表:综上当2a …时,()f x 在(0,)+∞上是减函数,当2a>时,在(02和2,)+∞上是减函数,则22上是增函数.(2)由(1)知2a>,不妨设12x x <,则121x x <<<,121x x =,则1221122112121()()()(1)()2()()f x f x x x a ln x ln x x x a ln x ln x x x -=-++-=-+-,则12121212()()()2f x f x a ln x ln x x x x x --=-+--,则问题转为证明12121ln x ln x x x -<-即可,即证明1212ln x ln x x x ->-,则111111ln x lnx x x ->-, 即11111ln x ln x x x +>-,即证11112ln x x x >-在(0,1)上恒成立,设1()2h x ln x x x=-+,(01)x <<,其中h (1)0=, 求导得222222121(1)()10x x x h x xxxx-+-'=--=-=-<,则()h x 在(0,1)上单调递减,()h x h∴>(1),即120ln xx x-+>,故12ln x x x>-,则1212()()2f x f x a x x -<--成立.(2)另解:注意到11()()f x a ln x f x x x=--=-,即1()()0f x f x +=,不妨设12x x <,由韦达定理得121x x =,122x x a +=>,得121x x <<<,121x x =,可得221()()0f x f x +=,即12()()0f x f x +=,要证1212()()2f x f x a x x -<--,只要证2212()()2f x f x a x x --<--,即证22220a a ln x a x x -+<,2(1)x >,构造函数()2a h x a ln x a x x=-+,(1)x >,22(1)()a x h x x--'=…,()h x ∴在(1,)+∞上单调递减,()h x h∴<(1)0=,20a a ln x a x x∴-+<成立,即22220a a ln x a x x -+<,2(1)x >成立.即1212()()2f x f x a x x -<--成立.【点评】本题主要考查函数的单调性的判断,以及函数与不等式的综合,求函数的导数,利用导数的应用是解决本题的关键.综合性较强,难度较大. 21.设函数2()(1)xf x x e=-⋅.(1)讨论()f x 的单调性;(2)当0x …时,()1f x a x +…,求实数a 的取值范围.【分析】(1)求出函数的导数,求出极值点,利用导函数的符号,判断函数的单调性即可. (2)化简()(1)(1)xf x x x e=-+.()1f x a x +…,下面对a 的范围进行讨论:①当1a …时,②当01a <<时,设函数()1xg x e x =--,则()10(0)xg x e x '=->>,推出结论;③当0a …时,推出结果,然后得到a 的取值范围.法二:0x …时,2()(1)10xg x e x a x =-++…恒成立,推出()g x ',求解[()]g x '',当(0)10g a '=-…时,判断函数的单调性,判断满足题意,当(0)10g a '=-<时,推出()(0)0g m g <=,不合题意,得到结果. 【解答】解:(1)因为2()(1)xf x x e=-,x R∈,所以2()(12)xf x x x e'=--,令()0f x '=可知1x=-±当1x<--1x>-+()0f x '<,当11x --<<-+时()0f x '>,所以()f x在(,1-∞--,(1-+)+∞上单调递减,在(1--,1-+上单调递增;(2)由题可知()(1)(1)xf x x x e=-+.下面对a 的范围进行讨论:①当1a …时,设函数()(1)xh x x e=-,则()0(0)xh x x e x '=-<>,因此()h x 在[0,)+∞上单调递减, 又因为(0)1h =,所以()1h x …,所以()(1)()11f x x h x x a x =+++剟;②当01a <<时,设函数()1xg x e x =--,则()10(0)x g x e x '=->>,所以()g x 在[0,)+∞上单调递增, 又(0)1010g =--=,所以1x e x +….因为当01x <<时2()(1)(1)f x x x >-+,所以22(1)(1)1(1)x x a x x a x x -+--=---,取0(0,1)2x =,则2000(1)(1)10x x a x -+--=,所以00()1f x a x >+,矛盾;③当0a …时,取0(0,1)2x =,则20000()(1)(1)11f x x x a x >-+=+…,矛盾;综上所述,a 的取值范围是[1,)+∞. (2)法二:0x …时,2()(1)10x g x e x a x =-++…恒成立,2()(21)x g x e x x a'=+-+,2[()](41)0(0)xg x e x x x ''=++>…,()g x '在0x …时单调递增,当(0)10g a '=-…时,0x>时()0g x '>恒成立,()g x 单调递增,则0x …时,()(0)0g x g =…,符合题意,当(0)10g a '=-<时,(||)0g a '>,于是存在0m>使得()g m '=,当0x m<<时,()0g x '<,()g x 单调递减,有()(0)0g x g <=,不合题意,所以1a ….综上所述,a 的取值范围是[1,)+∞.【点评】本题考查函数的导数的应用,函数的单调性以及函数的最值的求法,考查转化思想以及计算能力. 22.已知函数2()(2)(1)xf x x e a x =-+-.(Ⅰ)讨论()f x 的单调性;(Ⅱ)若()f x 有两个零点,求a 的取值范围.【分析】(Ⅰ)求出()f x 的导数,讨论当0a …时,2e a<-时,2e a=-时,02e a -<<,由导数大于0,可得增区间;由导数小于0,可得减区间;(Ⅱ)由(Ⅰ)的单调区间,对a 讨论,结合单调性和函数值的变化特点,即可得到所求范围.【解答】解:(Ⅰ)由2()(2)(1)x f x x e a x =-+-,可得()(1)2(1)(1)(2)xxf x x e a x x e a '=-+-=-+,①当0a …时,由()0f x '>,可得1x>;由()0f x '<,可得1x<,即有()f x 在(,1)-∞递减;在(1,)+∞递增(如右上图); ②当0a <时,(如右下图), 由20xe a +=,可得(2)x ln a =-,由(2)1ln a -=,解得2e a=-,若2e a =-,则()0f x '…恒成立,即有()f x 在R 上递增;若2e a <-时,由()0f x '>,可得1x<或(2)x ln a >-;由()0f x '<,可得1(2)x ln a <<-.即有()f x 在(,1)-∞,((2)ln a -,)+∞递增;在(1,(2))ln a -递减; 若02e a -<<,由()0f x '>,可得(2)xln a <-或1x>;由()0f x '<,可得(2)1ln a x -<<.即有()f x 在(-∞,(2))ln a -,(1,)+∞递增;在((2)ln a -,1)递减; (Ⅱ)①由(Ⅰ)可得当0a>时,()f x 在(,1)-∞递减;在(1,)+∞递增, 且f(1)0e =-<,x→+∞,()f x →+∞;当x→-∞时()0f x >或找到一个1x <使得()0f x >对于0a>恒成立,()f x 有两个零点;②当0a =时,()(2)xf x x e=-,所以()f x 只有一个零点2x=;③当0a <时, 若2e a<-时,()f x 在(1,(2))ln a -递减,在(,1)-∞,((2)ln a -,)+∞递增,又当1x …时,()0f x <,所以()f x 不存在两个零点;当2e a -…时,在(-∞,(2))ln a -单调增,在(1,)+∞单调增,在((2)ln a -,1)单调减, 只有((2))f ln a -等于0才有两个零点,而当1x …时,()0f x <,所以只有一个零点不符题意.综上可得,()f x 有两个零点时,a 的取值范围为(0,)+∞.【点评】本题考查导数的运用:求单调区间,考查函数零点的判断,注意运用分类讨论的思想方法和函数方程的转化思想,考查化简整理的运算能力,属于难题. 24.已知函数()1f x x a ln x=--.(1)若()0f x …,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111(1)(1)(1)222nm++⋯+<,求m 的最小值.【分析】(1)通过对函数()1(0)f x x a ln x x =-->求导,分0a …、0a>两种情况考虑导函数()f x '与0的大小关系可得结论;(2)通过(1)可知1ln x x -…,进而取特殊值可知11(1)22kkln +<,*k N∈.一方面利用等比数列的求和公式放缩可知2111(1)(1)(1)222ne ++⋯+<,另一方面可知2111(1)(1)(1)2222n++⋯+>,从而当3n …时,2111(1)(1)(1)(2222n++⋯+∈,)e ,比较可得结论.【解答】解:(1)因为函数()1f x x a ln x=--,0x>,所以()1a x a f x x x-'=-=,且f(1)0=.所以当0a …时()0f x '>恒成立,此时()yf x =在(0,)+∞上单调递增,故当01x <<时,()f x f <(1)0=,这与()0f x …矛盾;当0a>时令()0f x '=,解得x a=,所以()y f x =在(0,)a 上单调递减,在(,)a +∞上单调递增,即()m in f x f=(a ),若1a≠,则f (a )f<(1)0=,从而与()0f x …矛盾;所以1a =;(2)由(1)可知当1a =时()10f x x ln x =--…,即1ln x x -…,所以(1)ln xx +…当且仅当0x=时取等号,所以11(1)22kkln +<,*k N∈.221111111(1)(1)(1)112222222nnnln ln ln ++++⋯++<++⋯+=-<,即2111(1)(1)(1)222ne++⋯+<;因为m 为整数,且对于任意正整数n ,2111(1)(1)(1)222nm++⋯+<成立,当3n=时,23111135(1)(1)(1)222264+++=>,所以m 的最小值为3.【点评】本题是一道关于函数与不等式的综合题,考查分类讨论的思想,考查转化与化归思想,考查运算求解能力,考查等比数列的求和公式,考查放缩法,注意解题方法的积累,属于难题.。
高中数学函数的单调性与导数测试题(附答案)
高中数学函数的单一性与导数测试题(附答案)选修 2-21.3.1 函数的单一性与导数一、选择题1.设 f(x) =ax3+ bx2+ cx+d(a0),则 f(x) 为 R 上增函数的充要条件是 ()A .b2- 4ac0 B.b0, c0C.b=0,c D . b2- 3ac0[答案] D[ 分析 ]∵a0,f(x)为增函数,f(x) =3ax2+ 2bx+ c0 恒建立,=(2b)2- 43ac= 4b2- 12ac0, b2-3ac0.2.(2009 广东文, 8)函数 f(x) = (x- 3)ex 的单一递加区间是() A .(-, 2) B. (0,3)C.(1,4) D . (2,+ )[答案] D[ 分析 ]考察导数的简单应用.f(x) =(x- 3)ex+ (x- 3)(ex) = (x- 2)ex,令 f(x)0 ,解得 x2,应选 D.3.已知函数y= f(x)(xR) 上任一点 (x0, f(x0)) 处的切线斜率k =(x0 -2)(x0 + 1)2,则该函数的单一递减区间为 ()A .[-1,+ ) B.(-, 2]C.(-,- 1)和 (1,2) D . [2,+ )[答案]B[ 分析 ]令k0得x02,由导数的几何意义可知,函数的单一减区间为 (-, 2] .4.已知函数y=xf(x) 的图象如图 (1)所示 (此中 f(x) 是函数 f(x)的导函数 ),下边四个图象中,y= f(x) 的图象大概是 ()[答案] C[ 分析 ]当01时xf(x)0f(x)0 ,故 y=f(x) 在 (0,1)上为减函数当 x1 时 xf(x)0 ,f(x)0 ,故 y= f(x) 在(1,+ )上为增函数,所以否认 A、B、D 应选 C.5.函数 y=xsinx + cosx, x(-)的单一增区间是()A. -,- 2 和 0,2B.- 2, 0 和 0,2C.-,- 2,D.- 2,0 和[答案]A[ 分析 ] y=xcosx,当- x2 时,cosx0, y=xcosx0 ,当 02 时, cosx0,y= xcosx0.6.以下命题建立的是 ()A .若 f(x) 在 (a,b)内是增函数,则对任何 x(a,b),都有 f(x)0B.若在 (a, b)内对任何x 都有 f(x)0 ,则 f(x) 在 (a, b)上是增函数C.若 f(x) 在 (a, b)内是单一函数,则f(x) 必存在D .若 f(x) 在 (a, b)上都存在,则f(x) 必为单一函数[答案]B[ 分析 ]若f(x)在(a,b)内是增函数,则f(x)0 ,故 A 错; f(x)在(a,b)内是单一函数与 f(x) 能否存在无必定联系,故 C 错;f(x) =2 在 (a, b)上的导数为f(x) = 0 存在,但f(x) 无单一性,故D错.7. (2019 福建理, 11)已知对随意实数 x ,有 f( - x) =- f(x) ,g(-x) = g(x) ,且 x0 时, f(x)0 ,g(x)0 ,则 x0 时 () A .f(x)0 ,g(x) B . f(x)0 , g(x)0C.f(x)0 ,g(x) D . f(x)0 , g(x)0[答案 ]B[分析 ]f(x) 为奇函数, g(x) 为偶函数,奇 (偶 )函数在对于原点对称的两个区间上单一性同样(反 ),x0 时, f(x)0 ,g(x)0. 8. f(x) 是定义在 (0,+ )上的非负可导函数,且知足xf(x) +f(x)0 ,对随意正数 a、 b,若 ab,则必有 ()A .af(a)f(b)B . bf(b)f(a)C.af(b)bf(a) D .bf(a)af(b)[答案 ]C[分析 ]∵xf(x) + f(x)0 ,且 x0 ,f(x)0 ,f(x) -f(x)x ,即 f(x) 在(0,+ )上是减函数,又 0< a< b, af(b)bf(a) .9.对于 R 上可导的随意函数f(x) ,若知足 (x -1)f(x)0 ,则必有()A .f(0) + f(2)2f(1)B . f(0) + f(2)2f(1)C.f(0) + f(2)2f(1) D . f(0) + f(2)2f(1)[答案] C[ 分析 ]由(x-1)f(x)0得f(x)在[1,+)上单一递加,在(-,1] 上单一递减或f(x) 恒为常数,故 f(0) + f(2)2f(1) .故应选 C.10.(2019 江西理, 12)如图,一个正五角星薄片( 其对称轴与水面垂直 )匀速地升出水面,记t时辰五角星露出水面部分的图形面积为S(t)(S(0) =0),则导函数y= S(t)的图像大概为[答案]A[ 分析 ]由图象知,五角星露出水面的面积的变化率是增减增减,此中恰露出一个角时变化不连续,应选 A.二、填空题11.已知 y =13x3 + bx2+ (b+ 2)x+ 3 在 R 上不是单一增函数,则 b 的范围为 ________.[ 答案 ] b-1 或 b2[ 分析 ]若y=x2+2bx+b+20恒建立,则=4b2-4(b+2)0,-12,由题意 b<- 1 或 b>2.12.已知函数f(x) =ax- lnx ,若 f(x) > 1 在区间 (1,+ )内恒建立,实数 a 的取值范围为 ________.[ 答案 ] a1[ 分析 ]由已知a>1+lnxx在区间(1,+)内恒建立.设 g(x) = 1+ lnxx ,则 g(x) =- lnxx2 < 0(x> 1),g(x) = 1+ lnxx 在区间 (1,+ )内单一递减,g(x) < g(1),∵g(1)= 1,1+ lnxx < 1 在区间 (1,+ )内恒建立,a1.13.函数 y=ln(x2 - x-2)的单一递减区间为__________.[答案 ] (-,- 1)[ 分析 ]函数y=ln(x2-x-2)的定义域为(2,+)(-,-1),令 f(x) = x2-x - 2, f(x) = 2x-10,得 x12 ,函数 y= ln(x2 -x- 2)的单一减区间为 (-,- 1).14.若函数y= x3 - ax2+ 4 在 (0,2)内单一递减,则实数 a 的取值范围是 ____________ .[答案 ] [3,+ )[ 分析 ] y=3x2 - 2ax,由题意知3x2- 2ax0 在区间 (0,2) 内恒建立,即 a32x 在区间 (0,2)上恒建立, a3.三、解答题15.设函数 f(x) =x3- 3ax2+ 3bx 的图象与直线12x +y- 1=0 相切于点 (1,- 11).(1)求 a、 b 的值;(2)议论函数f(x) 的单一性.[ 分析 ] (1)求导得 f(x) = 3x2-6ax+3b.因为 f(x) 的图象与直线12x+y - 1=0 相切于点 (1,- 11),所以 f(1) =- 11,f(1) =- 12,即 1- 3a+3b=- 113-6a+3b=- 12,解得 a= 1,b=- 3.(2)由 a= 1, b=- 3 得f(x) =3x2- 6ax+3b= 3(x2- 2x- 3)=3(x +1)(x - 3).令 f(x)0 ,解得 x -1 或 x3;又令 f(x)0 ,解得- 13.所以当 x(-,- 1)时, f(x) 是增函数;当x(3 ,+)时,f(x) 也是增函数;当 x( - 1,3)时, f(x) 是减函数.16.求证:方程x- 12sinx= 0 只有一个根x= 0.[ 证明 ]设f(x)=x-12sinx,x(-,+),则 f(x) = 1-12cosx> 0,f(x) 在(-,+ )上是单一递加函数.而当 x= 0 时, f(x) = 0,方程 x- 12sinx =0 有独一的根x= 0.17.已知函数y= ax 与 y=- bx 在(0,+ )上都是减函数,试确立函数 y=ax3+ bx2+ 5 的单一区间.[ 剖析 ] 可先由函数 y=ax 与 y=- bx 的单一性确立 a、b 的取值范围,再依据 a、 b 的取值范围去确立 y= ax3+ bx2+ 5 的单一区间.[ 分析 ]∵函数y=ax与y=-bx在(0,+)上都是减函数,a <0,b<0.由 y= ax3+bx2+ 5 得 y= 3ax2+ 2bx.令 y> 0,得 3ax2+ 2bx>0,- 2b3a< x< 0.当 x- 2b3a, 0 时,函数为增函数.令 y< 0,即 3ax2+ 2bx<0,x<- 2b3a,或 x> 0.在-,- 2b3a,(0,+ )上时,函数为减函数.18. (2019 新课标全国文,21)设函数 f(x) =x(ex - 1)- ax2.(1)若 a= 12,求 f(x) 的单一区间;(2)若当 x0 时 f(x)0 ,求 a 的取值范围.[ 分析 ] (1)a=12 时, f(x) =x(ex - 1)-12x2,f(x) =ex- 1+ xex- x= (ex- 1)(x + 1).当 x( -,- 1)时, f(x)0 ;当 x(- 1,0)时, f(x)0 ;当 x(0 ,+ )时, f(x)0.故 f(x) 在 (-,- 1], [0,+ )上单一递加,在[ -1,0] 上单一递减.(2)f(x) = x(ex - 1- ax).令 g(x) = ex- 1- ax,则 g(x) =ex- a.若 a1,则当 x(0,+ )时, g(x)0 , g(x) 为增函数,而 g(0)= 0,进而当 x0 时 g(x)0 ,即 f(x)0.教师范读的是阅读教课中不行缺乏的部分,我常采纳范读,让少儿学习、模拟。
导数讨论含参单调性习题(含详解答案)
m(x + n}f(x) - lnx T g(x) = --------- m > 0)1 •设函数x T .(1)当m= l|时,函数¥訂(刈与¥ =創刈在"1处的切线互相垂直,求n的值;(2)若函数¥“仪卜創对在定义域内不单调,求m-n的取值范围;2a 3K xf(T 他M f(—) < 0(3)是否存在正实数使得x 2a 对任意正实数K恒成立?若存在,求出满足条件的实数;若不存在,请说明理由.2•已知函数fW = (^ + l)lnx-ax + 3f aG R,g(x)是f闵的导函数,*为自然对数的底数.(1)讨论:的单调性;(2)当白X时,证明:寓(3)当白X时,判断函数f凶零点的个数,并说明理由.bf(«) = + ) + blnx3.已知函数x(其中,忆b€R).(1)当b = Y时,若f")在其定义域内为单调函数,求臼的取值范围;(2)当::八」时,是否存在实数H,使得当’■ ■时,不等式卜心■冷恒成立,如果存在,求b的取值范围,如果不存在,说明理由(其中电是自然对数的底数,“ 2一7182旷).4 •已知函数gW = x2 + ln(x + a)|,其中臼为常数.(1)讨论函数•的单调性;S(Xj) +g(x?) x t +x z(2)若或叮存在两个极值点叫*刈,求证:无论实数臼取什么值都有 2 £ 2 .5 .已知函数肛"油盧2)(玄为常数)是实数集"上的奇函数,函数屮“用刈卡商帥是区间Il上的减函数.(1)求的值;(2)若恥;-「:在卜G 及所在的取值范围上恒成立,求的取值范围;Irx ?=x -2e* + m(3)讨论关于丸的方程f⑷的根的个数.6 •已知函数f x ax ln x, F x e x ax,其中x 0, a 0.(1)若f x和F x在区间0,ln3上具有相同的单调性,求实数a的取值范围;(2) 若a最小值.1,二,且函数g x eax 1 xe 2 ax f x的最小值为M,求M的7.已知函数 f (x) e x m In x .(1)如x1是函数f(x)的极值点,求实数m的值并讨论的单调性 f (x);(2) 若x x。
导数与函数的单调性(word解析版)
导数与函数的单调性(word解析版) x在区间[0,2]上可导,且f(0)=0,f(2)=2,则函数f(x)在区间[0,2]上的单调递增区间为().A。
[0,1] B。
[1,2] C。
[0,2] D。
[0,1]∪[1,2]答案】B解析】根据题意,f(x)在[0,2]上可导,且f(0)=0,f(2)=2,因此可以利用导数求解其单调性.首先求导数f'(x),然后根据f'(x)的符号来判断函数f(x)的单调性.由于f'(x)=1+cosx,当x∈[0,2]时,cosx的取值范围是[-1,1],因此f'(x)的取值范围是[0,2].因此函数f(x)在[0,2]上单调递增,单调递增区间为[1,2],故选B选项.方法技巧归纳】1.求导数f'(x),然后根据f'(x)的符号来判断函数f(x)的单调性.2.对于多项式函数一般不超过三次的情况,可以直接利用导数求解其单调性和极值.3.对于含参数的函数,可以先求导数,然后根据参数的取值范围来判断函数的单调性和极值.变式1】【2018江苏高考】设函数f(x)=x3+ax2+bx+c,其中a,b,c为常数,且f(x)在[0,1]上单调递增,则().A。
a>0,b>0,c>0 B。
a>0,b0 C。
a0,c>0 D。
a0答案】C解析】根据题意,f(x)在[0,1]上单调递增,因此可以利用导数求解其单调性.首先求导数f'(x),得到f'(x)=3x2+2ax+b,然后根据f'(x)的符号来判断函数f(x)的单调性.由于f(x)在[0,1]上单调递增,因此f'(x)在[0,1]上恒大于等于0.又因为f'(x)是一个二次函数,因此其开口向上,当x∈[0,1]时,f'(x)的最小值为0,即当x=0时,f'(x)取到最小值,此时有f'(0)=b.由于f'(x)在[0,1]上恒大于等于0,因此b≥0.又因为f(x)为单调递增函数,因此其二次项系数a>0.又因为f(x)在[0,1]上单调递增,因此f(1)>f(0),即1+a+b+c>0,因此c>-(1+a+b).综上所述,可得a0,c>0,故选C选项.变式2】【2018山东高考】设函数f(x)=x3+3x2+3x+k,其中k为常数,则f(x)在区间(-∞,0)上单调递(增/减);在区间(0,+∞)上单调递(增/减).答案】单调递减,单调递增解析】根据题意,可以利用导数求解函数f(x)的单调性.首先求导数f'(x),得到f'(x)=3x2+6x,然后根据f'(x)的符号来判断函数f(x)的单调性.当x∈(-∞,0)时,f'(x)的取值范围是[0,+∞),因此f(x)在(-∞,0)上单调递减;当x∈(0,+∞)时,f'(x)的取值范围是(-∞,0],因此f(x)在(0,+∞)上单调递增,故选单调递减,单调递增.讨论函数$f(x)=1-x^2e^x$的单调性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.1导数与函数的单调性基础巩固题:1.函数f(x)=21++x ax 在区间(-2,+∞)上为增函数,那么实数a 的取值范围为( ) A.0<a<21 B.a<-1或a>21 C.a>21D.a>-2答案:C 解析:∵f(x)=a+221+-x a 在(-2,+∞)递增,∴1-2a<0,即a>21.2.已知函数f (x )=x 2+2x +a ln x ,若函数f (x )在(0,1)上单调,则实数a 的取值范围是( )A .a ≥0B .a <-4C .a ≥0或a ≤-4D .a >0或a <-4答案:C 解析:∵f ′(x )=2x +2+ax,f (x )在(0,1)上单调, ∴f ′(x )≥0或f ′(x )≤0在(0,1)上恒成立,即2x 2+2x +a ≥0或2x 2+2x +a ≤0在(0,1)上恒成立, 所以a ≥-(2x 2+2x )或a ≤-(2x 2+2x )在(0,1)上恒成立.记g (x )=-(2x 2+2x ),0<x <1,可知-4<g (x )<0, ∴a ≥0或a ≤-4,故选C.3.函数f (x )=x +9x的单调区间为________.答案:(-3,0),(0,3) 解析:f ′(x )=1-9x 2=x 2-9x2,令f ′(x )<0,解得-3<x <0或0<x <3,故单调减区间为(-3,0)和(0,3).4 函数32x x y -=的单调增区间为 ,单调减区间为___________________答案:2(0,)3 ; 2(,0),(,)3-∞+∞ 解析: '22320,0,3y x x x x =-+===或 5.确定下列函数的单调区间:(1)y =x 3-9x 2+24x (2)y =3x -x 3 (1)解:y ′=(x 3-9x 2+24x )′=3x 2-18x +24=3(x -2)(x -4) 令3(x -2)(x -4)>0,解得x >4或x <2.∴y =x 3-9x 2+24x 的单调增区间是(4,+∞)和(-∞,2) 令3(x -2)(x -4)<0,解得2<x <4.∴y =x 3-9x 2+24x 的单调减区间是(2,4)(2)解:y ′=(3x -x 3)′=3-3x 2=-3(x 2-1)=-3(x +1)(x -1) 令-3(x +1)(x -1)>0,解得-1<x <1. ∴y =3x -x 3的单调增区间是(-1,1).令-3(x +1)(x -1)<0,解得x >1或x <-1.∴y =3x -x 3的单调减区间是(-∞,-1)和(1,+∞) 6.函数y =ln(x 2-x -2)的单调递减区间为__________.[答案] (-∞,-1) [解析] 函数y =ln(x 2-x -2)的定义域为(2,+∞)∪(-∞,-1),令f (x )=x 2-x -2,f ′(x )=2x -1<0,得x <12,∴函数y =ln(x 2-x -2)的单调减区间为(-∞,-1)7.已知y =13x 3+bx 2+(b +2)x +3在R 上不是单调增函数,则b 的范围为________.[答案] b <-1或b >2 [解析] 若y ′=x 2+2bx +b +2≥0恒成立,则Δ=4b 2-4(b +2)≤0,∴-1≤b ≤2,由题意b <-1或b >2.8.已知x ∈R ,求证:e x ≥x +1.证明:设f (x )=e x -x -1,则f ′(x )=e x -1.∴当x =0时,f ′(x )=0,f (x )=0.当x >0时,f ′(x )>0,∴f (x )在(0,+∞)上是增函数.∴f (x )>f (0)=0. 当x <0时,f ′(x )<0,f (x )在(-∞,0)上是减函数,∴f (x )>f (0)=0.9.已知函数y =x +x1,试讨论出此函数的单调区间. 解:y ′=(x +x 1)′=1-1·x -2=222)1)(1(1x x x x x -+=- 令2)1)(1(xx x -+>0. 解得x >1或x <-1.∴y =x +x 1的单调增区间;是(-∞,-1)和(1,+∞).令2)1)(1(xx x -+<0,解得-1<x <0或0<x <1. ∴y =x +x1的单调减区间是(-1,0)和(0,1)10.已知函数32()f x x bx cx d =+++的图象过点P (0,2),且在点M (-1,f (-1))处的切线方程为076=+-y x .(Ⅰ)求函数y=f(x)的解析式;(Ⅱ)求函数y=f(x)的单调区间. 解:(Ⅰ)由f(x)的图象经过P (0,2),知d=2, 所以,2)(23+++=cx bx x x f .23)(2c bx x x f ++=' 由在M(-1,f(-1))处的切线方程是76=+-y x , 知.6)1(,1)1(,07)1(6=-'=-=+---f f f 即{{326,23,12 1.0,3.b c b c b c b c b c -+=-=-∴-+-+=-===-即解得 故所求的解析式是 .233)(23+--=x x x x f (Ⅱ)22()36 3.3630,f x x x x x '=----=令2210.x x --=即 解得 .21,2121+=-=x x当;0)(,21,21>'+>-<x f x x 时或 当.0)(,2121<'+<<-x f x 时故)21,()(--∞在x f 内是增函数,在)21,21(+-内是减函数,在),21(+∞+内是增函数. 点拨:本题考查函数的单调性、导数的应用等知识,考查运用数学知识分析问题和解决问题的能力.11.已知函数f(x)=x 3-21x 2+bx+c.(1)若f(x)在(-∞,+∞)上是增函数,求b 的取值范围; 解 (1))(x f '=3x 2-x+b,因f(x)在(-∞,+∞)上是增函数,则)(x f '≥0.即3x 2-x+b≥0,∴b≥x -3x 2在(-∞,+∞)恒成立.设g(x)=x-3x 2.当x=61时,g(x)max =121,∴b≥121. 12.已知函数f(x)=x(x-1)(x-a)在(2,+∞)上是增函数,试确定实数a 的取值范围.解 f(x)=x(x-1)(x-a)=x 3-(a+1)x 2+ax ∴)(x f '=3x 2-2(a+1)x+a 要使函数f(x)=x(x-1)(x-a)在(2,+∞)上是增函数,只需)(x f '=3x 2-2(a+1)x+a 在(2,+∞)上满足)(x f '≥0即可.∵)(x f '=3x 2-2(a+1)x+a 的对称轴是x=31+a ,∴a 的取值应满足:⎪⎩⎪⎨⎧≥'≤+0(2)231f a 或⎪⎪⎩⎪⎪⎨⎧≥+'>+0)31(231a f a 解得:a≤38.∴a 的取值范围是a≤38.13.已知函数 232()4()3f x x ax x x R =+-∈在区间[]1,1-上是增函数,求实数a 的取值范围.解:'2()422f x ax x =+-,因为()f x 在区间[]1,1-上是增函数,所以'()0f x ≥对[]1,1x ∈-恒成立,即220x ax --≤对[]1,1x ∈-恒成立,解之得:11a -≤≤所以实数a 的取值范围为[]1,1-.点拨:已知函数的单调性求参数的取值范围是一种常见的题型,常利用导数与函数单调性关系:即“若函数单调递增,则'()0f x ≥;若函数单调递减,则'()0f x ≤”来求解,注意此时公式中的等号不能省略,否则漏解.14.已知函数d ax bx x x f +++=23)(的图象过点P (0,2),且在点M (-1,)1(-f )处的切线方程076=+-y x ,(1)求函数)(x f y =的解析式;(2)求函数)(x f y =的单调区间。
解:(1)由)(x f 的图象经过P (0,2),知2=d ,所以2)(23+++=cx bx x x f ,c bx x x f ++='23)(2 由在点M ()1(,1--f )处的切线方程为076=+-y x∴ 6)1(,1)1(=-'=-f f 即 ∴ ⎩⎨⎧=+-+-=+-121623c b c b 解得3-==c b故所求的解析式是233)(23+--=x x x x f(2)363)(2--='x x x f 令03632=--x x ,解得21,2121+=--x x当21-<x 或21+>x 时,0)(>'x f当2121+<<-x 时,0)(<'x f 故23)(23+-=x x x f 在)21,(--∞内是增函数,在)21,21(+-内是减函数在),21(+∞+内是增函数点拨:本题考查函数的单调性、导数的应用等知识,考查运用数学知识分析问题和解决问题的能力.15.已知函数f (x )=2x -b(x -1)2,求导函数f ′(x ),并确定f (x )的单调区间.解析:f ′(x )=2(x -1)2-(2x -b )·2(x -1)(x -1)4=-2x +2b -2(x -1)3=-2[x -(b -1)](x -1)3令f ′(x )=0,得x =b -1且x ≠1.当b -1x(-∞,b -1)b -1(b -1,1)(1,+∞)当b -1(1,+∞)上单调递减.当b >2时,函数f (x )在(-∞,1)上单调递减,在(1,b -1)上单调递增,在(b -1,+∞)上单调递减.当b -1=1,即b =2时,f (x )=2x -1,所以函数f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递减.强化提高题:16.设f (x )、g (x )是R 上的可导函数,f ′(x ),g ′(x )分别为f (x )、g (x )的导函数,且满足f ′(x )g (x )+f (x )g ′(x )<0,则当a <x <b 时,有( ) A .f (x )g (b )>f (b )g (x ) B .f (x )g (a )>f (a )g (x ) C .f (x )g (x )>f (b )g (b ) D .f (x )g (x )>f (b )g (a )答案:C 解析:令y =f (x )·g (x ),则y ′=f ′(x )·g (x )+f (x )·g ′(x ),由于f ′(x )g (x )+f (x )g ′(x )<0,所以y 在R 上单调递减,又x <b ,故f (x )g (x )>f (b )g (b ).17.若函数y =x 3-ax 2+4在(0,2)内单调递减,则实数a 的取值范围是____________.[答案] [3,+∞)[解析] y ′=3x 2-2ax ,由题意知3x 2-2ax <0在区间(0,2)内恒成立, 即a >32x 在区间(0,2)上恒成立,∴a ≥3.18.已知函数f (x )=ax -ln x ,若f (x )>1在区间(1,+∞)内恒成立,实数a 的取值范围为________.[答案] a ≥1[解析] 由已知a >1+ln xx在区间(1,+∞)内恒成立.设g (x )=1+ln x x ,则g ′(x )=-ln xx 2<0 (x >1),∴g (x )=1+ln x x 在区间(1,+∞)内单调递减,∴g (x )<g (1), ∵g (1)=1, ∴1+ln xx <1在区间(1,+∞)内恒成立, ∴a ≥1.19.函数y =x 2e -x 的单调递增区间是________.答案:(0,2)解析:y ′=(2x -x 2)e -x >0⇔0<x <2,故选填(0,2).20 若32()(0)f x ax bx cx d a =+++>在R 增函数,则,,a b c 的关系式为是答案:0,3a b ac >≤且 解析: '2()320f x ax bx c =++>恒成立,则220,0,34120a ab ac b ac >⎧><⎨∆=-<⎩且 21.若函数y =-34x 3+bx 有三个单调区间,则b 的取值范围是________. 答案:b >0 解析: y ′=-4x 2+b ,若y ′值有正、有负,则b >0.22.定义在R 上的奇函数f(x)在[-a,-b ](a>b>0)上是减函数且f(-b)>0,判断F (x )=[f(x)]2在[b,a ]上的单调性并证明你的结论.解析:设b ≤x 1<x 2≤a,则 -b ≥-x 1>-x 2≥-a.∵f(x)在[-a,-b ]上是减函数,∴0<f(-b)≤f(-x 1)<f(-x 2)≤f(-a),∵f(x)是奇函数,∴0<-f(x 1)<-f(x 2),则f(x 2)<f(x 1)<0,[f(x 1)]2<[f(x 2)]2,即F(x 1)<F(x 2). ∴F(x)在[b,a ]上为增函数.23.设函数f (x )=x 3-3ax 2+3bx 的图象与直线12x +y -1=0相切于点(1,-11). (1)求a 、b 的值;(2)讨论函数f (x )的单调性. [解析] (1)求导得f ′(x )=3x 2-6ax +3b .由于f (x )的图象与直线12x +y -1=0相切于点(1,-11),所以f (1)=-11,f ′(1)=-12,即⎩⎪⎨⎪⎧1-3a +3b =-113-6a +3b =-12,解得a =1,b =-3. (2)由a =1,b =-3 得f ′(x )=3x 2-6ax +3b =3(x 2-2x -3)=3(x +1)(x -3). 令f ′(x )>0,解得x <-1或x >3;又令f ′(x )<0,解得-1<x <3.所以当x ∈(-∞,-1)时,f (x )是增函数;当x ∈(3,+∞)时,f (x )也是增函数;当x ∈(-1,3)时,f (x )是减函数.24.若函数3211()(1)132f x x ax a x =-+-+在区间(1,4)内为减函数,在区间(6,)+∞上为增函数,试求实数a 的取值范围.解:2()1(1)[(1)]f x x ax a x x a '=-+-=---, 令()0f x '=得1x =或1x a =-,∴当(1,4)x ∈时,()0f x '≤,当(6,)x ∈+∞时,()0f x '≥, ∴416a ≤-≤,∴57a ≤≤.25.设函数f(x)=x+xa(a>0).(1)求函数在(0,+∞)上的单调区间,并证明之;(2)若函数f(x)在[a-2,+∞]上递增,求a 的取值范围.解析:(1)f(x)在(0,+∞)上的增区间为[a ,+∞],减区间为(0,a ). 证明:∵f ′(x)=1-2xa,当x ∈[a ,+∞]时,∴f ′(x)>0,当x ∈(0,a )时,f ′(x)<0.即f(x)在[a +∞]上单调递增,在(0,a )上单调递减.(或者用定义证) (2)[a-2,+∞]为[a ,+∞]的子区间,所以a-2≥a ⇒a-a -2≥0⇒(a +1)( a -2)≥0⇒a -2≥0⇒a ≥4.26.已知函数y =ax 与y =-bx 在(0,+∞)上都是减函数,试确定函数y =ax 3+bx 2+5的单调区间.解析: 可先由函数y =ax 与y =-bx 的单调性确定a 、b 的取值范围,再根据a 、b 的取值范围去确定y =ax 3+bx 2+5的单调区间.[解] ∵函数y =ax 与y =-bx 在(0,+∞)上都是减函数,∴a <0,b <0.由y =ax 3+bx 2+5得y ′=3ax 2+2bx . 令y ′>0,得3ax 2+2bx >0,∴-2b3a <x <0.∴当x ∈⎝⎛⎭⎫-2b3a ,0时,函数为增函数. 令y ′<0,即3ax 2+2bx <0, ∴x <-2b3a,或x >0.∴在⎝⎛⎭⎫-∞,-2b3a ,(0,+∞)上时,函数为减函数. 27 设xx e aa e x f a +=>)(,0是R 上的偶函数,(1)求a 的值;(2)证明)(x f 在(0,+∞)上是增函数。