习题答案第四章 算法设计与分析 吕国英

合集下载

算法设计与分析习题答案

算法设计与分析习题答案

算法设计与分析习题答案算法设计与分析是计算机科学中一个重要的领域,它涉及到算法的创建、优化以及评估。

以下是一些典型的算法设计与分析习题及其答案。

习题1:二分查找算法问题描述:给定一个已排序的整数数组,编写一个函数来查找一个目标值是否存在于数组中。

答案:二分查找算法的基本思想是将数组分成两半,比较中间元素与目标值的大小,如果目标值等于中间元素,则查找成功;如果目标值小于中间元素,则在左半部分继续查找;如果目标值大于中间元素,则在右半部分继续查找。

这个过程会不断重复,直到找到目标值或搜索范围为空。

```pythondef binary_search(arr, target):low, high = 0, len(arr) - 1while low <= high:mid = (low + high) // 2if arr[mid] == target:return Trueelif arr[mid] < target:low = mid + 1else:high = mid - 1return False```习题2:归并排序算法问题描述:给定一个无序数组,使用归并排序算法对其进行排序。

答案:归并排序是一种分治算法,它将数组分成两半,分别对这两半进行排序,然后将排序好的两半合并成一个有序数组。

```pythondef merge_sort(arr):if len(arr) > 1:mid = len(arr) // 2left_half = arr[:mid]right_half = arr[mid:]merge_sort(left_half)merge_sort(right_half)i = j = k = 0while i < len(left_half) and j < len(right_half): if left_half[i] < right_half[j]:arr[k] = left_half[i]i += 1else:arr[k] = right_half[j]j += 1k += 1while i < len(left_half):arr[k] = left_half[i]i += 1k += 1while j < len(right_half):arr[k] = right_half[j]j += 1k += 1arr = [38, 27, 43, 3, 9, 82, 10]merge_sort(arr)print("Sorted array is:", arr)```习题3:动态规划求解最长公共子序列问题问题描述:给定两个序列,找到它们的最长公共子序列。

算法设计与分析习题解答

算法设计与分析习题解答

第一章作业1.证明下列Ο、Ω和Θ的性质1)f=Ο(g)当且仅当g=Ω(f)证明:充分性。

若f=Ο(g),则必然存在常数c1>0和n0,使得∀n≥n0,有f≤c1*g(n)。

由于c1≠0,故g(n) ≥ 1/ c1 *f(n),故g=Ω(f)。

必要性。

同理,若g=Ω(f),则必然存在c2>0和n0,使得∀n≥n0,有g(n) ≥ c2 *f(n).由于c2≠0,故f(n) ≤ 1/ c2*f(n),故f=Ο(g)。

2)若f=Θ(g)则g=Θ(f)证明:若f=Θ(g),则必然存在常数c1>0,c2>0和n0,使得∀n≥n0,有c1*g(n) ≤f(n) ≤ c2*g(n)。

由于c1≠0,c2≠0,f(n) ≥c1*g(n)可得g(n) ≤ 1/c1*f(n),同时,f(n) ≤c2*g(n),有g(n) ≥ 1/c2*f(n),即1/c2*f(n) ≤g(n) ≤ 1/c1*f(n),故g=Θ(f)。

3)Ο(f+g)= Ο(max(f,g)),对于Ω和Θ同样成立。

证明:设F(n)= Ο(f+g),则存在c1>0,和n1,使得∀n≥n1,有F(n) ≤ c1 (f(n)+g(n))= c1 f(n) + c1g(n)≤ c1*max{f,g}+ c1*max{f,g}=2 c1*max{f,g}所以,F(n)=Ο(max(f,g)),即Ο(f+g)= Ο(max(f,g))对于Ω和Θ同理证明可以成立。

4)log(n!)= Θ(nlogn)证明:∙由于log(n!)=∑=n i i 1log ≤∑=ni n 1log =nlogn ,所以可得log(n!)= Ο(nlogn)。

∙由于对所有的偶数n 有,log(n!)= ∑=n i i 1log ≥∑=n n i i 2/log ≥∑=nn i n 2/2/log ≥(n/2)log(n/2)=(nlogn)/2-n/2。

当n ≥4,(nlogn)/2-n/2≥(nlogn)/4,故可得∀n ≥4,log(n!) ≥(nlogn)/4,即log(n!)= Ω(nlogn)。

算法设计与程序分析习题精选含答案(第四章)

算法设计与程序分析习题精选含答案(第四章)

算法设计与程序分析习题精选含答案(第四章)作业四4.1.2 Alternating glassesa. There are 2n glasses standing next to each other in a row, the first n of them filled with a soda drink and the remaining n glasses empty. Make the glasses alternate in a filled-empty-filled-empty pattern in the minimum number of glass moves. [Gar78]b. Solve the same problem if 2n glasses—n with a drink and n empty—are initially in a random order答:图1 杯子分组a.两个为一组,在前n个杯子中判断偶数的杯子是否为空,不为空与同组的进行交换,共需要交换n/2次,考虑n为奇数对n/2进行向下取整即可。

b.由于最终偶数位置为空杯,奇数位置为满杯,从第一项开始遍历,如果在奇数位置出现空杯与后面偶数位置出现的第一个满杯进行交换,如果偶数位置出现满杯则与后面奇数出现的第一个空杯进行交换,每次交换使得两个位置满足条件,最坏情况是2n位置均为乱序,则需要交换n次,最好的情况为2n位置均满足条件,则交换次数为[0,n]4.1.7 Apply insertion sort to sort the list E, X, A, M, P, L, E in alphabetical order.4.2.1 Apply the DFS-based algorithm to solve the topological sorting problem for the following digraphs:答:(a) fe gb ca d从堆栈中弹出:efgbcad,反转输出为:dacbgfe(b) 由于存在回环b图不是无向回环图。

并行程序设计导论第四章课后题答案(2024)

并行程序设计导论第四章课后题答案(2024)
并行程序设计导论第四章课后题答 案
2024/1/29
1
目录
2024/1/29
• 课后题概述与解题思路 • 并行计算基本概念回顾 • 数据并行和任务并行编程技巧 • 同步与通信机制在并行程序中的应用 • 性能评价与调试方法分享 • 实例分析:典型课后题解答过程展示
2
01 课后题概述与解题思路
2024/1/29
并行化设计
将程序中的可并行部分进行并行处理,利用多核CPU或分布式系统的 计算能力提高程序性能。
数据结构优化
根据问题的特点选择合适的数据结构,以减少内存占用和提高数据访 问效率。
代码优化
通过编译器优化选项、内联函数、减少函数调用等手段提高代码执行 效率。
22
06 实例分析:典型课后题解 答过程展示
并行性能优化
通过分析并行程序的性能瓶颈,采用合适的优化策略,如减少通信 开销、提高缓存利用率等,提高并行程序的执行效率。
14
04 同步与通信机制在并行程 序中的应用
2024/1/29
15
同步机制原理及作用
2024/1/29
同步机制原理
通过设定同步点或同步操作,确保并 行程序中的各个进程或线程在关键点 上达到一致状态,避免数据竞争和结 果不确定性。
重点复习并行程序设计的基本概念、原理和方法,理解并掌握相关术语和定义。通过对比和分析选项,找出 正确答案。
简答题
在理解基本概念的基础上,结合实际应用场景和问题背景,进行深入分析和思考。注意答案的条理性和逻辑 性,尽量用简洁明了的语言进行表述。
编程题
首先明确题目要求和目标,设计合理的算法和数据结构。在编写代码时,注意并行化策略的选择和实现,以 及同步和通信机制的处理。最后对程序进行测试和调试,确保正确性和性能。

算法设计与分析-习题参考答案

算法设计与分析-习题参考答案

算法设计与分析基础习题1.15..证明等式gcd(m,n)=gcd(n,m mod n)对每一对正整数m,n都成立.Hint:根据除法的定义不难证明:●如果d整除u和v, 那么d一定能整除u±v;●如果d整除u,那么d也能够整除u的任何整数倍ku.对于任意一对正整数m,n,若d能整除m和n,那么d一定能整除n和r=m mod n=m-qn;显然,若d能整除n和r,也一定能整除m=r+qn和n。

数对(m,n)和(n,r)具有相同的公约数的有限非空集,其中也包括了最大公约数。

故gcd(m,n)=gcd(n,r)6.对于第一个数小于第二个数的一对数字,欧几里得算法将会如何处理?该算法在处理这种输入的过程中,上述情况最多会发生几次?Hint:对于任何形如0<=m<n的一对数字,Euclid算法在第一次叠代时交换m和n, 即gcd(m,n)=gcd(n,m)并且这种交换处理只发生一次.7.a.对于所有1≤m,n≤10的输入, Euclid算法最少要做几次除法?(1次)b. 对于所有1≤m,n≤10的输入, Euclid算法最多要做几次除法?(5次)gcd(5,8)习题1.21.(农夫过河)P—农夫W—狼G—山羊C—白菜2.(过桥问题)1,2,5,10---分别代表4个人, f—手电筒4. 对于任意实系数a,b,c, 某个算法能求方程ax^2+bx+c=0的实根,写出上述算法的伪代码(可以假设sqrt(x)是求平方根的函数)算法Quadratic(a,b,c)//求方程ax^2+bx+c=0的实根的算法//输入:实系数a,b,c//输出:实根或者无解信息If a≠0D←b*b-4*a*cIf D>0temp←2*ax1←(-b+sqrt(D))/tempx2←(-b-sqrt(D))/tempreturn x1,x2else if D=0 return –b/(2*a)else return “no real roots”else //a=0if b≠0 return –c/belse //a=b=0if c=0 return “no real numbers”else return “no real roots”5.描述将十进制整数表达为二进制整数的标准算法a.用文字描述b.用伪代码描述解答:a.将十进制整数转换为二进制整数的算法输入:一个正整数n输出:正整数n相应的二进制数第一步:用n除以2,余数赋给Ki(i=0,1,2...),商赋给n第二步:如果n=0,则到第三步,否则重复第一步第三步:将Ki按照i从高到低的顺序输出b.伪代码算法DectoBin(n)//将十进制整数n转换为二进制整数的算法//输入:正整数n//输出:该正整数相应的二进制数,该数存放于数组Bin[1...n]中i=1while n!=0 do {Bin[i]=n%2;n=(int)n/2;i++;}while i!=0 do{print Bin[i];i--;}9.考虑下面这个算法,它求的是数组中大小相差最小的两个元素的差.(算法略) 对这个算法做尽可能多的改进.算法MinDistance(A[0..n-1])//输入:数组A[0..n-1]//输出:the smallest distance d between two of its elements习题1.31.考虑这样一个排序算法,该算法对于待排序的数组中的每一个元素,计算比它小的元素个数,然后利用这个信息,将各个元素放到有序数组的相应位置上去.a.应用该算法对列表‖60,35,81,98,14,47‖排序b.该算法稳定吗?c.该算法在位吗?解:a. 该算法对列表‖60,35,81,98,14,47‖排序的过程如下所示:b.该算法不稳定.比如对列表‖2,2*‖排序c.该算法不在位.额外空间for S and Count[] 4.(古老的七桥问题)习题1.41.请分别描述一下应该如何实现下列对数组的操作,使得操作时间不依赖数组的长度. a.删除数组的第i 个元素(1<=i<=n)b.删除有序数组的第i 个元素(依然有序) hints:a. Replace the i th element with the last element and decrease the array size of 1b. Replace the ith element with a special symbol that cannot be a value of the array ’s element(e.g., 0 for an array of positive numbers ) to mark the i th position is empty. (―lazy deletion ‖)第2章 习题2.17.对下列断言进行证明:(如果是错误的,请举例) a. 如果t(n )∈O(g(n),则g(n)∈Ω(t(n)) b.α>0时,Θ(αg(n))= Θ(g(n)) 解:a. 这个断言是正确的。

算法设计与分析第三版第四章课后习题答案

算法设计与分析第三版第四章课后习题答案

算法设计与分析第三版第四章课后习题答案4.1 线性时间选择问题习题4.1问题描述:给定一个长度为n的无序数组A和一个整数k,设计一个算法,找出数组A中第k小的元素。

算法思路:本题可以使用快速选择算法来解决。

快速选择算法是基于快速排序算法的思想,通过递归地划分数组来找到第k小的元素。

具体步骤如下: 1. 选择数组A的一个随机元素x作为枢纽元。

2. 使用x将数组划分为两个子数组A1和A2,其中A1中的元素小于等于x,A2中的元素大于x。

3. 如果k等于A1的长度,那么x就是第k小的元素,返回x。

4. 如果k小于A1的长度,那么第k小的元素在A1中,递归地在A1中寻找第k小的元素。

5. 如果k大于A1的长度,那么第k小的元素在A2中,递归地在A2中寻找第k-A1的长度小的元素。

6. 递归地重复上述步骤,直到找到第k小的元素。

算法实现:public class LinearTimeSelection {public static int select(int[] A, int k) { return selectHelper(A, 0, A.length - 1, k);}private static int selectHelper(int[] A, int left, int right, int k) {if (left == right) {return A[left];}int pivotIndex = partition(A, left, righ t);int length = pivotIndex - left + 1;if (k == length) {return A[pivotIndex];} else if (k < length) {return selectHelper(A, left, pivotInd ex - 1, k);} else {return selectHelper(A, pivotIndex + 1, right, k - length);}}private static int partition(int[] A, int lef t, int right) {int pivotIndex = left + (right - left) / 2;int pivotValue = A[pivotIndex];int i = left;int j = right;while (i <= j) {while (A[i] < pivotValue) {i++;}while (A[j] > pivotValue) {j--;}if (i <= j) {swap(A, i, j);i++;j--;}}return i - 1;}private static void swap(int[] A, int i, int j) {int temp = A[i];A[i] = A[j];A[j] = temp;}}算法分析:快速选择算法的平均复杂度为O(n),最坏情况下的复杂度为O(n^2)。

习题答案第四章 算法设计与分析 吕国英

习题答案第四章 算法设计与分析 吕国英

习题答案第四章算法设计与分析吕国英main(void){ int buf[100]; int n; int i,j,k; scanf("%d",&n);for(i=0;i<n;i++)buf[i]=2; for(i=0;i<n-1;i++){ for(j=0;j<n-i-1;j++){ buf[j]+=2; } } for(j=0;j<n;j++){ if(buf[j]>=10){ buf[j+1]+=buf[j]/10; buf[j]=buf[j]%10; } } for(i=n-1;i>=0;i--)printf("%d",buf[i]); printf("\n"); return 0; }2、#include<stdio、h>int main(void){int n=2;inti;for(i=1;i<=9;i++){n=(n+2)*2;}printf("%d\n",n);return 0;}3、#include<stdio、h>int main(void){int a=54;int n;int m;printf("计算机先拿3张牌\n");a=a-3;while(a>=0){printf("还剩%d张牌\n",a);printf("你拿几张?请输入:");scanf("%d",&n);if(n>4||n<1||n>a){printf("错误!重新拿牌\n");continue;}a=a-n;printf("还剩%d张牌\n",a);if(a==0)break;m=5-n;printf("计算机拿%d\n",m);a=a-m;}return 0;}4、#include<stdio、h>int d;int a1,a2;intfun(int n);int main(void){intn;printf("n=?,d=?,a1=?,a2=?");scanf("%d%d%d%d\n",&n,&d,&a 1,&a2);printf("%d\n",fun(n));return 0;}int fun(intn){if(n==1)return a1;if(n==2)return a2;return fun(n-2)-(fun(n-1)-d)*2;}5、#include<stdio、h>char chess[8][8];int is_safe(int row,int col);int queen(int row,int col,int n);int main(void){inti,j;for(i=0;i<8;i++)for(j=0;j<8;j++)chess[i][j]=X;queen(0 ,0,0);for(i=0;i<8;i++){for(j=0;j<8;j++)printf("%c",chess[i][j]);printf("\n");}return 0;}int is_safe(int row,int col){inti,j;for(i=0;i<8;i++){if(chess[row][i]==Q)return0;if(chess[i][col]==Q)return 0;}i=row;j=col;while(i!=-1&&j!=-1){if(chess[i--][j--]==Q)return0;}i=row;j=col;while(i!=-1&&j!=8){if(chess[i--][j++]==Q)return 0;}i=row;j=col;while(i!=8&&j!=-1){if(chess[i++][j--]==Q)return0;}i=row;j=col;while(i!=8&&j!=8){if(chess[i++][j++]==Q)re turn 0;}return1;}int queen(int row,int col,int n){inti,j;intresult=0;if(n==8)return1;elseif(is_safe(row,col)){chess[r ow][col]=Q;for(i=0;i<8;i++)for(j=0;j<8;j++){result+=queen (i,j,n+1);if(result>0)break;}if(result>0)return1;else{chess[row][col]=X;return 0;}}elsereturn 0;}6、#include<stdio、h>int main(void){inti,j,k;for(i=1;i<=33;i++)for(j=1;j<=50;j++){k=100-i-j;if(k%2==0){if(3*i+2*j+k/2==100)printf("大马%d\n中马%d\n 小马%d\n\n\n",i,j,k);}}return 0;}7、#include<stdio、h>int main(void){inti;for(i=1;i<=10000;i++){if(i%2==1&&i%3==2&&i%5==4&&i%6==5 &&i%7==0)printf("%d\n",i);}return 0;}8、#include<stdio、h>int main(void){int i;int sum;inta1,a2,a3,a4;for(i=1000;i<=9999;i++){a1=i%10;a2=i/10%10;if (a1!=a2){a3=i/100%10;if(a1!=a3&&a2!=a3){a4=i/1000;if(a1!= a4&&a2!=a4&&a3!=a4){sum=(a1+a2+a3+a4)*(a1+a2+a3+a4);if(i% sum==0)printf("%d\n",i);}}}}return 0;}9、#include<stdio、h> #define N10 void max_min(int *a,int m,int n,int*min1,int *min2,int *max1,int *max2); int main(void) { int a[N]={2,3,4,5,34,7,9,6,43,21}; int min1,min2; int max1,max2; max_min(a,0,N-1,&min1,&min2,&max1,&max2); printf("min1=%d\nmin2=%d\nmax1=%d\nmax2=%d\n",min1,min2,m ax1,max2); return 0; } void max_min(int *a,int m,intn,int *min1,int *min2,int *max1,int *max2){ int lmin1,lmin2,lmax1,lmax2; intrmin1,rmin2,rmax1,rmax2; int mid; if(m==n){ *min1=*min2=*max1=*max2=a[m]; } else if(m==n-1){ if(a[m]<a[n]){ *min1=a[m]; *min2=a[n]; *max1=a[n]; *max2=a[m]; } else { *min1=a[n]; *min2=a[m]; *max1=a[m]; *max2=a[n]; } } else { mid=(m+n)/2;max_min(a,m,mid,&lmin1,&lmin2,&lmax1,&lmax2);max_min(a,mid+1,n,&rmin1,&rmin2,&rmax1,&rmax2);if(lmin1<rmin1){ if(lmin2<rmin1){ *min1=lmin1; *min2=lmin2; } else { *min1=lmin1;*min2=rmin1; } } else if(rmin2<lmin1){ *min1=rmin1; *min2=rmin2; } else { *min1=rmin1;*min2=lmin1; } if(lmax1>rmax1){ if(lmax2>rmax1){ *max1=lmax1; *max2=lmax2; } else { *max1=lmax1;*max2=rmax1; } } else if(rmax2>lmax1){ *max1=rmax1; *max2=rmax2; } else { *max1=rmax1;*max2=lmax1; } } }10、#include<stdio、h> int add(int *a,int flag,int right); int main(void){ int a[10]={1,2,3,4,5,6,7,8,9,10}; intsum=add(a,0,9); printf("%d\n",sum); return 0; } intadd(int *a,int flag,int right){ int mid; if(flag==right){ return a[flag]; } else if(flag==right-1){ return a[flag]+a[right]; } else{ mid=(flag+right)/2; returnadd(a,flag,mid)+add(a,mid+1,right); } }11、#include<stdio、h>int main(void){int a[5][3]={{-50,17,-42},{-47,-19,-3},{36,-34,-43},{-30,-43,34},{-23,-8,-45}};int i,j;int max,n;intsum=0;for(i=0;i<5;i++){max=a[i][0];n=0;for(j=1;j<3;j++){i f(a[i][j]>max){max=a[i][j];n=j;}}sum+=max;printf("a[%d][%d]=%d\n",i,n,max);}printf("%d\n",sum);return 0;}12、/* * File: newmain、c* Author: nirnava** Created on全文结束》》年4月22日, 下午5:21*/#include<stdio、h>#include<stdlib、h>#define N4void matrix_mul(int*mul1,int *mul2,int *mul3,int length);voidmatrix_add_sub(int * A,int * B,int * C,int m,charch);void update_half_value(int * A,int * B,int m);void get_half_value(int * A,int * B,int m);int main(void){int i,j;int mul1[N*N]={1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6};intmul2[N*N]={7,8,9,10,1,2,3,4,5,6,7,8,9,10,1,2};intmul3[N*N];matrix_mul(mul1,mul2,mul3,N);for(i=0;i<N*N;i++) {printf("%5d",mul3[i]);if((i+1)%N==0)printf("\n");}return 0;}void matrix_add_sub(int * A,int * B,int * C,int m,char ch){inti;for(i=0;i<m*m;i++){if(ch==+)C[i]=A[i]+B[i];elseC[i]=A[i ]-B[i];}}void update_half_value(int * A,int * B,intm){inti,j;for(i=0;i<m/2;i++){for(j=0;j<m/2;j++){B[i*m+j]=A[i*m/ 2+j];}}}void get_half_value(int * A,int * B,int m){inti,j;for(i=0;i<m/2;i++){for(j=0;j<m/2;j++){A[i*m/2+j]=B[i* m+j];}}}void matrix_mul(int *A,int *B,int *C,intm){if(m==2){int D,E,F,G,H,I,J;D=A[0]*(B[1]-B[3]);E=A[3]*(B[2]-B[0]);F=(A[2]+A[3])*B[0];G=(A[0]+A[1])*B[3];H=(A[2]-A[0])*(B[0]+B[1]);I=(A[1]-A[3])*(B[2]+B[3]);J=(A[0]+A[3])*(B[0]+B[3]);C[0]=E+I+J-G;C[1]=D+G;C[2]=E+F;C[3]=D+H+J-F;return ;}else{intA1[m*m/4],A2[m*m/4],A3[m*m/4],A4[m*m/4];intB1[m*m/4],B2[m*m/4],B3[m*m/4],B4[m*m/4];intC1[m*m/4],C2[m*m/4],C3[m*m/4],C4[m*m/4];intD[m*m/4],E[m*m/4],F[m*m/4],G[m*m/4],H[m*m/4],I[m*m/4],J[m*m/4];inttemp1[m*m/4],temp2[m*m/4];get_half_value(A1,&A[0],m);get_ half_value(A2,&A[m/2],m);get_half_value(A3,&A[m*m/2],m);g et_half_value(A4,&A[m*m/2+m/2],m);get_half_value(B1,&B[0] ,m);get_half_value(B2,&B[m/2],m);get_half_value(B3,&B[m*m /2],m);get_half_value(B4,&B[m*m/2+m/2],m);matrix_add_sub( B2,B4,temp1,m/2,-);matrix_mul(A1,temp1,D,m/2);matrix_add_sub(B3,B1,temp1,m /2,-);matrix_mul(A4,temp1,E,m/2);matrix_add_sub(A3,A4,temp1,m /2,+);matrix_mul(temp1,B1,F,m/2);matrix_add_sub(A1,A2,tem p1,m/2,+);matrix_mul(temp1,B4,G,m/2);matrix_add_sub(A3,A1 ,temp1,m/2,-);matrix_add_sub(B1,B2,temp2,m/2,+);matrix_mul(temp1,temp 2,H,m/2);matrix_add_sub(A2,A4,temp1,m/2,-);matrix_add_sub(B3,B4,temp2,m/2,+);matrix_mul(temp1,temp 2,I,m/2);matrix_add_sub(A1,A4,temp1,m/2,+);matrix_add_sub (B1,B4,temp2,m/2,+);matrix_mul(temp1,temp2,J,m/2);matrix_ add_sub(E,I,temp1,m/2,+);matrix_add_sub(J,G,temp2,m/2,-);matrix_add_sub(temp1,temp2,C1,m/2,+);matrix_add_sub(D,G ,C2,m/2,+);matrix_add_sub(E,F,C3,m/2,+);matrix_add_sub(D, H,temp1,m/2,+);matrix_add_sub(J,F,temp2,m/2,-);matrix_add_sub(temp1,temp2,C4,m/2,+);update_half_value( C1,&C[0],m);update_half_value(C2,&C[m/2],m);update_half_v alue(C3,&C[m*m/2],m);update_half_value(C4,&C[m*m/2+m/2],m );return ;}}13、#include<stdio、h>int main(void){inta[6][7]={{16,4,3,12,6,0,3},{4,-5,6,7,0,0,2},{6,0,-1,-2,3,6,8},{5,3,4,0,0,-2,7},{-1,7,4,0,7,-5,6},{0,-1,3,4,12,4,2}};int b[6][7],c[6][7];int i,j,k;int max;int flag;inttemp;for(i=0;i<6;i++)for(j=0;j<7;j++){b[i][j]=a[i][j];c[i ][j]=-1;}for(i=1;i<5;i++){for(j=0;j<7;j++){max=0;for(k=j-2;k<=j+2;k++){if(k<0)continue;elseif(k>6)break;else{if(b[i][j]+b[i-1][k]>max){max=b[i][j]+b[i-1][k];flag=k;}}}b[i][j]=max;c[i][j]=flag;}}for(j=1;j<=5;j ++){max=0;for(k=j-2;k<=j+2;k++){if(k<0)continue;elseif(k>6)break;else{if(b[i][j]+b[i-1][k]>max){max=b[i][j]+b[i-1][k];flag=k;}}}b[i][j]=max;c[i][j]=flag;}max=0;for(j=1;j <=5;j++){if(b[i][j]>max){max=b[i][j];flag=j;}}printf("%d\ n",max);temp=c[i][flag];printf("%5d",a[i][temp]);for(j=i; j>0;j--){temp=c[j][temp];printf("%5d",a[j-1][temp]);}printf("\n");return 0;}14、#include<stdio、h>int main(void){intA[6]={0,3,7,9,12,13};int B[6]={0,5,10,11,11,11};intC[6]={0,4,6,11,12,12};int AB[6][6];int temp[6];intabc[6];int max;int flag;inti,j,k;for(i=0;i<=5;i++){max=0;for(j=0;j<=i;j++){AB[i][j]= A[i-j]+B[j];if(AB[i][j]>max)max=AB[i][j];}temp[i]=max;}max=0; for(i=0;i<=5;i++){abc[i]=temp[i]+C[5-i];if(abc[i]>max){max=abc[i];flag=i;}}printf("max=%d\n",m ax);printf("c=%d\n",5-flag);max=max-C[5-flag];for(i=0;i<=flag;i++){if(AB[flag][i]==max){printf("b =%d\n",i);printf("a=%d\n",flag-i);break;}}return 0;}16、#include<stdio、h>#define N100int search(int*a,int left,int right);int sum_buf(int *a,int left,int right);int main(void){int a[N];int i;ints;for(i=0;i<N;i++)a[i]=1;a[24]=2;s=search(a,0,N-1);printf("%d\n",s);return 0;}int sum_buf(int *a,int left,int right){int i;intsum=0;for(i=left;i<=right;i++)sum+=a[i];return sum;}int search(int *a,int left,int right){intmid=(left+right)/2;if(left==right-1){if(a[left]<a[right])return right;elsereturnleft;}if(mid*2!=(right+left-1)){if(sum_buf(a,left,mid-1)>sum_buf(a,mid+1,right)){return search(a,left,mid-1);}elseif(sum_buf(a,left,mid-1)<sum_buf(a,mid+1,right)){returnsearch(a,mid+1,right);}elsereturnmid;}else{if(sum_buf(a,left,mid)>sum_buf(a,mid+1,right))r eturn search(a,left,mid);elsereturnsearch(a,mid+1,right);}}17、#include<stdio、h>intjob[6][2]={{3,8},{12,10},{5,9},{2,6},{9、3},{11,1}};int x[6],bestx[6],f1=0,bestf,f2[7]={0};void try(int i);void swap(int a,int b);int main(void){inti,j;bestf=32767;for(i=0;i<6;i++)x[i]=i;try(0);for(i=0;i<6 ;i++)printf("%d",bestx[i]);printf("\nbestf=%d\n",bestf);return 0;}void try(int i){intj;if(i==6){for(j=0;j<6;j++)bestx[j]=x[j];bestf=f2[i];}els e{for(j=i;j<6;j++){f1=f1+job[x[j]][0];if(f2[i]>f1)f2[i+1] =f2[i]+job[x[j]][1];elsef2[i+1]=f1+job[x[j]][1];if(f2[i+1 ]<bestf){swap(i,j);try(i+1);swap(i,j);}f1=f1-job[x[j]][0];}}}void swap(int i,int j){inttemp;temp=x[i];x[i]=x[j];x[j]=temp;}18、#include<stdio、h>#define N5 //N个数字#define M2 //M个加号char buf[N];int a[N];char b[M+1][N];intc[M+1];int try(int t);void swap(int t1,int t2);intadd();void output();int min=99999;int main(){inti;for(i=0;i<N;i++){scanf("%c",&buf[i]);}a[0]=0;for(i=1;i< =M;i++){a[i]=1;}for(;i<N;i++){a[i]=0;}try(1);output();pri ntf("%d\n",min);return 0;}int try(int t){int j;int i;int sum;if(t>=N){sum=add();if(sum<min){min=sum;for(i=0;i<M+1; i++){c[i]=atoi(b[i]);}}/*for(i=0;i<N;i++){printf("%d",a[i ]);}printf("\n");*/}else{for(j=t;j<N;j++){//if(a[t]!=a[j] ){swap(t,j);try(t+1);swap(t,j);}//else//try(t+1);}}}void swap(int t1,int t2){intt;t=a[t1];a[t1]=a[t2];a[t2]=t;}int add(){int sum=0;inti=0;int j;int k=0;inth=0;for(i=0;i<M+1;i++)for(j=0;j<N;j++)b[i][j]=Q;i=0;j=0;h =0;k=0;for(j=0;j<N;j++){if(a[j]==1){h=0;i++;b[i][h]=buf[j ];//printf("%d ",atoi(b[i]));//printf("%d %d %c\n",i,h,b[i][h]);h++;}else{b[i][h]=buf[j];//printf("%d %d %c \n",i,h,b[i][h]);//printf("%d",atoi(b[i]));h++;}}/*for(i=0;i<M+1;i++){for(j=0;j<N;j++) printf("%c",b[i][j]);printf("\n");}*/for(i=0;i<M+1;i++){sum+=atoi(b[i]);}return sum;}void output(){inti;for(i=0;i<M+1;i++){printf("%d",atoi(b[i]));if(i!=M)printf("+");}printf("=");}19、#include<stdio、h>int main(void){int buf[100];int m,n;inti,j;buf[0]=1;buf[1]=1;scanf("%d%d",&n,&m);for(i=1;i<n;i++){buf[i+1]=buf[i];for(j=i;j>0;j--){buf[j]=buf[j]+buf[j-1];}}printf("%d\n",buf[m]);return 0;}20、#include<stdio、h> int max_sum4(int *a,int n);int max_sub_sum(int *a,int left,int right); int main(void) { int a[6]={-2,11,-4,13,-5,-2};printf("%d\n",max_sum4(a,5)); return 0; } intmax_sum4(int *a,int n){ return max_sub_sum(a,0,n); } int max_sub_sum(int*a,int left,int right){ intcenter,i,max,left_sum,right_sum,s1,s2,s3,s4,lefts,rights, leftl,rightl; int buf[4]; if(left==right)return a[left]; else { center=(left+right)/2;left_sum=max_sub_sum(a,left,center);right_sum=max_sub_sum(a,center+1,right); s1=0; lefts=0;for(i=center;i>=left;i--){ lefts+=a[i]; if(lefts>s1)s1=lefts; } s2=0; rights=0;for(i=center+1;i<=right;i++){ rights+=a[i]; if(rights>s2)s2=rights; } s3=0; leftl=0; for(i=left;i<=center;i++) { leftl+=a[i]; if(leftl>s3)s3=leftl; } s4=0; rightl=0;for(i=right;i>=center+1;i--){ rightl+=a[i]; if(rightl>s4)s4=rightl; } buf[0]=s1+s2; buf[1]=s4+s3;buf[2]=left_sum; buf[3]=right_sum; max=0;for(i=0;i<=3;i++){ if(buf[i]>max)max=buf[i]; } return max; } }。

算法设计与分析——输油管道问题实验报告

算法设计与分析——输油管道问题实验报告

题目: 输油管道问题学号0091313000913133学生姓名张一楠朱玉婷专业(班级)09计本1班设计题目输油管道问题设计技术参数系统平台:windows 7开发工具:Microsoft Visual C++ 6.0设计要求1.掌握问题分析的方法与步骤,选择合适的方法解决问题。

2.选择合适的算法编写程序。

工作计划1:熟悉题目并理解,及找寻相关资料。

2:根据题目设计并分析算法。

3:使用Visual C++实现。

4:完成设计报告参考资料吕国英.《算法设计与分析》.北京:清华大学出版社,2009摘要本实验,我们通过综合应用算法解决了实际生活中的输油管道问题,通过比较各种算法的时间复杂度以及解决效率,采用了算法中以分治法为基础的随机划分来解决问题,利用随机选择方法找到各个油井的中位数,通过讨论论证了中位数即最优管道位置。

信息奥赛中一个问题有多个算法解决,通过比较不同算法解决问题的效率,选择最高效的一个。

在输油管道问题这个实验中得到运用。

关键词:算法设计,分治法,随机划分,随机选择,中位数目录1 需求分析.............................................................................. 错误!未定义书签。

1.1 实验内容.................................................................... 错误!未定义书签。

1.2 系统的基本逻辑模型 ....................................................... 错误!未定义书签。

1.3 确定目标系统的功能 (5)2 总体设计............................................................................. 错误!未定义书签。

算法设计与分析智慧树知到课后章节答案2023年下山东交通学院

算法设计与分析智慧树知到课后章节答案2023年下山东交通学院

算法设计与分析智慧树知到课后章节答案2023年下山东交通学院山东交通学院第一章测试1.解决一个问题通常有多种方法。

若说一个算法“有效”是指( )A:这个算法能在一定的时间和空间资源限制内将问题解决B:这个算法能在人的反应时间内将问题解决C:这个算法比其他已知算法都更快地将问题解决D:(这个算法能在一定的时间和空间资源限制内将问题解决)和(这个算法比其他已知算法都更快地将问题解决)答案:(这个算法能在一定的时间和空间资源限制内将问题解决)和(这个算法比其他已知算法都更快地将问题解决)2.农夫带着狼、羊、白菜从河的左岸到河的右岸,农夫每次只能带一样东西过河,而且,没有农夫看管,狼会吃羊,羊会吃白菜。

请问农夫能不能过去?()A:不一定B:不能过去 C:能过去答案:能过去3.下述()不是是算法的描述方式。

A:自然语言 B:E-R图 C:程序设计语言 D:伪代码答案:E-R图4.有一个国家只有6元和7元两种纸币,如果你是央行行长,你会设置()为自动取款机的取款最低限额。

A:40 B:29 C:30 D:42答案:305.算法是一系列解决问题的明确指令。

()A:对 B:错答案:对6.程序=数据结构+算法()A:对 B:错答案:对7.同一个问题可以用不同的算法解决,同一个算法也可以解决不同的问题。

()A:错 B:对答案:对8.算法中的每一条指令不需有确切的含义,对于相同的输入不一定得到相同的输出。

( )A:错 B:对答案:错9.可以用同样的方法证明算法的正确性与错误性 ( )A:错 B:对答案:错10.求解2个数的最大公约数至少有3种方法。

( )A:对 B:错答案:错11.没有好的算法,就编不出好的程序。

()A:对 B:错答案:对12.算法与程序没有关系。

( )A:错 B:对答案:错13.我将来不进行软件开发,所以学习算法没什么用。

( )A:错 B:对答案:错14.gcd(m,n)=gcd(n,m m od n)并不是对每一对正整数(m,n)都成立。

算法设计与分析-课后习题集答案

算法设计与分析-课后习题集答案
10.(1)当 时, ,所以,可选 , 。对于 , ,所以, 。
(2)当 时, ,所以,可选 , 。对于 , ,所以, 。
(3)由(1)、(2)可知,取 , , ,当 时,有 ,所以 。
11. (1)当 时, ,所以 , 。可选 , 。对于 , ,即 。
(2)当 时, ,所以 , 。可选 , 。对于 , ,即 。
(3)因为 , 。当 时, , 。所以,可选 , ,对于 , ,即 。
第二章
2-17.证明:设 ,则 。
当 时, 。所以, 。
第五章
5-4.SolutionType DandC1(int left,int right)
{while(!Small(left,right)&&left<right)
{int m=Divide(left,right);
所以n-1<=m<=n (n-1)/2;
O(n)<=m<=O(n2);
克鲁斯卡尔对边数较少的带权图有较高的效率,而 ,此图边数较多,接近完全图,故选用普里姆算法。
10.
T仍是新图的最小代价生成树。
证明:假设T不是新图的最小代价生成树,T’是新图的最小代价生成树,那么cost(T’)<cost(T)。有cost(T’)-c(n-1)<cost(t)-c(n-1),即在原图中存在一颗生成树,其代价小于T的代价,这与题设中T是原图的最小代价生成树矛盾。所以假设不成立。证毕。
13.template <class T>
select (T&x,int k)
{
if(m>n) swap(m,n);
if(m+n<k||k<=0) {cout<<"Out Of Bounds"; return false;}

2020智慧树知到《算法分析与设计》章节测试完整答案

2020智慧树知到《算法分析与设计》章节测试完整答案

2020智慧树知到《算法分析与设计》章节测试完整答案智慧树知到《算法分析与设计》章节测试答案第一章1、给定一个实例,如果一个算法能得到正确解答,称这个算法解答了该问题。

答案: 错2、一个问题的同一实例可以有不同的表示形式答案: 对3、同一数学模型使用不同的数据结构会有不同的算法,有效性有很大差别。

答案: 对4、问题的两个要素是输入和实例。

答案: 错5、算法与程序的区别是()A:输入B:输出C:确定性D:有穷性答案: 有穷性6、解决问题的基本步骤是()。

(1)算法设计(2)算法实现(3)数学建模(4)算法分析(5)正确性证明A:(3)(1)(4)(5)(2)B:(3)(4)(1)(5)(2)C:(3)(1)(5)(4)(2)D:(1)(2)(3)(4)(5)答案: (3)(1)(5)(4)(2)7、下面说法关于算法与问题的说法错误的是()。

A:如果一个算法能应用于问题的任意实例,并保证得到正确解答,称这个算法解答了该问题。

B:算法是一种计算方法,对问题的每个实例计算都能得到正确答案。

C:同一问题可能有几种不同的算法,解题思路和解题速度也会显著不同。

D:证明算法不正确,需要证明对任意实例算法都不能正确处理。

答案: 证明算法不正确,需要证明对任意实例算法都不能正确处理。

8、下面关于程序和算法的说法正确的是()。

A:算法的每一步骤必须要有确切的含义,必须是清楚的、无二义的。

B:程序是算法用某种程序设计语言的具体实现。

C:程序总是在有穷步的运算后终止。

D:算法是一个过程,计算机每次求解是针对问题的一个实例求解。

答案: 算法的每一步骤必须要有确切的含义,必须是清楚的、无二义的。

,程序是算法用某种程序设计语言的具体实现。

,算法是一个过程,计算机每次求解是针对问题的一个实例求解。

9、最大独立集问题和()问题等价。

A: 最大团B:最小顶点覆盖C:区间调度问题D:稳定匹配问题答案: 最大团,最小顶点覆盖10、给定两张喜欢列表,稳定匹配问题的输出是( ) 。

算法设计与分析--回溯法哈密尔顿回路问题

算法设计与分析--回溯法哈密尔顿回路问题

回溯算法的应用课程名称:算法设计与分析院系:学生姓名:学号:专业班级:指导教师:年月日回溯算法的应用摘要:回溯法是在包含问题的所有解的解空间树(或森林)中,按照深度优先的策略,从根结点出发搜索解空间树。

算法搜索至解空间树的任一结点时,总是先判断该结点是否满足问题的约束条件。

如果满足进入该子树,继续按深度优先的策略进行搜索。

否则,不去搜索以该结点为根的子树,而是逐层向其祖先结点回溯。

其实回溯法就是对隐式图的深度优先搜索算法。

回溯法是一个既带有系统性又带有跳跃性的的搜索算法。

它在包含问题的所有解的解空间树中,按照深度优先的策略,从根结点出发搜索解空间树。

算法搜索至解空间树的任一结点时,总是先判断该结点是否肯定不包含问题的解。

如果肯定不包含,则跳过对以该结点为根的子树的系统搜索,逐层向其祖先结点回溯。

否则,进入该子树,继续按深度优先的策略进行搜索。

回溯法的优点在于其程序结构明确,可读性强,易于理解,而且通过对问题的分析可以大大提高运行效率。

回溯法在用来求问题的所有解时,要回溯到根,且根结点的所有子树都已被搜索遍才结束。

而回溯法在用来求问题的任一解时,只要搜索到问题的一个解就可以结束。

这种以深度优先的方式系统地搜索问题的解的算法称为回溯法,它适用于解一些组合数较大的问题。

这就是以深度优先的方式系统地搜索问题解的回溯算法,它适用于解决一些类似n皇后问题等求解方案问题,也可以解决一些最优化问题。

关键词:回溯法解空间树深度优先搜索目录第1章绪论 (1)1.1 回溯算法的背景知识 (1)1.2 回溯法的前景意义 (1)第2章回溯算法的理论知识 (2)2.1 回溯算法的基本思想 (2)2.2 回溯算法设计过程 (2)2.3回溯算法框架 (2)2.4 回溯算法的一般性描述 (4)第3章哈密尔顿问题 (5)3.1 问题描述 (5)3.2 问题分析 (5)3.3 算法设计 (5)3.4 测试结果与分析 (7)第4章结论 (11)参考文献 (12)第1章绪论1.1 回溯算法的背景知识回溯算法是尝试搜索算法中最为基本的算法,在递归算法中,其存在的意义是在递归知道可解的最小问题后,逐步返回原问题的过程。

算法设计技巧与分析英文版课后练习题含答案

算法设计技巧与分析英文版课后练习题含答案

Algorithm Design Techniques and Analysis: English VersionExercise with AnswersIntroductionAlgorithms are an essential aspect of computer science. As such, students who are part of this field must master the art of algorithm design and analysis. Algorithm design refers to the process of creating algorithms that solve computational problems. Algorithm analysis, on the other hand, focuses on evaluating the resources required to execute those algorithms. This includes computational time and memory consumption.This document provides students with helpful algorithm design and analysis exercises. The exercises are in the formof questions with step-by-step solutions. The document is suitable for students who have completed the English versionof the Algorithm Design Techniques and Analysis textbook. The exercises cover various algorithm design techniques, such as divide-and-conquer, dynamic programming, and greedy approaches.InstructionEach exercise comes with a question and its solution. Read the question carefully and try to find a solution withoutlooking at the answer first. If you get stuck, look at the solution. Lastly, try the exercise agn without referring to the answer.Exercise 1: Divide and ConquerQuestion:Given an array of integers, find the maximum possible sum of a contiguous subarray.Example:Input: [-2, -3, 4, -1, -2, 1, 5, -3]Output: 7 (the contiguous subarray [4, -1, -2, 1, 5]) Solution:def max_subarray_sum(arr):if len(arr) ==1:return arr[0]mid =len(arr) //2left_arr = arr[:mid]right_arr = arr[mid:]max_left_sum = max_subarray_sum(left_arr)max_right_sum = max_subarray_sum(right_arr)max_left_border_sum =0left_border_sum =0for i in range(mid-1, -1, -1):left_border_sum += arr[i]max_left_border_sum =max(max_left_border_sum, left_b order_sum)max_right_border_sum =0right_border_sum =0for i in range(mid, len(arr)):right_border_sum += arr[i]max_right_border_sum =max(max_right_border_sum, righ t_border_sum)return max(max_left_sum, max_right_sum, max_left_border_s um+max_right_border_sum)Exercise 2: Dynamic ProgrammingQuestion:Given a list of lengths of steel rods and a corresponding list of prices, determine the maximum revenue you can get by cutting these rods into smaller pieces and selling them. Assume the cost of each cut is 0.Lengths: [1, 2, 3, 4, 5, 6, 7, 8]Prices: [1, 5, 8, 9, 10, 17, 17, 20]If the rod length is 4, the maximum revenue is 10.Solution:def max_revenue(lengths, prices, n):if n ==0:return0max_val =float('-inf')for i in range(n):max_val =max(max_val, prices[i] + max_revenue(length s, prices, n-i-1))return max_valExercise 3: Greedy AlgorithmQuestion:Given a set of jobs with start times and end times, find the maximum number of non-overlapping jobs that can be scheduled.Start times: [1, 3, 0, 5, 8, 5]End times: [2, 4, 6, 7, 9, 9]Output: 4Solution:def maximum_jobs(start_times, end_times):job_list =sorted(zip(end_times, start_times))count =0end_time =float('-inf')for e, s in job_list:if s >= end_time:count +=1end_time = ereturn countConclusionThe exercises presented in this document provide a practical way to master essential algorithm design and analysis techniques. Solving the problems without looking at the answers will expose students to the type of problems they might encounter in real life. The document’s solutionsprovide step-by-step instructions to ensure that students can approach the problems with confidence.。

算法分析与设计第二版习题答案-第三章到第五章

算法分析与设计第二版习题答案-第三章到第五章
{
int bool=1;
int min;
int j;
int i;
int k;
int flag;
for(i=0;i<count;i++)
{
if(buf[i]=='(')
push(buf[i],i);
if(buf[i]==')')
{
flag=pop();
算法设计与分析(第二版)习题答案 主编:吕国英
算法设计与分析(第二版)习题答案(第三章)
第三章:
1.#include<stdlib.h>#include<stdio.h>int main(int argc,char **argv){int n;int i,j,k;int *buf;printf("请输入n的数值:");
;}for(i=0;i<N;i++){ for(j=0;j<N;j++) printf("]",buf[i][j]); printf("\n");}return
0;}6.#include<stdio.h>#include<stdlib.h>typedef struct s_node s_list;typedef s_list *link;struct s_node{char ch;int flag;link next;};link top;void push(char ch,int flag){link newnode;newnode=(link)malloc(sizeof(s_list));newnode->ch=ch;newnode- >flag=flag;newnode-

第04章的习题参考答案

第04章的习题参考答案
解:(1)1)睁开双眼;
2)穿好衣服、裤子及鞋子等;
3)下床;
4)洗漱(包括洗脸、刷牙等);
5)吃早餐(包括饭后洗碗等工作);
6)上课学习;
7)吃午餐;
8)午休;
程序结构应当怎样修改才能适应?
(2)又假定搬砖人的类别数也在变化时又如何处理?
(3)假定每人每次搬砖数已知,能否告知所需的最少人数及每类人的搬砖数?
(4)假定每个人每次允许搬砖的块数可以少于规定数,如何搬才能最省时间?
解:(1)有nMale个人和num块砖,在男、女和孩子每次搬砖的块数未知或可变的情
6)fac=1,然后转7);
7)输出n!的值(n非法时写‘非法’)
4-13 对例4-15,请绘制算法的PAD流程图和传统流程图。
PAD流程图:
传统流程图:
4-14 例4-15只解决了36个人搬36块砖的情形。请思考这样一些问题:
(1)假定nMale个人和num块砖,男、女和孩子每次搬砖的块数未知或可变,算法或
if(fa<fb) //如果fa<fb,将fb的值赋给中间变量temp,即temp=fb;
temp=fb;
else //否则,将fa的值赋给temp,即temp=fa;
temp=fa;
if(temp>fc) //如果中间变量temp>fc,则将temp的值赋给max,即max=temp;
4-6 试述算法的组成要素、算法的基本性质。
解:算法的实质是对问题求解方法和过程的描述,它由解决问题的基本操作及控制操作
过程次序的控制结构组成。其中基本操作包括算术、关系、逻辑等基本运算和输入输出以及
函数、位操作、文件操作等;控制结构主要是顺序、选择和循环三种基本的控制结构。

算法分析与设计习题集答案

算法分析与设计习题集答案

算法分析与设计习题集基础篇1、算法有哪些特点?它有哪些特征?它和程序的主要区别是什么?特点:就是一组有穷的规则,它规定了解决某一特定类型问题的一系列运算(书上定义)特征:输入、输出、有穷性、明确性、有效性区别:算法是完成特定任务的有限指令集。

程序是用计算机语言编写的写成特定任务的指令序列。

2、算法的时间复杂度指的是什么?如何表示?算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。

这是一个关于代表算法输入值的字符串的长度的函数。

时间复杂度常用大O符号表述,不包括这个函数的低阶项和首项系数。

(百度百科)3、算法的空间复杂度指的是什么?如何表示?一个程序的空间复杂度是指运行完一个程序所需内存的大小。

利用程序的空间复杂度,可以对程序的运行所需要的内存多少有个预先估计。

一个程序执行时除了需要存储空间和存储本身所使用的指令、常数、变量和输入数据外,还需要一些对数据进行操作的工作单元和存储一些为现实计算所需信息的辅助空间。

程序执行时所需存储空间包括以下两部分。

(1)固定部分。

这部分空间的大小与输入/输出的数据的个数多少、数值无关。

主要包括指令空间(即代码空间)、数据空间(常量、简单变量)等所占的空间。

这部分属于静态空间。

(2)可变空间,这部分空间的主要包括动态分配的空间,以及递归栈所需的空间等。

这部分的空间大小与算法有关。

一个算法所需的存储空间用f(n)表示。

S(n)=O(f(n))其中n为问题的规模,S(n)表示空间复杂度。

答:最坏情况时间复杂性:最好情况时间复杂性::I*是DN中使T(N, I*)达到Tmax(N)的合法输入;P(I)是在算法的应用中出现输入I的概率10、限界函数的功能是什么?答:用限界函数剪去得不到最优解的子树11、设某一函数定义如下:编写一个递归函数计算给定x的M(x)的值。

本函数是一个递归函数,其递归出口是:M(x)= x-10x>100递归体是:M(M(x+11))x ≤100实现本题功能的递归函数如下:intm ( intx ){ int y;if ( x>100 )return(x-10 );else {y =m(x+11) ;return (m (y ));}procedure M(x)if x>100 thenreturn(x-10)elsereturn M(M(x+11))endifend M12、已知一个顺序表中的元素按元素值非递减有序排列,编写一个函数删除表中多余的值相同的元素。

算法设计与分析习题答案1-6章

算法设计与分析习题答案1-6章

习题11.图论诞生于七桥问题。

出生于瑞士的伟大数学家欧拉(Leonhard Euler ,1707—1783)提出并解决了该问题。

七桥问题是这样描述的:一个人是否能在一次步行中穿越哥尼斯堡(现在叫加里宁格勒,在波罗的海南岸)城中全部的七座桥后回到起点,且每座桥只经过一次,图1.7是这条河以及河上的两个岛和七座桥的草图。

请将该问题的数据模型抽象出来,并判断此问题是否有解。

七桥问题属于一笔画问题。

输入:一个起点 输出:相同的点 1, 一次步行2, 经过七座桥,且每次只经历过一次 3, 回到起点该问题无解:能一笔画的图形只有两类:一类是所有的点都是偶点。

另一类是只有二个奇点的图形。

2.在欧几里德提出的欧几里德算法中(即最初的欧几里德算法)用的不是除法而是减法。

请用伪代码描述这个版本的欧几里德算法 1.r=m-n2.循环直到r=0 2.1 m=n 2.2 n=r 2.3 r=m-n 3 输出m3.设计算法求数组中相差最小的两个元素(称为最接近数)的差。

要求分别给出伪代码和C ++描述。

//采用分治法//对数组先进行快速排序 //在依次比较相邻的差 #include <iostream> using namespace std;int partions(int b[],int low,int high) {图1.7 七桥问题int prvotkey=b[low];b[0]=b[low];while (low<high){while (low<high&&b[high]>=prvotkey)--high;b[low]=b[high];while (low<high&&b[low]<=prvotkey)++low;b[high]=b[low];}b[low]=b[0];return low;}void qsort(int l[],int low,int high){int prvotloc;if(low<high){prvotloc=partions(l,low,high); //将第一次排序的结果作为枢轴 qsort(l,low,prvotloc-1); //递归调用排序由low 到prvotloc-1qsort(l,prvotloc+1,high); //递归调用排序由 prvotloc+1到 high}}void quicksort(int l[],int n){qsort(l,1,n); //第一个作为枢轴,从第一个排到第n个}int main(){int a[11]={0,2,32,43,23,45,36,57,14,27,39};int value=0;//将最小差的值赋值给valuefor (int b=1;b<11;b++)cout<<a[b]<<' ';cout<<endl;quicksort(a,11);for(int i=0;i!=9;++i){if( (a[i+1]-a[i])<=(a[i+2]-a[i+1]) )value=a[i+1]-a[i];elsevalue=a[i+2]-a[i+1];}cout<<value<<endl;return 0;}4.设数组a[n]中的元素均不相等,设计算法找出a[n]中一个既不是最大也不是最小的元素,并说明最坏情况下的比较次数。

算法设计与分析课后习题

算法设计与分析课后习题

算法设计与分析课后习题(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章1. 算法分析题算法分析题1-1 求下列函数的渐进表达式(1). 3n^2 + 10n < 3n^2 + 10n^2 = 13n^2 = O(n^2)(2). n^2 / 10 + 2^n当n>5是,n^2 < 2 ^n所以,当n >= 1时,n^2/10 < 2 ^n故: n^2/10 + 2^n < 2 ^n + 2^n = 2*2^n = O(2^n)(3). 21 + 1/n < 21 + 1 = 22 = O(1)(4). log(n^3)=3log(n)=O(log(n))(5). 10log(3^n) = (10log3)n = O(n)算法分析题1-6(1)因为:f(n)=log(n^2) = 2log(n); g(n) = log(n) + 5所以:f(n)=Θ(log(n)+5) =Θ(g(n))(2)因为:log(n) < √n ; f(n) = 2log(n); g(n)= √n所以:f(n) = O(g(n))(3)因为:log(n) < n; f(n) = n; g(n) = log(n^2) = 2log(n)所以;f(n) = Ω(g(n))(4)因为:f(n) = nlogn +n; g(n) = logn所以:f(n) =Ω(g(n))(5)因为: f(n) = 10; g(n) = log(10)所以:f(n) =Θ(g(n))(6)因为: f(n)=log^2(n); g(n) = log(n)所以: f(n) ==Ω(g(n))(7)因为: f(n) = 2^n < 100*2^n; g(n)=100n^2; 2^n > n ^2所以: f(n) = Ω(g(n))(8)因为:f(n) = 2^n; g(n) = 3 ^n; 2 ^n < 3 ^n所以: f(n) = O(g(n))习题1-9 证明:如果一个算法在平均情况下的计算时间复杂性为Θ(f(n)),该算法在最坏情况下所需的计算时间为Ω(f(n)).分析与解答:因此,Tmax(N) = Ω(Tavg(N)) = Ω(Θ(f(n)))=Ω(f(n)).第二章算法分析题2-3 设a[0:n-1]是已经排好序的数组。

算法分析与设计第章习题答案

算法分析与设计第章习题答案

算法分析与设计第章习题答案第一章习题(1-1,1-2,1-3,1-6)1-1 求下列函数的渐进表达式3n2+10n = O(n2)n2/10+2n = O(2n)21+1/n = O(1)logn3 = O(logn)10log3n = O(n)知识点:如果存在正的常数C和自然数N0,使得:当N>=N0时有f(N)<=Cg(N),则称f(N)当N充分大时上有界,且g(N)是它的一个上界,记为f(N)=O(g(N)).这时,可以说f(N)的阶不高于g(N)的阶。

1-2 论O(1)和O(2)的区别O(1)和O(2)差别仅在于其中的常数因子,根据渐进上界记号O的定义可知,O(1)=O(2)。

1-3 从低到高排列以下表达式(按渐进阶排列以下表达式)结果:2 logn n2/320n 4n23n n! 分析:当n>=1时,有logn< n2/3当n>=7时,有3n < n!补充:当n>=4时,有logn> n1/31-6 对于下列各组函数f(n)和g(n),确定f(n)=O(g(n))或f(n)=Ω(g(n))或f(n)=Θ(g(n))。

知识点:f(n)的阶不高于g(n)的阶:f(n)=O(g(n));f(n)的阶不低于g(n)的阶:f(n)=Ω(g(n));f(n)与g(n) 同阶:f(n)=Θ(g(n)) (1)f(n)= logn2 ; g(n)= logn+5f(n)与g(n)同阶,故f(n)=Θ(g(n)) (2) f(n)= logn2 ; g(n)= n1/2当n>=8时,f(n)<=g(n),故f(n)=O(g(n))分析:此类题目不易直接看出阶的高低,可用几个数字代入观察结果。

如依次用n=1, 21, 22, 23, 26, 28, 210 (3) f(n)= n ; g(n)= log2n f(n)=Ω(g(n))(4) f(n)= nlogn+n; g(n)= lognf(n)=Ω(g(n))(5) f(n)= 10 ; g(n)= log10f(n)=Θ(g(n))(6) f(n)= log2n ; g(n)= lognf(n)=Ω(g(n))(7) f(n)= 2n ; g(n)= 100 n2f(n)=Ω(g(n))(8) f(n)= 2n ; g(n)= 3nf(n)=O(g(n))。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

算法设计与分析(第二版)主编:吕国英习题答案第四章1.#include<stdio.h>int main(void){int buf[100];int n;int i,j,k;scanf("%d",&n);for(i=0;i<n;i++)buf[i]=2;for(i=0;i<n-1;i++){for(j=0;j<n-i-1;j++){buf[j]+=2;}}for(j=0;j<n;j++){if(buf[j]>=10){buf[j+1]+=buf[j]/10;buf[j]=buf[j]%10;}}for(i=n-1;i>=0;i--)printf("%d",buf[i]);printf("\n");return 0;}2.#include<stdio.h>int main(void){int n=2;int i;for(i=1;i<=9;i++){n=(n+2)*2;}printf("%d\n",n);return 0;}3.#include<stdio.h>int main(void){int a=54;int n;int m;printf("计算机先拿3张牌\n"); a=a-3;while(a>=0){printf("还剩%d张牌\n",a); printf("你拿几张?请输入:"); scanf("%d",&n);if(n>4||n<1||n>a){printf("错误!重新拿牌\n"); continue;}a=a-n;printf("还剩%d张牌\n",a);if(a==0)break;m=5-n;printf("计算机拿%d\n",m);a=a-m;}return 0;}4.#include<stdio.h>int d;int a1,a2;int fun(int n);int main(void){int n;printf("n=?,d=?,a1=?,a2=?");scanf("%d%d%d%d\n",&n,&d,&a1,&a2); printf("%d\n",fun(n));return 0;}int fun(int n){if(n==1)return a1;if(n==2)return a2;return fun(n-2)-(fun(n-1)-d)*2;}5.#include<stdio.h>char chess[8][8];int is_safe(int row,int col);int queen(int row,int col,int n); int main(void){int i,j;for(i=0;i<8;i++)for(j=0;j<8;j++)chess[i][j]='X';queen(0,0,0);for(i=0;i<8;i++){for(j=0;j<8;j++)printf("%c ",chess[i][j]);printf("\n");}return 0;}int is_safe(int row,int col){int i,j;for(i=0;i<8;i++){if(chess[row][i]=='Q')return 0;if(chess[i][col]=='Q')return 0;}i=row;j=col;while(i!=-1&&j!=-1){if(chess[i--][j--]=='Q')return 0;}i=row;j=col;while(i!=-1&&j!=8){if(chess[i--][j++]=='Q')return 0;}i=row;j=col;while(i!=8&&j!=-1){if(chess[i++][j--]=='Q')return 0;}i=row;j=col;while(i!=8&&j!=8){if(chess[i++][j++]=='Q')return 0;}return 1;}int queen(int row,int col,int n) {int i,j;int result=0;if(n==8)return 1;elseif(is_safe(row,col)){chess[row][col]='Q';for(i=0;i<8;i++)for(j=0;j<8;j++){result+=queen(i,j,n+1);if(result>0)break;}if(result>0)return 1;else{chess[row][col]='X';return 0;}}elsereturn 0;}6.#include<stdio.h>int main(void){int i,j,k;for(i=1;i<=33;i++)for(j=1;j<=50;j++){k=100-i-j;if(k%2==0){if(3*i+2*j+k/2==100)printf("大马%d\n中马%d\n小马%d\n\n\n",i,j,k); }}return 0;}7.#include<stdio.h>int main(void){int i;for(i=1;i<=10000;i++){if(i%2==1&&i%3==2&&i%5==4&&i%6==5&&i%7==0) printf("%d\n",i);}return 0;}8.#include<stdio.h>int main(void){int i;int sum;int a1,a2,a3,a4;for(i=1000;i<=9999;i++){a1=i%10;a2=i/10%10;if(a1!=a2){a3=i/100%10;if(a1!=a3&&a2!=a3){a4=i/1000;if(a1!=a4&&a2!=a4&&a3!=a4){sum=(a1+a2+a3+a4)*(a1+a2+a3+a4);if(i%sum==0)printf("%d\n",i);}}}}return 0;}9.#include<stdio.h>#define N 10void max_min(int *a,int m,int n,int *min1,int *min2,int *max1,int *max2); int main(void){int a[N]={2,3,4,5,34,7,9,6,43,21};int min1,min2;int max1,max2;max_min(a,0,N-1,&min1,&min2,&max1,&max2);printf("min1=%d\nmin2=%d\nmax1=%d\nmax2=%d\n",min1,min2,max1,max2);return 0;}void max_min(int *a,int m,int n,int *min1,int *min2,int *max1,int *max2) {int lmin1,lmin2,lmax1,lmax2;int rmin1,rmin2,rmax1,rmax2;int mid;if(m==n){*min1=*min2=*max1=*max2=a[m];}elseif(m==n-1){if(a[m]<a[n]){*min1=a[m];*min2=a[n];*max1=a[n];*max2=a[m];}else{*min1=a[n];*min2=a[m];*max1=a[m];*max2=a[n];}}else{mid=(m+n)/2;max_min(a,m,mid,&lmin1,&lmin2,&lmax1,&lmax2); max_min(a,mid+1,n,&rmin1,&rmin2,&rmax1,&rmax2); if(lmin1<rmin1){if(lmin2<rmin1){*min1=lmin1;*min2=lmin2;}else{*min1=lmin1;*min2=rmin1;}}elseif(rmin2<lmin1)*min1=rmin1;*min2=rmin2;}else{*min1=rmin1;*min2=lmin1;}if(lmax1>rmax1){if(lmax2>rmax1){*max1=lmax1;*max2=lmax2;}else{*max1=lmax1;*max2=rmax1;}}elseif(rmax2>lmax1){*max1=rmax1;*max2=rmax2;}else{*max1=rmax1;*max2=lmax1;}}}10.#include<stdio.h>int add(int *a,int flag,int right); int main(void){int a[10]={1,2,3,4,5,6,7,8,9,10}; int sum=add(a,0,9);printf("%d\n",sum);return 0;int add(int *a,int flag,int right){int mid;if(flag==right){return a[flag];}elseif(flag==right-1){return a[flag]+a[right];}else{mid=(flag+right)/2;return add(a,flag,mid)+add(a,mid+1,right); }}11.#include<stdio.h>int main(void){int a[5][3]={{-50,17,-42},{-47,-19,-3},{36,-34,-43},{-30,-43,34},{-23,-8,-45}};int i,j;int max,n;int sum=0;for(i=0;i<5;i++){max=a[i][0];n=0;for(j=1;j<3;j++){if(a[i][j]>max){max=a[i][j];n=j;}sum+=max;printf("a[%d][%d]=%d\n",i,n,max);}printf("%d\n",sum);return 0;}12./** File: newmain.c* Author: nirnava** Created on 2010年4月22日, 下午5:21*/#include<stdio.h>#include<stdlib.h>#define N 4void matrix_mul(int *mul1,int *mul2,int *mul3,int length); void matrix_add_sub(int * A,int * B,int * C,int m,char ch); void update_half_value(int * A,int * B,int m);void get_half_value(int * A,int * B,int m);int main(void){int i,j;int mul1[N*N]={1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6};int mul2[N*N]={7,8,9,10,1,2,3,4,5,6,7,8,9,10,1,2};int mul3[N*N];matrix_mul(mul1,mul2,mul3,N);for(i=0;i<N*N;i++){printf("%5d",mul3[i]);if((i+1)%N==0)printf("\n");}return 0;}void matrix_add_sub(int * A,int * B,int * C,int m,char ch) {int i;for(i=0;i<m*m;i++){if(ch=='+')C[i]=A[i]+B[i];C[i]=A[i]-B[i];}}void update_half_value(int * A,int * B,int m) {int i,j;for(i=0;i<m/2;i++){for(j=0;j<m/2;j++){B[i*m+j]=A[i*m/2+j];}}}void get_half_value(int * A,int * B,int m) {int i,j;for(i=0;i<m/2;i++){for(j=0;j<m/2;j++){A[i*m/2+j]=B[i*m+j];}}}void matrix_mul(int *A,int *B,int *C,int m) {if(m==2){int D,E,F,G,H,I,J;D=A[0]*(B[1]-B[3]);E=A[3]*(B[2]-B[0]);F=(A[2]+A[3])*B[0];G=(A[0]+A[1])*B[3];H=(A[2]-A[0])*(B[0]+B[1]);I=(A[1]-A[3])*(B[2]+B[3]);J=(A[0]+A[3])*(B[0]+B[3]);C[0]=E+I+J-G;C[1]=D+G;C[2]=E+F;C[3]=D+H+J-F;return ;}{int A1[m*m/4],A2[m*m/4],A3[m*m/4],A4[m*m/4];int B1[m*m/4],B2[m*m/4],B3[m*m/4],B4[m*m/4];int C1[m*m/4],C2[m*m/4],C3[m*m/4],C4[m*m/4];int D[m*m/4],E[m*m/4],F[m*m/4],G[m*m/4],H[m*m/4],I[m*m/4],J[m*m/4]; int temp1[m*m/4],temp2[m*m/4];get_half_value(A1,&A[0],m);get_half_value(A2,&A[m/2],m);get_half_value(A3,&A[m*m/2],m);get_half_value(A4,&A[m*m/2+m/2],m);get_half_value(B1,&B[0],m);get_half_value(B2,&B[m/2],m);get_half_value(B3,&B[m*m/2],m);get_half_value(B4,&B[m*m/2+m/2],m);matrix_add_sub(B2,B4,temp1,m/2,'-');matrix_mul(A1,temp1,D,m/2);matrix_add_sub(B3,B1,temp1,m/2,'-');matrix_mul(A4,temp1,E,m/2);matrix_add_sub(A3,A4,temp1,m/2,'+');matrix_mul(temp1,B1,F,m/2);matrix_add_sub(A1,A2,temp1,m/2,'+');matrix_mul(temp1,B4,G,m/2);matrix_add_sub(A3,A1,temp1,m/2,'-');matrix_add_sub(B1,B2,temp2,m/2,'+');matrix_mul(temp1,temp2,H,m/2);matrix_add_sub(A2,A4,temp1,m/2,'-');matrix_add_sub(B3,B4,temp2,m/2,'+');matrix_mul(temp1,temp2,I,m/2);matrix_add_sub(A1,A4,temp1,m/2,'+');matrix_add_sub(B1,B4,temp2,m/2,'+');matrix_mul(temp1,temp2,J,m/2);matrix_add_sub(E,I,temp1,m/2,'+');matrix_add_sub(J,G,temp2,m/2,'-');matrix_add_sub(temp1,temp2,C1,m/2,'+');matrix_add_sub(D,G,C2,m/2,'+');matrix_add_sub(E,F,C3,m/2,'+');matrix_add_sub(D,H,temp1,m/2,'+');matrix_add_sub(J,F,temp2,m/2,'-');matrix_add_sub(temp1,temp2,C4,m/2,'+');update_half_value(C1,&C[0],m);update_half_value(C2,&C[m/2],m);update_half_value(C3,&C[m*m/2],m);update_half_value(C4,&C[m*m/2+m/2],m);return ;}}13.#include<stdio.h>int main(void){int a[6][7]={{16,4,3,12,6,0,3},{4,-5,6,7,0,0,2},{6,0,-1,-2,3,6,8},{5,3,4,0,0,-2,7},{-1,7,4,0,7,-5,6},{0,-1,3,4,12,4,2}};int b[6][7],c[6][7];int i,j,k;int max;int flag;int temp;for(i=0;i<6;i++)for(j=0;j<7;j++){b[i][j]=a[i][j];c[i][j]=-1;}for(i=1;i<5;i++){for(j=0;j<7;j++){max=0;for(k=j-2;k<=j+2;k++) {if(k<0)continue;elseif(k>6)break;else{if(b[i][j]+b[i-1][k]>max) {max=b[i][j]+b[i-1][k]; flag=k;}}}b[i][j]=max;c[i][j]=flag;}}for(j=1;j<=5;j++){max=0;for(k=j-2;k<=j+2;k++) {if(k<0)continue;elseif(k>6)break;else{if(b[i][j]+b[i-1][k]>max) {max=b[i][j]+b[i-1][k]; flag=k;}}}b[i][j]=max;c[i][j]=flag;}max=0;for(j=1;j<=5;j++){if(b[i][j]>max){max=b[i][j];flag=j;}}printf("%d\n",max);temp=c[i][flag];printf("%5d",a[i][temp]); for(j=i;j>0;j--){temp=c[j][temp];printf("%5d",a[j-1][temp]); }printf("\n");return 0;}14.#include<stdio.h>int main(void){int A[6]={0,3,7,9,12,13}; int B[6]={0,5,10,11,11,11}; int C[6]={0,4,6,11,12,12}; int AB[6][6];int temp[6];int abc[6];int max;int flag;int i,j,k;for(i=0;i<=5;i++){max=0;for(j=0;j<=i;j++){AB[i][j]=A[i-j]+B[j];if(AB[i][j]>max)max=AB[i][j];}temp[i]=max;}max=0;for(i=0;i<=5;i++){abc[i]=temp[i]+C[5-i];if(abc[i]>max){max=abc[i];flag=i;}}printf("max=%d\n",max); printf("c=%d\n",5-flag); max=max-C[5-flag];for(i=0;i<=flag;i++){if(AB[flag][i]==max){printf("b=%d\n",i);printf("a=%d\n",flag-i);break;}}return 0;}16.#include<stdio.h>#define N 100int search(int *a,int left,int right); int sum_buf(int *a,int left,int right); int main(void){int a[N];int i;int s;for(i=0;i<N;i++)a[i]=1;a[24]=2;s=search(a,0,N-1);printf("%d\n",s);return 0;}int sum_buf(int *a,int left,int right) {int i;int sum=0;for(i=left;i<=right;i++)sum+=a[i];return sum;}int search(int *a,int left,int right) {int mid=(left+right)/2;if(left==right-1){if(a[left]<a[right])return right;elsereturn left;}if(mid*2!=(right+left-1)){if(sum_buf(a,left,mid-1)>sum_buf(a,mid+1,right)) {return search(a,left,mid-1);}elseif(sum_buf(a,left,mid-1)<sum_buf(a,mid+1,right)) {return search(a,mid+1,right);}elsereturn mid;}else{if(sum_buf(a,left,mid)>sum_buf(a,mid+1,right)) return search(a,left,mid);elsereturn search(a,mid+1,right);}}17.#include<stdio.h>int job[6][2]={{3,8},{12,10},{5,9},{2,6},{9.3},{11,1}};int x[6],bestx[6],f1=0,bestf,f2[7]={0};void try(int i);void swap(int a,int b);int main(void){int i,j;bestf=32767;for(i=0;i<6;i++)x[i]=i;try(0);for(i=0;i<6;i++)printf("%d ",bestx[i]);printf("\nbestf=%d\n",bestf); return 0;}void try(int i){int j;if(i==6){for(j=0;j<6;j++)bestx[j]=x[j];bestf=f2[i];}else{for(j=i;j<6;j++){f1=f1+job[x[j]][0];if(f2[i]>f1)f2[i+1]=f2[i]+job[x[j]][1]; elsef2[i+1]=f1+job[x[j]][1];if(f2[i+1]<bestf){swap(i,j);try(i+1);swap(i,j);}f1=f1-job[x[j]][0];}}}void swap(int i,int j){int temp;temp=x[i];x[i]=x[j];x[j]=temp;}18.#include<stdio.h>#define N 5 //N个数字#define M 2 //M个加号char buf[N];int a[N];char b[M+1][N];int c[M+1];int try(int t);void swap(int t1,int t2); int add();void output();int min=99999;int main(){int i;for(i=0;i<N;i++){scanf("%c",&buf[i]);}a[0]=0;for(i=1;i<=M;i++){a[i]=1;}for(;i<N;i++){a[i]=0;}try(1);output();printf("%d\n",min);return 0;}int try(int t){int j;int i;int sum;if(t>=N){sum=add();if(sum<min){min=sum;for(i=0;i<M+1;i++){c[i]=atoi(b[i]);}}/*for(i=0;i<N;i++){printf("%d",a[i]);}printf("\n");*/}else{for(j=t;j<N;j++){//if(a[t]!=a[j]){swap(t,j);try(t+1);swap(t,j);}//else//try(t+1);}}}void swap(int t1,int t2) {int t;t=a[t1];a[t1]=a[t2];a[t2]=t;}int add(){int sum=0;int i=0;int j;int k=0;int h=0;for(i=0;i<M+1;i++)for(j=0;j<N;j++)b[i][j]='Q';i=0;j=0;h=0;k=0;for(j=0;j<N;j++){if(a[j]==1){h=0;i++;b[i][h]=buf[j];//printf("%d ",atoi(b[i]));//printf("%d %d %c \n",i,h,b[i][h]); h++;}else{b[i][h]=buf[j];//printf("%d %d %c \n",i,h,b[i][h]); //printf("%d ",atoi(b[i]));h++;}}/*for(i=0;i<M+1;i++){for(j=0;j<N;j++)printf("%c ",b[i][j]);printf("\n");}*/for(i=0;i<M+1;i++){sum+=atoi(b[i]);}return sum;}void output(){int i;for(i=0;i<M+1;i++){printf("%d",atoi(b[i]));if(i!=M)printf("+");}printf("=");}19.#include<stdio.h>int main(void){int buf[100];int m,n;int i,j;buf[0]=1;buf[1]=1;scanf("%d%d",&n,&m);for(i=1;i<n;i++){buf[i+1]=buf[i];for(j=i;j>0;j--){buf[j]=buf[j]+buf[j-1];}}printf("%d\n",buf[m]);return 0;}20.#include<stdio.h>int max_sum4(int *a,int n);int max_sub_sum(int *a,int left,int right);int main(void){int a[6]={-2,11,-4,13,-5,-2};printf("%d\n",max_sum4(a,5));return 0;}int max_sum4(int *a,int n){return max_sub_sum(a,0,n);}int max_sub_sum(int *a,int left,int right){int center,i,max,left_sum,right_sum,s1,s2,s3,s4,lefts,rights,leftl,rightl; int buf[4];if(left==right)return a[left];else{center=(left+right)/2;left_sum=max_sub_sum(a,left,center); right_sum=max_sub_sum(a,center+1,right); s1=0;lefts=0;for(i=center;i>=left;i--){lefts+=a[i];if(lefts>s1)s1=lefts;}s2=0;rights=0;for(i=center+1;i<=right;i++){rights+=a[i];if(rights>s2)s2=rights;}s3=0;leftl=0;for(i=left;i<=center;i++){leftl+=a[i];if(leftl>s3)s3=leftl;}s4=0;rightl=0;for(i=right;i>=center+1;i--){rightl+=a[i];if(rightl>s4)s4=rightl;}buf[0]=s1+s2;buf[1]=s4+s3;buf[2]=left_sum;buf[3]=right_sum;max=0;for(i=0;i<=3;i++){if(buf[i]>max)max=buf[i];}return max; }}。

相关文档
最新文档