矩形、菱形与正方形 练习题二
华东师大版八年级下学期《第19章矩形、菱形与正方形》2022年单元测试卷2
华东师大版八年级下学期《第19章矩形、菱形与正方形》2022年单元测试卷2一.菱形的性质(共3小题)1.如图,点E在菱形ABCD的AB边上,点F在BC边的延长线上,连接CE,DF,对于下列条件:①BE=CF;②CE⊥AB,DF⊥BC;③CE=DF;④∠BCE=∠CDF.只选取其中一条添加,不能确定△BCE≌△CDF的是()A.①B.②C.③D.④2.已知一个菱形的周长为8,有一个内角为120°,则该菱形较短的对角线长为()A.4B.2√3C.2D.13.如图,四边形ABCD是菱形,AE⊥BC,AF⊥CD,分别交CB、CD的延长线于点E、点F.(1)求证:△ABE≌△ADF;(2)若CD=5,AE=3,则四边形AECF的面积为.二.菱形的判定(共3小题)4.已知平行四边形ABCD的对角线相交于点O,补充下列四个条件,能使平行四边形ABCD 成为菱形的是()A.AB=BD B.AC=BD C.∠DAB=90°D.∠AOB=90°5.如图,▱ABCD的对角线AC、BD相交于点O,则添加一个适当的条件:可使其成为菱形(只填一个即可).6.在▱ABCD 中,对角线AC 、BD 交于点O ,E 是边BC 延长线上的动点,过点E 作EF ⊥BD 于F ,且与CD 、AD 分别交于点G 、H ,连接OH .(1)如图,若AC ⊥AB ,OF =OC ,求证:FG =CG ;(2)若在点E 运动的过程中,存在四边形OCGH 是菱形的情形,试探究▱ABCD 的边和角需要满足的条件.三.菱形的判定与性质(共3小题)7.如图,若两条宽度为1的带子相交成30°的角,则重叠部分(图中阴影部分)的面积是( )A .2B .√32C .1D .12 8.如图,△ABC 中,BC =2AB ,点D 、E 分别是BC 、AC 的中点,过点A 作AF ∥BC 交线段DE 的延长线于点F ,取AF 的中点G ,连结DG 交AE 于点H .(1)求证:四边形ABDF 是菱形;(2)连接BE 交DG 于点M ,若AC ⊥AB ,AC =6,求BM .9.如图,在平行四边形ABCD 中,∠BAD 的平分线AE 交BC 于点E ,∠ABC 的平分线BF交AD于点F,AE与BF相交于点O,连接EF.(1)求证:四边形ABEF是菱形;(2)若AE=3,BF=4,CE=2,求平行四边形ABCD的面积.四.矩形的性质(共3小题)10.如图,在矩形ABCD中,两条对角线AC与BD相交于点O,AB=3,OA=2,则AD 的长为()A.5B.√13C.√10D.√711.如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别是AO,AD的中点,若EF=6cm,则AC的长是.12.已知:如图,矩形ABCD的对角线AC的垂直平分线EF与AD、AC、BC分别交于点E、O、F.(1)求证:四边形AFCE是菱形;(2)若AB=5,BC=12,求菱形AFCE的面积.五.矩形的判定(共3小题)13.在平行四边形ABCD中,对角线AC和BD相交于点O,则下面条件能判定平行四边形ABCD是矩形的是()A.AC=BD B.AC⊥BD C.OA=OC D.AB=AD14.如图,工人师傅在贴长方形的瓷砖时,为了保证所贴瓷砖的外缘边与上一块瓷砖的两边互相平行,一般将两块瓷砖的一边重合,然后贴下去.这样做的数学依据是.15.如图,在▱ABCD中,点O是边BC的中点,连接DO并延长,交AB延长线于点E,连接BD、EC.(1)求证:四边形BECD是平行四边形;(2)若∠A=40°,则当∠BOD=°时,四边形BECD是矩形.六.矩形的判定与性质(共3小题)16.如图,在△ABC中,AC=3、AB=4、BC=5,P为BC上一动点,PG⊥AC于点G,PH ⊥AB于点H,M是GH的中点,P在运动过程中PM的最小值为()A.2.4B.1.4C.1.3D.1.217.如图,在▱ABCD中,M为AD的中点,BM=CM.求证:(1)△ABM≌△DCM;(2)四边形ABCD是矩形.18.如图,在▱ABCD 中,AB >AD ,DE 平分∠ADC ,AF ⊥BC 于点F 交DE 于G 点,延长BC 至H 使CH =BF ,连接DH .(1)证明:四边形AFHD 是矩形;(2)当AE =AF 时,猜想线段AB 、AG 、BF 的数量关系,并证明.七.正方形的性质(共3小题)19.如图,在正方形ABCD 中,AB =6,点Q 是AB 边上的一个动点(点Q 不与点B 重合),点M ,N 分别是DQ ,BQ 的中点,则线段MN =( )A .3√2B .3√22C .3D .620.如图,工人师傅制作了一个正方形窗架,把窗架立在墙上之前,在上面钉了两块等长的木条GF 与GE ,E 、F 分别是AD 、BC 的中点.(1)钉这两块木条的作用是什么?(2)G 点一定是AB 的中点吗?说明理由.21.阅读分析过程,解决问题:如图,正方形ABCD(四条边都相等,四个角都是90°),点E、F在CD、BC上,并且∠EAF=45°,延长CD至点G,使DG=BF,并连接AG.(1)求证:EF=DE+BF;(2)若AB=2,则△EFC的周长=.八.正方形的判定(共3小题)22.如图,△ABC中,∠C=90°,∠BAC、∠ABC的平分线相交于点D,DE⊥BC,DF⊥AC,垂足分别为E、F.问四边形CFDE是正方形吗?请说明理由.23.已知:如图,▱ABCD中,延长BC至点E,使CE=BC,连接AE交CD于点O.(1)求证:CO=DO;(2)取AB中点F,连接CF,△COE满足什么条件时,四边形AFCO是正方形?请说明理由.24.如图,在△ABC中,AB=AC,D是BC中点、F是AC中点,AN是△ABC的外角∠MAC 的平分线,延长DF交AN于点E.连接CE.(1)求证:四边形ADCE是矩形;(2)填空:①若AB=BC=3,则四边形ADCE的面积为;②当△ABC满足四边形ADCE是正方形.九.正方形的判定与性质(共3小题)25.在下列4个判断中正确的是()A.如果四边形的两组对角分别相等,那么这个四边形是矩形B.对角线互相垂直的四边形是菱形C.正方形具有矩形的性质,又具有菱形的性质D.四边相等的四边形是正方形26.如图,正方形ABCD边长为6.菱形EFGH的三个顶点E、G、H分别在正方形ABCD 的边AB、CD、DA上,且AH=2,连接CF.(1)当DG=2时,求证:菱形EFGH为正方形;(2)设DG=x,试用含x的代数式表示△FCG的面积.27.如图,已知点E,F,M,N分别是正方形ABCD四条边上的点,并且AE=BF=CM=DN.(1)求证:四边形EFMN是正方形;(2)若AB=4,当点E在什么位置时,四边形EFMN的周长最小?并求四边形EFMN 周长的最小值.。
初中数学 矩形、菱形与正方形测试题含答案
矩形、菱形与正方形测试题一、选择题1.能判定四边形ABCD为平行四边形的题设是().(A)AB∥CD,AD=BC; (B)∠A=∠B,∠C=∠D;(C)AB=CD,AD=BC; (D)AB=AD,CB=CD2.在给定的条件中,能画出平行四边形的是().(A)以60cm为一条对角线,20cm、34cm为两条邻边;(B)以6cm、10cm为对角线,8cm为一边;(C)以20cm、36cm为对角线,22cm为一边;(D)以6cm为一条对角线,3cm、10cm为两条邻边3.正方形具有而菱形不一定具有的性质是()(A)对角线互相平分; (B)对角线相等;(C)对角线平分一组对角; (D)对角线互相垂直4.在下列说法中不正确的是()(A)两条对角线互相垂直的矩形是正方形;(B)两条对角线相等的菱形是正方形;(C)两条对角线垂直且相等的平行四边形是正方形;(D)两条对角线垂直且相等的四边形是正方形5.下列说法不正确的是()(A)对角线相等且互相平分的四边形是矩形;(B)对角线互相垂直平分的四边形是菱形;(C)一组对边平行且不等的四边形是梯形;(D)一边上的两角相等的梯形是等腰梯形6.不能判定四边形ABCD为平行四边形的题设是()(A)AB=CD,AD=BC (B)AB//CD(C)AB=CD,AD∥BC (D)AB∥CD,AD∥BC7.四边形ABCD的对角线AC,BD相交于点O,能判定它为正方形的题设是()(A)AO=CO,BO=DO; (B)AO=CO=BO=DO;(C)AO=CO,BO=DO,AC⊥BD; (D)AO=BO=CO=DO,AC⊥BD8.下列说法不正确的是()(A)只有一组对边平行的四边形是梯形;(B)只有一组对边相等的梯形是等腰梯形;(C)等腰梯形的对角线相等且互相平分;(D)在直角梯形中有且只有两个角是直角9.如图1,在□ABCD中,MN分别是AB、CD的中点,BD分别交AN、CM于点P、Q,在结论:①DP=PQ=QB ②AP=CQ ③CQ=2MQ ④S △ADP=14S ABCD中,正确的个数为().(A)1 (B)2 (C)3 (D)4(1) (2) (3)10.如图2,在梯形ABCD中,AD∥CB,AD=2,BC=8,AC=6,BD=8,则梯形ABCD的面积为().(A)24 (B)20 (C)16 (D)12二、填空题11.在□ABCD中,AC与BD交于O,则其中共有_____对全等的三角形.12.矩形的对角线相交成的角中,有一个角是60°,这个角所对的边长为20cm,则其对角线长为_______,矩形的面积为________.13.一个菱形的两条对角线长分别为6cm,8cm,这个菱形的边长为_______,•面积S=______.14.如果一个四边形的四个角的比是3:5:5:7,则这个四边形是_____形.15.如图3,等腰梯形ABCD中,AD∥BC,AB∥DE,BC=8,AB=6,AD=5,则△CDE的周长是________.16.如图4,在正方形ABCD的外侧,作等边△ADE,则∠AEB=_______.(4) (5) (6)17.在长为1.6m,宽为1.2m的矩形铅板上,剪切如图5所示的直角梯形零件(•尺寸单位为mm),则这块铅板最多能剪出______个这样的零件.18.如图6,ABCD中,过对角线交点O,引一直线交BC于E,交AD于F,若AB=2.4cm,BC=4cm,OE=1.1cm,则四边形CDFE周长为________.19.已知等腰梯形的一个锐角等于60•°,•它两底分别为15cm,•49cm,•则腰长为_______.20.已知等腰梯形ABCD中AD∥BC,BD平分∠ABC,BD•⊥DC,•且梯形ABCD•的周长为30cm,则AD=_____.三、计算题21.如图,已知等腰梯形ABCD中,AD∥BC,对角线AC⊥BD,AD=3cm,BC=7cm,•DE•⊥BC 于E,试求DE的长.四、证明题22.如图,已知四边形ABCD中,AC=BD,E、F、G、H分别是AB、BC、CD、DA边上的中点,求证:四边形EFGH是菱形.23.已知如图,梯形ABCD中,AD∥BC,AM=MB,DN=NC.求证:MN∥BC,MN=12(BC+AD).答案:1.(C) 2.(C) 3.(B) 4.(D) 5.(D)6.(C) 7.(D) 8.(C) 9.(C) 10.(A)11.4 12.40cm 4003cm213.5cm 24cm2 14.直角梯形15.15 16.15° •17.12 18.8.6cm 19.34cm20.如图,作AE⊥BC于E,DF⊥BC于F,∴AD=EF,设BE=x.则AB=2x,DC=2x,FC=x,∴BD平分∠ABC,∴∠DBC=30°.∴DC=12BC,∴BC=4x.∴EF=2x=AD.又∵AB+BC+CD+AD=30,∴4x+6x=30,x=3,∴AD=6(cm).21.过D点作DF∥AC,交BC的延长线于点F,则四边形ACFD为平行四边形,•所以AC=DF,AD=CF.因为四边形ABCD为等腰梯形,所以AC=BD,所以BD=DF,又已知AC⊥BD,DF∥AC,•所以BD⊥DF,则△BDF为等腰直角三角形.又因为DF⊥BC,所以DE=12BF=12(BC+CF)=12(BC+AD)=12(7+3)=5(cm).22.证明:∵E、F、G、H分别是AB、BC、CD、DA的中点,∴EF=12AC,HG=12AC,FG=12BD,EH=12BD.∴EF=HG=12AC,FG=EH=12BD.又∵AC=BD,∴EF=HG=FG=EH.∴四边形EFGH是菱形.23.证明:如图,连接AN并延长,交BC的延长线于点E.∵DN=NC,∠1=∠2,∠D=∠3,∴△ADN≌△ECN,∴AN=EN,AD=EC.又AM=MB,∴MN是△ABE的中位线.∴MN∥BC,MN=12BE(三角形中位线定理)∵BE=BC+CE=BC+AD,∴MN=12(BC+AD).。
2022年华东师大版八年级数学下册第十九章矩形、菱形与正方形综合练习练习题(精选含解析)
八年级数学下册第十九章矩形、菱形与正方形综合练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,矩形ABCD 的面积为1cm 2,对角线交于点O ;以AB 、AO 为邻边作平行四边形AOC 1B ,对角线交于点O 1;以AB 、AO 1为邻边作平行四边形AO 1C 2B ,…;依此类推,则平行四边形AO 2014C 2015B 的面积为( )cmA .201312 B .201412 C .201512 D .2016122、小明想判断家里的门框是否为矩形,他应该( )A .测量三个角是否都是直角B .测量对角线是否互相平分C .测量两组对边是否分别相等D .测量一组对角是否是直角3、如图,在矩形ABCD 中,AB =2,BC =4,对角线AC ,BD 相交于点O ,OE ⊥AC 交BC 于点E ,EF ⊥BD 于点F ,则OE +EF 的值为( )A B .2 C .52 D .4、如图,四边形ABCD 为平行四边形,延长AD 到E ,使DE =AD ,连接EB ,EC ,DB ,添加一个条件,不能使四边形DBCE 成为矩形的是( )A .AB =BE B .DE ⊥DC C .∠ADB =90°D .CE ⊥DE5ABCD 中,点E 是对角线AC 上一点,且EF AB ⊥于点F ,连接DE ,当22.5ADE ∠=︒时,EF =( )A .1B .2C 1D .146、如图,点E 是正方形ABCD 的边DC 上一点,把△ADE 绕点A 顺时针旋转90°到△ABF 的位置,若四边形AECF 的面积为144.AE =13.则DE 的长为( )A .BC .4D .57、如图,在菱形ABCD 中,P 是对角线AC 上一动点,过点P 作PE BC ⊥于点E .PF AB ⊥于点F .若菱形ABCD 的周长为24,面积为24,则PE PF +的值为( )A .4B .245C .6D .4858、如图所示,四边形ABCD 是矩形,过点D 作对角线BD 的垂线,交BC 的延长线于点E ,取BE 的中点F ,连接DF ,DF =5,设AB =x ,AD =y ,则x 2+(y ﹣5)2的值为( )A .10B .25C .50D .759、如图,边长为1的正方形ABCD 绕点A 逆时针旋转45°后,得到正方形AB ′C ′D ′,边B 'C ′与DC 交于点O ,则∠DOB '的度数为( )A .125°B .130°C .135°D .140°10、如图,把一张长方形纸片ABCD 沿AF 折叠,使B 点落在B '处,若20ADB ∠=︒,要使AB BD '∥,则BAF ∠的度数应为( )A.20°B.55°C.45°D.60°第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题4分,共计40分)1、(1)两组对边分别______,菱形的四条边都______.几何语言:∵四边形ABCD是菱形∴AB∥CD,AD∥BCAB=CD=AD=BC(2)菱形的两组对角______,邻角______几何语言:∵四边形ABCD是菱形∴∠BAD=∠BCD,∠CBA=∠ADC∠BAD+∠ADC=180°∠BCD+∠CBA=180°∠BAD+∠CBA=180°∠BCD+∠ADC=180°(3)菱形的对角线互相______,并且每一条对角线______一组对角.几何语言:∵四边形ABCD 是菱形∴AC ⊥BD , AC 平分∠BAD ,∠BCD , BD 平分∠ABC ,∠ADC(4)菱形既是轴对称图形,又是中心对称图形,有______条对称轴,其对称轴为两条对角线所在直线,对称中心为其______的交点.2、一个长方形的周长是22cm ,若这个长方形的长减少2cm ,宽增加3cm ,就可以成为一个正方形,则长方形的长是______cm .3、如图,矩形ABCD 的两条对角线相交于点O ,已知120AOD ∠=︒, 2.5cm AB =,则矩形对角线BD 的长为_______cm .4、如图,矩形ABCD 的两条对角线AC ,BD 交于点O ,∠AOB =60°,AB =3,则矩形的周长为 _____.5、如图,在ABC 中,90ACB ∠=︒,AB =1BC =,P 是线段AB 边上的动点(不与点A ,B 重合),将BCP 沿CP 所在直线翻折,得到B CP '△,连接B A ',当B A '取最小值时,则AP 的值为________.6、如图,正方形ABCD 中,E 为CD 上一动点(不含C 、)D ,连接AE 交BD 于F ,过F 作FH AE ⊥交BC 于H ,过H 作HG BD ⊥于G ,连接AH ,EH .下列结论:①AF FH =;②45HAE ∠=︒;③FH 平分GHC ∠;④2BD FG =,正确的是__(填序号).7、在菱形ABCD 中,60A ∠=︒,其所对的对角线长为2,则菱形ABCD 的面积是__.8、如图,矩形ABCD 中,对角线AC ,BD 相交于点O ,AD =60COB ∠=︒,BF AC ⊥,交AC 于点M ,交CD 于点F ,延长FO 交AB 于点E ,则下列结论:①FO FC =;②四边形EBFD 是菱形;③OBE CBF △△≌;④3MB =.其中结论正确的序号是______.9、如图在正方形ABCD 中,∠EAF 的两边分别交CB 、DC 延长线于E 、F 点且∠EAF =45°,如果BE =1,DF =7,则EF =__.10、如图,菱形ABCD 的周长为40,面积为80,P 是对角线BC 上一点,分别作P 点到直线AB .AD 的垂线段PE .PF ,则PE PF +等于______.三、解答题(5小题,每小题6分,共计30分)1、数学兴趣小组的同学发现:一些复杂的图形运动是由若干个图形基本运动组合形成的,如一个图形沿一条直线翻折后再沿这条直线的方向平移,这样的一种图形运动,大家讨论后把它称为图形的“翻移运动”,这条直线则称为(这次运动的)“翻移线”如图1,222A B C ∆就是由ABC ∆沿直线1翻移后得到的.(先翻折,然后再平移)(1)在学习中,兴趣小组的同学就“翻移运动”对应点(指图1中的A 与2A ,B 与2B …)连线是否被翻移线平分发生了争议.对此你认为如何?(直接写出你的判断)(2)如图2,在长方形ABCD 中,8BC =,点,E F 分别是边,BC AD 中点,点G 在边CD 延长线上,联结,AE FG ,如果GDF ∆是ABE ∆经过“翻移运动”得到的三角形.请在图中画出上述“翻移运动”的“翻移线”直线a ;联结AG ,线段AG 和直线a 交于点O ,若OGF ∆的面积为3,求此长方形的边长AB 的长.(3)如图3,M 是(2)中的长方形边BC 上一点,如果1BM =,ABM ∆先按(2)的“翻移线”直线a 翻折,然后再平移2个单位,得到111A B M ∆,联结线段11AA MM 、,分别和“翻移线”a 交于点K 和点H ,求四边形AKHM 的面积.2、如图,ABC 和DBC △中,90ACB DBC ∠=∠=︒,E 是BC 的中点,且ED AB ⊥于点F ,且AB DE =,CD 交AB 于点M .(1)求证:2BD EC =;(2)求ACM △与BCM 的面积之比.3、如图,已知菱形ABCD 的对角线相交于点O ,延长AB 至点E ,使BE =AB ,连接CE .(1)求证:BD=EC.(2)若∠E=57°,求∠BAO的大小.4、下面是小明设计的“作菱形ABCD”的尺规作图过程.求作:菱形ABCD.作法:①作线段AC;②作线段AC的垂直平分线l,交AC于点O;③在直线l上取点B,以O为圆心,OB长为半径画弧,交直线l于点D(点B与点D不重合);④连接AB、BC、CD、DA.所以四边形ABCD为所求作的菱形.根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.=,证明:OA OC=,OB OD∴.,∴四边形ABCD为菱形()(填推理的依据).5、如图,已知在ABC 中,90A ∠=︒,求作正方形ADEF ,使得D ,E ,F 分别在AB ,BC ,AC 上.-参考答案-一、单选题1、C【解析】【分析】根据“同底等高”的原则可知平行四边形AOC 1B 底边AB 上的高等于BC 的12,则有平行四边形AOC 1B 的面积12,平行四边形AOC 2B 的边AB 上的高等于平行四边形AOC 1B 底边AB 上的高的12,则有平行四边形ABC 3O 2的面积212,…;由此规律可进行求解. 【详解】解:∵O 1为矩形ABCD 的对角线的交点,∴平行四边形AOC 1B 底边AB 上的高等于BC 的12,∴平行四边形AOC 1B 的面积=12×1=12,∵平行四边形AO 1C 2B 的对角线交于点O 2,∴平行四边形AOC 2B 的边AB 上的高等于平行四边形AOC 1B 底边AB 上的高的12,∴平行四边形ABC 3O 2的面积=12×12×1=212, …,依此类推,平行四边形ABC 2014O 2015的面积=201512cm 2.故答案为:C .【点睛】本题主要考查矩形的性质与平行四边形的性质,熟练掌握矩形的性质与平行四边形的性质是解题的关键.2、A【解析】【分析】根据矩形的判定方法解题.【详解】解:A 、三个角都是直角的四边形是矩形,∴选项A 符合题意; B 、对角线互相平分的四边形是平行四边形,∴选项B 不符合题意,C 、两组对边分别相等的四边形是平行四边形,∴选项C 不符合题意;D 、一组对角是直角的四边形不是矩形,∴选项D 不符合题意;故选:A .【点睛】本题考查矩形的判定方法,是重要考点,掌握相关知识是解题关键.3、A【解析】【分析】依据矩形的性质即可得到BOC ∆的面积为2,再根据BOC COE BOE S S S∆=+,即可得到OE EF +的值. 【详解】解:2AB =,4BC =,∴矩形ABCD 的面积为8,AC =12BO CO AC ∴==对角线AC ,BD 交于点O ,BOC ∴∆的面积为2,EF OB ⊥,EO AC ⊥,BOC COE BOE S S S ∆∴=+,即11222CO EO OB EF =⨯+⨯,12)2EO EF ∴=+,)4EO EF +=,∴+EO EF故选:A.【点睛】本题主要考查了矩形的性质,解题的关键是掌握矩形的四个角都是直角,矩形的对角线相等且互相平分.4、B【解析】【分析】先证明四边形BCED为平行四边形,再根据矩形的判定进行解答.【详解】解:∵四边形ABCD为平行四边形,∴AD∥BC,且AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四边形BCED为平行四边形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴□DBCE为矩形,故本选项不符合题意;B、∵DE⊥DC,∴∠EDB=90°+∠CDB>90°,∴四边形DBCE不能为矩形,故本选项符合题意;C、∵∠ADB=90°,∴∠EDB =90°,∴□DBCE 为矩形,故本选项不符合题意;D 、∵CE ⊥DE ,∴∠CED =90°,∴□DBCE 为矩形,故本选项不符合题意.故选:B .【点睛】本题考查了平行四边形的判定和性质、矩形的判定等知识,判定四边形BCED 为平行四边形是解题的关键.5、C【解析】【分析】证明67.5CDE CED ∠=∠=︒,则CD CE =AC 的长,得2AE =,证明AFE ∆是等腰直角三角形,可得EF 的长.【详解】 解:四边形ABCD 是正方形,AB CD BC ∴==90B ADC ∠=∠=︒,45BAC CAD ∠=∠=︒, 22AC AB ,22.5ADE ∠=︒,9022.567.5CDE ∴∠=︒-︒=︒,4522.567.5CED CAD ADE ∠=∠+∠=︒+︒=︒,CDE CED ∴∠=∠,CD CE ∴==2AE ∴=EF AB ⊥,90AFE ∴∠=︒,AFE ∴∆是等腰直角三角形,1EF ∴,故选:C .【点睛】本题考查正方形的性质,勾股定理,等腰直角三角形,三角形的外角的性质等知识,解题的关键是在正方形中学会利用等腰直角三角形的性质解决问题,属于中考常考题型.6、D【解析】【分析】由旋转性质得△ABF ≌△ADE ,再根据全等三角形的性质得到S 正方形ABCD =S 四边形AECF =144进而求得AD =12,再利用勾股定理求解DE 即可.【详解】解:∵△ADE 绕点A 顺时针旋转90°得到△ABF ,∴△ABF ≌△ADE ,∴S △ABF =S △ADE ,∴S 正方形ABCD =S 四边形AECF =144,∴AD =12,在Rt△ADE 中,AE =13,AD =12,由勾股定理得:DE ,【点睛】本题考查旋转性质、全等三角形的性质、正方形的面积公式、勾股定理,熟练掌握旋转性质,得出S 正方形ABCD =S 四边形AECF 是解答的关键.7、A【解析】【分析】连接BP ,通过菱形ABCD 的周长为24,求出边长,菱形面积为24,求出ABC S的面积,然后利用面积法,=+ABC ABP CBP S S S ,即可求出PE PF +的值.【详解】解:如图所示,连接BP ,∵菱形ABCD 的周长为24,∴2446AB BC ==÷=,又∵菱形ABCD 的面积为24,∴24212=÷=ABCS , ∴12=+=ABC ABP CBP SS S , ∴111222⋅+⋅=AB PF BC PE ,∴()1122⋅+=AB PE PF ,∵6AB =,∴4PE PF +=,故选:A .【点睛】本题主要考查菱形的性质,解题关键在于添加辅助线,通过面积法得出等量关系.8、B【解析】【分析】根据题意知点F 是Rt△BDE 的斜边上的中点,因此可知DF =BF =EF =5,根据矩形的性质可知AB =DC =x ,BC =AD =y ,因此在Rt△CDF 中,CD 2+CF 2=DF 2,即可得答案.【详解】解:∵四边形ABCD 是矩形,AB =x ,AD =y ,∴CD =AB =x ,BC =AD =y ,∠BCD =90°,又∵BD ⊥DE ,点F 是BE 的中点,DF =5,∴BF =DF =EF =5,∴CF =5-BC =5-y ,∴在Rt△DCF 中,DC 2+CF 2=DF 2,即x 2+(5-y )2=52=25,∴x 2+(y -5)2=x 2+(5-y )2=25,故选:B .【点睛】本题考查了直角三角形斜边中线等于斜边的一半、矩形的性质、勾股定理,做题的关键是利用直角三角形斜边中线等于斜边的一半求出BF 的长度.9、C【解析】【分析】连接B ′C ,根据题意得B ′在对角线AC 上,得∠B 'CO =45°,由旋转的性质证出∠OB 'C 是直角,得=45B CO '∠︒,即可得出答案.【详解】解:连接B ′C ,如图所示,∵四边形ABCD 是正方形,∴AC 平分∠BAD ,∵旋转角∠BAB ′=45°,∠BAC =45°,∴B ′在对角线AC 上,∴∠B 'CO =45°,由旋转的性质得:90AB C B ''∠=∠=︒,AB '=AB =1,∴45B OC '∠=︒∴18045135DOB '∠=︒-︒=︒故选:C .【点睛】本题考查了正方形的性质、旋转的性质等知识;熟练掌握正方形的性质和旋转的性质是解题的关键.10、B【解析】【分析】设直线AF 与BD 的交点为G ,由题意易得90DAB ∠=︒,则有70ABD ∠=︒,由折叠的性质可知BAF B AF '∠=∠,由平行线的性质可得B AF BGA '∠=∠,然后可得BAF BGA ∠=∠,进而问题可求解.【详解】解:设直线AF 与BD 的交点为G ,如图所示:∵四边形ABCD 是矩形,∴90DAB ∠=︒,∵20ADB ∠=︒,∴70ABD ∠=︒,由折叠的性质可知BAF B AF '∠=∠,∵AB BD '∥,∴B AF BGA '∠=∠,∴BAF BGA ∠=∠, ∴180552ABG BAF ︒-∠∠==︒; 故选B .【点睛】本题主要考查折叠的性质及矩形的性质,熟练掌握折叠的性质及矩形的性质是解题的关键.二、填空题1、 平行 相等 相等 互补 垂直 平分 两 对角线【解析】略2、8【解析】【分析】设这个长方形的长为xcm ,则长方形的宽为()11x -cm ,由题意得长2-=宽+3.进而得到方程2113x x -=-+,解方程即可得到答案.【详解】解:设这个长方形的长为x cm ,由题意得:2113x x -=-+,216,x ∴=解得:8,x =答:这个长方形的长为8.cm故答案为:8【点睛】本题主要考查了一元一次方程的应用,关键是正确理解题意,抓住关键语句,表示出正方形的边长,进而利用正方形边长相等得到方程.3、5【解析】【分析】由矩形的性质可证△AOB为等边三角形,可求BO=AB的长,即可求BD的长.【详解】解:∵四边形ABCD是矩形,∴AO=CO=BO=DO,∵∠AOD=120°,∴∠AOB=60°,且AO=BO,∴△ABO为等边三角形,∴AO=BO=AB=2.5,∴BD=5,故答案为:5.【点睛】本题考查矩形的性质,熟练掌握矩形的性质是本题的关键,①矩形的对边平行且相等;②矩形的四个角都是直角;③矩形的对角线相等且互相平分.4、663##6【解析】【分析】根据矩形性质得出AD=BC,AB=CD,∠BAD=90°,OA=OC=12AC,BO=OD=12BD,AC=BD,推出OA=OB=OC=OD,得出等边三角形AOB,求出BD,根据勾股定理求出AD即可.【详解】解:∵四边形ABCD是矩形,∴∠BAD=90°,OA=OC=12AC,BO=OD=12BD,AC=BD,∴OA=OB=OC=OD,∵∠AOB =60°,OB =OA ,∴△AOB 是等边三角形,∵AB =3,∴OA =OB =AB =3,∴BD =2OB =6,在Rt △BAD 中,AB =3,BD =6,由勾股定理得:AD =∵四边形ABCD 是矩形,∴AB =CD =3,AD =BC =∴矩形ABCD 的周长是AB +BC +CD +AD =故答案为:【点睛】本题考查了矩形性质,等边三角形的性质和判定,勾股定理等知识点,关键是求出AD 的长.5【解析】【分析】根据翻转变换的性质可知BC =C B '=1,当A 、B '、C 三点在一条直线上时,A B '有最小值,根据题意作图,过P 点作PH ⊥BC ,PQ ⊥AC ,得到四边形PQCH 是正方形,利用面积法求出PQ 的长,再根据勾股定理求出AP 的长.【详解】解:∵在ABC 中,90ACB ∠=︒,AB =1BC =∴AC2=由翻转变换的性质可知:BC=C B'=1,故当A、B'、C三点在一条直线上时,A B'有最小值,过P点作PH⊥BC,PQ⊥AC,∴∠ACB=∠PHC=∠PQC=90°∴四边形PQCH是矩形∵翻转∴△BCP≌△B'CP∴PH=PQ∴四边形PQCH是正方形设PQ=x,则PH=x∵S△ABC=S△APC+S△PBC∴111222BC AC BC PH PQ AC ⨯=⨯+⨯即1111212 222x x⨯⨯=⨯⨯+⨯解得x=2 3∴AQ=2-23=43∴AP【点睛】本题主要考查的是翻转变换的性质、线段的性质,根据题意找到B '的位置是解题的关键.6、①②④【解析】【分析】连接FC ,延长HF 交AD 于点L .可证ADF CDF ∆∆≌,进而可得FHC FCH ∠=∠,由此可得出FH AF =;再由FH AF =,即可得出45HAE ∠=︒;连接AC 交BD 于点O ,则2BD OA =,证明AOF FGH ≌,即可得出OA GF =,进而可得2BD FG =;过点F 作MN BC ⊥于点N ,交AD 于点M ,由于F 是动点,FN 的长度不确定,而FG OA =是定值,即可得出FH 不一定平分GHC ∠.【详解】解:如图,连接FC ,延长HF 交AD 于点L .∵BD 为正方形ABCD 的对角线∴45ADB CDF ∠=∠=︒,AD CD =在ADF 和CDF 中45AD CD ADB CDF DF DF =⎧⎪∠=∠=︒⎨⎪=⎩∴()ADF CDF SAS ∆∆≌∴AF FC =,DCF DAF ∠=∠∵90AFL ∠=︒,90ALH LAF ∠+∠=︒ ,ALH FHC ∠=∠∴90LHC DAF ∠+∠=︒∵DCF DAF ∠=∠,90FCD FCH ∠+∠=︒∴FHC FCH ∠=∠∴FH FC =∴AF FH =故①正确;∵90AFH ∠=︒,AF FH =∴AFH 是等腰直角三角形∴45HAE ∠=︒故②正确;连接AC 交BD 于点O ,则2BD OA =∵90AFO GFH GHF GFH ∠+∠=∠+∠=︒∴AFO GHF ∠=∠在AOF 和FGH 中90AFO GHF AOF FGH AF FH ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴()AOF FGH AAS ∆∆≌∴OA GF =∴22BD OA GF ==故④正确.过点F 作MN BC ⊥于点N ,交AD 于点M ,F 是动点∵FN 的长度不确定,而FG OA =是定值∴FN 不一定等于FGFH ∴不一定平分GHC ∠故③错误;故答案为:①②④.【点睛】本题考查了正方形性质,全等三角形判定和性质,角平分线性质和判定,等腰三角形的性质与判定等,熟练掌握全等三角形判定和性质,合理添加辅助线构造全等三角形是解题关键.7、【解析】【分析】根据菱形的性质证得△ABD 是等边三角形,得到OB ,利用勾股定理求出OA ,由菱形的性质求出菱形的面积.【详解】解:如图所示:在菱形ABCD 中,60BAD ∠=︒,其所对的对角线长为2,AD AB ∴=,AC BD ⊥,BO DO =,AO CO =,ABD ∴∆是等边三角形,则2AB AD ==,故1BO DO ==,则AO =AC =则菱形ABCD 的面积122=⨯⨯故答案为:【点睛】此题主要考查了菱形的性质以及勾股定理,正确得出菱形的另一条对角线的长是解题关键.8、①②③④【解析】【分析】由矩形的性质及垂直平分线的判定和性质可证明①;根据全等三角形的判定和性质及菱形的判定和性质可证明②;由菱形的性质及全等三角形的判定可证明③;根据矩形的性质,含30︒角的直角三角形的性质,勾股定理可证明④.【详解】解:∵四边形ABCD 为矩形,∴AC BD =,∴OA OC OD OB ===,∵60COB ∠=︒,∴OBC 为等边三角形,∴OB BC OC ==,60OBC ∠=︒,∵BF AC ⊥,∴OM MC =,∴FM 是OC 的垂直平分线,∴FO FC =,故①正确;∵AB CD ∥,∴DFE BEF ∠=∠,在DOF 与BOE 中,DOF BOE DFE BEF OD OB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴DOF BOE ≅,∴DF BE =,∵AB CD ∥,∴四边形EBFD 为平行四边形,由①得OBC 为等边三角形,∴60OBC OCB ∠=∠=︒,∴30ACD BCD OCB ∠=∠-∠=︒,∵OD OC =,∴30ACD BDC ∠=∠=︒,∵BF AC ⊥,OBC 为等边三角形,∴30DBE ∠=︒,∴DBF BDC ∠=∠∴DF BF =,∴四边形EBFD 为菱形,②正确;由②可得:OB EF ⊥,∴90BOE BCF ∠=∠=︒,∵AB CD ∥,∴30EBO BDC ∠=∠=︒,∴30EBO FBC ∠=∠=︒,在OBE 与CBF 中,EBO FBC BO BCBOE BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴OBE CBF ≅,③正确;∵四边形ABCD 为矩形,∴BC AD ==∵BF AC ⊥,30FBC ∠=︒,∴12CM BC ==∴3MB ==,④正确,∴正确结论为:①②③④,故答案为:①②③④.【点睛】题目主要考查矩形的性质,菱形的判定定理,全等三角形的判定和性质,含30︒角的直角三角形的性质,勾股定理等,理解题意,综合运用这些性质是解题关键.9、6【解析】【分析】根据题意把△ABE 绕点A 逆时针旋转90°到AD ,交CD 于点G ,证明△AEF ≌△AGF 即可求得EF =DF ﹣BE =7﹣1=6.【详解】解:如图,把△ABE 绕点A 逆时针旋转90°到DA ,交CD 于点G ,由旋转的性质可知,AG =AE ,DG =BE ,∠DAG =∠BAE ,∵∠EAF =45°,∴∠DAG +∠BAF =45°,又∵∠BAD =90°,∴∠GAF =45°,在△AEF 和△AGF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩, ∴△AEF ≌△AGF (SAS )∴EF =GF ,∵BE=1,DF=7,∴EF=GF=DF﹣DG=DF﹣BE=7﹣1=6.故答案为:6.【点睛】本题主要考查正方形的性质及全等三角形的判定和性质,构造全等三角形是解题的关键,注意旋转性质的应用.10、8【解析】【分析】直接利用菱形的性质得出AB=AD=10,S△ABD=12.5,进而利用三角形面积求法得出答案.【详解】解:∵菱形ABCD的周长为40,面积为80,∴AB=AD=10,S△ABD=40,∵分别作P点到直线AB、AD的垂线段PE、PF,∴12×AB×PE+12×PF×AD=40,∴12×10(PE+PF)=40,∴PE+PF=8.故答案为:8.【点睛】此题主要考查了菱形的性质,正确得出12×AB×PE+12×PF×AD=S△ABD是解题关键.三、解答题1、 (1)“翻移运动”对应点(指图1中的A 与2A ,B 与2)B ⋯连线被翻移线平分(2)3(3)11或10【解析】【分析】(1)画出图形,即可得出结论;(2)作直线EF ,即为“翻移线”直线a ,再由“翻移运动”的性质和三角形面积关系求解即可;(3)分两种情况:①ABM ∆先按(2)的“翻移线”直线a 翻折,然后再向上平移2个单位,②ABM ∆先按(2)的“翻移线”直线a 翻折,然后再向下平移2个单位,由“翻移运动”的性质、梯形面积公式和三角形面积公式分别求解即可.(1)解:如图1,连接2AA ,2BB ⋯,则“翻移运动”对应点(指图1中的A 与2A ,B 与2)B ⋯连线被翻移线平分;(2)解:作直线EF ,即为“翻移线”直线a ,如图2所示:四边形ABCD 是长方形,AB CD ∴=,8AD BC ==,由“翻移运动”的性质得:AB DC GD ==,142AF DF AD ===,O 是AG 的中点,3AOF OGF S S ∆∆∴==, ΔΔ26AFG OGF S S ∴==,AF DF =,ΔΔ6GDF AFG S S ∴==,Δ114622GDF S DG DF DG ∴=⨯=⨯⨯=, 3DG ∴=,3AB ∴=;(3)解:分两种情况:①ABM ∆先按(2)的“翻移线”直线a 翻折,然后再向上平移2个单位,如图3所示:设ABE ∆翻折后的三角形为DCP ∆,连接1PM ,则1112A D B C M P ===,同(2)得:1112KF A D ==,1112HE M P ==,4BE =,1BM =,3ME BE BM ∴=-=,∴四边形AKHM 的面积=梯形ABEK 的面积ABM -∆的面积HME -∆的面积111(331)4313111222=⨯++⨯-⨯⨯-⨯⨯=; ②ABM ∆先按(2)的“翻移线”直线a 翻折,然后再向下平移2个单位,如图4所示:设ABE ∆翻折后的三角形为DCP ∆,连接1PM ,则1112A D B C M P ===,同(2)得:1112KF A D ==,1112HE M P ==,4BE =,1BM =,3ME BE BM ∴=-=,∴四边形AKHM 的面积=梯形AFEM 的面积AFK -∆的面积HME +∆的面积111(34)3413110222=⨯+⨯-⨯⨯+⨯⨯=; 综上所述,四边形AKHM 的面积为11或10.【点睛】本题是四边形综合题目,考查了长方形的性质、“翻移运动”的性质、梯形面积公式、三角形面积公式等知识,本题综合性强,解题的关键是熟练掌握“翻移运动”的性质和长方形的性质.2、 (1)见解析 (2)12【解析】【分析】(1)易证DEB A ∠=∠,即可证明ACB EBD ∆≅∆,得出BC BD =,根据点E 是BC 的中点即可解题;(2)过点M 作,BC AC 的垂线,交于点,P Q ,证四边形PMQC 为矩形,再证得四边形PMQC 为正方形,得出MP MQ =,根据ACM BCM S AC S BC=. (1)解:证明:90DEB ABC ∠+∠=︒,90A ABC ∠+∠=︒,DEB A ∴∠=∠, 在ACB ∆和EBD ∆中,ACB DBE A DEB AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,AAS;∴∆≅∆,()ACB EBD∴=,BC BD点E是BC的中点,∴=,2EC BC∴=;2BD EC(2)BC AC的垂线,交于点,P Q,解:过点M作,∴∠=︒,MP QC MQ PC MPC//,//,90∴四边形PMQC为矩形,=∠=︒,BC BD DBC,90∴△为等腰直角三角形,BCD∴∠=︒,MCP45∴为等腰直角三角形,CPM∴=,CP MP∴四边形PMQC为正方形,∴=,MP MQ11,22ACM BCM SAC MQ S BC MQ =⋅=⋅, ACMBCM S AC S BC ∴=, 12AC BC =, 12ACMBCMSS ∴=. 【点睛】本题考查了全等三角形的判定,等腰直角三角形,正方形的判定及性质,解题的关键是掌握全等三角形的判定及性质,同时利用等量代换的思想进行求解.3、 (1)见解析(2)33°【解析】【分析】(1)由菱形的性质可得AB =CD =BE ,AB //CD ,可证四边形BECD 是平行四边形,可得BD =EC ;(2)由平行四边形的性质可得BD //CE ,可得∠ABO =∠E =57°,菱形的性质可求∠BAO 的大小.(1)证明:∵四边形ABCD 是菱形,∴AB =CD ,AB //CD又∵BE =AB ,∴BE =CD ,BE //CD ,∴四边形BECD 是平行四边形∴BD =EC(2)∵四边形BECD是平行四边形,∴BD//CE,∴∠ABO=∠E=57°又∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOB=90°∴∠BAO+∠ABO=90°∴∠BAO=90°-∠ABO=33°【点睛】本题考查了菱形的性质,平行四边形的判定和性质,熟练运用菱形的性质是本题的关键.,对角线互相垂直的平行四边形为菱形4、(1)见解析;(2)四边形ABCD为平行四边形,BD AC【解析】【分析】(1)根据几何语言画出对应的几何图形;(2)先证明四边形ABCD为平行四边形,然后利用对角线垂直可判断四边形ABCD为菱形.【详解】解:(1)如图,四边形ABCD为所作;(2)完成下面的证明.=,证明:OA OC=,OB OD∴四边形ABCD为平行四边形,BD AC⊥,∴四边形ABCD为菱形(对角线互相垂直的平行四边形为菱形).⊥,对角线互相垂直的平行四边形为菱形.故答案为四边形ABCD为平行四边形,BD AC【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了菱形的判定.5、见解析【解析】【分析】作△ABC的角平分线AE,作线段AE的垂直平分线MN交AB于点D,交AC于点F.四边形ADEF即为所求.【详解】解:如图:四边形ADEF即为所求.【点睛】本题考查了基本作图,正方形的判定和性质等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.。
初三矩形菱形正方形练习题
初三矩形菱形正方形练习题题一:给定一个矩形的长和宽,求其面积。
解答:设矩形的长为L,宽为W,则矩形的面积S = L × W。
题二:已知一个矩形的周长为40cm,且长大于宽,求矩形的长和宽。
解答:设矩形的长为L,宽为W。
根据矩形的周长公式,2L + 2W = 40。
由于长大于宽,则L > W。
可以推导出L = 20 - W。
代入矩形面积公式S = L × W中,得到(20 - W) × W = S。
求解这个二次方程,可以得到矩形的长和宽。
题三:一个矩形的长比宽多3cm,且矩形的面积为60平方厘米,求矩形的长和宽。
解答:设矩形的宽为W,则矩形的长为W + 3。
根据矩形的面积公式,(W + 3) × W = 60。
将方程化简为二次方程,然后求解得到矩形的长和宽。
题四:给定一个菱形的边长,求其周长。
解答:设菱形的边长为L,则菱形的周长P = 4L。
题五:已知一个菱形的周长为32cm,求菱形的面积。
解答:设菱形的边长为L。
根据菱形的周长公式,4L = 32,可以求得L。
然后利用菱形面积公式S = L²sin(45°)求得菱形的面积。
题六:给定一个正方形的边长,求其周长。
解答:设正方形的边长为L,则正方形的周长P = 4L。
题七:已知一个正方形的周长为60cm,求正方形的面积。
解答:设正方形的边长为L。
根据正方形的周长公式,4L = 60,可以求得L。
然后利用正方形面积公式S = L²求得正方形的面积。
题八:在一块正方形纸上,用两个顶点分别连接两个相对边的中点,得到一个菱形,如图所示。
解答:首先利用刻度尺等工具在纸上量好正方形的边长,然后找到两个相对边的中点,并用铅笔将它们连接起来,注意连接线要经过两个顶点。
这样就得到了一个菱形。
题九:如何判断一个四边形是矩形?解答:一个四边形是矩形的条件是它的四个内角均为直角,即每个内角为90°。
矩形、菱形与正方形提高练习2
(第10题)FAB CDH EG①②③④ ⑤1. (2011浙江省舟山,10,3分)如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm 2,四边形ABCD 面积是11cm 2,则①②③④四个平行四边形周长的总和为( ) (A )48cm (B )36cm (C )24cm(D )18cm2. (2011山东德州8,3分)图1是一个边长为1的等边三角形和一个菱形的组合图形,菱形边长为等边三角形边长的一半,以此为基本单位,可以拼成一个形状相同但尺寸更大的图形(如图2),依此规律继续拼下去(如图3),……,则第n 个图形的周长是(A )2n(B )4n(C )12n + (D )22n +3. (2011山东泰安,17 ,3分)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为A.17B.17C.18D.195. (2011浙江杭州,10,3)在矩形ABCD 中,有一个菱形B F D E (点E ,F 分别在线段AB ,CD 上),记它们的面积分别 为ABCD BFDE S S 和.现给出下列命题:( ) ①若232ABCD BFDE S S +=,则3tan 3EDF ∠=.②若2,DE BD EF =∙则2DF AD =. 则:A .①是真命题,②是真命题B .①是真命题,②是假命题C .①是假命题,②是真命题D ,①是假命题,②是假命题图1图2图3………A 1 AA 2A 3B B 1B 2B 3C C 2 C 1C 3DD 2D 1 D 3第10题图A BCD EFG H第12题图8. 2011四川重庆,10,4分)如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =3.其中正确结论的个数是( ) A .1B .2C .3D .415. ( 2011重庆江津, 10,4分)如图,四边形ABCD 中,AC=a,BD=b,且AC ⊥BD,顺次连接四边形ABCD 各边中点,得到四边形A 1B 1C 1D 1,再顺次连接四边形A 1B 1C 1D 1各边中点,得到四边形A 2B 2C 2D 2……,如此进行下去,得到四边形A n B n C n D n .下列结论正确的有( )①四边形A 2B 2C 2D 2是矩形; ②四边形A 4B 4C 4D 4是菱形;③四边形A 5B 5C 5D 5的周长4b a +; ④四边形A n B n C n D n 的面积是12+n abA.①②B.②③C.②③④D.①②③④19. (2011四川乐山9,3分)如图(5),在正方形ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 交BF 于点H ,CG ∥AE 交BF 于点G 。
矩形菱形正方形练习题和答案
一、性质1、下列性中.矩形具有而质平行四边形不一定具有的是()A 、对边相等B 、对角相等C 、对角线相等D 、对边平行2 .在矩形ABCD 中.NAOD=130°.则NACB=__3 .已知矩形的一条对角线长是8cm.两条对角线的一个交角为60°.则矩形的周长为4 .矩形ABCD 被两条对角线分成四个小三角形.如果四个小三角形的周长的和是86cm.对角线是13cm.那么矩形的周长是5 .如图所示.矩形ABCD 中.AE ,BD 于E.Nk BAE=30°.BE=1cm.那么DE 的长为 6、直角三角形斜边上的高与中线分别是5cm 和6cm.则它的面积为7、已知.在Rt△ABC 中出口为斜边AC 上的中线.若NA=35°.那么NDBC 二。
8、如图.矩形ABCD 中.AC 与8口交于。
点.BELAC 于E.CFLBD 于F.求证:BE=CF. 9 .如口图.△ABC 中.NACB=90度.点D 、E 分别为AC 、AB 矩形的习题精选AB的中点.点F在BC延长线上.且/CDF=NA.求证:四边形DECF是平行四边形;10.已知:如图.在aABC中.NBACW90°NABC=2NC.AD±AC.交BC或CB的延长线D。
试说明:DC=2AB.11、在4ABC中.NC=90O.AC=BC.AD=BD.PE^AC于点E.PFLBC于点F。
求证:DE=DF二、判定1、下列检查一个门框是否为矩形的方法中正确的是(C)A.测量两条对角线.是否相等B.测量两条对角线.是否互相平分他用曲尺测量门框的三个角.是否都是直角口.用曲尺测量对角线.是否互相垂直2、平行四边形ABCD.E是CD的中点.4人8£是等边三角形.求证:四边形ABCD是矩形3、在平行四边形ABCD中.对角线AC、BD相交于O.EF过点O.且AF,BC. 求证:四边形AFCE是矩形4、平行四边形ABCD中.对角线AC、8口相交于点。
16.2 矩形-菱形与正方形的性质同步练习
16.2矩形、菱形与正方形的性质一、课内训练:1.如图,矩形ABCD的两条对角线相交于O,∠AOD=120°,AB=4cm,求对角线AC的长.(1) (2)4.如图,以正方形ABCD的边CD为一边在正方形外作等边△CDE,连接BE,交正方形的对角线AC于点F,连接DF,求∠AFD的度数.5.(1)如图,把一矩形ABCD的纸片,沿EF折叠后,点D、C分别落在D′、C′的位置上,ED′与BC的交点为G,若∠EFG=55°,求∠1、∠2的度数.(2)如图,把一矩形纸片ABCD,沿EF折叠后,点D和点B重合,点C落在C•′位置,若AB=4cm,AD=12cm,求BE的长度.6.已知△ABC,∠A:∠B:∠C=1:2:3,AB=6cm,D为AB边上的中点,求CD的长.7.•已知菱形的边长为10cm,•则菱形对角线的交点到四条边中点的距离之和为_____cm.8.如图所示,在矩形ABCD中,对角线AC分∠BAD为∠1,∠2,且∠1:∠2=1:2,AB=3cm,求AC的长.9.菱形ABCD的两条对角线分别为5cm,12cm,则菱形ABCD的面积为多少?10.对于左栏的案例4,采用“补短法”还可以怎样作辅助线,证明出BE=BG+FC?11.如图,E、F分别在正方形ABCD的边AD、CD上,且∠FBC=∠EBF,• 求证:BE=AE+CF.二、课外演练1.正方形具有而菱形不一定具有的特征是()A.四条边都相等 B.对角线互相垂直平分C.对角线平分一组对角 D.对角线相等2.一个菱形的两条对角线长分别为7cm和8cm,则这个菱形的面积为()A.56cm2 B.28cm2 C.14cm2 D.36cm23.如图,EF为矩形ABCD对角线的交点O,•且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD面积的()A.15B.14C.13D.310(第3题)(第6题)(第8题)4.若矩形的一条对角线与一边的夹角是40°,则两条对角线相交所成的锐角是()A.20° B.40° C.80° D.100°5.菱形的一条对角线与一条边长相等,则这菱形锐角的度数为_______.6.如图,已知矩形ABCD的对角线相交于点O,△AOD的周长比△AOB的周长大8cm,矩形周长是80cm,求矩形ABCD的面积.7.如果矩形的两条对角线所成的角中有一个角为60°,那么()A.它的对角线长是长边长度的2倍 B.它的对角线长是短边长度的2倍C.它的长边是短边长度的2倍 D.上述关系无法确定8.如图,矩形ABCD中,AD=30,AB=20,E、F三等分对角线AC,则S△ABE=()A.60 B.100 C.150 D.2009.能够在图形内找到一点,使该点到四边形的各边距离都相等,则该四边形一定是() A.平行四边形、菱形; B.矩形、正方形; C.矩形、菱形; D.菱形、正方形10.如图16-2-21,在矩形ABCD中,AE⊥BD于E,∠DAE=3∠BAE,则∠EAC为()A.30° B.45° C.60° D.75°(第10题)(第14题)(第15题)11.矩形的一个角的平分线把矩形的一边分成5cm或8cm,此矩形周长为_____cm.12.菱形的面积为24cm2,一条对角线的长为8cm,则另一条对角线的长是_____cm.13.菱形的周长是20cm,那么一边上的中点到两条对角线交点的距离为______cm.14.如图,若点P是正方形ABCD内任意一点,且正方形的边长为1,若S△ABP=0.4,则S△DCP =______.15.如图,正方形ABCD的对角线相交于O点,点O是正方形A′B′C′O的一个顶点,如19.在如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A、B、C、D的面积和是多少?20.阅读以下短文,然后解决下列问题:如果一个三角形和一个矩形满足条件:三角形的一边与矩形的一边重合,且三角形的这边所对的顶点在矩形这边的对边上,•则称这样的矩形为三角形的“友好矩形”,如图①所示,矩形ABEF即为△ABC的“友好矩形”.显然,当△ABC•是钝角三角形时,其“友好矩形”只有一个.(1)仿照以上叙述,说明什么是一个三角形的“友好平行四边形”.(2)如图②,若△ABC为直角三角形,且∠C=90°,在图16-2-28•②中画出△ABC的所有“友好矩形”,并比较这些矩形面积的大小.(3)若△ABC是锐角三角形,且BC>AC>AB.在图③中画出△ABC的所有“友好矩形”,指出其中周长最小的矩形并加以证明.答案:一、课内训练:1.解:∵四边形ABCD是矩形,∴AC=BD,AO=CO=12AC,OB=OD=12BD(矩形对角线相等且互相平分).∴AO=CO=OB=OD.又∵∠AOD=120°,∴∠AOB=60°.∴△AOB是等边三角形.即AO=BO=AB=4(cm).∴AC=2×4=8(cm).点拨:根据矩形的对角线相等且互相平分的特征,矩形的两条对角线把矩形分成了四个等腰三角形,若矩形的两条对角线的夹角中,如果有60°或120°的角,则必有等边三角形.2.解:∵四边形ABCD为菱形,∴AB=AD.又∵∠A=60°,∴△ABD为等边三角形.∴AB=AD=BD=5.∴菱形的周长为4AB=5×4=20.点拨:根据菱形的特征,四条边都相等,所以AB=AD,结合∠A=60°,可得△ABD•为等边三角形,从而求得菱形的边长,进而求得菱形的周长.3.解:(1)因为四边形ABCD是正方形.所以∠BOE=∠AOF=90°,OA=OB.又因为AM⊥EB,所以∠MAE+∠MEA=90°=∠OBE+∠MEA.所以∠MAE=∠OBE.所以△AOF绕O点逆时针方向旋转90°可与△BOE重合.所以OE=OF.(2)OE=OF仍成立,说明如下:因为四边形ABCD是正方形,所以∠BOE=∠AOF=90°,BO=AO.因为AM⊥EB,所以∠OEB+∠OAM=90°=∠OFA+∠OAM.所以∠OEB=∠OFA.所以△AOF绕O点逆时针旋转90°后可与△BOE重合.所以OE=OF.点拨:要使OE=OF,只需证明△AOF和△BOE重合,根据已知条件和正方形的特征易得到,“问题”的基本思路是先假设结论成立,然后用分析法探求其成立条件,•若题设所给条件满足要求,则成立,反之则不成立.4.解:∵四边形ABCD是正方形.∴AB=AD,∠BAF=∠DAF.∴△ABF与△ADF全等.∴∠AFD=∠AFB.∵CB=CE,∴∠CBE=∠CEB.∵∠BCE=∠BCD+∠DCE=90°+60°=150°,∴∠CBE=15°.∵∠ACB=45°,∴∠AFB=∠ACB+∠CBE=60°.∴∠AFD=60°.点拨:易得△ABF与△ADF全等,∠AFD=∠AFB,因此只要求出∠AFB的度数即可.由∠AFB=∠ACB+∠EBC,∠ACB=45°,转化为求∠EBC的度数,在等腰△BCE中可求得.5.(1)解:在矩形ABCD中,AD∥BC,∴∠DEF=∠EFB,∠1+∠2=180°.又∵∠EFG=55°,由对称性可知∠GEF=∠DEF=55°.∴∠1=180°-∠GEF-∠DEF=70°.∴∠2=180°-∠1=110°.10.如图,过点G作BC的平行线交DC的延长线于点H,则得矩形BGHC.∴GH=BC=AB,BG=CH,∵∠HGF+∠AGE=90°,∠BAE+∠AGE=90°,∴∠BAE=∠HGF.解①②得 AD=24,AB=16.∴S矩形ABCD=24×16=384(cm2).点拨:利用矩形的对角线相等且互相平分.7.B 点拨:当矩形两条对角线夹角中有一个为60°时,一定有等边三角形.8.B 点拨:S矩形=20×30=600,S△ABC =12×600=300.9.D 点拨:由于菱形和正方形的对角线平分每一组内角,•而角平分线上的点到角两边的距离相等,因此菱形和正方形对角线的交点即为满足题意的点.10.B 点拨:由∠DAE=3∠BAE,得∠BAE=22.5°,18.如图19.解:由勾股定理得S A+S B+S C+S D=S最大正方形=49.20.解:(1)如果一个三角形和一个平行四边形满足条件:三角形的一边与平行四边形的一边重合,三角形这边所对的顶点在平行四边形这边的对边上,则称这样的平行四边(2)题 (3)题)此时共有3个友好矩形,如图的及ABHK,其中的矩形ABHK证明如下:易知,这三个矩形的面积相等,令其为.∴L1-L2>0,即L1>L2,同理可得L2>L3.∴L3最小,即矩形ABHK的周长最小.点拨:根据矩形的特征、三角形面积的有关知识解决.。
矩形、菱形、正方形(解答题)专练(详细答案)
9.4 矩形、菱形、正方形(解答题)1.如图,在平行四边形ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.2.如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD交AD 的延长线于点F,求证:DF=BE.3.如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.4.已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE,CF,求证:△ADE≌△CDF.5.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.6.如图,把△EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=6,∠BAD=60°,且AB>6.(1)求∠EPF的大小;(2)若AP=10,求AE+AF的值;(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.7.如图,在△ABC中,∠ACB=90°,D,E分别为AC,AB的中点,BF∥CE交DE 的延长线于点F.(1)求证:四边形ECBF是平行四边形;(2)当∠A=30°时,求证:四边形ECBF是菱形.8.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,AC与BD相交于点O,连接CD(1)求∠AOD的度数;(2)求证:四边形ABCD是菱形.9.如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.10.如图,在Rt△ABC中,∠B=90°,点E是AC的中点,AC=2AB,∠BAC的平分线AD交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.11.如图,在四边形ABCF中,∠ACB=90°,点E是AB边的中点,点F恰是点E 关于AC所在直线的对称点.(1)证明:四边形CFAE为菱形;(2)连接EF交AC于点O,若BC=10,求线段OF的长.12.如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.(1)四边形ABEF是;(选填矩形、菱形、正方形、无法确定)(直接填写结果)(2)AE,BF相交于点O,若四边形ABEF的周长为40,BF=10,则AE的长为,∠ABC=°.(直接填写结果)13.如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=,∠DCF=30°,求四边形AECF的面积.(结果保留根号)14.如图,已知BD是矩形ABCD的对角线.(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明).(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由.15.如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.16.如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点.(1)求证:CP=AQ;(2)若BP=1,PQ=2,∠AEF=45°,求矩形ABCD的面积.17.如图,矩形ABCD的对角线AC,BD相交于点O,若AB=AO,求∠ABD的度数.18.已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.19.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.20.如图,菱形ABCD的对角线AC,BD相交于点O,且DE∥AC,AE∥BD.求证:四边形AODE是矩形.21.如图,将平行四边形ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F.(1)求证:△BEF≌△CDF;(2)连接BD、CE,若∠BFD=2∠A,求证:四边形BECD是矩形.22.阅读下面材料:在数学课上,老师请同学思考如下问题:如图1,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFGH是平行四边形吗?小敏在思考问题是,有如下思路:连接AC.结合小敏的思路作答(1)若只改变图1中四边形ABCD的形状(如图2),则四边形EFGH还是平行四边形吗?说明理由;参考小敏思考问题方法解决一下问题:(2)如图2,在(1)的条件下,若连接AC,BD.①当AC与BD满足什么条件时,四边形EFGH是菱形,写出结论并证明;②当AC与BD满足什么条件时,四边形EFGH是矩形,直接写出结论.23.如图,点P在矩形ABCD的对角线AC上,且不与点A,C重合,过点P分别作边AB,AD的平行线,交两组对边于点E,F和G,H.(1)求证:△PHC≌△CFP;(2)证明四边形PEDH和四边形PFBG都是矩形,并直接写出它们面积之间的关系.24.已知,如图,正方形ABCD中,E为BC边上一点,F为BA延长线上一点,且CE=AF.连接DE、DF.求证:DE=DF.25.如图,在正方形ABCD中,点E(与点B、C不重合)是BC边上一点,将线段EA绕点E顺时针旋转90°到EF,过点F作BC的垂线交BC的延长线于点G,连接CF.(1)求证:△ABE≌△EGF;=2S△ECF,求BE.(2)若AB=2,S△ABE26.已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ 于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.27.在平面直角坐标系中,点O为原点,点A的坐标为(﹣6,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=60°,OE=OA,求直线EF的函数表达式.(2)若α为锐角,tanα=,当AE取得最小值时,求正方形OEFG的面积.(3)当正方形OEFG的顶点F落在y轴上时,直线AE与直线FG相交于点P,△OEP的其中两边之比能否为:1?若能,求点P的坐标;若不能,试说明理由28.如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.(1)已知EO=,求正方形ABCD的边长;(2)猜想线段EM与CN的数量关系并加以证明.29.如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.求证:AE=EF.30.如图,在正方形ABCD中,E是边AB的中点,F是边BC的中点,连结CE、DF.求证:CE=DF.答案与解析1.(2016•安顺)如图,在平行四边形ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.【分析】第(1)问要证明三角形全等,由平行四边形的性质,很容易用SAS证全等.第(2)要求菱形的面积,在第(1)问的基础上很快知道△ABE为等边三角形.这样菱形的高就可求了,用面积公式可求得.【解答】(1)证明:∵在▱ABCD中,AB=CD,∴BC=AD,∠ABC=∠CDA.又∵BE=EC=BC,AF=DF=AD,∴BE=DF.∴△ABE≌△CDF.(2)解:∵四边形AECF为菱形,∴AE=EC.又∵点E是边BC的中点,∴BE=EC,即BE=AE.又BC=2AB=4,∴AB=BC=BE,∴AB=BE=AE,即△ABE为等边三角形,▱ABCD的BC边上的高为2×sin60°=,∴菱形AECF的面积为2.【点评】考查了全等三角形,四边形的知识以及逻辑推理能力.(1)用SAS证全等;(2)若四边形AECF为菱形,则AE=EC=BE=AB,所以△ABE为等边三角形.2.(2016•广安)如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD交AD的延长线于点F,求证:DF=BE.【分析】连接AC,根据菱形的性质可得AC平分∠DAE,CD=BC,再根据角平分线的性质可得CE=FC,然后利用HL证明Rt△CDF≌Rt△CBE,即可得出DF=BE.【解答】证明:连接AC,∵四边形ABCD是菱形,∴AC平分∠DAE,CD=BC,∵CE⊥AB,CF⊥AD,∴CE=FC,∠CFD=∠CEB=90°.在Rt△CDF与Rt△CBE中,,∴Rt△CDF≌Rt△CBE(HL),∴DF=BE.【点评】此题考查了菱形的性质,角平分线的性质,关键是掌握菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;角平分线的性质:角的平分线上的点到角的两边的距离相等.同时考查了全等三角形的判定与性质.3.(2016•荆州)如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.【分析】当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.先证明CD=DA=DB,得到∠DAC=∠DCA,由AC∥A′C′即可得到∠DA′E=∠DEA′由此即可判断△DA′E的形状.由EF∥AB推出∠CEF=∠EA′D,∠EFC=∠A′D′C=∠A′DE,再根据A′D=DE=EF即可证明.【解答】解:当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.理由:∵△BCA是直角三角形,∠ACB=90°,AD=DB,∴CD=DA=DB,∴∠DAC=∠DCA,∵A′C′∥AC,∴∠DA′E=∠A,∠DEA′=∠DCA,∴∠DA′E=∠DEA′,∴DA′=DE,∴△A′DE是等腰三角形.∵四边形DEFD′是菱形,∴EF=DE=DA′,EF∥DD′,∴∠C′EF=∠DA′E,∠EFC′=∠C′D′A′,∵CD∥C′D′,∴∠A′DE=∠A′D′C′=∠EFC′,在△A′DE和△EFC′中,,∴△A′DE≌△EFC′.【点评】本题考查平移、菱形的性质、全等三角形的判定和性质、直角三角形斜边中线定理等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.4.(2016•淮安)已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE,CF,求证:△ADE≌△CDF.【分析】由菱形的性质得出AD=CD,由中点的定义证出DE=DF,由SAS证明△ADE ≌△CDF即可.【解答】证明:∵四边形ABCD是菱形,∴AD=CD,∵点E、F分别为边CD、AD的中点,∴AD=2DF,CD=2DE,∴DE=DF,在△ADE和△CDF中,,∴△ADE≌△CDF(SAS).【点评】此题主要考查了全等三角形的判定、菱形的性质;熟练掌握菱形的性质,证明三角形全等是解决问题的关键.5.(2016•苏州)如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D 作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.【分析】(1)根据平行四边形的判定证明即可;(2)利用平行四边形的性质得出平行四边形的周长即可.【解答】(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形;(2)解:∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE的周长为AD+AE+DE=5+5+8=18.【点评】此题考查平行四边形的性质和判定问题,关键是根据平行四边形的判定解答即可.6.(2016•枣庄)如图,把△EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=6,∠BAD=60°,且AB>6.(1)求∠EPF的大小;(2)若AP=10,求AE+AF的值;(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.【分析】(1)根据锐角三角函数求出∠FPG,最后求出∠EPF.(2)先判断出Rt△PME≌Rt△PNF,再根据锐角三角函数求解即可,(3)根据运动情况及菱形的性质判断求出AP最大和最小值.【解答】解:(1)过点P作PG⊥EF于点G,如图1所示.∵PE=PF=6,EF=6,∴FG=EG=3,∠FPG=∠EPG=∠EPF.在Rt△FPG中,sin∠FPG===,∴∠FPG=60°,∴∠EPF=120°.(2)过点P作PM⊥AB于点M,作PN⊥AD于点N,如图2所示.∵AC为菱形ABCD的对角线,∴∠DAC=∠BAC,AM=AN,PM=PN.在Rt△PME和Rt△PNF中,PM=PN,PE=PF,∴Rt△PME≌Rt△PNF,∴ME=NF.又AP=10,∠PAM=∠DAB=30°,∴AM=AN=APcos30°=10×=5,∴AE+AF=(AM+ME)+(AN﹣NF)=AM+AN=10.(3)如图,当△EFP的三个顶点分别在AB,AD,AC上运动,点P在P′,P之间运动,∴P′O=PO=3,AO=9,∴AP的最大值为12,AP的最小值为6,【点评】此题是菱形的性质题,主要考查了菱形的性质,锐角三角函数,特殊角的三角函数,解本题的关键是作出辅助线.7.(2016•三明)如图,在△ABC中,∠ACB=90°,D,E分别为AC,AB的中点,BF∥CE交DE的延长线于点F.(1)求证:四边形ECBF是平行四边形;(2)当∠A=30°时,求证:四边形ECBF是菱形.【分析】(1)利用平行四边形的判定证明即可;(2)利用菱形的判定证明即可.【解答】证明:(1)∵D,E分别为边AC,AB的中点,∴DE∥BC,即EF∥BC.又∵BF∥CE,∴四边形ECBF是平行四边形.(2)∵∠ACB=90°,∠A=30°,E为AB的中点,∴CB=AB,CE=AB.∴CB=CE.又由(1)知,四边形ECBF是平行四边形,∴四边形ECBF是菱形.【点评】此题主要考查了平行四边形的判定以及菱形的判定与性质,利用平行四边形的判定以及菱形的判定是解题关键.8.(2016•抚顺)如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,AC与BD相交于点O,连接CD(1)求∠AOD的度数;(2)求证:四边形ABCD是菱形.【分析】(1)首先根据角平分线的性质得到∠DAC=∠BAC,∠ABD=∠DBC,然后根据平行线的性质得到∠DAB+∠CBA=180°,从而得到∠BAC+∠ABD=(∠DAB+∠ABC)=×180°=90°,得到答案∠AOD=90°;(2)根据平行线的性质得出∠ADB=∠DBC,∠DAC=∠BCA,根据角平分线定义得出∠DAC=∠BAC,∠ABD=∠DBC,求出∠BAC=∠ACB,∠ABD=∠ADB,根据等腰三角形的判定得出AB=BC=AD,根据平行四边形的判定得出四边形ABCD是平行四边形,即可得出答案.【解答】解:(1)∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∵AE∥BF,∴∠DAB+∠CBA,=180°,∴∠BAC+∠ABD=(∠DAB+∠ABC)=×180°=90°,∴∠AOD=90°;(2)证明:∵AE∥BF,∴∠ADB=∠DBC,∠DAC=∠BCA,∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∴∠BAC=∠ACB,∠ABD=∠ADB,∴AB=BC,AB=AD∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,∵AD=AB,∴四边形ABCD是菱形.【点评】本题考查了等腰三角形的性质,平行四边形的判定,菱形的判定的应用,能得出四边形ABCD是平行四边形是解此题的关键.9.(2016•沈阳)如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.【分析】(1)欲证明∠CEB=∠CBE,只要证明∠CEB=∠ABD,∠CBE=∠ABD即可.(2)先证明四边形CEDB是平行四边形,再根据BC=BD即可判定.【解答】证明;(1)∵△ABC≌△ABD,∴∠ABC=∠ABD,∵CE∥BD,∴∠CEB=∠DBE,∴∠CEB=∠CBE.(2))∵△ABC≌△ABD,∴BC=BD,∵∠CEB=∠CBE,∴CE=CB,∵CE∥BD,∴四边形CEDB是平行四边形,∵BC=BD,∴四边形CEDB是菱形.【点评】本题考查全等三角形的性质、菱形的判定、平行四边形的判定等知识,熟练掌握全等三角形的性质是解题的关键,记住平行四边形、菱形的判定方法,属于中考常考题型.10.(2016•聊城)如图,在Rt△ABC中,∠B=90°,点E是AC的中点,AC=2AB,∠BAC的平分线AD交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.【分析】先证明△AEF≌△CED,推出四边形ADCF是平行四边形,再证明△AED ≌△ABD,推出DF⊥AC,由此即可证明.【解答】证明:∵AF∥CD,∴∠AFE=∠CDE,在△AFE和△CDE中,,∴△AEF≌△CED.∵AF∥CD,∴四边形ADCF是平行四边形.由题意知,AE=AB,∠EAD=∠BAD,AD=AD,∴△AED≌△ABD.∴∠AED=∠B=90°,即DF⊥AC.∴四边形ADCF是菱形.【点评】本题考查菱形的判定、全等三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用这些知识解决问题,属于基础题,中考常考题型.11.(2016•德阳)如图,在四边形ABCF中,∠ACB=90°,点E是AB边的中点,点F恰是点E关于AC所在直线的对称点.(1)证明:四边形CFAE为菱形;(2)连接EF交AC于点O,若BC=10,求线段OF的长.【分析】(1)根据直角三角形的性质得到CE=AB=EA,根据轴对称的性质得到AE=AF,CE=CF,得到CE=EA=AF=CF,根据菱形的判定定理证明结论;(2)根据菱形的性质得到OA=OC,OE=OF,根据三角形中位线定理求出OE,得到答案.【解答】(1)证明:∵∠ACB=90°,点E是AB边的中点,∴CE=AB=EA,∵点F是点E关于AC所在直线的对称点,∴AE=AF,CE=CF,∴CE=EA=AF=CF,∴四边形CFAE为菱形;(2)解:∵四边形CFAE为菱形;∴OA=OC,OE=OF,∴OE=BC=5,∴OF=5.【点评】本题考查的是菱形的判定和性质、轴对称的性质,掌握四条边相等的四边形是菱形、菱形的对角线垂直且互相平分是解题的关键.12.(2016•梅州)如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.(1)四边形ABEF是菱形;(选填矩形、菱形、正方形、无法确定)(直接填写结果)(2)AE,BF相交于点O,若四边形ABEF的周长为40,BF=10,则AE的长为10,∠ABC=120°.(直接填写结果)【分析】(1)先证明△AEB≌△AEF,推出∠EAB=∠EAF,由AD∥BC,推出∠EAF=∠AEB=∠EAB,得到BE=AB=AF,由此即可证明.(2)根据菱形的性质首先证明△AOB是含有30°的直角三角形,由此即可解决问题.【解答】解:(1)在△AEB和△AEF中,,∴△AEB≌△AEF,∴∠EAB=∠EAF,∵AD∥BC,∴∠EAF=∠AEB=∠EAB,∴BE=AB=AF.∵AF∥BE,∴四边形ABEF是平行四边形∵AB=AF,∴四边形ABEF是菱形.故答案为菱形.(2)∵四边形ABEF是菱形,∴AE⊥BF,BO=OF=5,∠ABO=∠EBO,∵AB=10,∴AB=2BO,∵∠AOB=90°∴∠BA0=30°,∠ABO=60°,∴AO=BO=5,∠ABC=2∠ABO=120°.故答案为,120.【点评】本题考查菱形的判定和性质、平行四边形的性质、作图﹣基本作图等知识,解题的关键是全等三角形的证明,想到利用特殊三角形解决问题,属于中考常考题型.13.(2016•贺州)如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=,∠DCF=30°,求四边形AECF的面积.(结果保留根号)【分析】(1)由过AC的中点O作EF⊥AC,根据线段垂直平分线的性质,可得AF=CF,AE=CE,OA=OC,然后由四边形ABCD是矩形,易证得△AOF≌△COE,则可得AF=CE,继而证得结论;(2)由四边形ABCD是矩形,易求得CD的长,然后利用三角函数求得CF的长,继而求得答案.【解答】(1)证明:∵O是AC的中点,且EF⊥AC,∴AF=CF,AE=CE,OA=OC,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFO=∠CEO,在△AOF和△COE中,,∴△AOF≌△COE(AAS),∴AF=CE,∴AF=CF=CE=AE,∴四边形AECF是菱形;(2)解:∵四边形ABCD是矩形,∴CD=AB=,在Rt△CDF中,cos∠DCF=,∠DCF=30°,∴CF==2,∵四边形AECF是菱形,∴CE=CF=2,∴四边形AECF是的面积为:EC•AB=2.【点评】此题考查了矩形的性质、菱形的判定与性质以及三角函数等知识.注意证得△AOF≌△COE是关键.14.(2016•衢州)如图,已知BD是矩形ABCD的对角线.(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明).(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由.【分析】(1)分别以B、D为圆心,比BD的一半长为半径画弧,交于两点,确定出垂直平分线即可;(2)连接BE,DF,四边形BEDF为菱形,理由为:由EF垂直平分BD,得到BE=DE,∠DEF=∠BEF,再由AD与BC平行,得到一对内错角相等,等量代换及等角对等边得到BE=BF,再由BF=DF,等量代换得到四条边相等,即可得证.【解答】解:(1)如图所示,EF为所求直线;(2)四边形BEDF为菱形,理由为:证明:∵EF垂直平分BD,∴BE=DE,∠DEF=∠BEF,∵AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,∵BF=DF,∴BE=ED=DF=BF,∴四边形BEDF为菱形.【点评】此题考查了矩形的性质,菱形的判定,以及作图﹣基本作图,熟练掌握性质及判定是解本题的关键.15.(2016•扬州)如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.【分析】(1)首先由矩形的性质和折叠的性质证得AB=CD,AD∥BC,∠ANF=90°,∠CME=90°,易得AN=CM,可得△ANF≌△CME(ASA),由平行四边形的判定定理可得结论;(2)由AB=6,AC=10,可得BC=8,设CE=x,则EM=8﹣x,CM=10﹣6=4,在Rt △CEM中,利用勾股定理可解得x,由平行四边形的面积公式可得结果.【解答】(1)证明:∵折叠,∴AM=AB,CN=CD,∠FNC=∠D=90°,∠AME=∠B=90°,∴∠ANF=90°,∠CME=90°,∵四边形ABCD为矩形,∴AB=CD,AD∥BC,∴AM=CN,∴AM﹣MN=CN﹣MN,即AN=CM,在△ANF和△CME中,,∴△ANF≌△CME(ASA),∴AF=CE,又∵AF∥CE,∴四边形AECF是平行四边形;(2)解:∵AB=6,AC=10,∴BC=8,设CE=x,则EM=8﹣x,CM=10﹣6=4,在Rt△CEM中,(8﹣x)2+42=x2,解得:x=5,∴四边形AECF的面积的面积为:EC•AB=5×6=30.【点评】本题主要考查了折叠的性质、矩形的性质、平行四边形的判定定理和勾股定理等,综合运用各定理是解答此题的关键.16.(2016•遵义)如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点.(1)求证:CP=AQ;(2)若BP=1,PQ=2,∠AEF=45°,求矩形ABCD的面积.【分析】(1)由矩形的性质得出∠A=∠ABC=∠C=∠ADC=90°,AB=CD,AD=BC,AB∥CD,AD∥BC,证出∠E=∠F,AE=CF,由ASA证明△CFP≌△AEQ,即可得出结论;(2)证明△BEP、△AEQ是等腰直角三角形,得出BE=BP=1,AQ=AE,求出PE=BP=,得出EQ=PE+PQ=3,由等腰直角三角形的性质和勾股定理得出AQ=AE=3,求出AB=AE﹣BE=2,DQ=BP=1,得出AD=AQ+DQ=4,即可求出矩形ABCD 的面积.【解答】(1)证明:∵四边形ABCD是矩形,∴∠A=∠ABC=∠C=∠ADC=90°,AB=CD,AD=BC,AB∥CD,AD∥BC,∴∠E=∠F,∵BE=DF,∴AE=CF,在△CFP和△AEQ中,,∴△CFP≌△AEQ(ASA),∴CP=AQ;(2)解:∵AD∥BC,∴∠PBE=∠A=90°,∵∠AEF=45°,∴△BEP、△AEQ是等腰直角三角形,∴BE=BP=1,AQ=AE,∴PE=BP=,∴EQ=PE+PQ=+2=3,∴AQ=AE=3,∴AB=AE﹣BE=2,∵CP=AQ,AD=BC,∴DQ=BP=1,∴AD=AQ+DQ=3+1=4,∴矩形ABCD的面积=AB•AD=2×4=8.【点评】本题考查了矩形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理等知识;熟练掌握矩形的性质,证明三角形全等是解决问题的关键.17.(2016•广州)如图,矩形ABCD的对角线AC,BD相交于点O,若AB=AO,求∠ABD的度数.【分析】首先证明OA=OB,再证明△ABO是等边三角形即可解决问题.【解答】解:∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∴AO=OB,∵AB=AO,∴AB=AO=BO,∴△ABO是等边三角形,∴∠ABD=60°.【点评】本题考查矩形的性质、等边三角形的判定和性质等知识,熟练掌握矩形的性质是解题的关键,属于基础题,中考常考题型.18.(2016•岳阳)已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.【分析】由四边形ABCD为矩形,得到四个角为直角,再由EF与FD垂直,利用平角定义得到一对角互余,利用同角的余角相等得到一对角相等,利用ASA得到三角形BEF与三角形CFD全等,利用全等三角形对应边相等即可得证.【解答】证明:∵四边形ABCD是矩形,∴∠B=∠C=90°,∵EF⊥DF,∴∠EFD=90°,∴∠EFB+∠CFD=90°,∵∠EFB+∠BEF=90°,∴∠BEF=∠CFD,在△BEF和△CFD中,,∴△BEF≌△CFD(ASA),∴BF=CD.【点评】此题考查了矩形的性质,以及全等三角形的判定与性质,熟练掌握矩形的性质是解本题的关键.19.(2016•福州)如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.【分析】(1)由折叠性质得∠MAN=∠DAM,证出∠DAM=∠MAN=∠NAB,由三角函数得出DM=AD•tan∠DAM=即可;(2)延长MN交AB延长线于点Q,由矩形的性质得出∠DMA=∠MAQ,由折叠性质得出∠DMA=∠AMQ,AN=AD=3,MN=MD=1,得出∠MAQ=∠AMQ,证出MQ=AQ,设NQ=x,则AQ=MQ=1+x,证出∠ANQ=90°,在Rt△ANQ中,由勾股定理得出方程,解方程求出NQ=4,AQ=5,即可求出△ABN的面积;(3)过点A作AH⊥BF于点H,证明△ABH∽△BFC,得出对应边成比例=,得出当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,由折叠性质得:AD=AH,由AAS证明△ABH≌△BFC,得出CF=BH,由勾股定理求出BH,得出CF,即可得出结果.【解答】解:(1)由折叠性质得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,∴DM=AD•tan∠DAM=3×tan30°=3×=;(2)延长MN交AB延长线于点Q,如图1所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ,由折叠性质得:△ANM≌△ADM,∴∠DMA=∠AMQ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ,设NQ=x,则AQ=MQ=1+x,∵∠ANM=90°,∴∠ANQ=90°,在Rt△ANQ中,由勾股定理得:AQ2=AN2+NQ2,∴(x+1)2=32+x2,解得:x=4,∴NQ=4,AQ=5,∵AB=4,AQ=5,=S△NAQ=×AN•NQ=××3×4=;∴S△NAB(3)过点A作AH⊥BF于点H,如图2所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠HBA=∠BFC,∵∠AHB=∠BCF=90°,∴△ABH∽△BFC,∴=,∵AH≤AN=3,AB=4,∴当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,如图3所示:由折叠性质得:AD=AH,∵AD=BC,∴AH=BC,在△ABH和△BFC中,,∴△ABH≌△BFC(AAS),∴CF=BH,由勾股定理得:BH===,∴CF=,∴DF的最大值=DC﹣CF=4﹣.【点评】本题考查了矩形的性质、折叠的性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质,证明三角形相似和三角形全等是解决问题的关键.20.(2016•吉林)如图,菱形ABCD的对角线AC,BD相交于点O,且DE∥AC,AE∥BD.求证:四边形AODE是矩形.【分析】根据菱形的性质得出AC⊥BD,再根据平行四边形的判定定理得四边形AODE为平行四边形,由矩形的判定定理得出四边形AODE是矩形.【解答】证明:∵四边形ABCD为菱形,∴AC⊥BD,∴∠AOD=90°,∵DE∥AC,AE∥BD,∴四边形AODE为平行四边形,∴四边形AODE是矩形.【点评】本题考查了矩形的判定以及菱形的性质,还考查了平行四边形的判定,掌握平行四边形的判定方法是解题的关键.21.(2016•南通)如图,将▱ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F.(1)求证:△BEF≌△CDF;(2)连接BD、CE,若∠BFD=2∠A,求证:四边形BECD是矩形.【分析】(1)先根据平行四边形的性质得出AB=CD,AB∥CD,再由BE=AB得出BE=CD,根据平行线的性质得出∠BEF=∠CDF,∠EBF=∠DCF,进而可得出结论;(2)根据平行四边形的性质可得AB∥CD,AB=CD,∠A=∠DCB,再由AB=BE,可得CD=EB,进而可判定四边形BECD是平行四边形,然后再证明BC=DE即可得到四边形BECD是矩形【解答】(1)证明:∵四边形ABCD是平行四边形,∵AB=CD,AB∥CD.∵BE=AB,∴BE=CD.∵AB∥CD,∴∠BEF=∠CDF,∠EBF=∠DCF,在△BEF与△CDF中,∵,∴△BEF≌△CDF(ASA);(2)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠A=∠DCB,∵AB=BE,∴CD=EB,∴四边形BECD是平行四边形,∴BF=CF,EF=DF,∵∠BFD=2∠A,∴∠BFD=2∠DCF,∴∠DCF=∠FDC,∴DF=CF,∴DE=BC,∴四边形BECD是矩形.【点评】此题主要考查的值矩形的判定及平行四边形的性质,关键是掌握平行四边形的对边相等;对角相等;对角线互相平分.22.(2016•兰州)阅读下面材料:在数学课上,老师请同学思考如下问题:如图1,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFGH是平行四边形吗?小敏在思考问题是,有如下思路:连接AC.结合小敏的思路作答(1)若只改变图1中四边形ABCD的形状(如图2),则四边形EFGH还是平行四边形吗?说明理由;参考小敏思考问题方法解决一下问题:(2)如图2,在(1)的条件下,若连接AC,BD.①当AC与BD满足什么条件时,四边形EFGH是菱形,写出结论并证明;②当AC与BD满足什么条件时,四边形EFGH是矩形,直接写出结论.【分析】(1)如图2,连接AC,根据三角形中位线的性质得到EF∥AC,EF=AC,然后根据平行四边形判定定理即可得到结论;(2)由(1)知,四边形EFGH是平行四边形,且FG=BD,HG=AC,于是得到当AC=BD时,FG=HG,即可得到结论;(3)根据平行线的性质得到GH⊥BD,GH⊥GF,于是得到∠HGF=90°,根据矩形的判定定理即可得到结论.【解答】解:(1)是平行四边形,证明:如图2,连接AC,∵E是AB的中点,F是BC的中点,∴EF∥AC,EF=AC,同理HG∥AC,HG=AC,综上可得:EF∥HG,EF=HG,故四边形EFGH是平行四边形;(2)AC=BD.理由如下:由(1)知,四边形EFGH是平行四边形,且FG=BD,HG=AC,∴当AC=BD时,FG=HG,∴平行四边形EFGH是菱形,(3)当AC⊥BD时,四边形EFGH为矩形;理由如下:同(2)得:四边形EFGH是平行四边形,∵AC⊥BD,GH∥AC,∴GH⊥BD,∴GH⊥GF,∴∠HGF=90°,∴四边形EFGH为矩形.【点评】此题主要考查了中点四边形,关键是掌握三角形中位线定理,三角形的中位线平行于第三边且等于第三边的一半.23.(2016•台州)如图,点P在矩形ABCD的对角线AC上,且不与点A,C重合,过点P分别作边AB,AD的平行线,交两组对边于点E,F和G,H.(1)求证:△PHC≌△CFP;(2)证明四边形PEDH和四边形PFBG都是矩形,并直接写出它们面积之间的关系.【分析】(1)由矩形的性质得出对边平行,再根据平行线的性质得出相等的角,结合全等三角形的判定定理AAS即可得出△PHC≌△CFP;(2)由矩形的性质找出∠D=∠B=90°,再结合对边互相平行即可证出四边形PEDH 和四边形PFBG都是矩形,通过角的正切值,在直角三角形中表示出直角边的关系,利用矩形的面积公式即可得出两矩形面积相等.【解答】证明:(1)∵四边形ABCD为矩形,∴AB∥CD,AD∥BC.∵PF∥AB,∴PF∥CD,∴∠CPF=∠PCH.。
2024学年八年级数学经典好题专项(矩形、菱形、正方形)练习(附答案)
2024学年八年级数学经典好题专项(矩形、菱形、正方形)练习一、选择题1、菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形2、如图,菱形ABCD 中,∠D =150°,则∠1=( )A .30°B .25°C .20°D .15°(2题) (3题) (4题)3、如图,在▱ABCD 中,AB =BC ,下列结论错误的是( )A .四边形ABCD 是菱形B .AB =ADC .AO =OC ,BO =OD D .∠BAD =∠ABC4、如图所示,菱形ABCD 中,∠B =60°,AB =2,E 、F 分别是BC 、CD 的中点,连接AE 、EF 、AF ,则△AEF 的周长为( )A .2 3B .3 3C .4 3D .35、如图,菱形ABCD 中,AB=15,∠ADC=120°,则B、D 两点之间的距离为( )A.15 B.3215 C.7.5 D.315(5题) (7题) (8题) (9题)6、菱形的周长为32cm,一个内角的度数是60°,则两条对角线的长分别是( )A.8cm 和cm B.4cm 和cm C.8cm 和cm D.4cm 和cm7、如图,菱形ABCD 的对角线AC ,BD 的长分别为6 cm ,8 cm ,则这个菱形的周长为( )A .5 cmB .10 cmC .14 cmD .20 cm8、如图,在菱形ABCD 中,∠BAD =80°,AB 的垂直平分线交对角线AC 于点F ,垂足为点E ,连接DF ,则∠CDF 等于( )A .50°B .60°C .70°D .80°9、如图.剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是( )A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BC C.AB=CD ,AD=BC D.∠DAB+∠BCD=180º10、如图,在平面直角坐标系中,四边形OABC 为菱形,O(0,0),A(4,0),∠AOC =60°,则对角线交点E 的坐标为( )A .(2, 3 )B .( 3 ,2)C .( 3 ,3)D .(3, 3 )(10题) (11题) (12题) (13题)二、填空题11、如图,在△ABC 中,点D ,E ,F 分别在边BC ,AB ,CA 上,且DE ∥CA ,DF ∥BA.小聪认为如果AD平分∠BAC ,那么四边形AEDF 是菱形,小聪的说法 .(填“正确”或“不正确”)12、在菱形ABCD 中,对角线AC 、BD 相交于点O ,若∠ABC =140°,则∠BAD =________°,∠ABD =________°,∠BCA =________°;13、如图,菱形ABCD 的边长为2 cm ,E 是BC 的中点,且AE ⊥BC ,则菱形ABCD 的面积为_____.14、如图,P 是菱形ABCD 的对角线AC 上一点,PE ⊥AD 于点E ,且PE =3 cm ,则点P 到AB 的距离为__ __ cm.(14题) (15题) (17题) (20题)15、如图,在菱形ABCD 中,AB =5,AO =3,点E 在BC 的延长线上,∠E =12∠ABC ,DE =16、菱形ABCD 的周长为48cm,∠BAD:∠ABC=1:2,则BD=_____,菱形的面积是______.17、如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,若AC =8 cm ,BD =6 cm ,则该菱形的面积为________cm 2,周长为________cm.18、已知菱形ABCD 的面积为24 cm 2,若对角线AC =6 cm ,则这个菱形的边长为____ cm.19、四边形ABCD 是菱形,∠BAD =60°,AB =6,对角线AC 与BD 相交于点O ,点E 在AC 上,若OE =3,则CE 的长为_________20、如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边的中点,则MP +PN 的最小值是______.三、解答题21、已知:如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,DE ∥AC 交BC 于点E ,DF ∥BC 交AC于点F. 四边形DECF 是菱形吗?为什么?22、如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=8 cm,BD=6 cm,DH⊥AB于H.(1)求菱形ABCD的面积;(2)求DH的长.23、如图,在菱形ABCD中,对角线AC与BD相交于点O,BD=12 cm,AC=6 cm.求菱形的周长.24、已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若AB=6,∠BCD=120°,求四边形AODE的面积.25、如图,在菱形ABCD中,点P是BC边上一点,连接AP,点E,F是AP上的两点,连接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF.求证:(1)△ABF≌△DAE;(2)DE=BF+EF.26、已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.参考答案一、选择题1、菱形不具备的性质是( B )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形2、如图,菱形ABCD 中,∠D =150°,则∠1=( D )A .30°B .25°C .20°D .15°3、如图,在▱ABCD 中,AB =BC ,下列结论错误的是( D )A .四边形ABCD 是菱形B .AB =ADC .AO =OC ,BO =OD D .∠BAD =∠ABC4、如图所示,菱形ABCD 中,∠B =60°,AB =2,E 、F 分别是BC 、CD 的中点,连接AE 、EF 、AF ,则△AEF 的周长为( B )A .2 3B .3 3C .4 3D .35、如图,菱形ABCD 中,AB=15,∠ADC=120°,则B、D 两点之间的距离为( A )A.15 B.3215 C.7.5 D.3156、菱形的周长为32cm,一个内角的度数是60°,则两条对角线的长分别是(C )A.8cm 和cm B.4cm 和cm C.8cm 和cm D.4cm 和cm7、如图,菱形ABCD 的对角线AC ,BD 的长分别为6 cm ,8 cm ,则这个菱形的周长为(D )A .5 cmB .10 cmC .14 cmD .20 cm8、如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为点E,连接DF,则∠CDF等于( B )A.50° B.60° C.70° D.80°9、如图.剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是( )A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BC C.AB=CD ,AD=BC D.∠DAB+∠BCD=180º解析:∵四边形ABCD是用两张等宽的纸条交叉重叠放在一起而组成的图形,∴AB∥CD,AD∥BC, ∴四边形ABCD是平行四边形(对边相互平行的四边形是平行四边形).过点A分别作BC,CD边上的高为AE,AF,连接AC,则AE=AF(两纸条相同,纸条宽度相同),∴在平行四边形ABCD中.S△ABC=S△ACD,即BC•AE=CD•AF,∴BC=CD,AB=BC.故B中结论成立;∴平行四边形ABCD为菱形(邻边相等的平行四边形是菱形),∴∠ABC=∠ADC,∠BAD=∠BCD(菱形的对角相等),故A中结论成立;AB=CD,AD=BC(平行四边形的对边相等),故C中结论成立:当四边形ABCD是矩形时,有∠DAB+∠BCD=180º.故D中结论不一定成立,故选D.10、如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E的坐标为( D )A.(2, 3 ) B.( 3 ,2) C.( 3 ,3) D.(3, 3 )二、填空题11、如图,在△ABC中,点D,E,F分别在边BC,AB,CA上,且DE∥CA,DF∥BA.小聪认为如果AD平分∠BAC,那么四边形AEDF是菱形,小聪的说法正确.(填“正确”或“不正确”)12、在菱形ABCD中,对角线AC、BD相交于点O,若∠ABC=140°,则∠BAD=________°,∠ABD=________°,∠BCA=________°;答案:40,70,2013、如图,菱形ABCD的边长为2 cm,E是BC的中点,且AE⊥BC,则菱形ABCD的面积为__2 3 cm2 ____.14、如图,P是菱形ABCD的对角线AC上一点,PE⊥AD于点E,且PE=3 cm,则点P到AB的距离为__3 __ cm.15、如图,在菱形ABCD中,AB=5,AO=3,点E在BC的延长线上,∠E=12∠ABC,DE=816、菱形ABCD的周长为48cm,∠BAD:∠ABC=1:2,则BD=_____,菱形的面积是______.217、如图,在菱形ABCD中,对角线AC、BD相交于点O,若AC=8 cm,BD=6 cm,则该菱形的面积为________cm2,周长为________cm.答案:24,2018、已知菱形ABCD的面积为24 cm2,若对角线AC=6 cm,则这个菱形的边长为__5 __ cm.19、四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上,若OE=3,则CE的长为___43或23______20、如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边的中点,则MP+PN的最小值是__1 ____.三、解答题21、已知:如图,在△ABC中,CD平分∠ACB交AB于点D,DE∥AC交BC于点E,DF∥BC交AC于点F. 四边形DECF是菱形吗?为什么?解:四边形DECF是菱形.理由如下:∵DE∥FC,DF∥EC,∴四边形DECF为平行四边形.由AC∥DE,知∠2=∠3. ∵CD平分∠ACB,∴∠1=∠2,∴∠1=∠3,∴DE=EC,∴平行四边形DECF为菱形.22、如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=8 cm,BD=6 cm,DH⊥AB于H.(1)求菱形ABCD的面积;(2)求DH的长.解:(1)∵四边形ABCD 是菱形,AC =8 cm ,BD =6 cm ,∴S 菱形ABCD =12ACꞏBD =12×6×8=24(cm 2).(2)∵四边形ABCD 是菱形,∴AC ⊥BD ,OA =OC =12=4 cm ,OB =OD =3 cm ,∴在直角三角形AOB 中,AB =OB 2+OA 2=32+42=5 cm ,∴DH =S 菱形ABCD AB =4.8 cm.23、如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,BD =12 cm ,AC =6 cm.求菱形的周长.解:∵四边形ABCD 是菱形,∴AC ⊥BD ,AO =12AC ,BO =12 BD.∵AC =6 cm ,BD =12 cm , ∴AO =3 cm ,BO =6 cm.在Rt △ABO 中,由勾股定理,得AB =AO 2+BO 2=32+62=3 5 cm ,∴菱形的周长=4AB=4×3 5 =12 5 cm.24、已知:如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,DE ∥AC ,AE ∥BD.(1)求证:四边形AODE 是矩形;(2)若AB=6,∠BCD=120°,求四边形AODE 的面积.解答:(1)证明:∵DE ∥AC ,AE ∥BD ,∴四边形AODE 是平行四边形,∵在菱形ABCD 中,AC ⊥BD ,∴ AOD=90 , ∴平行四边形AODE 是是矩形;(2)∵∠BCD=120°,AB ∥CD ,∴∠ABC=180°‐120°=60°,∵AB=BC ,∴△ABC 是等边三角形,∴OA=21×6=3, OD=OB=6×23=33,∴四边形AODE 的面积=OA ∙OD=9325、如图,在菱形ABCD 中,点P 是BC 边上一点,连接AP ,点E ,F 是AP 上的两点,连接DE ,BF ,使得∠AED =∠ABC ,∠ABF =∠BPF .求证:(1)△ABF ≌△DAE ;(2)DE =BF +EF .证明:(1)∵四边形ABCD 是菱形,∴AB =AD ,AD ∥BC . ∴∠BP A =∠DAE .∵∠ABC =∠AED ,∴∠BAF =∠ADE .∵∠ABF =∠BPF ,∠BP A =∠DAE ,∴∠ABF =∠DAE .∵AB =DA ,∴△ABF ≌△DAE (ASA).(2)∵△ABF ≌△DAE , ∴BF =AE ,AF =DE .∵AF =AE +EF =BF +EF ,∴DE =BF +EF .26、已知:如图,在菱形ABCD 中,F 为边BC 的中点,DF 与对角线AC 交于点M ,过M 作ME ⊥CD 于点E ,∠1=∠2.(1)若CE =1,求BC 的长;(2)求证:AM =DF +ME.(1)解:∵四边形ABCD 是菱形,∴AB ∥CD ,∴∠1=∠ACD ,∵∠1=∠2,∴∠ACD =∠2,∴MC =MD ,∵ME ⊥CD ,∴CD =2CE , ∵CE =1,∴CD =2,∴BC =CD =2(2)证明:如图,∵F 为边BC 的中点,∴BF =CF =12BC ,∴CF =CE ,在菱形ABCD 中,AC 平分∠BCD ,∴∠ACB =∠ACD ,在△CEM 和△CFM 中,∵⎩⎪⎨⎪⎧CE =CF ,∠ACB =∠ACD ,CM =CM ,∴△CEM ≌△CFM(SAS),∴ME =MF ,延长AB 交DF 的延长线于点G , ∵AB ∥CD ,∴∠G =∠2, ∵∠1=∠2,∴∠1=∠G ,∴AM =MG ,在△CDF 和△BGF 中,∵⎪⎩⎪⎨⎧=∠=∠∠=∠FC FB DFC GFB G 2,∴△CDF ≌△BGF(AAS),∴GF =DF , 由图形可知,GM =GF +MF ,∴AM =DF +ME。
第19章矩形、菱形和正方形单元测试2021-2022学年华东师大版数学八年级下册(word 含答案)
第19章矩形、菱形和正方形单元测试一.单选题(共10题;共30分)1.取四边形ABCD的各边中点E、F、G、H,依次连结EFGH得到四边形EFGH,现知四边形EFGH是菱形,则四边形ABCD的对角线( )A. 相等B. 相等且平分C. 垂直D. 垂直且平分2.四边形ABCD的对角线AC,BD相交于点O,能判定它为正方形的是()A. AO=CO,BO=DOB. AO=CO=BO=DOC. AO=CO,BO=DO,AC⊥BDD. AO=BO=CO=DO,AC⊥BD3.如图,矩形ABCD中,AE⊥BD垂足为E,若∠DAE=3∠BAE,则∠EAC的度数为()A. 67.5°B. 45°C. 22.5°D. 无法确定4.如图,菱形OABC的顶点O在坐标系原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点O顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为()A. (,)B. (,)C. (2,﹣2)D. (,﹣)5.如图,在平面直角坐标系中,四边形ABCO是正方形,已知点C的坐标为(,1),则点B的坐标为()A. (﹣1,+1)B. (﹣1,1)C. (1,+1)D. (﹣1,2)6.下列性质中,正方形具有而菱形不一定具有的性质是()A. 四条边相等B. 对角线互相平分C. 对角线相等D. 对角线互相垂直7.菱形具有而矩形不具有的性质是()A. 对角线互相平分B. 四条边都相等C. 对角相等D. 邻角互补8.在平面中,下列说法正确的是().A. 四边相等的四边形是正方形B. 四个角相等的四边形是矩形C. 对角线相等的四边形是菱形D. 对角线互相垂直的四边形是平行四边形9.如图,ABCD、AEFC都是矩形,而且点B在EF上,这两个矩形的面积分别是S1,S2,则S1,S2的关系是()A. S1>S2B. S1<S2C. S1=S2D. 3S1=2S210.如图,在正方形ABCD中,如果AF=BE,那么∠AOD的度数是()A. 90°B. 80°C. 70°D. 60°二.填空题(共8题;共24分)11.如图,已知AD∥BC,AB∥CD,AB=4,BC=6,EF是AC的垂直平分线,分别交AD、AC于E、F,连结CE,则△CDE的周长是________ .12.如图,由四个直角边分别为5和4的全等直角三角形拼成“赵爽弦图”,其中阴影部分面积为________.13.如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为________.14.设四边形ABCD是边长为1的正方形,以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以第二个正方形的对角线AE为边作第三个正方形AEGH,如此下去…根据以上规律,第n个正方形的边长a n=________.15.在四边形ABCD中,∠A=∠B=∠C=∠D,则四边形ABCD是________.16.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B n的坐标是________ .17.(如图所示)两个长宽分别为7cm、3cm的矩形如图叠放在一起,则图中阴影部分的面积是________.18.如图,正方形ABCD的边长为4,延长CB至点M,使BM=2,过点B作BN⊥AM,垂足为N,O是对角线AC,BD的交点,连接ON,则ON的长为________.三.解答题(共6题;共36分)19.如图,在△ABC中,AB=AC=5,BC=6,AD为BC边上的高,过点A作AE∥BC,过点D作DE∥AC,AE与DE交于点E,AB与DE交于点F,连结BE.求四边形AEBD的面积.20.如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①当AE等于多少时,四边形CEDF是矩形;②当AE等于多少时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)21.如图所示,在菱形ABCD中,∠BAD=120°,AB=4.求:(1)对角线AC,BD的长;(2)菱形ABCD的面积.22.在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DF∥AC交直线AB于点F,DE∥AB交直线AC于点E.(1)当点D在边BC上时,如图①,求证:DE+DF=AC.(2)当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③,请分别写出图②、图③中DE,DF,AC之间的数量关系,不需要证明.(3)若AC=6,DE=4,则DF的值。
(完整版)平行四边形、菱形、矩形正方形测试题
平行四边形、菱形、矩形、正方形测试题一、选择题 (每题 3 分,共 30 分 )。
1.平行四边形 ABCD 中,∠ A=50°,则∠ D=( )A. 40°B. 50°C. 130°D. 不可以确立 2.以下条件中,能判断四边形是平行四边形的是( )A. 一组对边相等B. 对角线相互均分C. 一组对角相等D. 对角线相互垂直3.在平行四边形 ABCD 中,EF 过对角线的交点 O ,若 AB=4 ,BC=7,OE=3,则四边形 EFCD 周长是( ) A .14 B. 11 C. 10 D. 17 4.菱形拥有的性质而矩形不必定有的是 ( )A .对 角相等且互补B . 对角线相互均分C . 一组对边平行另一组相等D .对 角线相互垂直5.已知菱形的周长为 40cm ,两条对角线的长度比为 3:4,那么两条对角线的长分别为( )A .6cm ,8cm B. 3cm ,4cm C. 12cm , 16cm D. 24cm ,32cm6.如图在矩形 ABCD 中,对角线 AC 、BD 订交于点 O ,则以下说法错误的选项是 ( ) A .AB= 1AD2B .AC=BDC . DAB ABC BCD CDA 90 D .AO=OC=BO=OD图 57.如图 5 连接正方形各边上的中点,获得的新四边形是 ( )A .矩形 B. 正方形 C.菱形 D.平行四边形8. 一矩形两对角线之间的夹角有一个是 600, 且这角所对的边长 5cm,则对角线 长为 ( )A. 5 cmB. 10cmC. 5 2 cmD. 没法确立9. 当矩形的对角线相互垂直时 , 矩形变为 ( )A. 菱形B. 等腰梯形C. 正方形D. 没法确立 .10. 如下图,在ABCD 中, 、 分别 AB 、CDA E BE F 的中点,连接 DE 、EF 、BF ,则图中平行四边形共有( ) DCA .2 个B .4 个C .6 个D . 8 个F二、填空题(每题 3 分,共 24 分 )11.□ABCD 中, AB :BC=1:2,周长为 24cm,则AB=_____cm, AD=_____cm. 12.已知:四边形ABCD中, AB= CD,要使四边形 ABCD为平行四边形,需要增加__________,(只要填一个你以为正确的条件即可)你判断的原因是:。
中考复习《矩形、菱形、正方形》测试题(含答案)
中考复习《矩形、菱形、正方形》测试题(含答案)一、选择题(每题4分,共24分)1.[2015·泸州]菱形具有而平行四边形不具有的性质是(D) A.两组对边分别平行B.两组对角分别相等C.对角线互相平分D.对角线互相垂直2.[2015·衢州]如图28-1,已知某菱形花坛ABCD的周长是24 m,∠BAD=120°,则花坛对角线AC的长是(B)A.6 3 m B.6 m图28-1 C.3 3 m D.3 m【解析】易知△ABC为等边三角形,所以AC=AB=6 m.3.[2015·益阳]如图28-2,在矩形ABCD中,对角线AC,BD交于点O,以下说法错误的是(D) A.∠ABC=90°B.AC=BDC.OA=OB D.OA=AD图28-2 图28-34.[2014·福州]如图28-3,在正方形ABCD的外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为(C) A.45°B.55°C.60°D.75°【解析】∵四边形ABCD是正方形,∴AB=AD,又∵△ADE 是等边三角形, ∴AE =AD =DE ,∠DAE =60°, ∴AB =AE ,∴∠ABE =∠AEB ,∠BAE =90°+60°=150°, ∴∠ABE =(180°-150°)÷2=15°, 又∵∠BAC =45°, ∴∠BFC =45°+15°=60°.5.[2015·临沂]如图28-4,四边形ABCD 为平行四边形,延长AD 到E ,使DE =AD ,连结EB ,EC ,DB .添加一个条件,不能使四边形DBCE 成为矩形的是 (B) A .AB =BEB .BE ⊥DCC .∠ADB =90°D .CE ⊥DE【解析】 因为四边形ABCD 为平行四边形,所以AD 綊BC ,因为DE =AD ,所以DE 綊BC所以四边形EDBC 为平行四边形,A .假若AB =BE ,因为AB =BE ,AD =DE ,BD =BD ,所以△ADB ≌△EDB ,所以∠BDE =90°,所以四边形EDBC 为矩形; B .假若BE ⊥DC ,可得四边形EDBC 为菱形;C .假若∠ADB =90°,所以∠EDB =90°,所以四边形EDBC 为矩形;D .假若CE ⊥DE ,所以∠DEC =90°,所以四边形EDBC 为矩形,故选B. 6.[2015·日照]小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件①AB =BC ,②∠ABC =90°,③AC =BD ,④AC ⊥BD 中选两个作为补充条件,使▱ABCD 成为正方形(如图28-5)现有下列四种选法,你图28-4图28-5认为其中错误的是(B)A.①②B.②③C.①③D.②④【解析】此题考查正方形的判定,即在▱ABCD的基础上,需要再同时具备矩形和菱形的特征.①是菱形的特征;②是矩形的特征;③是矩形的特征,④是菱形的特征.而B中都是矩形的特征,故选B.二、填空题(每题4分,共20分)7.[2015·铜仁]已知一个菱形的两条对角线长分别为6 cm和8 cm,则这个菱形的面积为__24__cm2.8.[2014·衡阳]如图28-6,在矩形ABCD中,∠BOC=120°,AB=5,则BD的长为__10__.9.[2015·上海]已知E是正方形ABCD的对角线AC上一点,图28-6 AE=AD,过点E作AC的垂线,交边CD于点F,那么∠F AD=__22.5__度.10.[2014·淄博]已知▱ABCD,对角线AC,BD相交于点O,请你添加一个适当的条件,使▱ABCD成为一个菱形.你添加的条件是__AB=BC或AC⊥BD等__.11.[2014·资阳]如图28-7,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为__6__.图28-7【解析】如答图,连结BD,DE,∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,∴DE的长即为BQ+QE的最小值,∵DE=BQ+QE=5,∴△BEQ周长的最小值=DE+BE=5+1=6.三、解答题(共20分)12.(10分)[2015·安顺]如图28-8,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于图28-8F.(1)求证:AE=DF;(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.证明:(1)∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∴AE=DF;(2)若AD平分∠BAC,四边形AEDF是菱形,理由如下:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∵AD平分∠BAC,∴∠EAD=∠F AD,∵AE∥DF,∴∠EAD=ADF,∠DAF=∠FDA,∴AF=DF,∴平行四边形AEDF为菱形.13.(10分)[2015·青岛]已知:如图28-9,在△ABC中,AB =AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.(1)求证:△ABD≌△CAE;图28-9(2)连结DE ,线段DE 与AB 之间有怎样的位置和数量关系?请证明你的结论. 解:(1)证明:∵AB =AC ,AD 是BC 边上的中线, ∴AD ⊥BC ,BD =CD . ∵AE ∥BC ,CE ⊥AE , ∴四边形ADCE 是矩形, ∴AD =CE .在Rt △ABD 与Rt △CAE 中, ⎩⎪⎨⎪⎧AD =CE ,AB =CA ,∴△ABD ≌△CAE (HL );(2)DE ∥AB ,DE =AB .证明如下: 如答图所示,∵四边形ADCE 是矩形, ∴AE =CD =BD ,AE ∥BD , ∴四边形ABDE 是平行四边形, ∴DE ∥AB ,DE =AB .14.(10分)[2014·扬州]如图28-10,已知Rt △ABC ,∠ABC =90°,先把△ABC 绕点B 顺时针旋转90°后至△DBE ,再把△ABC 沿射线AB 平移至△FEG ,DE ,FG 相交于点H .(1)判断线段DE ,FG 的位置关系,并说明理由; (2)连结CG ,求证:四边形CBEG 是正方形. 解:(1)DE ⊥FG ,理由如下:由题意得∠A =∠EDB =∠GFE ,∠ABC =∠DBE =90°,第13题答图图28-10∴∠BDE+∠BED=90°.∴∠GFE+∠BED=90°,∴∠FHE=90°,即DE⊥FG;(2)证明:∵△ABC沿射线AB平移至△FEG,∴CB∥GE,CB=GE.∴四边形CBEG是平行四边形.∵∠ABC=∠GEF=90°,∴四边形CBEG是矩形.∵BC=BE,∴四边形CBEG是正方形.15.(10分)[2015·南京]如图28-11,AB∥CD,点E,F分别在AB,CD上,连结EF,∠AEF,∠CFE的平分线交于点G,∠BEF,∠DFE的平分线交于点H.(1)求证:四边形EGFH是矩形;(2)小明在完成(1)的证明后继续进行了探索,过G作MN∥EF,分别交AB,CD于点M,N,过H作PQ∥EF,分别交AB,CD交于点P,Q,得到四边形MNQP.此时,他猜想四边形MNQP是菱形,请在下列框图中补全他的证明思路.小明的证明思路由AB∥CD,MN∥EF,易证四边形MNQP是平行四边形,要证▱MNQP是菱形,只要证MN=NQ.由已知条件__FG平分∠CFE__,MN∥EF,可证NG=NF,故只要证GM=FQ,即证△MEG≌△QFH,易证__GE=FH__,__∠GME =∠FQH__.故只要证∠MGE=∠QFH.易证∠MGE=∠GEF,∠QFH=∠EFH,__∠GEF=∠EFH__,即可得证.图28-11解:(1)证明:∵EH平分∠BEF.∴∠FEH=12∠BEF,∵FH平分∠DFE,∴∠EFH=12∠DFE,∵AB∥CD,∴∠BEF+∠DFE=180°,∴∠FEH+∠EFH=12(∠BEF+∠DFE)=12×180°=90°,又∵∠FEH+∠EFH+∠EHF=180°,∴∠EHF=180°-(∠FEH+∠EFH)=180°-90°=90°,同理可证,∠EGF=90°,∵EG平分∠AEF,∴∠FEG=12∠AEF,∵EH平分∠BEF,∴∠FEH=12∠BEF,∵点A,E,B在同一条直线上.∴∠AEB=180°,即∠AEF+∠BEF=180°.∴∠FEG+∠FEH=12(∠AEF+∠BEF)=12×180°=90°,即∠GEH=90°.∴四边形EGFH是矩形;(2)本题答案不唯一,下列解法供参考.例如,FG平分∠CFE;GE=FH;∠GME =∠FQH;∠GEF=∠EFH.16.(6分)[2015·资阳]若顺次连结四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是(D) A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形17.(10分)如图28-12,在菱形ABCD中,边长为10,∠A=60°.顺次连结菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;…;按此规律继续下去,则四边形A2B2C2D2的周长是__20__;四边形A2 016B2 016C2 016D2 016的周长是__521 005__.图28-12。
平行四边形、矩形、菱形、正方形 题库二
矩形、菱形、正方形辅导练习题(一)一、复习矩形、菱形、正方形有关的性质和判定方法。
二、例题讲解例1、如图,在平行四边形ABCD中,E是CD的中点,△ABE是等边三角形,求证:四边形ABCD是矩形。
例2、已知如图,菱形ABCD中,E是AB的中点,且DE⊥AB,AE=2。
求:(1)∠ABC的度数;(2)对角线AC、BD的长;(3)菱形ABCD的面积。
例3、如图①,四边形ABCD是正方形, 点G是BC上任意一点,DE⊥AG于点E,BF⊥AG于点F.(1) 求证:DE-BF = EF.(2) 当点G为BC边中点时, 试探究线段EF与GF之间的数量关系,并说明理由.(3) 若点G为CB延长线上一点,其余条件不变.请你在图②中画出图形,写出此时DE、BF、EF之间的数量关系(不需要证明).三、巩固提高(一)选择题1、矩形具有而一般平行四边形不具有的性质是().A、对角线相等B、对边相等C、对角相等D、对角线互相平分2、下列对矩形的判定:“(1)对角线相等的四边形是矩形;(2)对角线互相平分且相等的四边形是矩形;(3)有一个角是直角的四边形是矩形;(4)有四个角是直角的四边形是矩形;(5)四个角都相等的四边是矩形;(6)对角线相等,且有一个直角的四边形是矩形;(7)一组邻边垂直,一组对边平行且相等的四边形是矩形;(8)对角线相等且互相垂直的四边形是矩形”中,正确的个数有()A、3 个B、4个C、5个D、6个3、下列性质中,菱形具有而矩形不一定具有的性质是( )A、对边平行且相等B、对角线互相平分C、内角和等于外角和D、每一条对角线所在直线都是它的对称轴4、下列条件中,能判定一个四边形为菱形的条件是( )A、对角线互相平分的四边形B、对角线互相垂直且平分的四边形C、对角线相等的四边形D、对角线相等且互相垂直的四边形5、已知四边形ABCD是平行四边形,下列结论中不一定正确的是( )A、AB=CDB、AC=BDC、当AC⊥BD时,它是菱形D、当∠ABC=90°时,它是矩形6、正方形具有而矩形不一定具有的性质是()。
中考数学专项训练 矩形、菱形与正方形(含解析)
矩形、菱形与正方形一、选择题1.矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等2.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()A.矩形 B.菱形 C.正方形D.梯形3.如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则等于()A.B.C.D.4.如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=()A. cm B. cm C. cm D. cm5.如图所示,E、F分别是正方形ABCD的边CD,AD上的点,且CE=DF,AE,BF相交于点O,下列结论①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S四边形DEOF中,错误的有()A.1个B.2个C.3个D.4个二、填空题6.若菱形的两条对角线分别为2和3,则此菱形的面积是.7.在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB= .8.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α= .9.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是.10.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是(把你认为正确的都填上).三、解答题(共40分)11.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.12.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.13.如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.(1)求证:AF=BE;(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.14.如图,在边长为3的正方形ABCD中,点E是BC边上的点,BE=1,∠AEP=90°,且EP交正方形外角的平分线CP于点P,交边CD于点F,(1)的值为;(2)求证:AE=EP;(3)在AB边上是否存在点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.矩形、菱形与正方形参考答案与试题解析一、选择题1.矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等【考点】矩形的性质;菱形的性质.【分析】根据矩形与菱形的性质对各选项分析判断后利用排除法求解.【解答】解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误.故选B.【点评】本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.2.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()A.矩形 B.菱形 C.正方形D.梯形【考点】旋转的性质;矩形的判定.【分析】根据旋转的性质可得AE=CE,DE=EF,再根据对角线互相平分的四边形是平行四边形判断出四边形ADCF是平行四边形,然后利用等腰三角形三线合一的性质求出∠ADC=90°,再利用有一个角是直角的平行四边形是矩形解答.【解答】解:∵△ADE绕点E旋转180°得△CFE,∴AE=CE,DE=EF,∴四边形ADCF是平行四边形,∵AC=BC,点D是边AB的中点,∴∠ADC=90°,∴四边形ADCF是矩形.故选:A.【点评】本题考查了旋转的性质,矩形的判定,主要利用了对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形的判定方法,熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.3.如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则等于()A.B.C.D.【考点】勾股定理;菱形的性质;矩形的性质.【分析】首先由菱形的四条边都相等与矩形的四个角是直角,即可得到直角△ABM中三边的关系.【解答】解:∵四边形MBND是菱形,∴MD=MB.∵四边形ABCD是矩形,∴∠A=90°.设AB=x,AM=y,则MB=2x﹣y,(x、y均为正数).在Rt△ABM中,AB2+AM2=BM2,即x2+y2=(2x﹣y)2,解得x=y,∴MD=MB=2x﹣y=y,∴==.故选:C.【点评】此题考查了菱形与矩形的性质,以及直角三角形中的勾股定理.解此题的关键是注意数形结合思想与方程思想的应用.4.如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=()A. cm B. cm C. cm D. cm【考点】菱形的性质;勾股定理;解直角三角形.【分析】先求出菱形的边长,然后利用面积的两种表示方法求出DH,在Rt△DHB中求出BH,然后得出AH,利用tan∠HAG的值,可得出GH的值.【解答】解:∵四边形ABCD是菱形,对角线AC=8cm,BD=6cm,∴AO=4cm,BO=3cm,在Rt△AOB中,AB==5cm,∵BD×AC=AB×DH,∴DH=cm,在Rt△DHB中,BH==cm,则AH=AB﹣BH=cm,∵tan∠HAG===,∴GH=AH=cm.故选:B.【点评】本题考查了菱形的性质、解直角三角形及三角函数值的知识,注意菱形的面积等于对角线乘积的一半,也等于底乘高.5.如图所示,E、F分别是正方形ABCD的边CD,AD上的点,且CE=DF,AE,BF相交于点O,下列结论①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S四边形DEOF中,错误的有()A.1个B.2个C.3个D.4个【考点】正方形的性质.【分析】根据四边形ABCD是正方形及CE=DF,可证出△ADE≌△BAF,则得到:①AE=BF,以及△ADE 和△BAF的面积相等,得到;④S△AOB=S四边形DEOF;可以证出∠ABO+∠BAO=90°,则②AE⊥BF一定成立.错误的结论是:③AO=OE.【解答】解:∵四边形ABCD是正方形,∴CD=AD∵CE=DF∴DE=AF∴△ADE≌△BAF∴AE=BF(故①正确),S△ADE=S△BAF,∠DEA=∠AFB,∠EAD=∠FBA∵S△AOB=S△BAF﹣S△AOF,S四边形DEOF=S△ADE﹣S△AOF,∴S△AOB=S四边形DEOF(故④正确),∵∠ABF+∠AFB=∠DAE+∠D EA=90°∴∠AFB+∠EAF=90°∴AE⊥BF一定成立(故②正确).假设AO=OE,∵AE⊥BF(已证),∴AB=BE(线段垂直平分线上的点到线段两端点的距离相等),∵在Rt△BCE中,BE>BC,∴AB>BC,这与正方形的边长AB=BC相矛盾,∴,假设不成立,AO≠OE(故③错误);故错误的只有一个.故选:A.【点评】本题考查了正方形的四条边都相等,每一个角都是直角的性质,全等三角形的判定与性质,综合题但难度不大,求出△ADE≌△BAF是解题的关键,也是本题的突破口.二、填空题6.若菱形的两条对角线分别为2和3,则此菱形的面积是 3 .【考点】菱形的性质.【分析】菱形的面积是对角线乘积的一半,由此可得出结果即可.【解答】解:由题意,知:S菱形=×2×3=3,故答案为:3.【点评】本题考查了菱形的面积两种求法:(1)利用底乘以相应底上的高;(2)利用菱形的特殊性,菱形面积=×两条对角线的乘积;具体用哪种方法要看已知条件来选择.7.在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB= 5 .【考点】含30度角的直角三角形;矩形的性质.【分析】根据矩形的性质,可以得到△AOB是等边三角形,则可以求得OA的长,进而求得AB的长.【解答】解:∵四边形ABCD是矩形,∴OA=OB又∵∠AOB=60°∴△AOB是等边三角形.∴AB=OA=AC=5,故答案是:5.【点评】本题考查了矩形的性质,正确理解△AOB是等边三角形是关键.8.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α= 20°.【考点】旋转的性质;矩形的性质.【分析】根据矩形的性质得∠B=∠D=∠BAD=90°,根据旋转的性质得∠D′=∠D=90°,∠4=α,利用对顶角相等得到∠1=∠2=110°,再根据四边形的内角和为360°可计算出∠3=70°,然后利用互余即可得到∠α的度数.【解答】解:如图,∵四边形ABCD为矩形,∴∠B=∠D=∠BAD=90°,∵矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′,∴∠D′=∠D=90°,∠4=α,∵∠1=∠2=110°,∴∠3=360°﹣90°﹣90°﹣110°=70°,∴∠4=90°﹣70°=20°,∴∠α=20°.故答案为:20°.【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了矩形的性质.9.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是10 .【考点】轴对称﹣最短路线问题;正方形的性质.【分析】由正方形性质的得出B、D关于AC对称,根据两点之间线段最短可知,连接DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可.【解答】解:如图,连接DE,交AC于P,连接BP,则此时PB+PE的值最小.∵四边形ABCD是正方形,∴B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE,∴AE=6,AB=8,∴DE==10,故PB+PE的最小值是10.故答案为:10.【点评】本题考查了轴对称﹣最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出.10.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是①②④(把你认为正确的都填上).【考点】正方形的性质;全等三角形的判定与性质;等边三角形的性质.【专题】压轴题.【分析】根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正误,利用解三角形求正方形的面积等知识可以判断④的正误.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∵△AEF是等边三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC﹣BE=CD﹣DF,∴CE=CF,∴①说法正确;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②说法正确;如图,连接AC,交EF于G点,∴AC⊥EF,且AC平分EF,∵∠CAF≠∠DAF,∴DF≠FG,∴BE+DF≠EF,∴③说法错误;∵EF=2,∴CE=CF=,设正方形的边长为a,在Rt△ADF中,AD2+DF2=AF2,即a2+(a﹣)2=4,解得a=,则a2=2+,S正方形ABCD=2+,④说法正确,故答案为:①②④.【点评】本题主要考查正方形的性质的知识点,解答本题的关键是熟练掌握全等三角形的证明以及辅助线的正确作法,此题难度不大,但是有一点麻烦.三、解答题(共40分)11.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.【考点】矩形的判定;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等,根据全等三角形对应边相等可得AF=CD,再利用等量代换即可得证;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90°,由等腰三角形三线合一的性质可知必须是AB=AC.【解答】解:(1)BD=CD.理由如下:依题意得AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD(三线合一),∴∠ADB=90°,∴▱AFBD是矩形.【点评】本题考查了矩形的判定,全等三角形的判定与性质,平行四边形的判定,是基础题,明确有一个角是直角的平行四边形是矩形是解本题的关键.12.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.【考点】菱形的判定与性质;三角形中位线定理.【分析】从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以是菱形;∠BCF是120°,所以∠EBC为60°,所以菱形的边长也为4,求出菱形的高面积就可求.【解答】(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形,又∵BE=FE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为2,∴菱形的面积为4×2=8.【点评】本题考查菱形的判定和性质以及三角形中位线定理,以及菱形的面积的计算等知识点.13.如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.(1)求证:AF=BE;(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.【考点】正方形的性质;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据正方形的性质可得AB=AD,∠BAE=∠D=90°,再根据同角的余角相等求出∠ABE=∠DAF,然后利用“角边角”证明△ABE和△DAF全等,再根据全等三角形的证明即可;(2)过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,然后与(1)相同.【解答】(1)证明:在正方形ABCD中,AB=AD,∠BAE=∠D=90°,∴∠DAF+∠BAF=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠ABE=∠DAF,∵在△ABE和△DAF中,,∴△ABE≌△DAF(ASA),∴AF=BE;(2)解:MP与NQ相等.理由如下:如图,过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,∵AB∥CD,AD∥BC,∴四边形AMPF与四边形BNQE是平行四边形,∴AF=PM,BE=NQ,∵在正方形ABCD中,AB=AD,∠BAE=∠D=90°,∴∠DAF+∠BAF=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠ABE=∠DAF,∵在△ABE和△DAF中,,∴△ABE≌△DAF(ASA),∴AF=BE;∴MP=NQ.【点评】本题考查了正方形的性质,全等三角形的判定与性质,主要利用了正方形的四条边都相等,每一个角都是直角的性质,同角的余角相等的性质,利用三角形全等证明相等的边是常用的方法之一,要熟练掌握并灵活运用.14.如图,在边长为3的正方形ABCD中,点E是BC边上的点,BE=1,∠AEP=90°,且EP交正方形外角的平分线CP于点P,交边CD于点F,(1)的值为;(2)求证:AE=EP;(3)在AB边上是否存在点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.【考点】正方形的性质;全等三角形的判定与性质;平行四边形的判定.【分析】(1)由正方形的性质可得:∠B=∠C=90°,由同角的余角相等,可证得:∠BAE=∠CEF,根据同角的正弦值相等即可解答;(2)在BA边上截取BK=BE,连接KE,根据角角之间的关系得到∠AKE=∠ECP,由AB=CB,BK=BE,得AK=EC,结合∠KAE=∠CEP,证明△AKE≌△ECP,于是结论得出;(3)作DM⊥AE于AB交于点M,连接ME、DP,易得出DM∥EP,由已知条件证明△ADM≌△BAE,进而证明MD=EP,四边形DMEP是平行四边形即可证出.【解答】(1)解:∵四边形ABCD是正方形,∴∠B=∠D,∵∠AEP=90°,∴∠BAE=∠FEC,在Rt△ABE中,AE==,∵sin∠BAE==sin∠FEC=,∴=,解法二:由上得∠BAE=∠FEC,∵∠BAE=∠FEC,∠B=∠DCB,∴△ABE∽△ECF,∴=,(2)证明:在BA边上截取BK=BE,连接KE,∵∠B=90°,BK=BE,∴∠BKE=45°,∴∠AKE=135°,∵CP平分外角,∴∠DCP=45°,∴∠ECP=135°,∴∠AKE=∠ECP,∵AB=CB,BK=BE,∴AB﹣BK=BC﹣BE,即:AK=EC,由第一问得∠KAE=∠CEP,∵在△AKE和△ECP中,,∴△AKE≌△ECP(ASA),∴AE=EP;(3)答:存在.证明:作DM⊥AE交AB于点M,则有:DM∥EP,连接ME、DP,∵在△ADM与△BAE中,,∴△ADM≌△BAE(ASA),∴MD=AE,∵AE=EP,∴MD=EP,∴MD EP,∴四边形DMEP为平行四边形.【点评】此题考查了相似三角形的判定与性质,全等三角形的判定与性质以及正方形的性质等知识.此题综合性很强,图形比较复杂,解题的关键是注意数形结合思想的应用与辅助线的准确选择.。
人教版九年级数学中考矩形、菱形、正方形专项练习及参考答案
人教版九年级数学中考矩形、菱形、正方形专项练习基础达标一、选择题1.(2018江苏淮安)如图,菱形ABCD 的对角线AC ,BD 的长分别为6和8,则这个菱形的周长是( )A.20B.24C.40D.48,AO=12AC=3,BO=12BD=4,且AO ⊥BO ,则AB=√AA 2+AA 2=5, 故这个菱形的周长L=4AB=20. 故选A.2.(2017四川广安)下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形 ③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有( )个. A.4 B.3C.2D.13.(2017四川眉山)如图,EF 过▱ABCD 对角线的交点O ,交AD 于点E ,交BC 于点F ,若▱ABCD 的周长为18,OE=1.5,则四边形EFCD 的周长为( ) A.14 B.13C.12D.104.(2018贵州遵义)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB,PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10B.12C.16D.18PM⊥AD于点M,交BC于点N.则四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,×2×8=8,∴S△DFP=S△PBE=12∴S阴影=8+8=16,故选C.5.(2017山东枣庄)如图,O是坐标原点,菱形OABC的顶点A的坐标为(-3,4),顶点C在x轴的负半轴上,函数y=A(x<0)的图象经过顶点B,则k的值为()AA.-12B.-27C.-32D.-366.(2018江苏无锡)如图,已知点E是矩形ABCD的对角线AC上的一动点,正方形EFGH的顶点G,H都在边AD上,若AB=3,BC=4,则tan ∠AFE的值()A.等于37B.等于√33C.等于34D.随点E位置的变化而变化EF∥AD,∴∠AFE=∠FAG,△AEH∽△ACD,∴AAAA =AAAA=34.设EH=3x,AH=4x,∴HG=GF=3x,∴tan∠AFE=tan∠FAG=AA AA =3A3A+4A=37.故选A.二、填空题7.(2018湖南株洲)如图,矩形ABCD的对角线AC与BD相交点O,AC=10,P,Q分别为AO,AD的中点,则PQ的长度为..5四边形ABCD是矩形,∴AC=BD=10,BO=DO=12BD,∴OD=12BD=5,∵点P,Q分别是AO,AD的中点,∴PQ是△AOD的中位线,∴PQ=12DO=2.5.8.(2018广东广州)如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(-2,0),点D在y轴上,则点C的坐标是.-5,4)菱形ABCD的顶点A,B的坐标分别为(3,0),(-2,0),点D在y轴上,∴AB=5,∴AD=5,∴由勾股定理知:OD=√AA2-AA2=√52-32=4,∴点C的坐标是(-5,4).9.(2018湖北武汉)以正方形ABCD的边AD为边作等边三角形ADE,则∠BEC的度数是.150°1,图1∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=∠ABC=∠BCD=∠ADC=90°,∠AED=∠ADE=∠DAE=60°,∴∠BAE=∠CDE=150°,又AB=AE,DC=DE,∴∠AEB=∠CED=15°,则∠BEC=∠AED-∠AEB-∠CED=30°.如图2,图2∵△ADE是等边三角形,∴AD=DE,∵四边形ABCD是正方形,∴AD=DC,∴DE=DC,∴∠CED=∠ECD,∴∠CDE=∠ADC-∠ADE=90°-60°=30°,∴∠CED=∠ECD=1(180°-30°)=75°,同理∠BEA=∠ABE=75°,2∴∠BEC=360°-75°×2-60°=150°.三、解答题10.如图,在菱形ABCD 中,对角线AC 与BD 交于点O.过点C 作BD 的平行线,过点D 作AC 的平行线,两直线相交于点E.(1)求证:四边形OCED 是矩形;(2)若CE=1,DE=2,则ABCD 的面积是多少?四边形ABCD 是菱形,∴AC ⊥BD , ∴∠COD=90°. ∵CE ∥OD ,DE ∥OC ,∴四边形OCED 是平行四边形,又∠COD=90°,∴平行四边形OCED 是矩形.(1)知,平行四边形OCED 是矩形,则CE=OD=1,DE=OC=2.∵四边形ABCD 是菱形, ∴AC=2OC=4,BD=2OD=2, ∴菱形ABCD 的面积为12AC ·BD=12×4×2=4. 能力提升一、选择题1.下列说法中,正确的个数为( )①对顶角相等;②两直线平行,同旁内角相等; ③对角线互相垂直的四边形为菱形;④对角线互相垂直平分且相等的四边形为正方形.A.1B.2C.3D.4对顶角相等,故①正确;②两直线平行,同旁内角互补,故②错误;③对角线互相垂直且平分的四边形为菱形,故③错误; ④对角线互相垂直平分且相等的四边形为正方形,故④正确,故选B .2.(2018山东枣庄)如图,在矩形ABCD 中,点E 是边BC 的中点,AE ⊥BD ,垂足为F ,则tan ∠BDE 的值是( )A.√24B.14C.13D.√23四边形ABCD 是矩形,∴AD=BC ,AD ∥BC , ∵点E 是边BC 的中点, ∴BE=12BC=12AD , ∴△BEF ∽△DAF , ∴AA AA =AA AA =12, ∴EF=12AF , ∴EF=13AE ,∵点E 是边BC 的中点, ∴由矩形的对称性得:AE=DE , ∴EF=13DE ,设EF=x ,则DE=3x , ∴DF=√AA 2-AA 2=2√2x , ∴tan ∠BDE=AAAA =2√2A =√24.故选A.3.如图,在Rt △ABC 中,∠C=90°,AC=BC=6cm,点P 从点A 出发,沿AB 方向以每秒√2 cm 的速度向终点B 运动;同时,动点Q 从点B 出发沿BC 方向以每秒1 cm 的速度向终点C 运动,将△PQC 沿BC 翻折,点P 的对应点为点P'.设Q 点运动的时间为t s,若四边形QPCP'为菱形,则t 的值为( )A.√2B.2C.2√2D.3PP',交BC于N点,过P作PM⊥AC,垂足为M.若运动t s时四边形QPCP'为菱形,则PQ=PC,PN⊥BC,四边形PMCN为矩形,BQ=t,AP=√2t,PM=NC=t,∴QC=2t,∴BC=BQ+QC=t+2t=3t=6cm,∴t=2,故选B.4.(2018河南)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1 cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()图1图2A.√5B.2D.2√5C.52D作DE⊥BC于点E由题图2可知,点F由点A到点D用时为a s,△FBC的面积为a cm2.∴AD=a.DE·AD=a.∴12∴DE=2.当点F从D到B时,用√5s,∴BD=√5.Rt△DBE中,BE=√AA2-AA2=√(√5)2-22=1,∵ABCD是菱形,∴EC=a-1,DC=a.Rt△DEC中,a2=22+(a-1)2,.解得a=52故选C.5.(2017广东)如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()A.①③B.②③C.①④D.②④二、填空题6.(2018山东潍坊)如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x 轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C'D'的位置,B'C'与CD相交于点M,则点M的坐标为.)-1,√33,连接AM ,∵将边长为1的正方形ABCD 绕点A 逆时针旋转30°得到正方形AB'C'D', ∴AD=AB'=1,∠BAB'=30°, ∴∠B'AD=60°,在Rt △ADM 和Rt △AB'M 中,∵{AA =AA ',AA =AA ,∴Rt △ADM ≌Rt △AB'M (HL), ∴∠DAM=∠B'AM=12∠B'AD=30°, ∴DM=AD tan ∠DAM=1×√33=√33, ∴点M 的坐标为(-1,√33).三、解答题 7.如图所示,在△ABC 中,点O 是AC 边上的一个动点,过O 作直线MN ∥BC ,设MN 交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F.(1)求证:OE=OF ;(2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.MN ∥BC ,∴∠OEC=∠BCE.又∠OCE=∠BCE ,∴∠OEC=∠OCE ,∴OE=OC.同理可证OF=OC ,∴OE=OF.O 运动到AC 中点时,四边形AECF 是矩形.证明:∵CE ,CF 分别是∠ACB 的内,外角平分线.∴∠OCE+∠OCF=12(∠ACB+∠ACD )=12×180°=90°,即∠ECF=90°,又∵OE=OF ,∴当O 点运动到AC 中点时,OA=OC ,四边形AECF 是矩形.8.(2018贵州遵义)如图,正方形ABCD的对角线交于点O,点E,F分别在AB,BC上(AE<BE),且∠EOF=90°,OE,DA的延长线交于点M,OF,AB的延长线交于点N,连接MN.(1)求证:OM=ON;(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON.,过点O作OH⊥AD于点H,∵正方形的边长为4,∴OH=HA=2,∵E为OM的中点,∴HM=4,则OM=√22+42=2√5,由(1)知OM=ON,∴MN=√2OM=2√10.。
初中数学矩形、菱形与正方形单元测试题
ABCDO图19-3矩形、菱形与正方形单元测试题一、填空题1.如图19-1,一个矩形推拉窗,窗高1.5米,则活动窗扇的通风面积A (平方米)与拉开长度b (米)的关系式是: .2.用黑白两种颜色的正六边形地面砖按如图19-2所示的规律,拼成若干个图形: (1)第4个图形中有白色地面砖 块; (2)第n 个图形中有白色地面砖 块.3.黑板上画有一个图形,学生甲说它是多边形,学生乙说它是平行四边形,学生丙说它是菱形,学生丁说它是矩形,老师说这四名同学的答案都正确,则黑板上画的图形是___________________. 4.在正方形ABCD 所在的平面内,到正方形三边所在直线距离相等的点有__个.5.四边形ABCD 为菱形,∠A =60°, 对角线BD 长度为10c m , 则此菱形的周长 c m . 6.已知正方形的一条对角线长为8c m ,则其面积是__________c m 2.7.平行四边形ABCD 中,AB =6c m ,AC +BD =14c m ,则△AOC 的周长为_______. 8.在平行四边形ABCD 中,∠A =70°,∠D =_________, ∠B =__________.9.等腰梯形ABCD 中,AD ∥BC ,∠A =120°,两底分别是15c m 和49c m ,则等腰梯形的腰长为______. 10.用一块面积为450c m 2的等腰梯形彩纸做风筝,为了牢固起见,用竹条做梯形的对角线,对角线恰好互相垂直,那么至少需要竹条 c m .11.已知在平行四边形ABCE 中,AB =14cm ,BC =16cm ,则此平行四边形的周长为 cm .12.要说明一个四边形是菱形,可以先说明这个四边形是 形,再说明(只需填写一种方法)13.如图19-3,正方形ABCD 的对线AC 、BD 相交于点O .那么图中共有 个等腰直角三角形.14.把“直角三角形、等腰三角形、等腰直角三角形”填入下列相应的空格上.(1)正方形可以由两个能够完全重合的 拼合而成; (2)菱形可以由两个能够完全重合的 拼合而成; (3)矩形可以由两个能够完全重合的 拼合而成. 15.矩形的两条对角线的夹角为 60,较短的边长为12cm ,则对角线长为 cm .16.若直角梯形被一条对角线分成两个等腰直角三角形,那么这个梯形中除两个直角外,其余两个内角的图19-2图19-1度数分别为 和 .17.平行四边形的周长为24cm ,相邻两边长的比为3:1,那么这个平行四边形较短的边长为___________cm .18.如图19-4,根据图中所给的尺寸和比例,可知这个“十”字标志的周长为 m .19.已知菱形的两条对角线长为12cm 和6cm ,那么这个菱形的面积为 2cm .20.如图19-5,l 是四边形ABCD 的对称轴,如果AD ∥BC ,有下列结论: (1)AB ∥CD ;(2)AB=CD ;(3)AB BC ;(4)AO=OC .其中正确的结论是 . (把你认为正确的结论的序号都填上)二、选择题21.给出五种图形:①矩形; ②菱形; ③等腰三角形(腰与底边不相等); ④等边三角形; ⑤平行四边形(不含矩形、菱形).其中,能用完全重合的含有300角的两块三角板拼成的图形是( ) A .②③ B .②③④ C .①③④⑤ D .①②③④⑤22.如图19-6,设将一张正方形纸片沿右图中虚线剪开后,能拼成下列四个图形,则其中是中心对称图形的是( )23.四边形ABCD 中,∠A ︰∠B ︰∠C ︰∠D =2︰2︰1︰3,则这个四边形是( ) A .梯形 B .等腰梯形C .直角梯形D .任意四边形 24.要从一张长40c m ,宽20c m 的矩形纸片中剪出长为18c m ,宽为12c m 的矩形纸片则最多能剪出( )A .1张B .2张C .3张D .4张25.如图19-7,在平行四边形ABCD 中,CE 是∠DCB 的平分线,F 是AB 的中点,AB =6,BC =4,则AE ︰EF ︰FB 为( )A .1︰2︰3B . 2︰1︰3C . 3︰2︰1D . 3︰1︰2 26.下列说法中错误的是( )A .两条对角线互相平分的四边形是平行四边形;B .两条对角线相等的四边形是矩形;C .两条对角线互相垂直的矩形是正方形;D .两条对角线相等的菱形是正方形.A B C D图19-6 A D B F E 图19-7 · 1m1m图19-4 A BCOl 图19-527.下列说法正确的是( )A .任何一个具有对称中心的四边形一定是正方形或矩形;B .角既是轴对称图形又是中心对称图形;C .线段、圆、矩形、菱形、正方形都是中心对称图形;D .正三角形、矩形、菱形、正方形是轴对称图形,且对称轴都有四条.28.点A 、B 、C 、D 在同一平面内,从①AB //CD ;②AB =CD ;③BC //AD ;④BC =AD 四个条件中任意选两个,能使四边形ABCD 是平行四边形的选法有( ) A .①② B .②③ C . ①③ D . ③④29.已知ABCD 是平行四边形,下列结论中不一定正确的是( )A .AB =CD B .AC =BD C .当AC ⊥BD 时,它是菱形 D .当∠ABC =90°时,它是矩形 30.平行四边形的两邻边分别为6和8,那么其对角线应( )A .大于2,B .小于14C .大于2且小于14D .大于2或小于1231.在线段、角、等边三角形、等腰三角形、平行四边形、矩形、菱形、正方形、圆、等腰梯形这十种图形中,既是轴对称图形又是中心对称图形的共有 ( ) A .4种 B .5种 C .7种 D .8种32.下列说法中,错误的是 ( ) A .平行四边形的对角线互相平分 B .对角线互相平分的四边形是平行四边形 C .菱形的对角线互相垂直 D .对角线互相垂直的四边形是菱形33.给出四个特征(1)两条对角线相等;(2)任一组对角互补;(3)任一组邻角互补;(4)是轴对称图形但不是中心对称图形,其中属于矩形和等腰梯形共同具有的特征的共有 ( ) A .1个 B .2个 C .3个 D .4个34.如果一个四边形的两条对角线互相平分,互相垂直且相等,那么这个四边形是 ( ) A .矩形 B .菱形 C .正方形 D .菱形、矩形或正方形35.如图19-8,直线a ∥b ,A 是直线a 上的一个定点,线段BC 在直线b 上移动,那么在移动过程中ABC ∆的面积 ( ) A .变大 B .变小 C .不变 D .无法确定36.如图19-10,矩形ABCD 沿着AE 折叠,使D 点落在BC 边上的F 点处,如果 60=∠BAF ,则DAE ∠ 等于 ( )A . 15B . 30C . 45D . 6037.如图19-11,在ABC ∆中,AB=AC =5,D 是BC 上的点,DE ∥AB 交AC 于点E ,DF ∥AC 交AB 于点F ,那么四边形AFDE 的周长是 ( ) A .5 B .10 C .15 D .2038.已知四边形ABCD 中,AC 交BD 于点O ,如果只给条件“AB ∥CD ”,那么还不能判定四边形ABCD 为平行四边形,给出以下四种说法:(1)如果再加上条件“BC=AD ”,那么四边形ABCD 一定是平行四边形;(2)如果再加上条件“BCD BAD ∠=∠”,那么四边形ABCD 一定是平行四边形;A BC D E F a b图19-9 图19-10 图19-11(3)如果再加上条件“AO=OC ”,那么四边形ABCD 一定是平行四边形;(4)如果再加上条件“CAB DBA ∠=∠”,那么四边形ABCD 一定是平行四边形其中正确的说法是 ( ) A .(1)(2) B .(1)(3)(4) C .(2)(3) D .(2)(3)(4) 三、解答题39.如图19-12,已知四边形ABCD 是等腰梯形, CD //BA ,四边形AEBC 是平行四边形.请说明:∠ABD =∠ABE .40.如图19-13,在△ABC 中,点O 是AC 边上的一动点, 过点O 作直线MN //BC , 设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F . (1)说明EO =FO ;(2)当点O 运动到何处时,四边形AECF 是矩形?说明你的结论.41.如图19-14,AD 是△ABC 的角平分线,DE ∥AC 交AB 于点E ,DF ∥AB 交AC 于F . 试确定AD 与EF 的位置关系,并说明理由.D AEC图19-12A EBC F O N M D图19-13 A EB DC F1 图19-142 O42.如图19-15,在正方形ABCD 的边BC 上任取一点M ,过点C 作CN ⊥DM 交AB 于N ,设正方形对角线交点为O ,试确定OM 与ON 之间的关系,并说明理由.43.如图19-16,等腰梯形ABCD 中,E 为CD 的中点,EF ⊥AB 于F ,如果AB =6,EF =5,求梯形ABCD的面积.44.如图19-17,有一长方形餐厅,长10米,宽7米,现只摆放两套同样大小的圆桌和椅子,一套圆桌和椅子占据的地面部分可看成半径为1.5米的圆形(如左下图所示).在保证通道最狭窄处的宽度不小于0.5米的前提下,此餐厅内能否摆下三套或四套同样大小的圆桌和椅子呢?请在摆放三套或四套的两种方案中选取一种,在右下方 14×20方格纸内画出设计示意图.(提示:①画出的圆应符合比例要求; ②为了保证示意图的清晰,请你在有把握后才将设计方案正式画在方格纸上.说明:正确地画出了符合要求的三个圆得5分,正确地画出了符合要求的四个圆得8分.)图19-15 A BN M C D O 图19-16A FB C ED图19-1745.如图19-18, 在正方形ABCD 中, M 为AB 的中点,MN ⊥MD ,BN 平分∠CBE 并交MN 于N .试说明:MD =MN .46.如图中,DB=CD , 70=∠C ,AE ⊥BD 于E .试求DAE ∠的度数.47.如图 中,G 是CD 上一点,BG 交AD 延长线于E ,AF=CG ,100=∠DGE . (1)试说明DF=BG ; (2)试求AFD ∠的度数.48..工人师傅做铝合金窗框分下面三个步骤进行:(1)先截出两对符合规格的铝合金窗料(如图19-21①),使AB=CD,EF=GH ;(2)摆放成如图②的四边形,则这时窗框的形状是 形,根据的数学道理是: ;D A B C ME N图19-18 AB CD E图19-19A B C D FE G图19-20(3)将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是形,根据的数学道理是:.(图①)(图②)(图③)(图④)图19-2149.如图19-22,已知平行四边形ABCD,AE平分∠DAB交DC于E,BF平分∠ABC交DC于F,DC=6c m,AD=2c m,求DE、EF、FC的长.图19-2250.如图19-23,已知矩形ABCD中,AC与BD相交于O,DE平分∠ADC交BC于E,∠BDE=15°,试求∠COE的度数。
矩形、菱形、正方形及梯形练习题
矩形、菱形、正方形及梯形练习题一、单选题(注释)1.如图,已知矩形ABCD中,AC与BD相交于O,DE平分∠ADC交BC于E,∠BDE=15°,则∠COE的度数为()A.75° B.85° C.90° D.65°2、如图,点P是矩形ABCD的边AD上的一个动点,矩形的两条边AB、BC的长分别为3和4,那么点P到矩形的两条对角线AC和BD的距离之和是()A. B. C. D.不确定3、如图,正方形ABCD以AD为边向外作等边三角形ADE,则∠BEC的度数为()A.30° B.15° C.20° D.45°4、在正方形ABCD中,P为AB的中点,BE⊥PD 的延长线于点E,连接AE、BE、FA⊥AE交DP于点F,连接BF,FC.下列结论:①△ABE≌△ADF;②FB=AB;③CF⊥DP;④FC=EF 其中正确的是()A.①②④ B.①③④ C.①②③ D.①②③④5、如图,在正方形ABCD的对角线上取点E,使得∠BAE=15°,连接AE,CE.延长CE到F,连接BF,使得BC=BF.若AB=1,则下列结论:①AE=CE;②F到BC的距离为;③BE+EC=EF;④;⑤.其中正确的个数是()A.2个 B.3个 C.4个 D.5个6.如图,正方形ABCD的边长是4,∠DAC的平���线交DC于点E,若点P、Q分别是AD 和AE上的动点,则DQ+PQ的最小值()A.2 B.4 C.2 D.47、如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,点D的对称点F恰好落在BC上,已知折痕AE=10cm,且tan∠EFC=,那么该矩形的周长为()A.72cm B.36cm C.20cm D.16cm8、小陈从O点出发,前进5米后向右转20°,再前进5米后又向右转20°,…,这样一直走下去,他第一次回到出发点O时一共走了()A.60米 B.100米 C.90米 D.120米9、不能判定一个梯形是等腰梯形的条件是()A.对角线相等 B.底边中点到两腰的距离相等 C.同一边上的两邻角相等 D.一组对角互补10、在数学活动课上,小明提出一个问题:“如图,在四边形ABCD中,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,∠CMD=35°,则∠MAB是多少度”大家经过了一番热烈的讨论交流之后,小雨第一个得出了正确结论,你知道他说的是()A.20°B.35°C.55°D.70°11、下列说法中不正确的是()A.平行四边形对角线互相平分B.矩形各内角平分线围成正方形 C.菱形对角线互相垂直平分D.﹣组对边平行另一组对边相等的四边形是梯形12、如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF13、如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为()A.2 B.2.2 C.2.4 D.2.514、如图,在△ABC中,点E、D、F分别在边AB、BC、CA上,且DE∥CA,DF∥BA.下列四个判断中,不正确的是()A.四边形AEDF是平行四边形B.如果∠BAC=90°,那么四边形AEDF是矩形C.如果AD平分∠BAC,那么四边形AEDF是矩形D.如果AD⊥BC且AB=AC,那么四边形AEDF是菱形15、在△MNB中,BN=6,点A,C,D分别在MB,NB,MN上,四边形ABCD为平行四边形,且∠NDC=∠MDA,则四边形ABCD的周长是()A.24 B.18 C.16 D.1216、如图所示,直角梯形ABCD中,AB⊥BC,AD=1,BC=3,CD=4,EF为梯形ABCD的中位线,DH为梯形的高,且交EF于G点,下列结论正确的有()①G为EF的中点;②△EFH为等边三角形;③四边形EHCF为菱形;④S△BEH =S△FCH.A.1个 B.2个 C.3个 D.4个17、如图,在梯形ABCD中,AB∥CD,AB=3CD,对角线AC、BD交于点O,中位线EF与AC、BD分别交于M、N两点,则图中阴影部分的面积是梯形ABCD面积的()A. B. C. D.18、哈尔滨市为迎接第24届世界大学生冬季运动会,正在进行城区人行道路翻新,准备选用同一种正多边形地砖铺设地面.下列正多边形的地砖中,不能进行平面镶嵌的是()A .B .C .D .19、黑色正三角形与白色正六边形的边长相等,用它们镶嵌图案,方法如下:白色正六边形分上下两行,上面一行的正六边形个数比下面一行少一个,正六边形之间的空隙用黑色的正三角形嵌满.按第1,2,3个图案(如图)所示规律依次下去,则第n 个图案中,黑色正三角形和白色正六边形的个数分别是( )A .n 2+n+2,2n+1B .2n+2,2n+1C .4n ,n 2﹣n+3D .4n ,2n+120、分别剪一些边长相同的①正三角形,②正方形,③正五边形,④正六边形,如果用其中一种正多边形镶嵌,可以镶嵌成一个平面图案的有( )A .①②③B .②③④C .①②④D .①②③④都可以 二、填空题21、如图,矩形ABCD 的两条线段交于点O ,过点O 作AC 的垂线EF ,分别交AD 、BC 于点E 、F ,连接CE ,已知△CDE 的周长为24cm ,则矩形ABCD 的周长是_______cm .22、如图,矩形ABCD 的面积为5,它的两条对角线交于点O 1,以AB ,AO 1为两邻边作平行四边形ABC 1O 1,平行四边形ABC 1O 1的对角线交于点O 2,同样以AB ,AO 2为两邻边作平行四边形ABC 2O 2,…,依此类推,则平行四边形ABC n O n 的面积为_______.23、如图,正方形A 1B 1B 2C 1,A 2B 2B 3C 2,A 3B 3B 4C 3,…,A n B n B n+1C n ,按如图所示放置,使点A 1、A 2、A 3、A 4、…、A n 在射线OA 上,点B 1、B 2、B 3、B 4、…、B n 在射线OB 上.若∠AOB=45°,OB 1=1,图中阴影部分三角形的面积由小到大依次记作S 1,S 2,S 3,…,S n ,则S n = .24、以边长为2的正方形的中心O 为端点,引两条相互垂直的射线,分别与正方形的边交于A 、B 两点,则线段AB 的最小值是 .25、如图,则∠1+∠2+∠3+∠4+∠5+∠6+∠7的度数为_____.26、如图所示,分别以n 边形的顶点为圆心,以单位1为半径画圆,则图中阴影部分的面积之和为 个平方单位.27.如图,梯形ABCD中,AD∥BC,AF∥DC,M是CD的中点,延长AM交BC的延长线于E,AF⊥BE,∠B=45°,AF=3cm,EF=5cm,则AD+BC= .28、如图,梯形ABCD中,AB∥DC,∠A与∠B互余,DC=2,AB=6,E、F分别为AB、DC中点,则EF= .29、如图,在梯形ABCD中,AD∥BC,AB⊥AC,∠B=45°,AD=,BC=4,则DC的长是.30、如图,梯形ABCD中,AD∥BC,∠B=30°,∠BCD=60°,AD=2,AC平分∠BCD(1)CD= ;(2)若DE∥AB交BC于点E,则∠CDE=.31、已知:梯形ABCD中,AD∥BC,E是BC的中点,∠BEA=∠DEA,连接AE、BD相交于点F,BD⊥CD.则四边形ABED是什么形状的四边形:.32、若等腰梯形的三边长分别为2,3,10,则这个等腰梯形的周长为.33、如图,在△ABC中,∠ACB=90°.D是AC的中点,DE⊥AC,AE∥BD,若BC=4,AE=5,则四边形ACBE的周长是______.34、如图所示,平行四边形ABCD中,E、F是对角线BD上两点,连接AE、AF、CE、CF,添加 __________条件,可以判定四边形AECF是平行四边形.(填一个符合要求的条件即可)35.如图,在▱ABCD中,对角线AC、BD相交于O,AC+BD=18,BC=6,则△AOD的周长为_______.36、在△ABC中,AB=AC,E是AB的中点,以点E为圆心,EB为半径画弧,交BC于点D,连接ED并延长到点F,使DF=DE,连接FC,若∠B=70°,则∠F=_______度.37.如图,E、F、G、H分别是四边形ABCD四条边的中点,要使四边形EFGH为矩形,四边形ABCD应具备的条件是 .1)一组对边平行而另一组对边不平行 2)对角线相等3)对角线互相垂直 4)对角线互相平分38、如图,在▱ABCD中,E,F是对角线AC上的两点且AE=CF,在①BE=DF;②BE∥DF;③AB=DE;④四边形EBFD为平行四边形⑤S△ADE =S△ABE;⑥AF=CE这些结论中正确的是______.39、在梯形ABCD中,AD∥BC,对角线AC⊥BD,且AC=10,BD=6,则该梯形的面积是______.40、如图,直角梯形ABCD中,AD∥BC,∠ADC=∠BAC=90°,AB=2,CD=,E是BC的中点,则DE的长为______.三、解答题41、已知:如图,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE,CF.(1)求证:AF=CE;(2)若AC=EF,试判断四边形AFCE是什么样的四边形,并证明你的结论.42、已知,正方形ABCD的边长为1,直线l1∥直线l2,l1与l2之间的距离为1,l1、l2与正方形ABCD的边总有交点.(1)如图1,当l1⊥AC于点A,l2⊥AC交边DC、BC分别于E、F时,求△EFC的周长;(2)把图1中的l1与l2同时向右平移x,得到图2,问△EFC与△AMN的周长的和是否随x的变化而变化,若不变,求出△EFC与△AMN的周长的和;若变化,请说明理由;(3)把图2中的正方形饶点A逆时针旋转α,得到图3,问△EFC与△AMN的周长的和是否随α的变化而变化?若不变,求出△EFC与△AMN的周长的和;若变化,请说明理由.43、以四边形ABCD的边AB、BC、CD、DA为斜边分别向外侧作等腰直角三角形,直角顶点分别为E、F、G、H,顺次连接这四个点,得四边形EFGH.(1)如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;如图2,当四边形ABCD为矩形时,请判断:四边形EFGH的形状(不要求证明);(2)如图3,当四边形ABCD为一般平行四边形时,设∠ADC=α(0°<α<90°),①试用含α的代数式表示∠HAE;②求证:HE=HG;③四边形EFGH是什么四边形?并说明理由.44、已知四边形ABCD是正方形,O为正方形对角线的交点,一动点P从B开始,沿射线BC 运动,连接DP,作CN⊥DP于点M,且交直线AB于点N,连接OP,ON.(当P在线段BC上时,如图1:当P在BC的延长线上时,如图2)(1)请从图1,图2中任选一图证明下面结论:①BN=CP;②OP=ON,且OP⊥ON;(2)设AB=4,BP=x,试确定以O、P、B、N为顶点的四边形的面积y与x的函数关系.45、如图(*),四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角平分线CF于点F.请你认真阅读下面关于这个图的探究片段,完成所提出的问题.(1)探究1:小强看到图(*)后,很快发现AE=EF,这需要证明AE和EF所在的两个三角形全等,但△ABE和△ECF显然不全等(一个是直角三角形,一个是钝角三角形),考虑到点E是边BC的中点,因此可以选取AB的中点M,连接EM后尝试着去证△AEM≌EFC就行了,随即小强写出了如下的证明过程:证明:如图1,取AB的中点M,连接EM.∵∠AEF=90°∴∠FEC+∠AEB=90°又∵∠EAM+∠AEB=90°∴∠EAM=∠FEC∵点E,M分别为正方形的边BC和AB的中点∴AM=EC又可知△BME是等腰直角三角形∴∠AME=135°又∵CF是正方形外角的平分线∴∠ECF=135°∴△AEM≌△EFC(ASA)∴AE=EF(2)探究2:小强继续探索,如图2,若把条件“点E是边BC的中点”改为“点E是边BC 上的任意一点”,其余条件不变,发现AE=EF仍然成立,请你证明这一结论.(3)探究3:小强进一步还想试试,如图3,若把条件“点E是边BC的中点”改为“点E 是边BC延长线上的一点”,其余条件仍不变,那么结论AE=EF是否成立呢?若成立请你完成证明过程给小强看,若不成立请你说明理由.46、一个多边形少一个内角的度数和为2300°.(1)求它的边数;(2)求少的那个内角的度数.47、(1)我们知道三角形的内角和是180°,请猜测四边形的内角和是多少度?解:四边形的四个内角和等于_______°.(2)利用下面两种方法验证你的猜想,请说明理由:解法一:如图1,连接四边形ABCD��对角线AC.解法二:如图2,延长CB、DA相交于点E.48、如图,四边形ABCD中,∠A+∠D=210°,∠ABC与∠BCD的平分线交于P,求∠P的度数.49.一个正多边形的一个内角的度数比相邻外角的6倍还多12°,求这个正多边形的内角和.50、如图,在梯形ABCD中,AD∥BC,∠A=90°,∠C=45°,AB=2AD=4.求梯形ABCD的周长.51、如图,在梯形ABCD中,AD∥BC,AB⊥AC,∠B=45°,AD=1,BC=4,求DC的长.52、梯形ABCD中,AD∥BC,∠C=30° AD=8c m,CD=16cm,BC=28cm,点P、Q分别是梯形某边上同时出发的一个动点,当其中一个动点到达端点停止运动时,另一个动点随之停止运动.其中,点P移动的速度是1cm/s,点Q移动的速度是2cm/s.(1)在图①中,点P从点A出发向点D移动,点Q从点C出发向点B移动,设所移动的时间为t.t为何值时,四边形PQCD为平行四边形?(2)在图②中,如果点P从点A出发向点D移动,点Q从点C出发向点D移动.设所移动的时间为t,用关于t的式子表示△PQB的面积,并求出t的取值范围.53、如图,正方形ABCD的各边都平行于坐标轴,点A、C分别在直线y=2x和x轴上,若点A在直线y=2x上运动.(1)当点A运动到横坐标x=3时,写出点C的坐标.(2)写出x=1时,直线AC的函数解析式.(3)若点A横坐标为m,且满足1≤m≤3时,请你求出对角线AC在移动时所扫过的四边形的面积.54、四边形ABCD是直角梯形,AB∥DC,AD⊥DC,AB=AD=5,∠BCD=45°,求梯形的周长.55、如图,梯形ABCD中,AB∥CD,AC⊥BD于点0,∠CDB=∠CAB,DE⊥AB,CF⊥AB,E.F 为垂足.设DC=m,AB=n.(1)求证:△ACB≌△BDA;(2)求四边形DEFC的周长.56、探索发现:(1)如图1,在△ABC中,AD是BC边上的中线,若△ABC的面积为S,则△ACD的面积为.探究操作:(2)在图2中,E、F分别是▱ABCD的边AB、BC的中点,若▱ABCD的面积为S,求四边形BEDF的面积?并说明理由.(3)在图3中,E、F分别是▱ABCD的边AB、BC上的点,且AE=AB,BF=BC,若▱ABCD的面积为S,则四边形BEDF的面积为.拓展延伸:(4)如图4中,矩形ABCD中,AB=nBC(n为常数,且n>0).E是AB边上的一个动点,F 是BC边上的一个动点.若在两点运动的过程中,四边形BEDF的面积始终等于矩形面积的,请探究线段AE��BF应满足怎样的数量关系,并说明理由.57、如图,在平行四边形ABCD中,∠DAB=60°,AB=2AD,点 E、F分别是AB、CD的中点,过点A作AG∥BD,交CB的延长线于点G.(1)求证:四边形DEBF是菱形;(2)请判断四边形AGBD是什么特殊四边形?并加以证明.58、如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,求证:∠DHO=∠DCO.59、如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形.(2)当AM的值为何值时,四边形AMDN是矩形?请说明理由.60、如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1) 证明:∠BAC=∠DAC,∠AFD=∠CFE;(2) 若AB∥CD,试证明四边形ABCD是菱形;(3) 在(2)的条件下,试确定E点的位置,使∠EFD=∠BCD,并说明理由.61.如图,A、B、C、D为矩形的4个顶点,AB=16cm,BC=6cm,动点P、Q分别以3cm/s、2cm/s的速度从点A、C同时出发,点Q从点C向点D移动.(1)若点P从点A移动到点B停止,点P、Q分别从点A、C同时出发,问经过2s时P、Q两点之间的距离是多少cm?(2)若点P从点A移动到点B停止,点Q随点P的停止而停止移动,点P、Q分别从点A、C同时出发,问经过多长时间P、Q两点之间的距离是10cm?(3)若点P沿着AB→BC→CD移动,点P、Q分别从点A、C同时出发,点Q从点C移动到点D停止时,点P随点Q的停止而停止移动,试探求经过多长时间△PBQ的面积为12cm2?试卷答案41.(1)证明:在△ADF 和△CDE 中, ∵AF∥BE,∴∠FAD=∠ECD. 又∵D 是AC 的中点, ∴AD=CD.∵∠ADF=∠CDE, ∴△ADF≌△CDE. ∴AF=CE.(2)解:若AC=EF ,则四边形AFCE 是矩形. 证明:由(1)知:AF=CE ,AF∥CE, ∴四边形AFCE 是平行四边形. 又∵AC=EF,∴平行四边形AFCE 是矩形. 42.解:(1)如图1,∵正方形ABCD 的边长为1, ∴AC=.又∵直线l 1∥直线l 2,l 1与l 2之间的距离为1. ∴CG=﹣1. ∴EF=2﹣2,EC=CF=2﹣. ∴△EFC 的周长为EF+EC+CF=2;(2)△EFC 与△AMN 的周长的和不随x 的变化而变化. 如图2,把l 1、l 2向左平移相同的距离,使得l 1过A 点,即l 1平移到l 4,l 2平移到l 3, 过E 、F 分别做l 3的垂线,垂足为R ,G . 可证△AHM ≌△ERP ,△AHN ≌△FGQ .∴△EFC与△AMN的周长的和为△CPQ的周长,由已知可计算△CPQ的周长为2,∴△EFC与△AMN的周长的和为2;(3)△EFC与△AMN的周长的和不随α的变化而变化.如图3,把l1、l2平移相同的距离,使得l1过A点,即l1平移到l4,l2平移到l3,过E、F分别做l3的垂线,垂足为R,S.过A作l1的垂线,垂足为H.可证△AHM≌△FSQ,△AHN≌△ERP,∴AM=FQ,HM=SQ,AN=EP,HN=RP.∴△EFC与△AMN的周长的和为△CPQ的周长.如图4,过A作l3的垂线,垂足为T.连接AP、AQ.可证△APT≌△APD,△AQT≌△AQB,∴DP=PT,BQ=TQ.∴△CPQ的周长为DP+PC+CQ+QB=DC+CB=2.∴△EFC与△AMN的周长的和为2.43.(1)解:四边形EFGH的形状是正方形.(2)解:①∠HAE=90°+α,在平行四边形ABCD中AB∥CD,∴∠BAD=180°﹣∠ADC=180°﹣α,∵△HAD和△EAB是等腰直角三角形,∴∠HAD=∠EAB=45°,∴∠HAE=360°﹣∠HAD﹣∠EAB﹣∠BAD=360°﹣45°﹣45°﹣(180°﹣a)=90°+α,答:用含α的代数式表示∠HAE是90°+α.②证明:∵△AEB和△DGC是等腰直角三角形,∴AE=AB,DG=CD,在平行四边形ABCD中,AB=CD,∵△AHD和△DGC是等腰直角三角形,∴∠HDA=∠CDG=45°,∴∠HDG=∠HDA+∠ADC+∠CDG=90°+α=∠HAE,∵△AHD是等腰直角三角形,∴HA=HD,∴△HAE≌△HDG,∴HE=HG.③答:四边形EFGH是正方形,理由是:由②同理可得:GH=GF,FG=FE,∵HE=HG,∴GH=GF=EF=HE,∴四边形EFGH是菱形,∵△HAE≌△HDG,∴∠DHG=∠AHE,∵∠AHD=∠AHG+∠DHG=90°,∴∠EHG=∠AHG+∠AHE=90°,∴四边形EFGH是正方形.44.(1)证明:如图1,∵四边形ABCD为正方形,∴OC=OB,DC=BC,∠DCB=∠CBA=90°,∠OCB=∠OBA=45°,∠DOC=90°,DC∥AB,∵DP⊥CN,∴∠CMD=∠DOC=90°,∴∠BCN+∠CPD=90°,∠PCN+∠DCN=90°,∴∠CPD=∠CNB,∵DC∥AB,∴∠DCN=∠CNB=∠CPD,∵在△DCP和△CBN中,∴△DCP≌△CBN(AAS),∴CP=BN,∵在△OBN和△OCP中,∴△OBN≌△OCP(SAS),∴ON=OP,∠BON=∠COP,∴∠BON+∠BOP=∠COP+∠BOP,即∠NOP=∠BOC=90°,∴ON⊥OP,即ON=OP,ON⊥OP.(2)解:∵AB=4,四边形ABCD是正方形,∴O到BC边的距离是2,图1中,S四边形OPBN =S△OBN+S△BOP=×(4﹣x)×2+×x×2=4(0<x<4),图2中,S四边形OBNP =S△POB+S△PBN=×x×2+×(x﹣4)×x=x2﹣x(x>4),即以O、P、B、N为顶点的四边形的面积y与x的函数关系是:.45.(2)探究2,证明:在AB上截取AM=EC,连接ME,由(1)知∠EAM=∠FEC,∵AM=EC,AB=BC,∴BM=BE,∴∠BME=45°,∴∠AME=∠ECF=135°,∵∠AEF=90°,∴∠FEC+∠AEB=90°,又∵∠EAM+∠AEB=90°,∴∠EAM=∠FEC,在△AEM和△EFC中,,∴△AEM≌△EFC(ASA),∴A E=EF;(3)探究3:成立,证明:延长BA到M,使AM=CE,连接ME,∴BM=BE,∴∠BME=45°,∴∠BME=∠ECF=45°,又∵AD∥BE,∴∠DAE=∠BEA,又∵∠MAD=∠AEF=90°,∴∠DAE+∠MAD=∠BEA+∠AEF,即∠MAE=∠CEF,在△MAE和△CEF中,,∴△MAE≌△CEF(ASA),∴AE=EF.46.解:(1)∵2220°÷180°=12…60°,则边数是:12+1+2=15;(2)该内角应是180°-60°=120°.47.解:(1)360°;(2)证明:解法一:连接AC,∵∠B+∠BAC+∠BCA=180°,∠D+∠DAC+∠DCA=180°,∴∠BAD+∠B+∠BCD+∠D=∠B+∠BAC+∠BCA+∠D+∠DAC+∠DCA=360°,∴四边形的四个内角和等于360°;解法二:延长CB、DA相交于点E,∵∠E+∠C+∠D=180°,∠E+∠EBA+∠EAB=180°,∴∠C+∠D=180°-∠E,∠EBA+∠EAB=180°-∠E,∵∠CBA+∠EBA=180°,∠DAB+∠EAB=180°,∴∠ABC+∠DAB=180°-∠EBA+180°-∠EAB=360°-(∠EBA+∠EAB)=360°-(180°-∠E)=180°+∠E,∴∠DAB+∠ABC+∠C+∠D=180°+∠E+180°-∠E=360°.∴四边形的四个内角和等于360°.48.解:∵四边形ABCD中,∠ABC+∠BCD=360°-(∠A-∠D)=150°,∵PB和PC分别为∠ABC、∠BCD的平分线,∴∠PBC+∠PCB=(∠ABC+∠BCD)=75°,则∠P=180°-(∠PBC+∠PCB)=105°.解:设这个正多边形的一个外角的度数为x,根据题意得180°-x=6x+12°,解得x=24°,所以这个正多边形边数==15,所以这个正多边形的内角和=(15-2)×180°=2340°. 50.解:∵AB=2AD=4,∴AD=2,AB=4,过D作DE⊥BC于E,则∠DEC=∠DEB=90°,∵AD∥BC,∠A=90°,∴∠B=90°,∴四边形ABED是矩形,∴AD=BE=2,AB=DE=4,∵∠C=45°,∠DEC=90°,∴∠CDE=45°=∠C,∴CE=DE=4,∴在Rt△DEC中,由勾股定理得:CD==4,即梯形ABCD的周长是AB+BC+CD+AD=4+2+4+4+2=12+4.51.解:如图,过点D作DF∥AB,分别交AC,BC于点E,F.∵AB⊥AC,∴∠AED=∠BAC=90度.∵AD∥BC,∴∠DAE=180°﹣∠B﹣∠BAC=45度.在Rt△ABC中,∠BAC=90°,∠B=45°,BC=4,∴AC=BC•sin45°=4×=2在Rt△ADE中,∠AED=90°,∠DAE=45°,AD=1,∴DE=AE=.∴C E=AC﹣AE=.在Rt△DEC中,∠CED=90°,∴DC==.52.解:(1)∵AD∥BC,当DP=CQ时,四边形PQCD是平行四边形,即8﹣t=2t时,四边形PQCD是平行四边形,∴t=,答:当t为时,四边形PQCD是平行四边形.(2)过D作DF⊥BC于F,过Q作QH⊥BC于H,∵∠C=30°,CQ=2t,CD=16,∴QH=t,DF=8,∴△PQB的面积是S=S梯形ABCD ﹣S△APB﹣S△PDQ﹣S△BQC=×(8+28)×8﹣×t×8﹣×(8﹣t)×(8﹣t)﹣×28×t =﹣t2﹣10t+112,∵8÷1=8,16÷2=8,∴t的取值范围是0≤t<8.53.解:(1)当x=3时,y=2x=6,则A(3,6)∴B(9,6)∴C(9,0).(2)x=1时,y=2x=2,∴A(1,2),∴B(3,2),∴C(3,0),设直线AC的函数解析式为:y=kx+b,∴,解得:k=﹣1,b=3,∴y=﹣x+3,即AC的函数表达式为:y=﹣x+3.(3)对角线AC扫过的四边形的形状为梯形为梯形EFCA,当1≤m≤3时,由(2)得m=1∴A(1,2),即E(1,2),此时C(3,0),即F(3,0),∵直线AC的解析式为y=﹣x+3∴它与x轴的交点为C的坐标是(3,0)又由(1)知A(3,6),C(9,0)△AOC的面积=×9×6=27,△OEF的面积=×3×2=3=27﹣3=24,扫过的面积S梯形EFCA答:对角线AC在移动时所扫过的四边形的面积是24.54.解:过B作BE∥AD交DC于E,∵AB∥DC,BE∥AD,∴四边形ADEB是平行四边形,∴AD=BE=5,AB=DE=5,∵AD⊥DC,∴∠D=∠BEC=90°,∵∠C=45°,∴∠EBC=180°﹣90°﹣45°=45°,即:∠EBC=∠C,∴EC=BE=5,在△BEC中,由勾股定理得:BC=5,∴DC=5+5=10,∴梯形的周长是AB+BC+AD+DC=20+5.答:梯形的周长是20+5.55.(1)证明:∵AB∥CD,∠CDB=∠CAB,∴∠CDB=∠CAB=∠ABD=∠DCA,∴OA=OB,OC=OD,∴AC=BD,在△ACB与△BDA中,,∴△ACB≌△BDA.(2)解:过点C作CG∥BD,交AB延长线于G,∵DC∥AG.CG∥BD,∴四边形DBGC为平行四边形,∵△ACB≌△BDA,∴AD=BC,即梯形ABCD为等腰梯形,∵AC=BD=CG,∴AC⊥BD,即AC⊥CG,又CF⊥AG,∴∠ACG=90°,AC=BD,CF⊥FG,∴AF=FG,∴CF=AG,又AG=AB+BG=m+n,∴CF=.又∵四边形DEFC为矩形,故其周长为:2(DC+CF)=.56.解:(1)∵AD为三角形ABC的底边中线,∴DC为BC的一半,由图可知△ABC与△ADC同高,又知△ABC面积为S,∴三角形ADC面积为S,故填S;(2)连接BD,∵E,F分别为边AB,BC的中点,∴同理(1)可知△BED面积为△ABD面积的一半,△BDF面积为△BDC面积的一半,又∵▱ABCD面积为S,∴四边形BEDF面积为S;(3)连接BD,∵AE=AB,BF=BC,∴计算同理于(2),∵▱ABCD的面积为S,∴四边形BEDF为S.故填S;(4)连接BD,由题意四边形BEDF的面积始终等于矩形面积的一半,即AB•BC=2(BE•AD+BF•AB),∵AB=nBC,∴AB•BC=2(BE•AB+BF•AB)=BE•AB+BF•AB,∴BC=BE•+BF,∴AB=EB+BF,∴AE=nBF.57.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD且AB=CD,AD∥BC且AD=BC.E,F分别为AB,CD的中点,∴BE=AB,DF=CD,∴BE=BF,∴四边形DEBF是平行四边形在△ABD中,E是AB的中点,∴AE=BE=AB=AD,而∠DAB=60°,∴△AED是等边三角形,即DE=AE=AD,故DE=BE.∴平行四边形DEBF是菱形.(2)解:四边形AGBD是矩形,理由如下:∵AD∥BC且AG∥DB,∴四边形AGBD是平行四边形.由(1)的证明知AD=DE=AE=BE,∴∠ADE=∠DEA=60°,∠EDB=∠DBE=30°.故∠ADB=90°.∴平行四边形AGBD是矩形.58.证明:∵四边形ABCD是菱形,∴OD=OB,∠COD=90°.∵DH⊥AB于H,∴∠DHB=90°,∴∠OHB=∠OBH.又∵AB∥CD,∴∠OBH=∠ODC,∴∠OHB=∠ODC.在RT△COD中,∠ODC+∠OCD=90°,在RT△DHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO.59.(1)证明:∵四边形ABCD为菱形,∴ND∥AM.∴∠NDE=∠MAE,∠DNE=∠AME.又∵点E 是AD边的中点,∴DE=AE.∴ΔNDE≌ΔMAE,∴ND=MA,∴四边形AMND是平行四边形(一组对边平行且相等的四边形是平行四边形).(2)当AM的值为1时,四边形AMDN是矩形.理由如下:∵AM=1=AD,∴∠ADM=30°∵∠DAM=60°,∴∠AMD=90°,∴平行四边形AMDN是矩形.60.解:(1) ∵AB=AD,CB=CD,AC=AC,∴△ABC≌△ADC.∴∠BAC =∠DAC.∵ AB=AD,∠BAF =∠DAF,AF=AF.∴△ABF≌△ADF.∴∠AFB=∠AFD.又∵∠CFE =∠AFB,∴∠AFD=∠CFE.∴∠BAC=∠DAC,∠AFD=∠CFE.(2) ∵AB∥CD,∴∠BAC=∠ACD.又∵∠BAC=∠DAC,∴∠BAC=∠ACD.∴∠DAC=∠ACD.∴AD=CD,∵AB=AD , CB=CD,∴AB=CB=CD=AD.∴四边形ABCD是菱形.(3)当BE⊥CD时,∠EFD=∠BCD.理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF.又∵CF为公共边,∴△BCF≌△DCF.∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC =∠DEF=90°.∴∠EFD =∠BCD.61.解:(1)过点P作PE⊥CD于E.则根据题意,得EQ=16﹣2×3﹣2×2=6(cm),PE=AD=6cm;在Rt△PEQ中,根据勾股定理,得PE2+EQ2=PQ2,即36+36=PQ2,∴PQ=6cm;∴经过2s时P、Q两点之间的距离是6cm;(2)设x秒后,点P和点Q的距离是10cm.(16﹣2x﹣3x)2+62=102,即(16﹣5x)2=64,∴16﹣5x=±8,∴=,=;∴经过s或sP、Q两点之间的距离是10cm;(3)连接BQ.设经过ys后△PBQ的面积为12cm2.①当时,则PB=16﹣3y,∴PB•BC=12,即×(16﹣3y)×6=12,解得y=4;②当时,BP=3y﹣AB=3y﹣16,QC=2y,则BP•CQ=(3y﹣16)×2y=12,=6,=(舍去);解得y1③时,QP=CQ﹣PQ=22﹣y,则QP•CB=(22﹣y)×6=12,解得y=18(舍去).综上所述,经过4秒或6秒△PBQ的面积为12cm2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(第10F ABCDHEG①②③④⑤ EAB CD FG(第5题)矩形、菱形与正方形 练习题二一、选择题1.如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm 2,四边形ABCD 面积是11cm 2,则①②③④四个平行四边形周长的总和为( )(A )48cm(B )36cm (C )24cm(D )18cm以此为基本单位,能够拼成一个形状相同但尺寸更大的图形(如图2),依此规律继续拼下去(如图3),……,则第n 个图形的周长是(A )2n(B )4n(C )12n + (D )22n +3.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为A.17B.17C.18D.19 4.如图,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC =3,则折痕CE 的长为 A.2 3 B.332C. 3D.6 5. (2011浙江衢州,1,3分)衢州市新农村建设推动了农村住宅旧貌变新颜,如图为一农村民居侧面截图,屋坡AF AG 、分别架在墙体的点B 、点C 处,且AB AC =,侧面四边形BDEC 为矩形,若测得100FAG ∠=︒,则FBD ∠=( )A. 35°B. 40°C. 55°D. 70°6.如图,在矩形ABCD 中,对角线AC ,BD 交于点O .已知∠AOB = 60°,AC =16,则图中长度为8的线段有( ) A .2条B .4条C .5条D .6条图1图2图3……A CD 图2…A 1 A A 2 A 3B B 1B 2B 3CC 2 C 1C 3 DD 2D 1 D 3 第10题图(第7题图)FEDCBA7.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =3.其中准确结论的个数是( ) A .1B .2C .3D .48..如图2,小聪在作线段AB 的垂直平分线时,他是这样操作的:分别以A和B 为圆心,大于12AB 的长为半径画弧,两弧相交于C 、D ,则直线CD 即为所求.根据他的作图方法可知四边形ADBC 一定‧‧是‧A .矩形B .菱形C .正方形D .等腰梯形9.. 已知一个菱形的周长是20cm ,两条对角线的比是4∶3,则这个菱形的面积是( )A .12cm 2B . 24cm 2C . 48cm 2D . 96cm 2 10. 如图,矩形纸片ABCD 中,已知AD=8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF=3,则AB 的长为( ) A .3 B .4 C .5 D .611 如图,四边形ABCD 中,AC=a,BD=b,且AC ⊥BD,顺次连接四边形ABCD 各边中点,得到四边形A 1B 1C 1D 1,再顺次连接四边形A 1B 1C 1D 1各边中点,得到四边形A 2B 2C 2D 2……,如此实行下去,得到四边形A n B n C n D n .下列结论准确的有( )①四边形A 2B 2C 2D 2是矩形; ②四边形A 4B 4C 4D 4是菱形;③四边形A 5B 5C 5D 5的周长4b a +; ④四边形A n B n C n D n 的面积是12+n abA.①②B.②③C.②③④D.①②③④ 12.在菱形ABCD 中,AB=5cm ,则此菱形的周长为( )A. 5cmB. 15cmC. 20cmD. 25cm13.如图,△ABC 中,AC 的垂直平分线分别交AC 、AB 于点D 、F ,BE ⊥DF 交DF 的延长线于点E ,已知∩A =30°,BC =2,AF =BF,则四边形BCDE 的面积是( )A .23B .33C .4D .43 14. 下列关于矩形的说法中准确的是A .对角线相等的四边形是矩形B .对角线互相平分的四边形是矩形B(第17题图)EDD′CBAA BCD第5题图 O 2O 114131211C .矩形的对角线互相垂直且平分 D .矩形的对角线相等且互相平分 15.菱形具有而矩形不一定具有的性质是 ( )A .对角线互相垂直B .对角线相等C .对角线互相平分D .对角互补 二、填空题1.将矩形ABCD 沿AE 折叠,得到如图所示图形。
若∠CED ′=56°,则∠AED 的大小是_______.2.如图:矩形ABCD 的对角线AC=10,BC=8,则图中五个小矩形的周长之和为_______3.如图,三个边长均为2的正方形重叠在一起,O 1、O 2是其中两个正方形的中心,则阴影部分的面积是 .4. 取一张矩形纸片按照图1、图2中的方法对折,并沿图3中过矩形顶点的斜线(虚线)剪开,那剪下的①这部分展开,平铺在桌面上,若平铺的这个图形是正六边形,则这张矩形纸片的宽和长之比为 . 325. (2011江苏泰州,18,3分)如图,平面内4条直线L 1、L 2、L 3、L 4是一组平行线,相邻2条平行线间的距离都是1个单位长度,正方形ABCD 的4个顶点A 、B 、C 、D 都在这些平行线上,其中点A、C分别在直线L 1和L 4上,该正方形的面积是 平方单位.6已知长方形ABCD ,AB =3cm ,AD =4cm ,过对角线BD 的中点O 做BD 的垂直平分线EF ,分别交(第9题)B ADCEABCD第5题图图6D ABCAD 、BC 于点E 、F ,则AE 的长为_______________.7.. 如图,菱形ABCD 的对角线AC 、BD 相交于点O ,且AC =8,BD =6,过点O 作OH ⊥AB ,垂足为H ,则点O 到边AB 的距离OH = .8.在四边形ABCD 中,AB=DC ,AD=BC .请再添加一个条件,使四边形ABCD 是矩形.你添加的条件是 .(写出一种即可)9.如图,菱形ABCD 的连长是2㎝,E 是AB 中点,且DE ⊥AB ,则菱形ABCD 的面积为_________㎝2.10.如图,将长8cm ,宽4cm 的矩形纸片ABCD 折叠,使点A 与C 重合,则折痕EF 的长为_____cm. 11.如图:矩形ABCD 的对角线AC=10,BC=8,则图中五个小矩形的周长之和为_______.12. 如图6,已知菱形ABCD ,其顶点A ,B 在数轴对应的数分别为-4和1,则BC=__.13已知正方形ABCD ,以CD 为边作等边△CDE ,则∠AED 的度数是 . 三、解答题1 如图已知E 、F 分别是□ABCD 的边BC 、AD 上的点,且BE=DF . (1) 求证:四边形AECF 是平行四边形;(2) 若BC =10,∠BAC =90°,且四边形AECF 是菱形,求BE 的长 .2.如图,在□ABCD 中,E 、F 分别为边ABCD 的中点,BD 是对角线,过A 点作AGDB 交CB 的延长线于点G . (1)求证:DE ∥BF ;(2)若∠G =90,求证四边形DEBF 是菱形.3.已知正方形ABCD的边长为a,两条对角线AC、BD相交于点O,P是射线AB上任意一点,过P 点分别做直线AC、BD的垂线PE、PF,垂足为E、F.(1)如图1,当P点在线段AB上时,求PE+PF的值;(2)如图2,当P点在线段AB的延长线上时,求P E-PF的值.4.已知:如图1,O为正方形ABCD的中心,分别延长OA到点F,OD到点E,使OF=2OA,OE=2OD,连结EF,将△FOE绕点O逆时针旋转α角得到△''F OE(如图2).(1)探究AE′与BF'的数量关系,并给予证明;(2)当α=30°时,求证:△AOE′为直角三角形.5.如图,E、F分别是矩形ABCD的对角线AC和BD上的点,且AE=DF。
(1)求证:BE=CF(2)若E,F分别是OA,OB的中点,并且AB=4cm,AD=8cm,求OF的长DEABC DEO 图F6.如图,点E 是正方形ABCD 内一点,△CDE 是等边三角形,连接EB 、EA ,延长BE 交边AD 于点F .(1)求证:△ADE ≌△BCE ;(5分)(2)求∠AFB 的度数.(5分)7.如图,在正方形ABCD 中,E 为对角线AC 上一点,连接EB 、ED . (1)求证:△BEC ≌△DEC ;(2)延长BE 交AD 于点F ,若∠DEB = 140︒,求∠AFE 的度数.8.如图,矩形ABCD 的对角线相交于点O ,DE ∥AC ,CE ∥BD . (1)求证:四边形OCED 是菱形;(2)若∠ACB =30︒,菱形OCED 的面积为38,求AC 的长.9.探究问题:⑴方法感悟: 如图①,在正方形ABCD 中,点E ,F 分别为DC ,BC 边上的点,且满足∠EAF=45°,连接EF ,求证DE+BF=EF . 感悟解题方法,并完成下列填空:将△ADE 绕点A 顺时针旋转90°得到△ABG ,此时AB 与AD 重合,由旋转可得: AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°,321GEFD CBA (第25题)①E FDCBA (第25题)②EFD CBA(第25题)③∴∠ABG+∠ABF=90°+90°=180°, 所以,点G ,B ,F 在同一条直线上.∵∠EAF=45° ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°. ∵∠1=∠2, ∴∠1+∠3=45°. 即∠GAF=∠_________. 又AG=AE ,AF=AF ∴△GAF ≌_______.∴_________=EF ,故DE+BF=EF .⑵方法迁移: 如图②,将ABC Rt ∆沿斜边翻折得到△ADC ,点E ,F 分别为DC ,BC 边上的点,且∠EAF=21∠DAB .试猜想DE ,BF ,EF 之间有何数量关系,并证明你的猜想. ⑶问题拓展:如图③,在四边形ABCD 中,AB=AD ,E ,F 分别为DC,BC 上的点,满足DAB EAF ∠=∠21,试猜想当∠B 与∠D 满足什么关系时,可使得DE+BF=EF .请直接写出你的猜想(不必说明理由).。