中考数学中的折叠问题
中考数学折叠知识点总结
![中考数学折叠知识点总结](https://img.taocdn.com/s3/m/1b34419fb8f3f90f76c66137ee06eff9aef8492e.png)
中考数学折叠知识点总结一、折叠的基本概念1. 折叠是指将平面图形按照一定的方式对折使其成为一个新的图形的过程。
2. 折痕是指将纸张折叠成新形状所需的折痕线。
3. 折叠时需要确保折线上的点重合,折线上的两个点到折线的距离分别相等。
二、折叠和几何1. 折叠与几何题目密切相关,我们可以通过折叠的方式来解决一些几何题目。
2. 折叠可以用来求解线段的垂直平分线、两点之间的最短距离、平行线的位置关系等问题。
三、折叠的技巧1. 折叠时需要仔细测量折痕的位置,可以使用尺子或折痕工具来辅助。
2. 折叠时需要保持手的稳定,避免折痕偏差,影响折叠结果。
3. 折叠后要仔细检查折线上的点是否重合,以确保折痕的正确性。
四、折纸作图1. 折纸作图是指通过对纸张进行折叠来完成一些几何图形的作图。
2. 折纸作图可以用来完成正多边形、平行四边形、圆等几何图形的作图。
3. 折纸作图可以通过折叠来求解一些几何问题,如平行线的位置关系、角的平分线、两点之间的最短路径等。
五、折纸拼图1. 折纸拼图是指通过折叠纸张来完成一些图形拼图的过程。
2. 折纸拼图可以用来完成一些常见的几何图形,如正方形、长方形、三角形等。
3. 折纸拼图可以通过分析图形的属性和对称关系来完成,需要灵活运用折叠的技巧来完成。
六、折纸数学问题1. 折纸数学问题是指通过折叠纸张来解决一些数学问题的过程。
2. 折纸数学问题可以用来求解一些几何题目,如平行线的位置关系、角的平分线、相似三角形等。
3. 折纸数学问题需要综合运用折叠的技巧和几何知识来完成,可以帮助我们更好地理解和应用几何知识。
七、折纸的启发1. 折纸可以培养学生的空间想象和创造力,有利于学生的综合能力发展。
2. 折纸可以激发学生对数学的兴趣,通过折叠来解决数学问题,有助于学生更好地理解和应用数学知识。
3. 折纸可以激发学生对数学的好奇心和求知欲,有助于培养学生的数学思维和创新能力。
总结:折叠知识是中考数学的重要知识点,通过对折叠的基本概念、折叠和几何、折叠的技巧、折纸作图、折纸拼图、折纸数学问题和折纸的启发等方面的学习,我们可以更好地掌握折叠知识,提高数学解题的能力和创新思维。
中考数学中折叠问题
![中考数学中折叠问题](https://img.taocdn.com/s3/m/3bdeae866529647d272852e4.png)
中考数学中的折叠问题探究中考数学中,经常通过折叠操作类问题考查学生的数、形结合的数学思想方法和空间想象能力,题目灵活多变,趣味性强,更为引导学生在数学学习与生活相联系中激发兴趣,体会数学学习的快乐。
几何图形的折叠问题,实质上是轴对称问题。
解答这类问题的关键是根据轴对称的性质,找准折叠前后的两个全等图形。
确定其中对应角相等、对应线段相等。
折痕平分线段、平分角等条件。
下面分几个类型来探索这类问题的解答思路。
一、折叠求角度类此类问题往往利用折叠中的对应角相等,再通过邻补角、平行线性质等得到各角度的数量关系。
此类问题通常难度较低。
例1.将五边形abcde纸片按如图1的方式折叠,折痕为af,点e,d分别落在e′,d′。
已知∠afc=76°,则∠cfd′等于()a.31°b.28°c.24°d.22°分析:根据题意,由邻补角的关系求得∠afd=∠afd′=180°-76°=104°,则∠cfd′=104°-76°=28°,故选b。
例2.如图2,把一个长方形纸片沿ef折叠后,点d、c分别落在d′、c′的位置,若∠efb=65°,则∠aed′等于()a.50°b.55°c.60°d.65°二、折叠求线段类此类问题多通过折叠中的全等图形,确定对应线段的等量关系,再运用勾股定理或相似比寻求线段间数量关系,构建方程,从而求解。
方程建模思想的应用是解决此类问题的主要思路。
三、折叠求坐标类此类题目中勾股定理与三角函数的综合运用较多。
求坐标一般要通过求线段长来解决。
但有些题目中适当运用三角函数比运用相似图形解答会更便捷。
四、折叠求面积类此类问题的解答一般要借助线段长的求解,但问题的关键是确定所求图形的形状,再求面积;若图形是非规则图形,则要通过其他规则图形的面积关系转化求解。
九年级数学中考折叠问题精选全文
![九年级数学中考折叠问题精选全文](https://img.taocdn.com/s3/m/5bd00b1bbf1e650e52ea551810a6f524cdbfcb7c.png)
精选全文完整版(可编辑修改)专题10图形折叠问题 姓名_________折叠型问题通常是把某个图形(三角形或矩形)绕某一点或沿某一条线折叠,通过折叠后满足的条件图形求某一条线段的大小或最小值,折叠问题的解题突破点:1.折叠前后两图形全等,关于折痕成轴对称(即折痕是对称轴,对画图很重要);2.遇到折叠问题,寻找等量(即相等的线段和相等的角);3.折叠问题中的计算,一般会用到分类讨论、勾股定理和方程思想;4.确定折叠后的对应点可以用画圆(画弧)和对称的方法.1.如图所示,正方形ABCD 的边长为2,点E 为BC 边上一动点,将△ABE 沿直线AE 折叠,点B 的对应点落在点F 处,若△CFD 恰为等腰三角形,则BE 的长为_________. (32-4或332)2.如图,在Rt △ABC 中,∠C=90°,AC=3,BC=4,点E ,F 分别在边AC ,BC 上,连接EF ,将△ABC 沿直线EF 折叠,点C 的对应点D 恰好落在边AB 上,若△BDF 是等腰三角形,则CF 的长为_______.(231048-或 或1312)3.如图,一张长方形纸片的长AD=4,宽AB=1,点E 在边AD 上,点F 在BC 边上,将四边形ABFE 沿直线EF 翻折后,点B 落在边AD 的三等分点G 处,则EG 等于_______.(48732425或) (如果把条件“三等分点”改为“中点”又该怎么做呢?答案:45)4.如图,在矩形纸片ABCD 中,AB=8,AD=12,点E 是AD 的中点,点F 是AB 边上的一个动点,将△AEF 沿EF 所在的直线折叠,得到△A ′EF ,连接A ′B ,若△A ′FB 为直角三角形,则AF 的长为_________(6或3)5.如图,在Rt △ABC 中,∠C=90°,∠B=30°,AB=4,点M ,N 分别是边AB ,BC 上的动点,沿MN 所在的直线折叠∠B ,使点B 的对应点始终落在边AC 上,若△MNB ′为直角三角形,则BN 的长为_______.(3343或)6.如图,在Rt △ABC 中,∠C=90°,AC=12,BC=10,D 是BC 的中点,E 是AC 上一动点,将△CDE 沿DE 折叠到△C ′DE ,连接AC ′,当△AEC ′时直角三角形时,AE 的长为_________(7326或)7.如图,在矩形ABCD 中,AB=6,AD=4,点F 为BC 边的中点,点E 为AB 边上一动点,将△ADE 沿ED 折叠,点A 的对应点为点A ′,则A ′F 的最小值为__________(4-102)8.如图,Rt △ABC 中,∠C=90°,AC=3,BC=4,点D 是线段BC 上一动点,把△ABD 沿直线AD 翻折,点B 的对应点为点B ′,连接B ′C ,当△B ′CD 为直角三角形时,BD 的长为________(251或)9.如图,在△ABC中,∠C=90°,∠A=30°,BC=3,P是AB上的一动点,PE⊥AC于E,沿PE将∠A折叠,点A的对应点为D,若△BPD是直角三角形,则PA=_________(2或4)10.(2013河南)如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B 沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,求BE的长。
中考数学八大题型集训:专题复习(5)图形的折叠问题含解析
![中考数学八大题型集训:专题复习(5)图形的折叠问题含解析](https://img.taocdn.com/s3/m/82f971e2915f804d2a16c100.png)
专题复习(五) 图形的折叠问题折叠(翻折)问题常常出现在三角形、四边形、圆等平面几何问题中,其实质是轴对称性质的应用.解题的关键利用轴对称的性质找到折叠前后不变量与变量,运用三角形的全等、相似及方程等知识建立有关线段、角之间的联系.类型1 三角形中的折叠问题(·宜宾)如图,一次函数的图象与x 轴、y 轴分别相交于点A 、B ,将△AOB 沿直线AB 翻折,得△ACB.若C(32,32),则该一次函数的解析式为________.【思路点拨】 利用翻折变换的性质结合锐角三角函数关系得出CO ,AO 的长,进而得出A 、B 两点的坐标,再利用待定系数法求出直线AB 的解析式.【解答】 连接OC ,过点C 作CD⊥x 轴于点D ,∵将△AOB 沿直线AB 翻折,得△ACB,C(32,32),∴AO =AC ,OD =32,DC =32,BO =BC ,则tan ∠COD =CD OD =33,故∠COD=30°,∠BOC =60°,∴△BOC 是等边三角形,且∠CAD=60°. 则sin60°=CD AC ,则AC =DCsin60°=1,故A(1,0),sin30°=CD CO =32CO =12.则CO =3,故BO =3,B 点坐标为(0,3),设直线AB 的解析式为y =kx +3,把A(1,0)代入解析式可得k =- 3. ∴直线AB 的解析式为y =-3x + 3.折叠(翻折)意味着轴对称,会生成相等的线段和角,这样便于将条件集中.如果题目中有直角,则通常将条件集中于较小的直角三角形,利用勾股定理求解.1.(·绵阳)如图,D 是等边△ABC 边AB 上的一点,且AD∶DB=1∶2,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E ,F 分别在AC 和BC 上,则CE∶CF=( )A.34B.45C.56D.672.(·德阳)如图,△ABC 中,∠A =60°,将△ABC 沿DE 翻折后,点A 落在BC 边上的点A′处.如果∠A′EC =70°,那么∠A′DE 的度数为________.3.(·宜宾)如图,在Rt△ABC 中,∠B =90°,AB =3,BC =4,将△ABC 折叠,使点B 恰好落在边AC 上,与点B′重合,AE 为折痕,则EB′=________.4.(·滨州)如图,在平面直角坐标系中,将矩形AOCD 沿直线AE 折叠(点E 在边DC 上),折叠后顶点D 恰好落在边OC 上的点F 处,若点D 的坐标为(10,8),则点E 的坐标为________.类型2 四边形及其他图形中的折叠问题(·南充)如图,在矩形纸片ABCD 中,将△AMP 和△BPQ 分别沿PM 和PQ 折叠(AP >AM),点A 和点B 都与点E 重合;再将△CQD 沿DQ 折叠,点C 落在线段EQ 上点F 处.(1)判断△AMP,△BPQ ,△CQD 和△FDM 中有哪几对相似三角形?(不需说明理由)(2)如果AM =1,sin ∠DMF =35,求AB 的长.【思路点拨】 (1)由矩形的性质得∠A =∠B =∠C =90°,由折叠的性质和等角的余角相等,可得∠BPQ =∠AMP =∠DQC ,所以△AMP∽△BPQ∽△CQD ;(2)设AP =x ,由折叠关系可得:BP =AP =EP =x ,AB =DC =2x ,AM =1,根据△AMP∽△BPQ 得:AMBP=AP BQ ,即BQ =x 2,根据△AMP∽△CQD 得:AP CD =AM CQ ,即CQ =2,从而得出AD =BC =BQ +CQ =x 2+2,MD =AD -AM =x 2+2-1=x 2+1,根据Rt △FDM 中∠DMF 的正弦值得出x 的值,从而求出AB 的值.【解答】 (1)有三对相似三角形,即△AMP∽△BPQ∽△CQD. 理由如下:∵四边形ABCD 是矩形, ∴∠A =∠B=∠C=90°.根据折叠可知:∠APM=∠EPM,∠EPQ =∠BPQ,∴∠APM +∠BPQ=∠EPM+∠EPQ=90°. ∵∠APM +∠AMP=90°,∴∠BPQ =∠AMP,∴△AMP ∽△BPQ , 同理:△BPQ∽△CQD. ∴△AMP ∽△BPQ ∽△CQD. (2)设AP =x ,∴由折叠关系,BP =AP =EP =x ,AB =DC =2x.由△AMP∽△BPQ 得,AM BP =AP BQ ,即1x =xBQ ,得BQ =x 2.由△AMP∽△CQD 得,AP CD =AM CQ ,即x 2x =1CQ ,得CQ =2.∴AD =BC =BQ +CQ =x 2+2.∴MD =AD -1=x 2+1.∵在Rt△FDM 中,sin ∠DMF =35,∴2x x 2+1=35.解得x 1=3,x 2=13(不合题意,舍去). 即AB =6.矩形中的一次折叠通常利用折叠性质和平行线性质求角的度数,或者利用折叠性质以及勾股定理求线段长度.矩形中的两次或多次折叠通常出现“一线三直角”的模型(如图),从而构造相似三角形,利用相似三角形求边或者角的度数.1.(·南充)如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B′处,若AE =2,DE =6,∠EFB =60°,则矩形ABCD 的面积是( )A .12B .24C .12 3D .16 32.(·泸州)如图,在△ABC 中,AB =AC ,BC =24,tanC =2,如果将△ABC 沿直线l 翻折后,点B 落在边AC 的中点E 处,直线l 与边BC 交于点D ,那么BD 的长为( )A.13 B.152C.272D.123.(·德阳)将抛物线y=-x2+2x+3在x轴上方的部分沿x轴翻折至x轴下方,图象的剩余部分不变,得到一个新的函数图象,那么直线y=x+b与此新图象的交点个数的情况有()A.6种 B.5种 C.4种 D.3种4.(·成都)如图,在□ABCD中,AB=13,AD=4,将ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为________.5.(·内江)如图,在四边形ABCD中,AD∥BC,∠C=90°,E为CD上一点,分别以EA,EB为折痕将两个角(∠D,∠C)向内折叠,点C,D恰好落在AB边的点F处.若AD=2,BC=3,则EF的长为________.6.(·南充)如图,有一矩形纸片ABCD,AB=8,AD=17,将此矩形纸片折叠,使顶点A落在BC边的A′处,折痕所在直线同时经过边AB、AD(包括端点),设BA′=x,则x的取值范围是________.7.(·绵阳)如图1,在矩形ABCD中,AB=4,AD=3,将矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△DEC≌△EDA;(2)求DF的值;(3)如图2,若P为线段EC上一动点,过点P作△AEC的内接矩形,使其顶点Q落在线段AE上,顶点M、N落在线段AC上,当线段PE的长为何值时,矩形PQMN的面积最大?并求出其最大值.参考答案类型1 三角形中的折叠问题1.B 提示:∵△ABC 为等边三角形,∴∠A =∠B=∠C=60°.又∵折叠△ABC,使得点C 恰好与边AB 上的点D 重合,折痕为EF ,∴∠EDF =∠C=60°,CE =DE ,CF =DF.∴∠ADE+∠FDB=120°.∴∠AED =∠FDB.∴△AED∽△BDF.∴AE BD =AD BF =DEFD .设等边△ABC 边长为6个单位,CE =x ,CF =y ,AE =6-x ,BC =6-y ,∴6-x 4=26-y =x y ,解得x =145,y =72.∴x ∶y =4∶5,故选择B.2.65°3.1.54.(10,3)类型2 四边形及其他图形中的折叠问题1.D 2.A3.B 提示:由题意,易知y =-x 2+2x +3与x 轴的两个交点坐标分别为(3,0)和(-1,0),顶点坐标为(1,4),顶点关于x 轴对称点的坐标为(1,-4).当直线y =x +b 过(-1,0)时,b =1,此时直线与新的函数图象只有一个交点;当b>1时,此时直线与新的函数图象无交点;当直线y =x +b 过(3,0)时,b =-3,此时直线与新的函数图象有三个交点;观察图象,易知:当-3<b<1时,此时直线与新的函数图象有三个交点;当直线y =x +b 过(1,-4)时,b =-5,此时直线与新的函数图象有三个交点;观察图象,易知:当-5≤b<-3时,此时直线与新的函数图象有四个交点;观察图象,易知:当b<-5时,此时直线与新的函数图象有二个交点;综上,直线y =x +b 与此新图象的交点的个数的情况有5种,故选B.4.35. 6 提示:作AH⊥BC 于H.∵分别以AE ,BE 为折痕将两个角(∠D,∠C)向内折叠,点C ,D 恰好落在AB 边的点F 处,∴DE =EF ,CE =EF ,AF =AD =2,BF =CB =3.∴DC=2EF ,AB =5.∵AD∥BC,∠C =90°, ∴四边形ADCH 为矩形,∴AH =DC =2EF ,HB =BC -CH =BC -AD =1.在Rt△ABH 中,AH =AB 2-BH 2=26,∴EF = 6. 6.2≤x≤87.(1)证明:由矩形的性质可知△ADC≌△CEA,∴AD =CE ,DC =EA ,∠ACD =∠CAE. 在△CED 与△ADE 中,⎩⎪⎨⎪⎧CE =AD ,DE =ED ,DC =EA ,∴△DEC ≌△EDA.(2)∵∠ACD=∠CAE,∴AF =CF.设DF =x ,则AF =CF =4-x ,在Rt△ADF 中,AD 2+DF 2=AF 2,即32+x 2=(4-x)2,解得x =78,即DF =78.(3)由矩形PQMN 的性质得PQ∥CA, ∴PE CE =PQCA. 又∵CE=3,AC =AB 2+BC 2=5.设PE =x(0<x <3),则x 3=PQ 5,即PQ =53x.过E 作EG⊥AC 于G ,则PN∥EG,∴CP CE =PN EG. 又∵在Rt△AEC 中,EG ·AC =AE·CE,解得EG =125.∴3-x 3=PN 125,即PN =45(3-x).设矩形PQMN 的面积为S ,则S =PQ·PN=-43x 2+4x =-43(x -32)2+3(0<x <3).∴当x =32,即PE =32时,矩形PQMN 的面积最大,最大面积为3.。
中考数学中的折叠问题
![中考数学中的折叠问题](https://img.taocdn.com/s3/m/3042901d312b3169a451a4d2.png)
专题:漫谈折叠问题(二)一、折叠问题小技巧A 要注意折叠前后线段、角的变化,全等图形的构造;B 通常要设求知数;C 利用勾股定理构造方程。
二、折叠问题常见考察点(一)求角的度数1.如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△ABC 沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=【】A.150°B.210°C.105°D.75°【考点】翻折变换(折叠问题),三角形内角和定理。
2. 如图,在平行四边形ABCD中,∠A=70°,将平行四边形折叠,使点D、C分别落在点F、E处(点F、E都在AB所在的直线上),折痕为MN,则∠AMF等于【】A.70° B.40° C.30° D.20°3. 如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是__________.【考点】翻折变换(折叠问题),等腰三角形的性质,三角形内角和定理,线段垂直平分线的判定和性质。
4. 如图,将正方形ABCD沿BE对折,使点A落在对角线BD上的A′处,连接A′C,则∠BA′C=__________度.5.如图,在△ABC中,D,、E分别是边AB、AC的中点, ∠B=50°º.现将△ADE沿DE折叠,点A 落在三角形所在平面内的点为A1,则∠BDA1的度数为__________°.【考点】翻折变换(折叠问题),折叠对称的性质,三角形中位线定理,平行的性质。
(二)求线段长度1.如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别和AE、AF折叠,点B、D恰好都将在点G处,已知BE=1,则EF的长为【】A.32 B.52 C.94 D.3【考点】翻折变换(折叠问题),正方形的性质,折叠的性质,勾股定理。
中考数学中的折叠问题精选全文
![中考数学中的折叠问题精选全文](https://img.taocdn.com/s3/m/ab60f77bdc36a32d7375a417866fb84ae55cc368.png)
精选全中考数学中的折叠问题文完整版(可编辑修改)近年来,在各地中考数学命题时,十分重视对图形语言、文字语音、符号语言的理解运用及相互之间的关系,相互之间的转化能力以及动手操作能力的考查。
这样,图形的折叠问题就成为一个亮点,有关翻折的考题日趋增加。
翻折问题的解决方法,抓住翻折后与翻折的图形是以折痕为轴的轴对称图形这一关键,并运用代数方程,一般均可求得。
下面我们以中考题为例,谈谈翻折问题的几例类型及解法,供大家参考。
一、以矩形为母体的翻折这种类型最多,以折痕的不同位置又可分下面几种:1、沿对角线翻折例1、(2000年山西省)已知:如图1,将矩形ABCD沿直线BD折叠,使点C 落在C’处,BC’交AD于E,AD=8,AB=4,求△BED的面积。
分析:因为BD是对称轴,∴∠CBD=∠C’BD,又AD∥BC,∴∠CBD=∠ADB,得:∠C’BD=∠ADB,∴ED=EB设ED=x,∴AD=8-x在Rt△ABE中,AB2+AE2=BE2,即42+(8-x)2=x2,∴x=5,∴ED=EB=5又BD=∴S△BED==10方法2:过E作EF⊥BD,垂足F,在得到BE=5,BD=4后,在Rt△BEF中,EF=,得S△BED=BD×EF=×4×=10方法3:∵Rt△BEF∽Rt△BDC’,∴EF:DC’=BF:BC’,得EF==(以下略)2、沿一直线翻折,使一顶点落在对边上例2、(2000年山东省)已知矩形ABCD的两边AB与BC的比为4:5,E是AB 上一点,沿CE将△EBC向上翻折,若B点恰好落在边AD上的F点,如图2,则tg∠DCF=______。
A、B、C、D、分析:因为CF=CB,∴CF:CD=5:4,得CD:DF=4:3,∴tg∠DCF==,应选(A)。
例3、(1998年台州市)如图3,矩形ABCD的长、宽分别为5和3,将顶点C 折过来,使它落在AB上的C’点(DE为折痕),那么阴影部分的面积是______。
中考数学二轮专题复习图形变换——折叠问题【含答案】
![中考数学二轮专题复习图形变换——折叠问题【含答案】](https://img.taocdn.com/s3/m/e74faa68e55c3b3567ec102de2bd960590c6d913.png)
二轮复习:图形变换(一)—折叠图形变换历来是中考必考点之一。
考试大纲要求:会运用图形变换的相关知识进行简单的作图与计算,并能解决相关动态需求数学问题,并能进行图案设计。
图形变换一般包括,折叠、平移、旋转、对称、位似和图形的探究。
在图形变换的考题中,最多题型是折叠、旋转。
在解决折叠问题时,应注意折叠前后相对应的边相等、角相等。
下面着重从三个方面进行讲述:三角形折折叠、特殊平行四边形折叠和在平面直角坐标系内的图形折叠三大类进行。
(一)三角形的折叠:题型1、一般三角形的折叠:1、如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°﹣α﹣β2、(2019•江西)如图,在△ABC中,点D是BC上的点,∠BAD=∠ABC=40°,将△ABD沿着AD翻折得到△AED,则∠CDE=°.3、如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为___.题型2、等腰或等边三角形的折叠:4、如图,在△ABC 中,AB =AC ,BC =24,tanC =2,如果将△ABC 沿直线l 翻折后,点B 落在边AC 的中点E 处,直线l 与边BC 交于点D ,那么BD 的长为_____.5、如图,D 是等边△ABC 边AB 上的点,AD=2,DB=4.现将△ABC 折叠,使得点C 与点D 重合,折痕为EF ,且点E 、F 分别在边AC 和BC 上,则CF CE=_______.(利用相似三角形周长的比等于相似比△AED 相似△DBF)题型3、直角三角形的折叠:6、如图,在Rt △ABC 中,∠ACB=90°,BC=6,CD 是斜边AB 上的中线,将△BCD 沿直线CD 翻折至△ECD 的位置,连接AE .若DE ∥AC ,计算AE 的长度等于.7、如图,在等腰直角三角形ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是(二)特殊平行四边形的折叠:题型1、矩形折叠:1、(求角).如图,将矩形沿对角线折叠,点落在处,交于点,已知,则的度为A. B. C. D.2、(求三角函数值)如图,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,如果AB:AD=2:3,那么tan∠EFC值是.3、(求边长)如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE 折叠,使点B落在矩形内点F处,连接CF,则CF的长为4、(求折痕长)如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,若AB=4,BC=2,那么线段EF的长为5、(求边的比)如下图,在矩形ABCD中,点E,F分别在BC,CD上,将△ABE沿AE折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处.则BC:AB的值为。
初中数学中的折叠问题
![初中数学中的折叠问题](https://img.taocdn.com/s3/m/b5de16e2a8114431b80dd8ce.png)
初中数学中的折叠问题一、矩形中的折叠1.将一张长方形纸片按如图的方式折叠,其中BC,BD 为折痕,折叠后BG 和BH 在同一条直线上,∠CBD= 度.2.如图所示,一张矩形纸片沿BC 折叠,顶点A 落在点A ′处,再过点A ′折叠使折痕DE ∥BC ,若AB=4,AC=3,则△ADE 的面积是 .3.如图,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与对角线BD 重合,得折痕DG ,求AG 的长.根据对称的性质得到相等的对应边和对应角,再在直角三角形中根据勾股定理列方程求解即可4.把矩形纸片ABCD 沿BE 折叠,使得BA 边与BC 重合,然后再沿着BF 折叠,使得折痕BE 也与BC 边重合,展开后如图所示,则∠DFB 等于( )注意折叠前后角的对应关系5.如图,沿矩形ABCD 的对角线BD 折叠,点C 落在点E 的位置,已知BC=8cm,AB=6cm ,求折叠后重合部分的面积.重合部分是以折痕为底边的等腰三角形321FEDCBAGA'C A B D6.将一张矩形纸条ABCD 按如图所示折叠,若折叠角∠FEC=64°,则∠1= 度;△EFG 的形状 三角形.对折前后图形的位置变化,但形状、大小不变,注意一般情况下要画出对折前后的图形,便于寻找对折前后图形之间的关系,注意以折痕为底边的等腰△GEF7.如图,将矩形纸片ABCD 按如下的顺序进行折叠:对折,展平,得折痕EF (如图①);延CG 折叠,使点B 落在EF 上的点B ′处,(如图②);展平,得折痕GC (如图③);沿GH 折叠,使点C 落在DH 上的点C ′处,(如图④);沿GC ′折叠(如图⑤);展平,得折痕GC ′,GH(如图 ⑥).(1)求图 ②中∠BCB ′的大小;(2)图⑥中的△GCC ′是正三角形吗?请说明理由.理清在每一个折叠过程中的变与不变8.如图,正方形纸片ABCD 的边长为8,将其沿EF 折叠,则图中①②③④四个三角形的周长之和为折叠前后对应边相等9.如图,将边长为4的正方形ABCD 沿着折痕EF 折叠,使点B 落在边AD 的中点G 处,求四边形BCFE 的面积注意折叠过程中的变与不变,图形的形状和大小不变,对应边与对应角相等 10.如图,将一个边长为1的正方形纸片ABCD 折叠,使点B 落在边AD 上 不与A 、D 重合.MN 为折痕,折叠后B ’C'与DN 交于P .(1)连接BB',那么BB ’与MN 的长度相等吗?为什么? (2)设BM =y ,AB'=x,求y 与x 的函数关系式; (3)猜想当B 点落在什么位置上时,折叠起来的梯形MNC ’B'面积最小?并验证你的猜想.54132G D‘F C‘DB CA E二、纸片中的折叠11.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于( )题考查的是平行线的性质,同位角相等,及对称的性质,折叠的角与其对应角相等,和平角为180度的性质,注意△EAB 是以折痕AB 为底的等腰三角形12.如图,将一宽为2cm 的纸条,沿BC ,使∠CAB=45°,则后重合部分的面积为在折叠问题中,一般要注意折叠前后图形之间的联系,将图形补充完整,对于矩形(纸片)折叠,折叠后会形成“平行线+角平分线”的基本结构,即重叠部分是一个以折痕为底边的等腰三角形ABC13.将宽2cm 的长方形纸条成如图所示的形状,那么折痕PQ 的长是注意掌握折叠前后图形的对应关系.在矩形(纸片)折叠问题中,会出现“平行线+角平分线"的基本结构图形,即有以折痕为底边的等腰三角形APQ14.如图a 是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )图c 图b图aCDGFEAC GDFEAFDBCAEB Ba 2130°B EF AC D本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.由题意知∠DEF=∠EFB=20°图b ∠GFC=140°,图c 中的∠CFE=∠GFC-∠EFG15.将一张长为70 cm 的长方形纸片ABCD,沿对称轴EF 折叠成如图的形状,若折叠后,AB 与CD 间的距离为60cm ,则原纸片的宽AB 是( )16.一根30cm 、宽3cm 的长方形纸条,将其按照图示的过程折叠(阴影部分表示纸条的反面),为了美观,希望折叠完成后纸条两端超出点P 的长度相等,则最初折叠时,求MA 的长三、三角形中的折叠17.如图,把Rt △ABC (∠C=90°),使A,B 两点重合,得到折痕ED ,再沿BE 折叠,C 点恰好与D 点重合,则CE :AE=18.在△ABC 中,已知AB=2a ,∠A=30°,CD 是AB 边的中线,若将△ABC 沿CD 对折起来,折叠后两个小△ACD 与△BCD 重叠部分的面积恰好等于折叠前△ABC 的面积的错误!.(1)当中线CD 等于a 时,重叠部分的面积等于 ;GEFD AEF DBC A B C 60cm(2)有如下结论(不在“CD 等于a"的限制条件下):①AC 边的长可以等于a ;②折叠前的△ABC 的面积可以等于 错误!;③折叠后,以A 、B 为端点的线段AB 与中线CD 平行且相等.其中, 结论正确(把你认为正确结论的代号都填上,若认为都不正确填“无").注意“角平分线+等腰三角形”的基本构图,折叠前后图形之间的对比,找出相等的对应角和对应边19.在△ABC 中,已知∠A=80°,∠C=30°,现把△CDE 沿DE 进行不同的折叠得△C ′DE ,对折叠后产生的夹角进行探究:(1)如图(1)把△CDE 沿DE 折叠在四边形ADEB 内,则求∠1+∠2的和; (2)如图(2)把△CDE 沿DE 折叠覆盖∠A ,则求∠1+∠2的和;(3)如图(3)把△CDE 沿DE 斜向上折叠,探求∠1、∠2、∠C 的关系.(1)根据折叠前后的图象全等可知,∠1=180°-2∠CDE ,∠2=180°—2∠CED ,再根据三角形内角和定理比可求出答案;(2)连接DG ,将∠ADG+∠AGD 作为一个整体,根据三角形内角和定理来求;(3)将∠2看作180°-2∠CED ,∠1看作2∠CDE-180°,再根据三角形内角和定理来求.B'C DA B 231E B'CDB A 21图(1)C'ACBDE12图(3)C'ABCDE21图(2)GC'A BCDE由于等腰三角形是轴对称图形,所以在折叠三角形时常常会出现等腰三角形20.观察与发现:将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图①);在第一次折叠的基础上第二次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).小明认为△AEF是等腰三角形,你同意吗?请说明理由.实践与运用:(1)将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③);再沿过点E的直线折叠,使点D落在BE上的点D'处,折痕为EG(如图④);再展平纸片(如图⑤).求图⑤中∠α的大小.由于角平分线所在的直线是角的对称轴,所以在三角形中的折叠通常都与角平分线有关。
(完整版)中考数学中的折叠问题
![(完整版)中考数学中的折叠问题](https://img.taocdn.com/s3/m/c97f734e8bd63186bdebbc43.png)
DE中考数学中的折叠问题为了考查学生的数、形结合的数学思想方法和空间想象能力,近几年来中考中常出现折叠问题。
几何图形的折叠问题,实际是轴对称问题。
处理这类问题的关键是根据轴对称图形的性质,搞清折叠前后哪些量变了,哪些量没变,折叠后有哪些条件可利用。
所以一定要注意折叠前后的两个图形是全等的。
即对应角相等,对应线段相等。
有时可能还会出现平分线段、平分角等条件。
这一类问题,把握住了关键点,并不难解决。
例1 (成都市中考题)把一张长方形的纸片按如图所示的方式折叠, EM 、FM 为折痕,折叠后的C 点落在'B M 或'B M 的延长线上,那么∠EMF 的度数是( )A 、85°B 、90°C 、95°D 、100°分析与解答:本题考查了有关折叠的知识。
由题意可知:∠BME=∠'EMC ,∠CMF=∠'FMC ,''180BMC CMC ∠+∠=°,又'C M 与'B M 重合,则∠EMF=∠'EMC +∠'FMC =''11()18022BMC CMC ∠+∠=⨯°= 90°,故选B 。
例2 (武汉市实验区中考题)将五边形ABCDE 纸片按如图的方式折叠,折痕为AF, 点E 、D 分别落在'E 、'D 。
已知∠AFC=76°,则'CFD ∠等于( )A 、31°B 、28°C 、24°D 、22°分析与解答:本题同样是考查了折叠的知识。
根据题意得:'AFD AFD ∠=∠=180°-76°=104°,则'CFD ∠=104°-76°=28°,故选B 。
例3(河南省实验区中考题)如图,把矩形纸片OABC 放入平面直角坐标系中,使OA 、OC 分别落在x 轴、y 轴上,连结OB ,将纸片OABC 沿OB 折叠,使点A 落在点'A 的位置,若1tan 2BOC ∠=,则点'A 的坐标为 。
中考数学专题训练:图形的折叠问题(附参考答案)
![中考数学专题训练:图形的折叠问题(附参考答案)](https://img.taocdn.com/s3/m/00e42a31a55177232f60ddccda38376bae1fe076.png)
中考数学专题训练:图形的折叠问题(附参考答案)1.如图,在平面直角坐标系中,矩形ABCD的边AD=5,OA∶OD=1∶4,将矩形ABCD沿直线OE折叠到如图所示的位置,线段OD1恰好经过点B,点C落在y轴的点C1处,则点E的坐标是( )A.(1,2) B.(-1,2)C.(√5-1,2) D.(1-√5,2)2.如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=30°,则∠α的度数是( )A.30°B.45°C.74°D.75°3.如图,在矩形ABCD中,AB=2,BC=2√5,E是BC的中点,将△ABE沿直线AE翻折,点B落在点F处,连接CF,则cos ∠ECF的值为( )A.23B.√104C.√53D.2√554.把一张矩形纸片ABCD按如图所示方法进行两次折叠,得到等腰直角三角形BEF.若BC=1,则AB的长度为( )A.√2B.√2+12C.√5+12D.435.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D,E分别在AB,AC 上,连接DE,将△ADE沿DE翻折,使点A的对应点F落在BC的延长线上.若FD平分∠EFB,则AD的长为( )A.259B.258C.157D.2076.如图,在Rt△ABC中,∠C=90°,CA=CB=3,点D在边BC上.将△ACD沿AD折叠,使点C落在点C′处,连接BC′,则BC′的最小值为__________.7.如图,在Rt△ABC纸片中,∠ACB=90°,CD是边AB上的中线,将△ACD沿CD折叠,当点A落在点A′处时,恰好CA′⊥AB.若BC=2,则CA′=_______.8.如图,点E在矩形ABCD的边CD上,将△ADE沿AE折叠,点D恰好落在边BC 上的点F处.若BC=10,sin ∠AFB=45,则DE=_____.9.如图,在扇形AOB中,点C,D在AB⏜上,将CD⏜沿弦CD折叠后恰好与OA,OB 相切于点E,F.已知∠AOB=120°,OA=6,则EF⏜的度数为________;折痕CD 的长为_______.10.如图,在矩形ABCD中,AB=5,AD=4,M是边AB上一动点(不含端点),将△ADM沿直线DM对折,得到△NDM.当射线CN交线段AB于点P时,连接DP,则△CDP的面积为______;DP的最大值为_______.11.如图,在矩形ABCD中,AB=2,AD=√7,动点P在矩形的边上沿B→C→D →A运动.当点P不与点A,B重合时,将△ABP沿AP对折,得到△AB′P,连接CB′,则在点P的运动过程中,线段CB′的最小值为_________.12.如图,DE平分等边三角形ABC的面积,折叠△BDE得到△FDE,AC分别与DF,EF相交于G,H两点.若DG=m,EH=n,用含m,n的式子表示GH的长是______.13.如图,在Rt△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E,将△DEC沿DE折叠得到△DEF,DF交AC于点G.若AGGE =73,则tan A=______.14.如图,在等边三角形ABC中,过点C作射线CD⊥BC,点M,N分别在边AB,BC上,将△ABC沿MN折叠,使点B落在射线CD上的点B′处,连接AB′,已知AB=2.给出下列四个结论:①CN+NB′为定值;②当BN=2NC时,四边形BMB′N为菱形;③当点N与C重合时,∠AB′M=18°;④当AB′最短时,MN=7√21.20其中正确的结论是__________.(填序号)15.将一个矩形纸片OABC放置在平面直角坐标系中,点O(0,0),点A(3,0),点C(0,6),点P在边OC上(点P不与点O,C重合),折叠该纸片,使折痕所在的直线经过点P,并与x轴的正半轴相交于点Q,且∠OPQ=30°,点O的对应点O′落在第一象限.设OQ=t.(1)如图1,当t=1时,求∠O′QA的大小和点O′的坐标;(2)如图2,若折叠后重合部分为四边形,O′Q,O′P分别与边AB相交于点E,F,试用含有t的式子表示O′E的长,并直接写出t的取值范围;(3)若折叠后重合部分的面积为3√3,则t的值可以是__________________________________________.(请直接写出两个不同....的值即可)16.如图,已知△ABC,AB=AC,BC=16,AD⊥BC,∠ABC的平分线交AD于点E,且DE=4.将∠C沿GM折叠使点C与点E恰好重合.下列结论正确的有________.(填序号)①BD=8;②点E到AC的距离为3;③EM=103;④EM∥AC.17.综合与实践课上,老师让同学们以“正方形的折叠”为主题开展数学活动,有一位同学操作过程如下:操作一:对折正方形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在正方形内部点M处,把纸片展平,连接PM,BM,延长PM交CD于点Q,连接BQ.(1)如图1,当点M在EF上时,∠EMB=________;(填度数)(2)改变点P在AD上的位置(点P不与点A,D重合)如图2,判断∠MBQ与∠CBQ 的数量关系,并说明理由.参考答案1.D 2.D 3.C 4.A 5.D6. 3√2-3 7.2√3 8.5 9.60°4√6 10.10 2√511.-2 12.√m2+n2 13.3√7714.①②④15.(1)∠O′QA=60°点O′的坐标为(32,√32)(2)O′E=3t-6,其中t的取值范围是2<t<3 (3)3或103(答案不唯一,满足3≤t<2√3即可) 16.①④17.(1)30°(2)∠MBQ=∠CBQ,理由略。
2025年四川省聚焦中考数学必备考点透析-第7章 图形及其变化微专题六 图形的折叠问题
![2025年四川省聚焦中考数学必备考点透析-第7章 图形及其变化微专题六 图形的折叠问题](https://img.taocdn.com/s3/m/819043974793daef5ef7ba0d4a7302768e996fcf.png)
答案:3
返回目录
5
方法点拨:解决三角形折叠问题的技巧主要包括利用轴对称及全等
的性质、勾股定理的应用、方程思想的运用以及数形结合的方法.这些技
巧不仅适用于解决折叠问题中的线段长度求解,还有助于理解和分析折
叠问题中的几何关系和变化规律.
返回目录
6
【热身演练1】
(2023·凉山中考)如下图,在Rt△ ABC 纸片中,∠ ACB =90°, CD 是
涉及如何利用折叠前后图形的全等性、对称轴的性质以及如何通过构造
直角三角形和利用勾股定理来解决问题,而且是培养空间想象能力的好
题材,也是中考命题的热点.
返回目录
3
专题讲练
(2024·甘孜中考)如下图,在Rt△ ABC 中,∠ C =90°, AC
=8, BC =4,折叠△ ABC ,使点 A 与点 B 重合,折痕 DE 与 AB 交于点
处,则 cos ∠ CEF 的值为()
例3
A.
7
4
B.
7
3
3
C.
4
5
D.
4
返回目录
15
分析:∵四边形 ABCD 是矩形,
∴ AD = BC =8,∠ B =∠ C =∠ D =90°,
∴∠ CEF +∠ EFC =90°.
∵把△ ADE 沿 AE 折叠,点 D 恰好落在 BC 边上的点 F 处,
∴ AF = AD =8,∠ AFE =∠ D =90°,
∴ EF = BD = ×8=4.∵ EF ⊥ AO ,∴∠ OME =90°,∴ S△ OEF =
2024年中考数学考点必备方法必备09几何综合题的三类折叠问题(解析版)
![2024年中考数学考点必备方法必备09几何综合题的三类折叠问题(解析版)](https://img.taocdn.com/s3/m/9d4a701f777f5acfa1c7aa00b52acfc789eb9fff.png)
方法必备09几何综合题的三类折叠问题题型一:翻折与几何基本图形题型二:翻折与隐形圆题型三:翻折与二次函数题型一:翻折与几何基本图形1.(2024·山东泰安·一模)如图,把平行四边形纸片ABCD 沿BD 折叠,点C 落在点C 处,BC 与AD 相交于点E .求证:EB ED 【答案】见详解【分析】本题主要考查利用平行四边形的性质和折叠得性质证明ABE C DE ≌ ,即可证明结论成立.【详解】证明:∵四边形ABCD 为平行四边形,∴A C ,AB CD ,∵沿BD 折叠,点C 落在点C 处,∴C C A ,C D CD AB ,在ABE 和C DE 中AEB C ED A C AB C D∴ ABE C DE AAS ≌,∴EB ED .2.(2023·江苏泰州·二模)如图1,将 Rt 90ABC A 纸片按照下列图示方式折叠:①将ABD △沿BD 折叠,使得点A 落在BC 边上的点M 处,折痕为BD ;②将BEF △沿EF 折叠,使得点B 与点D 重合,折痕为EF ;③将DEF 沿DF 折叠,点E 落在点'E 处,展开后如图2,BD 、PF 、DF 、DP 为图1折叠过程中产生的折痕.(1)求证:DP BC ∥;(2)若'DE 落在DM 的右侧,求C 的范围;(3)是否存在C 使得DE 与MDC 的角平分线重合,如存在,请求C 的大小;若不存在,请说明理由.【答案】(1)见解析;(2)030C ;(3)不存在,理由见解析.【分析】本题考查了直角三角形的性质,折叠的性质,菱形的判定与性质,角平分线的性质,熟练掌握折叠的性质是解题的关键.(1)由第二次翻折可得EF 垂直平分BD ,由第一次翻折可得EF EP ,证出四边形PBFD 是菱形,则可得出结论;(2)设ABD ,求出BDF ,902ADP FDM C ,当DE 落在DM 的右侧时,902 ,求出30a ,则可得出答案;(3)设ABD ,902ADP FDM C ,2MDC ,得出902 ,求出45 ,0C ,则可得出结论.【详解】(1)证明:由第二次翻折可得EF 垂直平分BD ,由第一次翻折可得EF EP ,PF 与BD 垂直且互相平分,四边形PBFD 是菱形,DP BC ∥;(2)解:设ABD ,∵四边形PBFD 是菱形,PB DF ∥,BDF ,902ADP FDM C ,当'DE 落在DM 的右侧时,902 ,30a ,90230 ,030C ;(3)解:不存在.若存在C 使得DE 与MDC 的角平分线重合,设ABD ,902ADP FDM C ,2MDC ,902 ,45 ,0C ,不存在C 使得DE 与MDC 的角平分线重合.3.(2023·吉林松原·三模)如图①,在Rt ABC △中,90ACB ,60A ,CD 是斜边AB 上的中线,点E 为射线CA 上一点,将ADE V 沿DE 折叠,点A 的对应点为点F .(1)若AB a =,直接写出CD 的长(用含a 的代数式表示);(2)若点E 与点C 重合,连接BF ,如图②,判断四边形DBFC 的形状,并说明理由;(3)若DF AB ,直接写出CDE 的度数.【点睛】本题主要考查了折叠问题,菱形的判定,直角三角形的性质,等边三角形的判定与性质,灵活运用相关知识是解答本题的关键.4.(2023·广东茂名·二模)如图,正方形ABCD中,E是边BC的中点,将ABE沿AE折叠,得到AFE,延长EF 交边CD于点P.(1)求证:DP FP;AB ,求CP的长.(2)若6连接AP,∵四边形ABCD是正方形,∴AD AB,B D5.(2023·广西贵港·二模)综合与实践【问题情境】数学活动课上,老师准备了若干张正方形纸片ABCD ,组织同学们进行折纸探究活动.【初步尝试】把正方形对折,折痕为EF ,然后展开,沿过点A 与点E 所在的直线折叠,点B 落在点B 处,连接 B C ,如图1,请直接写出AEB 与ECB 的数量关系.【能力提升】把正方形对折,折痕为EF ,然后展开,沿过点A 与BE 上的点G 所在的直线折叠,使点B 落在EF 上的点P 处,连接PD ,如图2,猜想APD 的度数,并说明理由.【拓展延伸】在图2的条件下,作点A 关于直线CP 的对称点A ,连接PA ,BA ,AC ,如图3,求PA B 的度数.【答案】初步尝试:AEB ECB ;能力提升:猜想:60APD ,理由见解析;拓展延伸:15PA B【分析】初步尝试:连接BB ,由折叠的性质可知,BE CE ,BE BE ,AEB AEB ,BB AE ,根据等边对等角的性质和三角形内角和定理,得出90BB C ,推出AE CB ∥,即可得出答案;能力提升:根据正方形的性质和折叠的性质,易证 SAS AFP DFP ≌,从而证明APD △是等边三角形,即可得到答案;拓展延伸:连接A C 、AA ,由(2)得APD △是等边三角形,进而得出30PDC ,再结合等边对等角的性质和三角形内角和定理,求得15PAC ,30ACP ,由对称性质得:AC A C ,30ACP A CP ,证明 SSS AA B CA B ≌,得到30CA B ,再由15CA P CAP ,即可求出PA B 的度数.【详解】解:初步尝试:AEB ECB ,理由如下:如图,连接BB ,由折叠的性质可知,BE CE ,BE BE ,AEB AEB ,BB AE ,∴BE CE BE ,∴EBB EB B ,ECB EB C ,∵ 2180EBB EB B EB C ECB EB B EB C ,∴90BB C ,即BB CB ,∴AE CB ∥,∴AEB ECB ,∴AEB ECB ;解:能力提升:猜想:60APD ,理由如下:理由:∵四边形ABCD 是正方形,∴AB AD ,90ADC ,由折叠性质可得:AF DF ,EF AD ,AB AP ,在AFP 和DFP △中,90AF DF AFP DFP FP FP,∴ SAS AFP DFP ≌,∴AP PD ,∴AP AD PD ,由(2)得APD △是等边三角形,∴PAD PDA APD ∵90ADC ,∴30PDC ,又∵PD AD DC ,∴12DPC DCP ∴PAC PAD DAC 由对称性质得:AC 6.(2023·吉林长春·模拟预测)如图1,平面上,四边形ABCD 中,4AB ,6CD ,BC 3DA ,90A ,点M 在AD 边上,且1DM .点P 沿折线AB BC 以1个单位速度向终点C 运动,点A 是点A 关于直线MP 的对称点,连接A P ,设点P 在该折线上运动的时间为 0t t .(1)直接写出线段BP的长;(2)如图2,连接BD.的度数,并直接写出当A 、M、A共线时t的值;①求CBD②若点P到BD的距离为1,求tan A MP 的值;t 时,请直接写出点A 到直线AD的距离(用含t的式子表示).(3)当04∵PM 平分A MA ,90PMA ,∴PM AB ∥,DNM DBA △∽△,DN DM MN ,3sin 5AD DBA BD,153sin 5PQ BP DBA ,90PQB CBD DAB ∵,90QPB PBQ DBA ,PQB BAD △∽△,,PQ QB PB 即,PQ QB PB 由A PE MA F ∽,7.(2023·河南周口·模拟预测)综合与实践课上,老师让同学们以“正方形的折叠”为主题开展实践活动.(1)操作判断操作一:如图(1),正方形纸片ABCD,点E是BC边上(点E不与点B,C重合)任意一点,沿AE折叠ABE到△,如图(2)所示;AFE操作二:将图(2)沿过点F的直线折叠,使点E的对称点G落在AE上,得到折痕MN,点C的对称点记为H,如图(3)所示;操作三:将纸片展平,连接BM,如图(4)所示.根据以上操作,回答下列问题:①B,M,N三点(填“在”或“不在”)一条直线上;②AE和BN的位置关系是,数量关系是;③如图(5),连接AN,改变点E在BC上的位置,(填“存在”或“不存在”)点E,使AN平分DAE.(2)迁移探究苏钰同学将正方形纸片换成矩形纸片ABCD,4BC ,按照(1)中的方式操作,得到图(6)或图(7).请AB ,6完成下列探究:①当点N在CD上时,如图(6),BE和CN有何数量关系?并说明理由;8.(2023·山东枣庄·中考真题)问题情境:如图1,在ABC 中,1730AB AC BC ,,AD 是BC 边上的中线.如图2,将ABC 的两个顶点B ,C 分别沿,EF GH 折叠后均与点D 重合,折痕分别交,,AB AC BC 于点E ,G ,F ,H .猜想证明:(1)如图2,试判断四边形AEDG 的形状,并说明理由.问题解决;(2)如图3,将图2中左侧折叠的三角形展开后,重新沿MN 折叠,使得顶点B 与点H 重合,折痕分别交,AB BC 于点M ,N ,BM 的对应线段交DG 于点K ,求四边形MKGA 的面积.∵1122CHG S CH HG ∴154302CG HE,9.(2023·内蒙古通辽·中考真题)综合与实践课上,老师让同学们以“正方形的折叠”为主题开展数学活动,有一位同学操作过程如下:操作一:对折正方形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平;操作二:在AD 上选一点P ,沿BP 折叠,使点A 落在正方形内部点M 处,把纸片展平,连接PM 、BM ,延长PM 交CD 于点Q ,连接BQ .(1)如图1,当点M 在EF 上时,EMB ___________度;(2)改变点P 在AD 上的位置(点P 不与点A ,D 重合)如图2,判断MBQ 与CBQ 的数量关系,并说明理由.10.(2023·辽宁大连·中考真题)综合与实践问题情境:数学活动课上,王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.已知,90AB AC A ,点E 为AC 上一动点,将ABE 以BE 为对称轴翻折.同学们经过思考后进行如下探究:独立思考:小明:“当点D 落在BC 上时,2EDC ACB .”小红:“若点E 为AC 中点,给出AC 与DC 的长,就可求出BE 的长.”实践探究:奋进小组的同学们经过探究后提出问题1,请你回答:问题1:在等腰ABC 中,,90,AB AC A BDE △由ABE 翻折得到.(1)如图1,当点D 落在BC 上时,求证:2EDC ACB ;(2)如图2,若点E 为AC 中点,43AC CD ,,求BE 的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成90A 的等腰三角形,可以将问题进一步拓展.问题2:如图3,在等腰ABC 中,90,4,2A AB AC BD D ABD .若1CD ,则求BC 的长.∵AB BD,∴AM MD,ABM ,∵2BDC ABD,∴BDC DBM∥,∴BM CD,∴CD AD又CG BM,∴四边形CGMD是矩形,则CD GM,在Rt ACD△中,1CD ,11.(2023·江苏无锡·中考真题)如图,四边形ABCD 是边长为4的菱形,60A ,点Q 为CD 的中点,P 为线段AB 上的动点,现将四边形PBCQ 沿PQ 翻折得到四边形PB C Q .(1)当45QPB 时,求四边形BB C C 的面积;(2)当点P 在线段AB 上移动时,设BP x ,四边形BB C C 的面积为S ,求S 关于x 的函数表达式.12.(2023·重庆·中考真题)在Rt ABC 中,90ACB ,=60B ,点D 为线段AB 上一动点,连接CD .(1)如图1,若9AC,BD ,求线段AD 的长.(2)如图2,以CD 为边在CD 上方作等边CDE ,点F 是DE 的中点,连接BF 并延长,交CD 的延长线于点G .若G BCE ,求证:GF BF BE .(3)在CD 取得最小值的条件下,以CD 为边在CD 右侧作等边CDE .点M 为CD 所在直线上一点,将BEM 沿BM 所在直线翻折至ABC 所在平面内得到BNM .连接AN ,点P 为AN 的中点,连接CP ,当CP 取最大值时,连接BP ,将BCP 沿BC 所在直线翻折至ABC 所在平面内得到BCQ ,请直接写出此时NQCP的值.∵F 是DE 的中点则DF FE ,FH FG , ∴ SAS GFD HFE ≌,∴H G ,∴EH GC ∥,在CD 取得最小值的条件下,即CD 设4AB a ,则2BC a ,23AC a∵S 是AB 的中点,60ABC∴SC SB BC ,∴BCS △是等边三角形,则60PCB ,∴30PCA ACB BCP ,∵2BC a ,4AB a ,∴PU AR ∥,P 是AN 的中点,∴1NU NP UR PA即PU 是ANR 的中位线,同理可得PT 是ANR ∴54NU UR PT a,12PU AR AT ∵BCS △是等边三角形,将BCP 沿BC 所在直线翻折至∴2120QCP BCP【点睛】本题考查了解直角三角形,全等三角形的性质与判定,等腰三角形的性质,三角形中位线的性质,折叠的性质,圆外一点到圆上距离的最值问题,垂线段最短,矩形的性质,等边三角形的性质与判定,熟练掌握以上知识是解题的关键.题型二:翻折与隐形圆一、单选题1.(湖北鄂州·中考真题)如图,菱形ABCD 的边AB =8,∠B =60°,P 是AB 上一点,BP =3,Q 是CD 边上一动点,将梯形APQD 沿直线PQ 折叠,A 的对应点A ′.当CA ′的长度最小时,CQ 的长为()A.5B.7C.8D.13 22.如图,菱形ABCD边长为4,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,则A′C的最小值是()A .B C .2D .3【点睛】本题考查翻折变换、菱形的性质、勾股定理、两点之间线段最短等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,突破点是正确寻找点3.(22-23九年级上·浙江金华·期末)如图,正方形ABCD 的边长为4,点E 是正方形ABCD 内的动点,点P 是BC 边上的动点,且EAB EBC .连结AE ,BE ,PD ,PE ,则PD PE 的最小值为()A.2 B.2C.2D.2作正方形ABCD关于直线BC对称的正方形则点D的对应点是F,连接FO交BC于P,交半圆O于根据对称性有:PD PF,则有:PE PD PE PF,二、填空题4.(2022·广东汕头·一模)如图,在△ABC中,∠C=90°,AC=8,AB=10,D是AC上一点,且CD=3,E是BC 边上一点,将△DCE沿DE折叠,使点C落在点F处,连接BF,则BF的最小值为.【点睛】本题考查了折叠的性质、圆的性质、勾股定理解直角三角形的知识,该题涉及的最值问题属于中考常考题5.△ABC 中,AB =AC =5,BC =6,D 是BC 的中点,E 为AB 上一动点,点B 关于DE 的对称点B 在△ABC 内(不含△ABC 的边上),则BE 长的范围为.②如图所示,当点B 恰好落在由题意,BD DB DC ,∴DBB DB B ,DB ∴DBB DCB DB22综上,BE长的范围为9 5故答案为:95 52BE.【点睛】本题考查等腰三角形的性质和判定,以及勾股定理解直角三角形等,能够根据题意准确分析出动点的运动6.如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将ΔEBF沿EF所在直线折叠得到ΔEB'F,连接B'D,则B'D的最小值是.故答案为210 2.【点睛】本题考查了折叠的性质、全等三角形的判定与性质、B 'D 的值最小是解决问题的关键.7.(22-23九年级下·江苏宿迁·阶段练习)如图,矩形ABCD ,4AB ,8BC ,E 为AB 中点,F 为直线BC 上动点,B 、G 关于EF 对称,连接AG ,点P 为平面上的动点,满足12APB AGB ,则DP 的最小值.【答案】21022【分析】由题意可知,90AGB 上,(要使DP 最小,则点P 要靠近蒂点∴90AGB ,∵12APB AGB ,即1452APB AGB ,8.如图,在矩形ABCD中,AB=6,AD=8,点E,F分别是边CD,BC上的动点,且∠AFE=90°(1)证明:△ABF∽△FCE;(2)当DE取何值时,∠AED最大.9.(2022·天津河东·二模)已知,平面直角坐标系中有一个边长为6的正方形OABC,M为线段OC上的动点,将AOM沿直线AM对折,使O点落在O 处.(1)如图①,当30OAM 时,求点O 的坐标;(2)如图②,连接 CO ,当CO AM ∥时.①求点M 的坐标;②连接OB ,求AO M △与AOB 重叠部分的面积;(3)当点M 在线段OC (不包括端点)上运动时,请直接写出线段O C 的取值范围.由①得:tan AO AMO OM 设,CE x 则3,ME x O ¢=-()()222332,x x \=-+解得:6,5x =(不符合题意的根舍去)当,Q O ¢重合时, CO 取得最小值,此时226662,6,AC AQ AO =+===626,CO ¢\=-所以 CO 的取值范围为:626CO ¢-£【点睛】本题考查的是正方形的性质,等边三角形的判定与性质,轴对称的性质,一次函数的几何应用,圆的基本性质,锐角三角函数的应用,熟练的利用一次函数的性质解决几何图形面积问题,利用圆的基本性质求解线段长度的最小值是解本题的关键.10.(2022·重庆·三模)在ABC 中,90ACB ,CA =2CB .将线段CA 绕点C 旋转得到线段CD .(1)如图1,当点D 落在AB 的延长线上时,过点D 作DE AD 交AC 的延长线于点E ,若BC =2,求DE 的长;(2)如图2,当点D 落在CB 的延长线上时,连接AD ,过点C 作CF ⊥AB 于点F ,延长CF 交AD 于点E ,连接BE ,求证:AB CE BE ;(3)如图3,在(2)的条件下,将ACF △沿AC 翻折得到ACF △,M 为直线AD 上一个动点.连接BM ,将BDM 沿BM 翻折得到BMD △.当D F 最小时,直接写出F D FF 的值.由题意得,D ¢在以B 为圆心,BC 长为半径的圆上运动,当设1CB ,∵2CA CB ,∴2CA .∵90ACB ,1CB ,2CA ,∴225AB CA CB ,sin CAB ∵CF ⊥AB ,90ACB ,题型三:翻折与二次函数1.(21-22九年级下·湖南株洲·开学考试)如图,在平面直角坐标系中,抛物线22y ax ax c 经过 2,0A , 0,4C 两点.(1)求抛物线的解析式;(2)点P 是第一象限抛物线上一动点,连接CP ,CP 的延长线与x 轴交于点Q ,过点P 作PE y 轴于点E ,以PE 为轴,翻折直线CP ,与抛物线相交于另一点R .设P 点横坐标为t ,R 点横坐标为s ,求出s 与t 的函数关系式;(不要求写出自变量t 的取值范围);(3)在(2)的条件下,连接RC ,点G 在RP 上,且RG RC ,连接CG ,若45OCG ,求点Q 坐标.根据题意得:212EF CE t ∴2142OF OE EF t t ∵点R 的横坐标为s ,∴点R 的坐标为21,42s s s∵45OCG ,PE CE ,∴45EIC .∵45EIC GCP CPE ∴4545RCH GPE .∴RCH GPE .2.(2023·天津河西·三模)如图,在平面直角坐标系中,抛物线214y x bx c 与x 轴交于 30A ,, 4,0B 两点,在y 轴正半轴上有一点C ,OC OB .点D ,E 分别是线段AC ,AB 上的动点,且均不与端点重合.(1)求此抛物线的解析式;(2)如图①,连接BD ,将BCD △沿x 轴翻折得到BFG ,当点G 在抛物线上时,求点G 的坐标;(3)如图②,连接CE ,当CD AE 时,求BD CE 的最小值.∵BCD △与BFG 关于x 轴对称,∴DG AB ,DM GM ,∵3OA ,4OB OC ,∴4tan 3OC CAO OA ,设 0OM a a ,则3AM a ,DM GM AM 4连接EQ 、CQ ,∵AE CD ,∴AEQ CDB ≌,∴EQ BD ,当C ,E ,Q 三点共线时,过点C 作CH AQ ,垂足为H ∵OC OB ^,4OC OB ,∴45CBA ,42BC .∵180CAH CAB EAQ 2523.(2023·广西贵港·三模)抛物线222y x x c 与x 轴交于A 、B 两点,且点A 在点B 的左侧,与y 轴交于点C ,点 32D ,为抛物线上一点,且直线CD x ∥轴,点M 是抛物线上的一动点.(1)求抛物线的解析式与A、B两点的坐标.,,,为顶点的四边形是平行四边形,求此时点M的坐标.(2)若点E的纵坐标为0,且以A E D M沿CM翻折,点N的对应点为N ,则是否存在点M,使点N (3)过点M作直线CD的垂线,垂足为N,若将CMN则恰好落在x轴上?若存在,求出此时点M的坐标;若不存在,说明段理由.当AD 为边时,11AE M D Y ,此时1M 和点C 重合,23AM E D Y 时,点2M 的纵坐标和点D 的纵坐标互为相反数,即21322,22x x 341,2x 32341341,2,,2,22M M 由折叠知,CNM CN M ∵90NCN ,∴四边形CNMN 是矩形,∵CN CN 时,∴矩形CNMN 是正方形,∴CM 平分NCN ,。
图形变换模型之翻折(折叠)模型(学生版)-2024年中考数学常见几何模型
![图形变换模型之翻折(折叠)模型(学生版)-2024年中考数学常见几何模型](https://img.taocdn.com/s3/m/845cbfb00342a8956bec0975f46527d3240ca6ea.png)
图形变换模型之翻折(折叠)模型几何变换中的翻折(折叠、对称)问题是历年中考的热点问题,试题立意新颖,变幻巧妙,主要考查学生的识图能力及灵活运用数学知识解决问题的能力。
涉及翻折问题,以矩形对称最常见,变化形式多样。
无论如何变化,解题工具无非全等、相似、勾股以及三角函数,从条件出发,找到每种对称下隐藏的结论,往往是解题关键。
本专题以各类几个图形(三角形、平行四边形、菱形、矩形、正方形、圆等)为背景进行梳理及对应试题分析,方便掌握。
【知识储备】翻折和折叠问题其实质就是对称问题,翻折图形的性质就是翻折前后图形是全等的,对应的边和角都是相等的。
以这个性质为基础,结合三角形、四边形、圆的性质,三角形相似,勾股定理设方程思想来考查。
解决翻折题型的策略:1)利用翻折的性质:①翻折前后两个图形全等;②对应点连线被对称轴垂直平分;2)结合相关图形的性质(三角形,四边形等);3)运用勾股定理或者三角形相似建立方程。
模型1.矩形中的翻折模型【模型解读】1(2023·辽宁鞍山·统考中考真题)如图,在平面直角坐标系中,矩形AOBC的边OB,OA分别在x轴、y轴正半轴上,点D在BC边上,将矩形AOBC沿AD折叠,点C恰好落在边OB上的点E处.若OA=8,OB= 10,则点D的坐标是.2(2023春·江苏泰州·八年级统考期中)如图,在矩形ABCD中,AB=3,BC=8,E是BC的中点,将△ABE 沿直线AE翻折,点落B在点F处,连结CF,则CF的长为()A.6B.325C.35 D.2543(2023·湖北·统考中考真题)如图,将边长为3的正方形ABCD沿直线EF折叠,使点B的对应点M落在边AD上(点M不与点A,D重合),点C落在点N处,MN与CD交于点P,折痕分别与边AB,CD交于点E, F,连接BM.(1)求证:∠AMB=∠BMP;(2)若DP=1,求MD的长.4(2023春·江苏宿迁·八年级统考期末)如图,在矩形ABCD中,AB=6,BC=8.点O为矩形ABCD的对称中心,点E为边AB上的动点,连接EO并延长交CD于点F.将四边形AEFD沿着EF翻折,得到四边形A EFD ,边A E交边BC于点G,连接OG、OC,则△OGC的面积的最小值为()A.18-3B.92+37 C.12-372D.6+3725(2023春·辽宁抚顺·八年级校联考期中)如图,矩形纸片ABCD中,AB=6,BC=10,点E、G分别在BC、AB上,将△DCE、△BEG分别沿DE、EG翻折,翻折后点C与点F重合,点B与点P重合.当A、P、F、E 四点在同一直线上时,线段GP长为()A.832 B.83C.53D.5326(2023·江苏盐城·统考中考真题)综合与实践【问题情境】如图1,小华将矩形纸片ABCD先沿对角线BD折叠,展开后再折叠,使点B落在对角线BD上,点B的对应点记为B ,折痕与边AD,BC分别交于点E,F.【活动猜想】(1)如图2,当点B 与点D重合时,四边形BEDF是哪种特殊的四边形?答:.【问题解决】(2)如图3,当AB=4,AD=8,BF=3时,求证:点A ,B ,C在同一条直线上.【深入探究】(3)如图4,当AB与BC满足什么关系时,始终有A B 与对角线AC平行?请说明理由.(4)在(3)的情形下,设AC与BD,EF分别交于点O,P,试探究三条线段AP,B D,EF之间满足的等量关系,并说明理由.模型2.正方形中的翻折模型【模型解读】7(2023·河南洛阳·统考二模)如图,正方形ABCD的边长为4,点F为CD边的中点,点P是AD边上不与端点重合的一动点,连接BP.将△ABP沿BP翻折,点A的对应点为点E,则线段EF长的最小值为()A.27B.25-4C.34D.37-28(2023·广西玉林·统考模拟预测)如图,在正方形ABCD的边AB上取一点E,连接CE,将△BCE沿CE翻折,点B恰好与对角线AC上的点F重合,连接DF,若BE=2,则△CDF的面积是()A.1+324B.32+4 C.62+8 D.3229(2023·广东九年级课时练习)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE 沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,则下列结论:①△ABG≌△AFG;②∠AGB +∠AED=135°③GF=3;④AG⎳CF;其中正确的有(填序号).10(2023·江苏扬州·统考中考真题)如图,已知正方形ABCD的边长为1,点E、F分别在边AD、BC上,将正方形沿着EF翻折,点B恰好落在CD边上的点B 处,如果四边形ABFE与四边形EFCD的面积比为3∶5,那么线段FC的长为.11(2023·江苏·统考中考真题)综合与实践定义:将宽与长的比值为22n+1-12n(n为正整数)的矩形称为n阶奇妙矩形.(1)概念理解:当n=1时,这个矩形为1阶奇妙矩形,如图(1),这就是我们学习过的黄金矩形,它的宽(AD)与长CD的比值是.(2)操作验证:用正方形纸片ABCD进行如下操作(如图(2)):第一步:对折正方形纸片,展开,折痕为EF,连接CE;第二步:折叠纸片使CD落在CE上,点D的对应点为点H,展开,折痕为CG;第三步:过点G折叠纸片,使得点A、B分别落在边AD、BC上,展开,折痕为GK.试说明:矩形GDCK是1阶奇妙矩形. (3)方法迁移:用正方形纸片ABCD折叠出一个2阶奇妙矩形.要求:在图(3)中画出折叠示意图并作简要标注.(4)探究发现:小明操作发现任一个n阶奇妙矩形都可以通过折纸得到.他还发现:如图(4),点E为正方形ABCD边AB上(不与端点重合)任意一点,连接CE,继续(2)中操作的第二步、第三步,四边形AGHE的周长与矩形GDCK的周长比值总是定值.请写出这个定值,并说明理由.模型3.菱形中的翻折模型【模型解读】12(2023·四川成都·模拟预测)如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若DG=2,BG=6,则BE的长为.13(2023·安徽·统考一模)如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A'MN,连结A'C,则A'C长度的最小值是( ).A.7B.7-1C.3D.214(2023·山东枣庄·九年级校考阶段练习)如图,在菱形纸片ABCD中,AB=4,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则EF的长为()A.72B.12C.74D.2315(2023春·湖北十堰·八年级校联考期中)如图,在菱形纸片ABCD中,∠ABC=60°,E是CD边的中点,将菱形纸片沿过点A的直线折叠,使点B落在直线AE上的点G处,折痕为AF,FG与CD交于点H,有如下结论:①∠CFH=30°;②DE=33AE;③CH=GH;④S△ABF:S四边形AFCD=3:5,上述结论中,所有正确结论的序号是()A.①②④B.①②③C.①③④D.①②③④16(2023·浙江·九年级期末)对角线长分别为6和8的菱形ABCD如图所示,点O为对角线的交点,过点O折叠菱形,使B,B 两点重合,MN是折痕.若B M=1,则CN的长为.17(2023秋·重庆·九年级专题练习)如图,在菱形ABCD中,BC=4,∠B=120°,点E是AD的中点,点F是AB上一点,以EF为对称轴将△EAF折叠得到△EGF,以CE为对称轴将△CDE折叠得到△CHE,使得点H落到EG上,连接AG.下列结论错误的是()A.∠CEF=90°B.CE∥AGC.FG=1.6D.CFAB =145模型4.三角形中的翻折模型【模型解读】18(2023·内江九年级期中)如图,在Rt△ABC的纸片中,∠C=90°,AC=7,AB=25.点D在边BC上,以AD为折痕将△ADB折叠得到△ADB ,AB 与边BC交于点E.若△DEB 为直角三角形,则BD的长是.19(2023年四川省成都市数学中考真题)如图,在Rt△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,过D作DE∥BC交AC于点E,将△DEC沿DE折叠得到△DEF,DF交AC于点G.若AGGE =73,则tan A=.20(2023·湖北襄阳·统考中考真题)如图,在△ABC中,AB=AC,点D是AC的中点,将BCD沿BD折叠得到△BED,连接AE.若DE⊥AB于点F,BC=10,则AF的长为.21(2023·湖北武汉·统考中考真题)如图,DE平分等边△ABC的面积,折叠△BDE得到△FDE,AC分别与DF,EF相交于G,H两点.若DG=m,EH=n,用含m,n的式子表示GH的长是.模型5.圆中的翻折模型(弧翻折必出等腰)如图,以圆O的一条弦BC为对称轴将弧BC折叠后与弦AB交于点D,则CD=CA特别的,若将弧BC折叠后过圆心,则CD=CA,∠CAB=60°22(2022秋·浙江宁波·九年级校考期末)如图,⊙O 是△ABC 的外接圆,AB =BC =4,把弧AB 沿弦AB 向下折叠交BC 于点D ,若点D 为BC 中点,则AC 长为()A.1B.2C.22D.623(2023·广东广州·统考一模)如图,AB 为⊙O 的直径,点C 为圆上一点,∠BAC =20°,将劣弧AC 沿弦AC 所在的直线翻折,交AB 于点D ,则∠ACD 的度数等于( ).A.40°B.50°C.80°D.100°24(2023·浙江宁波·校考一模)如图,⊙O 的半径为4.将⊙O 的一部分沿着弦AB 翻折,劣弧恰好经过圆心O .则这条劣弧的弧长为.25(2022春·湖北荆州·九年级专题练习)如图,AB 为⊙O 的直径,将BC沿BC 翻折,翻折后的弧交AB 于D .若BC =45,sin ∠ABC =55,则图中阴影部分的面积为()A.256π-2B.253π-2 C.8 D.1026(2023·河南商丘·统考二模)如图,在扇形OBA 中,∠AOB =120°,点C ,D 分别是AB 和OA 上的点,且CD ∥OB ,将扇形沿CD 翻折,翻折后的A C 恰好经过点O .若OA =2,则图中阴影部分的面积是.27(2023·吉林长春·统考模拟预测)如图,在⊙O 中,点C 在优弧AB 上,将BC 沿BC 折叠后刚好经过AB 的中点D ,连接AC ,CD .则下列结论中错误的是()①AC =CD ;②AD =BD ;③AC +BD =BC ;④CD 平分∠ACBA.1B.2C.3D.428(2021·湖北武汉·统考中考真题)如图,AB 是⊙O 的直径,BC 是⊙O 的弦,先将BC 沿BC 翻折交AB 于点D .再将BD 沿AB 翻折交BC 于点E .若BE =DE ,设∠ABC =α,则α所在的范围是()A.21.9°<α<22.3°B.22.3°<α<22.7°C.22.7°<α<23.1°D.23.1°<α<23.5°29(2022·江苏扬州·统考一模)如图,将⊙O 沿弦AB 折叠,使折叠后的弧恰好经过圆心O ,点P 是优弧AMB 上的一个动点(与A 、B 两点不重合),若⊙O 的半径是2cm ,则△APB 面积的最大值是cm 2课后专项训练1(2023·浙江·一模)如图,在矩形ABCD中,AB=2,AD=3,点E为DC的中点,点F在BC上,连接AF,将△ABF沿AF翻折,使点B的对应点恰为点E,则AF的长为()A.5B.233C.433D.1032(2023年湖北省黄石市中考数学真题)如图,有一张矩形纸片ABCD.先对折矩形ABCD,使AD与BC重合,得到折痕EF,把纸片展平.再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM ﹐同时得到线段BN,MN.观察所得的线段,若AE=1,则MN=()A.32B.1 C.233D.23(2023·黑龙江·统考中考真题)如图,在平面直角坐标中,矩形ABCD的边AD=5,OA:OD=1:4,将矩形ABCD沿直线OE折叠到如图所示的位置,线段OD1恰好经过点B,点C落在y轴的点C1位置,点E的坐标是()A.1,2B.-1,2C.5-1,2D.1-5,2 4(2023·福建莆田·九年级校考期末)如图,在⊙O 中,点C 在优弧AB上,将弧BC 沿BC 折叠后刚好经过AB 的中点D .若⊙O 的半径为5,AB =45,则AC 的长是()A.5π2B.25π4C.10π3D.4π5(2022·浙江宁波·统考一模)如图,AB 是半径为4的⊙O 的弦,且AB =6,将AB 沿着弦AB 折叠,点C 是折叠后的AB 上一动点,连接并延长BC 交⊙O 于点D ,点E 是CD 的中点,连接EO .则EO 的最小值为.6(2023·辽宁盘锦·统考中考真题)如图,四边形ABCD 是矩形,AB =6,BC =6.点E 为边BC 的中点,点F 为边AD 上一点,将四边形ABEF 沿EF 折叠,点A 的对应点为点A ,点B 的对应点为点B ,过点B 作B H ⊥BC 于点H ,若B H =22,则FD 的长是.7(2023·山东济南·统考中考真题)如图,将菱形纸片ABCD 沿过点C 的直线折叠,使点D 落在射线CA 上的点E 处,折痕CP 交AD 于点P .若∠ABC =30°,AP =2,则PE 的长等于.8(2023·山东淄博·统考一模)如图所示,有一块直角三角形纸片,∠C =90°,AC =4cm ,BC =3cm ,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则DE的长是.9(2023秋·四川雅安·八年级统考期末)在Rt△ACB中,∠ACB=90°,点D在边AB上,连接CD,将△ADC沿直线CD翻折,点A恰好落在BC边上的点E处,若AC=6,BE=2,则DE的长是.10(2023·湖北宜昌·统考中考真题)如图,小宇将一张平行四边形纸片折叠,使点A落在长边CD上的点A处,并得到折痕DE,小宇测得长边CD=8,则四边形A EBC的周长为.11(2023·新疆·统考中考真题)如图,在▱ABCD中,AB=6,BC=8,∠ABC=120°,点E是AD上一动点,将△ABE沿BE折叠得到△A BE,当点A 恰好落在EC上时,DE的长为.12(2023春·浙江宁波·八年级统考期末)如图,在矩形ABCD中,AB=7cm,BC=8cm,现将矩形沿EF 折叠,点C翻折后交AB于点G,点D的对应点为点H,当BG=4cm时,线段GI的长为cm.13(2023春·安徽安庆·九年级校联考阶段练习)如图,长方形ABCD 沿着对角线BD 翻折,点C 落在点C 处,BC 与AD 相交于点E ,若AB =3,AE =1,则BC 的长为.14(2023春·湖北武汉·八年级校考阶段练习)如图(1),在等腰直角三角形纸片ABC 中,∠B =90°,AB =2,点D ,E 分别为AB ,BC 上的动点,将纸片沿DE 翻折,点B 的对应点B 恰好落在边AC 上,如图(2),再将纸片沿B E 翻折,点C 的对应点为C ,如图(3).当△DB E ,△B C E 的重合部分(即阴影部分)为直角三角形时,CE 的长为.15(2022·浙江嘉兴·统考中考真题)如图,在扇形AOB 中,点C ,D 在AB 上,将CD 沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F .已知∠AOB =120°,OA =6,则EF 的度数为;折痕CD 的长为.16(2023·黑龙江绥化·统考中考真题)如图,⊙O 的半径为2cm ,AB 为⊙O 的弦,点C 为AB 上的一点,将AB 沿弦AB 翻折,使点C 与圆心O 重合,则阴影部分的面积为.(结果保留π与根号)17(2023·湖北·统考中考真题)如图,将边长为3的正方形ABCD 沿直线EF 折叠,使点B 的对应点M 落在边AD 上(点M 不与点A ,D 重合),点C 落在点N 处,MN 与CD 交于点P ,折痕分别与边AB ,CD 交于点E ,F ,连接BM .(1)求证:∠AMB =∠BMP ;(2)若DP =1,求MD 的长.18(2023·宁夏·统考中考真题)综合与实践问题背景:数学小组发现国旗上五角星的五个角都是顶角为36°的等腰三角形,对此三角形产生了极大兴趣并展开探究.探究发现:如图1,在△ABC 中,∠A =36°,AB =AC .(1)操作发现:将△ABC 折叠,使边BC 落在边BA 上,点C 的对应点是点E ,折痕交AC 于点D ,连接DE ,DB ,则∠BDE =°,设AC =1,BC =x ,那么AE =(用含x 的式子表示);(2)进一步探究发现:底BC 腰AC =5-12,这个比值被称为黄金比.在(1)的条件下试证明:底BC 腰AC=5-12;拓展应用:当等腰三角形的底与腰的比等于黄金比时,这个三角形叫黄金三角形.例如,图1中的△ABC 是黄金三角形.如图2,在菱形ABCD 中,∠BAD =72°,AB =1.求这个菱形较长对角线的长.19(2023秋·山西·九年级专题练习)综合与实践:在综合与实践课上,老师让同学们以“矩形纸片的折叠”为主题开展数学活动.在矩形ABCD 中,E 为AB 边上一点,F 为AD 边上一点,连接CE 、CF ,分别将△BCE 和△CDF 沿CE 、CF 翻折,点D 、B 的对应点分别为点G 、H ,且C 、H 、G 三点共线.(1)如图1,若F 为AD 边的中点,AB =BC =6,点G 与点H 重合,则∠ECF = °,BE = ;(2)如图2,若F 为AD 的中点,CG 平分∠ECF ,AB =2+1,BC =2,求∠ECF 的度数及BE 的长;(3)AB =5,AD =3,若F 为AD 的三等分点,请直接写出BE 的长.20(2022·广西南宁·统考三模)综合实践:在数学综合实践课上,第一小组同学展示了如下的操作及问题:如图1,同学们先画出半径为10cm 的⊙O 1,将圆形纸片沿着弦AB 折叠,使对折后劣弧AB 恰好过圆心O 1,同学们用尺子度量折痕AB 的长约为18cm ,并且同学们用学过的知识验证度量的结果是正确的.验证如下:如图1,过点O 1作O 1F ⊥AB 于点F ,并延长O 1F 交虚线劣弧AB 于点E ,∴AB =2AF ,由折叠知,EF =O 1F =12O 1E =12×10=5(cm ),连接O 1A ,在Rt △O 1FA 中,O 1A =10,根据勾股定理得,AF =O 1A 2-O 1F 2=102-52=53(cm ),∴AB =2AF =103≈10×1.732≈17.732(cm ),通过计算:17.732≈18,同学们用尺子度量折痕AB 的长约为18cm 是正确的.请同学们进一步研究以下问题:(1)如图2,⊙O 2的半径为10cm ,AB 为⊙O 2的弦,O 2C ⊥AB ,垂足为点C ,劣弧AB 沿弦AB 折叠后经过O 2C 的中点P ,求弦AB 的长(结果保留根号);(2)如图3,在⊙O 3中劣弧AB 沿弦AB 折叠后与直径CB 相交于点Q ,若CQ =8cm ,BQ =12cm ,求弦AB 的长(结果保留根号).。
初中数学中的折叠问题
![初中数学中的折叠问题](https://img.taocdn.com/s3/m/77adc4d99e31433238689309.png)
初中数学中的折叠问题一、矩形中的折叠折叠后BG 和BH 在再过点A ′折叠使边与对角线BD 重形中根据勾股定合,然后再沿着则∠DFB 等于的位置,已知重合部分是以折痕为底边的等腰三角形理清在每一个折叠过程中的变与不变8.如图,正方形纸片ABCD 的边长为8,将其沿EF 折叠,则图中①②③④四个三角形的周长之和为折叠前后对应边相等9.如图,将边长为4的正方形ABCD 沿着折痕EF 折叠,使点B落在边AD 的中点G 处,求四边形BCFE 的面积注意折叠过程中的变与不变,图形的形状和大小不变,对应边与对应角相等 10.如图,将一个边长为1的正方形纸片ABCD 折叠,使点B 落在边AD 上 不与A 、D 重合.MN 为折痕,折叠后B ’C ’与DN 交于P .(1)连接BB ’,那么BB ’与MN 的长度相等吗?为什么?(2)设BM =y ,AB ’=x ,求y 与x 的函数关系式;(3)猜想当B 点落在什么位置上时,折叠起来的梯形MNC ’B ’面积最小?并验证你的猜想. 二、纸片中的折叠11.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于( )C题考查的是平行线的性质,同位角相等,及对称的性质,折叠的角与其对应角相等,和平角为180度的性质,注意△EAB是以折痕AB为底的等腰三角形12.如图,将一宽为2cm的纸条,沿BC,使∠CAB=45°,则后重合部分的面积为在折叠问题中,一般要注意折叠前后图形之间的联系,将图形补充完整,对于矩形(纸片)折叠,折叠后会形成“平行线+角平分线”的基本结构,即重叠部分是一个以折痕为底边的等腰三角形ABC13.将宽2cm的长方形纸条成如图所示的形状,那么折痕PQ的长是注意掌握折叠前后图形的对应关系.在矩形(纸片)折叠问题中,会出现“平行线+角平分线”的基本结构图形,即有以折痕为底边的等腰三角形APQ 14.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是()本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.由题意知∠DEF=∠EFB=20°图b∠GFC=140°,图c中的∠CFE=∠GFC-∠EFG15.将一张长为70 cm的长方形纸片ABCD,沿对称轴EF折叠成如图的形状,若折叠后,AB与CD间的距离为60cm,则原纸片的宽AB是()16.一根30cm、宽3cm的长方形纸条,将其按照图示的过程折叠(阴影部分表示纸条的反面),为了美观,希望折叠完成后纸条两端超出点P的长度相等,则最初折叠时,求MA的长三、三角形中的折叠实践与运用:(1)将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③);再沿过点E的直线折叠,使点D落在BE上的点D’处,折痕为EG(如图④);再展平纸片(如图⑤).求图⑤中∠α的大小.由于角平分线所在的直线是角的对称轴,所以在三角形中的折叠通常都与角平分线有关。
中考数学折叠典型问题
![中考数学折叠典型问题](https://img.taocdn.com/s3/m/682d316cf5335a8102d22009.png)
中考数学折叠典型问题中考数学折叠典型问题一.解答题(共4小题)1.(2009•天津)已知一个直角三角形纸片OAB,其中∠AOB=90°,OA=2,OB=4.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.(Ⅰ)若折叠后使点B与点A重合,求点C的坐标;(Ⅱ)若折叠后点B落在边OA上的点为B′,设OB′=x,OC=y,试写出y关于x的函数解析式,并确定y的取值范围;(Ⅲ)若折叠后点B落在边OA上的点为B″,且使B″D∥OB,求此时点C的坐标.2.已知一个直角三角形AOB,其中∠AOB=90°,OA=2,OB=4.将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.(1)如图1,若折叠后使点B与点O重合,则点D的坐标为_________;(2)如图2,若折叠后使点B与点A重合,求点C的坐标;(3)如图3,若折叠后点B落在边OA上的点为B′,设OB′=x,OC=y,试写出y关于x的函数解析式.3.(2009•恩施州)如图,在△ABC中,∠A=90°,BC=10,△ABC的面积为25,点D为AB边上的任意一点(D不与A、B重合),过点D作DE∥BC,交AC于点E.设DE=x,以DE为折线将△ADE翻折(使△ADE落在四边形DBCE所在的平面内),所得的△A'DE与梯形DBCE重叠部分的面积记为y.(1)用x表示△ADE的面积;(2)求出0<x≤5时y与x的函数关系式;(3)求出5<x<10时y与x的函数关系式;(4)当x取何值时,y的值最大,最大值是多少?4.(2009•长沙)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴相交于点C.连接AC、BC,A、C两点的坐标分别为A(﹣3,0)、C(0,),且当x=﹣4和x=2时二次函数的函数值y相等.(1)求实数a,b,c的值;(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t秒时,连接MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;(3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q,使得以B,N,Q为项点的三角形与△ABC相似?如果存在,请求出点Q的坐标;如果不存在,请说明理由.中考数学折叠典型问题参考答案与试题解析一.解答题(共4小题)1.(2009•天津)已知一个直角三角形纸片OAB,其中∠AOB=90°,OA=2,OB=4.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.(Ⅰ)若折叠后使点B与点A重合,求点C的坐标;(Ⅱ)若折叠后点B落在边OA上的点为B′,设OB′=x,OC=y,试写出y关于x的函数解析式,并确定y的取值范围;(Ⅲ)若折叠后点B落在边OA上的点为B″,且使B″D∥OB,求此时点C的坐标.分析:(Ⅰ)因为折叠后点B与点A重合,那么BC=AC,可先设出C点的坐标,然后表示出BC,AC,在直角三角形OCA中,根据勾股定理即可求出C点的纵坐标,也就求出了C点的坐标;(Ⅱ)方法同(Ⅰ)用OC表示出BC,B′C然后在直角三角形OB′C中根据勾股定理得出x,y的关系式.由于B′在OA上,因此有0≤x≤2,由此可求出y的取值范围;(Ⅲ)根据(Ⅰ)(Ⅱ)的思路,应该先得出OB″,OC的关系,知道OA,OB的值,那么可以通过证Rt△COB″∽Rt△BOA来实现.∠B″CO和∠CB″D是平行线B″D,OB的内错角,又因为∠OBA=∠CB″D,因此∠B″CO=∠OBA,即CB″∥BA,由此可得出两三角形相似,得出OC,OB″的比例关系,然后根据(1)(2)的思路,在直角三角形OB″C中求出OC的值,也就求出C点的坐标了.解答:解:(Ⅰ)如图①,折叠后点B与点A重合,则△ACD≌△BCD.设点C的坐标为(0,m)(m>0),则BC=OB﹣OC=4﹣m.∴AC=BC=4﹣m.在Rt△AOC中,由勾股定理,AC2=OC2+OA2,即(4﹣m)2=m2+22,解得m=.∴点C的坐标为(0,);(Ⅱ)如图②,折叠后点B落在OA边上的点为B′,∴△B′CD≌△BCD.∵OB′=x,OC=y,∴B'C=BC=OB﹣OC=4﹣y,在Rt△B′OC中,由勾股定理,得B′C2=OC2+OB′2.∴(4﹣y)2=y2+x2,即y=﹣x2+2.由点B′在边OA上,有0≤x≤2,∴解析式y=﹣x2+2(0≤x≤2)为所求.∵当0≤x≤2时,y随x的增大而减小,∴y的取值范围为≤y≤2;(Ⅲ)如图③,折叠后点B落在OA边上的点为B″,且B″D∥OC.∴∠OCB″=∠CB″D.又∵∠CBD=∠CB″D,∴∠OCB″=∠CBD,∵CB″∥BA.∴Rt△COB″∽Rt△BOA.∴,∴OC=2OB″.在Rt△B″OC中,设OB″=x0(x0>0),则OC=2x0.由(Ⅱ)的结论,得2x0=﹣x02+2,解得x0=﹣8±4.∵x0>0,∴x0=﹣8+4.∴点C的坐标为(0,8﹣16).2.已知一个直角三角形AOB,其中∠AOB=90°,OA=2,OB=4.将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.(1)如图1,若折叠后使点B与点O重合,则点D的坐标为(1,2);(2)如图2,若折叠后使点B与点A重合,求点C的坐标;(3)如图3,若折叠后点B落在边OA上的点为B′,设OB′=x,OC=y,试写出y关于x的函数解析式.分析:(1)由CD为△OAB的中位线,可求D点坐标;(2)设OC=m,由折叠的性质可知,△ACD≌△BCD,则BC=AC=4﹣m,OA=2,在Rt△AOC中,利用勾股定理求m的值;(3)由折叠的性质可知,△B′CD≌△BCD,依题意设OB′=x,OC=y,则B′C=BC=OB﹣OC=4﹣y,在Rt△B′OC中,由勾股定理,建立y与x之间的函数关系式.解答:解:(1)由折叠的性质可知,BC=OC,CD⊥OB,则CD为△OAB的中位线,所以D(1,2),故答案为:(1,2);(2)如图2,折叠后点B与点A重合,则△ACD≌△BCD,设C点坐标为(0,m)(m>0),则BC=OB﹣OC=4﹣m,于是AC=BC=4﹣m,在Rt△AOC中,由勾股定理,得AC2=OC2+OA2,即(4﹣m)2=m2+22,解得m=,所以C(0,);(3)如图3,折叠后点BB落在边OA上的点为B′,则△B′CD≌△BCD,依题意设OB′=x,OC=y,则B′C=BC=OB﹣OC=4﹣y,在Rt△B′OC中,由勾股定理,得B′C2=OC2+OB′2,即(4﹣y)2=y2+x2,即y=﹣x2+2,由点B′在边OA上,有0≤x≤2,所以,函数解析式为y=﹣x2+2(0≤x≤2).3.(2009•恩施州)如图,在△ABC中,∠A=90°,BC=10,△ABC的面积为25,点D为AB边上的任意一点(D不与A、B重合),过点D作DE∥BC,交AC于点E.设DE=x,以DE为折线将△ADE翻折(使△ADE落在四边形DBCE所在的平面内),所得的△A'DE与梯形DBCE重叠部分的面积记为y.(1)用x表示△ADE的面积;(2)求出0<x≤5时y与x的函数关系式;(3)求出5<x<10时y与x的函数关系式;(4)当x取何值时,y的值最大,最大值是多少?分析:(1)由于DE∥BC,可得出三角形ADE和ABC相似,那么可根据面积比等于相似比的平方用三角形ABC的面积表示出三角形ADE的面积.(2)由于DE在三角形ABC的中位线上方时,重合部分的面积就是三角形ADE的面积,而DE在三角形ABC中位线下方时,重合部分就变成了梯形,因此要先看0<x≤5时,DE的位置,根据BC的长可得出三角形的中位线是5,因此自变量这个范围的取值说明了A′的落点应该在三角形ABC之内,因此y就是(1)中求出的三角形ADE的面积.(3)根据(2)可知5<x<10时,A′的落点在三角形ABC外面,可连接AA1,交DE于H,交BC于F,那么AH就是三角形ADE的高,A′F就是三角形A′DE的高,A′F就是三角形A′MN的高,那么可先求出三角形A′MN的面积,然后用三角形ADE的面积减去三角形A′MN的面积就可得出重合部分的面积.求三角形A′MN的面积时,可参照(1)的方法进行求解.(4)根据(2)(3)两个不同自变量取值范围的函数关系式,分别得出各自的函数最大值以及对应的自变量的值,然后找出最大的y的值即可.解答:解:(1)∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴,即S△ADE=x2;(2)∵BC=10,∴BC边所对的三角形的中位线长为5,∴当0<x≤5时,y=S△ADE=x2;(3)5<x<10时,点A′落在三角形的外部,其重叠部分为梯形,∵S△A′DE=S△ADE=x2,∴DE边上的高AH=A'H=x,由已知求得AF=5,∴A′F=AA′﹣AF=x﹣5,由△A′MN∽△A′DE知=()2,S△A′MN=(x﹣5)2.∴y=x2﹣(x﹣5)2=﹣x2+10x﹣25.(4)在函数y=x2中,∵0<x≤5,∴当x=5时y最大为:,在函数y=﹣x2+10x﹣25中,当x=﹣=时y最大为:,∵<,∴当x=时,y最大为:.4.(2009•长沙)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴相交于点C.连接AC、BC,A、C两点的坐标分别为A(﹣3,0)、C(0,),且当x=﹣4和x=2时二次函数的函数值y相等.(1)求实数a,b,c的值;(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t秒时,连接MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;(3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q,使得以B,N,Q为项点的三角形与△ABC相似?如果存在,请求出点Q的坐标;如果不存在,请说明理由.考点:二次函数综合题;二次函数图象上点的坐标特征;二次函数图象与几何变换.专题:压轴题.分析:(1)由题意和图形可求出函数的表达式;(2)结合抛物线内部几何关系和性质求出t值及P点坐标;(3)假设成立(1)若有△ACB∽△QNB则有∠ABC=∠QBN,寻找相似条件,判断是否满足.解答:解:(1)∵C(0,)在抛物线上∴代入得c=,∵x=﹣4和x=2时二次函数的函数值y相等,∴顶点横坐标x==﹣1,∴,又∵A(﹣3,0)在抛物线上,∴=0由以上二式得a=,b=,c=;(2)由(1)y==∴B(1,0),连接BP交MN于点O1,根据折叠的性质可得:01也为PB中点.设t秒后有M(1﹣t,0),N(1﹣,),O1)设P(x,y),B(1,0)∵O1为P、B的中点可得,,即P()∵A,C点坐标知lAC:y=,P点也在直线AC上代入得t=,即P();(3)假设成立;①若有△ACB∽△QNB,则有∠ABC=∠QBN,∴Q点在x轴上,AC∥QN但由题中A,C,Q,N坐标知直线的一次项系数为:则△ACB不与△QNB相似.②若有△ACB∽△QBN,则有 (1)设Q(﹣1,y),C(0,),A(﹣3,0),B(1,0),N()则CB=2,AB=4,AC=2代入(1)得y=2或.当y=2时有Q(﹣1,2)则QB=4⇒不满足相似舍去;当y=时有Q(﹣1,)则QB=⇒.∴存在点Q(﹣1,)使△ACB∽△QBN.综上可得:(﹣1,).。
中考数学中的折叠问题
![中考数学中的折叠问题](https://img.taocdn.com/s3/m/b817d3876037ee06eff9aef8941ea76e58fa4a08.png)
中考数学中的折叠问题在中考数学中,折叠问题是一种常出现的问题,它主要考察学生的空间想象能力和对几何图形的理解。
这种问题通常以一个二维图形经过折叠变为三维图形的方式出现,需要学生运用逻辑推理和空间想象能力来解答。
折叠问题主要分为两类:一类是折叠前后的形状变化问题,另一类是折叠后立体图形的三视图问题。
前者主要考察的是学生对于空间图形的变换和对称的理解,而后者则更注重学生的空间想象能力和对立体图形的认知。
解决折叠问题,首先需要理解折痕的含义。
折痕是二维图形折叠成三维图形时的痕迹,也是三维图形展开为二维图形时的路径。
在解决折叠问题时,需要找出图形中的对称点、线段和角度,并理解它们在折叠后的变化。
对于三视图问题,则需要通过观察和分析立体图形的各个面,尝试从不同的角度去看待问题。
例如,一个长方形纸片折叠后可以得到一个正方形纸片,这个过程可以通过平移和旋转来实现。
在这个问题中,学生需要理解长方形和正方形的关系,以及折叠过程中哪些元素发生了变化,哪些元素保持不变。
又比如,一个三角形纸片折叠后可以得到一个立体图形,这个过程中需要对三角形的一些基本性质进行深入的理解。
解决折叠问题时,首先需要明确问题的类型,然后针对不同类型的问题采取不同的解题策略。
对于形状变化问题,可以通过画图的方式帮助理解;对于三视图问题,可以通过将立体图形转化为平面图形的方式来寻找答案。
同时,建议学生在平时的学习中多进行一些类似题目的练习,以增强自己的空间想象能力和逻辑推理能力。
中考数学中的折叠问题是一种考察学生空间想象能力和逻辑推理能力的问题。
解决这类问题需要学生对几何图形的性质有深入的理解,并能够灵活运用这些性质去解决问题。
也需要学生有一定的空间感知能力和逻辑推理能力。
因此,建议学生在平时的学习中多进行练习,提高自己的解题能力。
折叠最值模型是指将一个平面图形沿着一条直线折叠,使得折叠后的图形在直线的一侧,并且使得折叠后的图形在直线两侧的部分对称。
中考折叠问题解题方法
![中考折叠问题解题方法](https://img.taocdn.com/s3/m/ddcebdb705a1b0717fd5360cba1aa81144318f3d.png)
中考折叠问题解题方法
在中考数学中,折叠问题通常涉及到图形的对称性、重合等概念。
解决折叠问题的方法主要包括以下几个步骤:
理解问题:仔细阅读题目,理解图形的折叠方式,明确题目中的要求和条件。
观察图形:给定图形可能是一个平面图形,通过折叠后形成一个三维立体图形。
观察图形的对称性,找出可以重合的部分。
标记关键点:在图形的关键部位标记点,这有助于分析和计算折叠后的位置。
利用对称性:如果题目中提到折叠是对称的,可以利用对称性质,找到对应部分的重合点。
应用数学知识:有时需要应用一些几何知识,如角度、直线段长度等,计算折叠后的位置。
确定关系:找到折叠后各部分的关系,可以是平行、重合、相交等。
画图解题:在草稿纸上画出图形,通过手动折叠或模拟折叠的方式,帮助理清思路。
检查答案:完成计算后,要检查答案是否符合题目的要求,尤其是对称性和重合性。
以下是一个简单的折叠问题的解题示例:
题目:若正方形纸张上有一只小猫,如图所示。
问折叠后两只小猫是否重合?
(图示一只小猫)
解题步骤:
观察图形,确定折叠轴。
在小猫的关键点标记,如眼睛、鼻子等。
利用对称性,确定折叠后的位置。
画出折叠后的图形。
检查关键点,判断是否重合。
通过以上步骤,可以较为清晰地解决折叠问题。
在实际考试中,应保持冷静,有条理地分析,避免粗心错误。
中考数学复习《折叠问题》
![中考数学复习《折叠问题》](https://img.taocdn.com/s3/m/d67aad5d69eae009581bec94.png)
EF 6 72 ∴S△BEF=EG· S△BEG=10×24= 5
14.如图,已知在矩形 ABCD 中,点 E 在边 BC 上,BE=2CE,将矩形 沿着过点 E 的直线翻折后,点 C,D 分别落在边 BC 下方的点 C′,D′处,且 点 C′,D′,B 在同一条直线上,折痕与边 AD 交于点 F,D′F 与 BE 交于点 G.设 AB=t,那么△EFG 的周长为 2 3t .(用含 t 的代数式表示)
13.如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE
折叠到DF,延长EF交AB于点G,连结DG,求△BEF的面积. 【解析】由折叠和正方形的性质,在Rt△BEG中,由勾股定理求出AG后再 求△BGE的面积,最后由△BEF与△BGE的面积关系求△BEF的面积.
解:DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°. 又∵DG=DG,∴△ADG≌△FDG(HL).∵正方形 ABCD 的边长为 12, BE=EC,∴BE=EC=EF=6.设 AG=FG=x,则 EG=x+6, BG=12-x,在 Rt△BEG 中,由勾股定理,得 EG2=BE2+BG2, 1 1 即(x+6) =6 +(12-x) ,解得 x=4.∵S△BEG=2· BE· BG=2×6×8=24,
(1)求证:△DEC≌△EDA;
(2)求DF的值; (3)如图2,若P为线段EC上一动点,过点P作△AEC的内接矩形,使其顶
点Q落在线段AE上,顶点M,N落在线段AC上,当线段PE的长为何值时,
矩形PQMN的面积最大?并求出其最大值.
解:(1)由矩形的性质可知△ADC≌△CEA,∴AD=CE,DC=EA, ∠ACD=∠CAE.在△DEC 与△EDA 中, CE=AD, ∵DE=ED, ∴△DEC≌△EDA(SSS) DC=EA,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DE中考数学中的折叠问题为了考查学生的数、形结合的数学思想方法和空间想象能力,近几年来中考中常出现折叠问题。
几何图形的折叠问题,实际是轴对称问题。
处理这类问题的关键是根据轴对称图形的性质,搞清折叠前后哪些量变了,哪些量没变,折叠后有哪些条件可利用。
所以一定要注意折叠前后的两个图形是全等的。
即对应角相等,对应线段相等。
有时可能还会出现平分线段、平分角等条件。
这一类问题,把握住了关键点,并不难解决。
例1 (成都市中考题)把一张长方形的纸片按如图所示的方式折叠, EM 、FM 为折痕,折叠后的C 点落在'B M 或'B M 的延长线上,那么∠EMF 的度数是( )A 、85°B 、90°C 、95°D 、100°分析与解答:本题考查了有关折叠的知识。
由题意可知:∠BME=∠'EMC ,∠CMF=∠'FMC ,''180BMC CMC ∠+∠=°,又'C M 与'B M 重合,则∠EMF=∠'EMC +∠'FMC =''11()18022BMC CMC ∠+∠=⨯°= 90°,故选B 。
例2 (武汉市实验区中考题)将五边形ABCDE 纸片按如图的方式折叠,折痕为AF, 点E 、D 分别落在'E 、'D 。
已知∠AFC=76°,则'CFD ∠等于( )A 、31°B 、28°C 、24°D 、22°分析与解答:本题同样是考查了折叠的知识。
根据题意得:'AFD AFD ∠=∠=180°-76°=104°,则'CFD ∠=104°-76°=28°,故选B 。
例3(河南省实验区中考题)如图,把矩形纸片OABC 放入平面直角坐标系中,使OA 、OC 分别落在x 轴、y 轴上,连结OB ,将纸片OABC 沿OB 折叠,使点A 落在点'A 的位置,若1tan 2BOC ∠=,则点'A 的坐标为 。
分析与解答:本题考查了结合坐标系求解矩形折叠问题的能力。
图1D A BCE GF(甲)(乙)例4(浙江省实验区中考题)现有一张长和宽的比为2∶1的长方形纸片,将它折两次(第一次折后也可打开铺平再折第二次),使得折痕将纸片分为面积相等且不重叠的四部分(称为一个操作),如图甲(虚线表示折痕),除图甲外,请再给出一个不同..的操作,分别将折痕画在矩形中(规定:一个操作得到的四个图形,和另一个操作得到的四个图形,如果能够“配对”得到四组全等的图形,那么就认为是相同的操作。
如图乙和图甲是相同的操作)。
例5(南京市中考题)已知矩形纸片,AB=2,AD=1。
将纸片折叠后,使顶点A 与边CD 上的点E 重合。
(1) 如果折痕FG 分别与AD 、AB 交于点F 、G (如图1),AF=23,求DE 的长;(2) 如果折痕FG 分别与CD 、AB 交于点F 、G (如图2),△AED 的外接圆与直线BC 相切,求折痕FG 的长。
分析与解答:(1)在矩形ABCD 中,AB=2,AD=1,AF=23,∠D=90°,根据轴对称的性质,得EF=AF=23。
∴DF=AD-AF=13 ,在Rt △DEF 中,由勾股定理得 22213333DE ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭。
(2)设AE 与FG 的交点为O ,根据轴对称的性质,得AO=EO , 取AD 的中点M ,连接MO ,则MO=12DE ,图2D AGBF E CMN OMO ∥DC 。
设DE x =,则 12MO x =,在矩形ABCD 中, ∠C=∠D=90° ∴AE 为△AED 的外接圆的直径, O 为圆心。
延长MO 交BC 于 点N ,则ON ∥CD ,∴∠CNM=180°-∠C=90°∴ON ⊥BC ,四边形MNCD 是矩形。
∴MN=CD=AB=2,∴ON=MN-MO=122x - ∵ △AED 的外接圆与BC 相切,∴ ON 是△AED 的外接圆的半径。
∴ OE=ON=122x -,AE=2ON=4-x 。
在Rt △AED 中,222AD DE AE += ∴2221(4)x x +=- 解这个方程,得158x =。
∴158DE =,1172216OE x =-=。
根据轴对称的性质,得AE ⊥FG ,∴ ∠FOE=∠D=90°。
又 ∵∠FEO=∠AED ,∴△FEO ∽△AED ,∴FO OE AD DE =, ∴OE FO AD DE =⨯ 可得1730FO =又AB ∥CD , ∴∠EFO=∠AGO ,∠FEO=∠GAO ∴△FEO ≌△GAO ∴FO=GO ∴17215FG FO ==, ∴折痕FG 的长是1715。
中考实战一:一、选择题1.(德州市)如图,四边形ABCD 为矩形纸片.把纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF .若CD =6,则AF 等于( ) A .4 B .3C .4D .82.(江西省)如图,将矩形ABCD 纸片沿对角线BD 折叠,使点C 落在C′处,BC′交AD 于E ,若∠DBC =22.5°,则在不添加任何辅助线的情况下,图中45°的角(虚线也视为角的边)有( )A .6个B .5个C .4个D .3个3.(乐山市)如图,把矩形纸条ABCD 沿EF ,GH 同时折叠,B ,C 两点恰好落在AD 边的P 点处,若∠FPH =90°,PF =8,PH =6,则矩形ABCD 的边BC 长为( )A.20 B.22 C.24 D.304.(绵阳市)当身边没有量角器时,怎样得到一些特定度数的角呢?动手操作有时可以解“燃眉之急”.如图,已知矩形ABCD,我们按如下步骤操作可以得到一个特定的角:(1)以点A所在直线为折痕,折叠纸片,使点B落在AD上,折痕与BC交于E;(2)将纸片展平后,再一次折叠纸片,以E所在直线为折痕,使点A落在BC上,折痕EF交AD于F.则∠AFE =()A.60°B.67.5°C.72°D.75°5. (绍兴市)学习了平行线后,小敏想出了过己知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的(如图(1)~(4) ).从图中可知,小敏画平行线的依据有()①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行.A.①②B.②③C.③④D.①④6.(贵阳市)如图6-1所示,将长为20cm,宽为2cm的长方形白纸条,折成图6-2所示的图形并在其一面着色,则着色部分的面积为()A.34cm2B.36 cm2C.38 cm2D.40 cm2二、填空题7.(成都市)如图,把一张矩形纸片ABCD沿EF折叠后,点C,D分别落在C′,D′的位置上,EC′交AD 于点G.已知∠EFG=58°,那么∠BEG°.8. (苏州市)如图,将纸片△ABC沿DE折叠,点A落在点A′处,已知∠1+∠2=100°,则∠A的大小等于____________度.三、解答题9.(荆门市)如图1,在平面直角坐标系中,有一张矩形纸片OABC,已知O(0,0),A(4,0),C(0,3),点P是OA边上的动点(与点O、A不重合).现将△PAB沿PB翻折,得到△PDB;再在OC边上选取适当的点E,将△POE沿PE翻折,得到△PFE,并使直线PD、PF重合.设P(x,0),E(0,y),求y关于x的函数关系式,并求y的最大值;如图2,若翻折后点D落在BC边上,求过点P、B、E的抛物线的函数关系式;在(2)的情况下,在该抛物线上是否存在点Q,使△PEQ是以PE为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标.10. (济宁市)如图,先把一矩形ABCD纸片对折,设折痕为MN,再把B点叠在折痕线上,得到△ABE.过B点折纸片使D点叠在直线AD上,得折痕PQ.求证:△PBE∽△QAB;你认为△PBE和△BAE相似吗?如果相似给出证明,如不相似请说明理由;如果沿直线EB折叠纸片,点A是否能叠在直线EC上?为什么?11.(威海市)如图,四边形ABCD为一梯形纸片,AB∥CD,AD=BC.翻折纸片ABCD,使点A与点C 重合,折痕为EF.已知CE⊥AB.(1)求证:EF∥BD;(2)若AB=7,CD=3,求线段EF的长.12. (烟台市)生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长为2 6 cm,宽为xcm,分别回答下列问题:为了保证能折成图④的形状(即纸条两端均超出点P),试求x的取值范围.(2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M与点A的距离(用x表示).13. 将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′处,折痕为EF.(1)求证:△ABE≌△AD′F;(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.14.(孝感市)在我们学习过的数学教科书中,有一个数学活动,其具体操作过程是:第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开(如图1);第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN(如图2).请解答以下问题:(1)如图2,若延长MN交BC于P,△BMP是什么三角形?请证明你的结论.(2)在图2中,若AB=a,BC=b,a、b满足什么关系,才能在矩形纸片ABCD上剪出符合(1)中结论的三角形纸片BMP ?(3)设矩形ABCD的边AB=2,BC=4,并建立如图3所示的直角坐标系. 设直线BM′为y=kx,当∠M′BC=60°时,求k的值.此时,将△ABM′沿BM′折叠,点A是否落在EF上(E、F分别为AB、CD中点)?为什么?15.(邵阳市)如图①,△ABC中,∠ACB=90°,将△ABC沿着一条直线折叠后,使点A与点C重合(图②).(1)在图①中画出折痕所在的直线l.设直线l与AB,AC分别相交于点D,E,连结CD.(画图工具不限,不要求写画法)(2)请你找出完成问题(1)后所得到的图形中的等腰三角形.(不要求证明)16.(济宁市)如图,先把一矩形ABCD纸片对折,设折痕为MN,再把B点叠在折痕线上,得到△ABE.过B点折纸片使D点叠在直线AD上,得折痕PQ.(1)求证:△PBE∽△QAB;(2)你认为△PBE和△BAE相似吗?如果相似给出证明,如补相似请说明理由;(3)如果直线EB折叠纸片,点A是否能叠在直线EC上?为什么?17.(临安市)如图,△OAB是边长为的等边三角形,其中O是坐标原点,顶点B在y轴正方向上,将△OAB 折叠,使点A落在边OB上,记为A′,折痕为EF.(1)当A′E//x轴时,求点A′和E的坐标;(2)当A′E//x轴,且抛物线经过点A′和E时,求抛物线与x轴的交点的坐标;(3)当点A′在OB上运动,但不与点O、B重合时,能否使△A′EF成为直角三角形?若能,请求出此时点A′的坐标;若不能,请你说明理由.18.(南宁市)如图,在锐角△ABC中,BC=9,AH⊥BC于点H,且AH=6,点D为AB边上的任意一点,过点D作DE∥BC,交AC于点E.设△ADE的高AF为x(0<x<6),以DE为折线将△ADE翻折,所得的△A′DE与梯形DBCE重叠部分的面积记为y(点A关于DE的对称点A′落在AH所在的直线上).(1)分别求出当0<x≤3与3<x<6时,y与x的函数关系式;(2)当x取何值时,y的值最大?最大值是多少?19.(宁夏回族自治区)如图,将矩形纸片ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,连结AE.证明:(1)BF=DF;(2)AE∥BD.中考实战二: 一、选择题1.(山东日照4分)在平面直角坐标系中,已知直线334y x=-+与x轴、y轴分别交于A、B两点,点C(0,n)是y轴上一点.把坐标平面沿直线AC折叠,使点B刚好落在x轴上,则点C的坐标是A、(0,34)B、(0,43) C、(0,3)D、(0,4)2.(天津3分)如图.将正方形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF 的大小为()(A) 15° (B) 30° (C) 45° (D) 60°3.(重庆4分)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是( )A、1B、2C、3D、44.(浙江温州4分)如图,O是正方形ABCD的对角线BD上一点,⊙O与边AB,BC都相切,点E,F分别在AD,DC上,现将△DEF沿着EF对折,折痕EF与⊙O相切,此时点D恰好落在圆心O处.若DE=2,则正方形ABCD的边长是A、3B、4C、22+D、225.(浙江省3分)如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE:S△BDE等于( )A. 2:5B.14:25C.16:25D. 4:216.(吉林省3分)如图所示,将一个正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去一个三角形和一个形如“1”的图形,将纸片展开,得到的图形是7.(江苏海南3分)如图,将平行四边形ABCD折叠,使顶点D恰落在AB边上的点M处,折痕为AN,那么对于结论①MN∥BC,②MN=AM,下列说法正确的是 ( )A、①②都对B、①②都错C、①对②错D、①错②对8.(山东菏泽3分)如图所示,已知在三角形纸片ABC中,BC=3,AB=6,∠BCA=90°.在AC上取一点E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,则DE的长度为()A、6B、3C、23D、39.(山东济宁3分)如图:△ABC的周长为30cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC 边于点D,交AC边与点E,连接AD,若AE=4cm,则△ABD的周长是()A. 22cmB.20cmC. 18cmD.15cm10.(山东泰安3分)如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为()A、23B、332C、3D、611.(广东广州3分)如图所示,将矩形纸片先沿虚线AB按箭头方向向右对折,接着对折后的纸片沿虚线A BCD FECD 向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是( )A 、B 、C 、D 、12.(河北省3分)如图,在△ABC 中,∠C=90°,BC=6,D ,E 分别在 AB 、AC 上,将△ABC 沿DE 折叠,使点A 落在点A′处,若A′为CE 的中点,则折痕DE 的长为 ( )A 、B 、2C 、3D 、413.(四川宜宾3分)如图,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在 点F 处,折痕为AE ,且EF=3,则AB 的长为 ( )A.3B.4C.5D.614.(四川泸州2分)如图,在Rt△ABC 中,∠ABC=90°,∠C=60°,AC=10,将BC 向BA 方向翻折过去,使点C 落在BA 上的点C′,折痕为BE ,则EC 的长度是( ) A 、53 B 、535- C 、1053-D 、553+15.(四川内江3分)如图.在直角坐标系中,矩形ABCO 的边OA 在x 轴上,边OC 在y 轴上,点B 的坐标为(1,3),将矩形沿对角线AC 翻折,B 点落在D 点的位置,且AD 交y 轴于点E .那么点D 的坐标为 ( )A 、412()55-, B 、213()55-, C 、113()25-, D 、312()55-,(第10题)PNFEDCABM16.(甘肃天水4分)如图,有一块矩形纸片ABCD ,AB=8,AD=6.将纸片折叠,使得AD 边落在AB 边上,折痕为AE ,再将△AED 沿DE 向右翻折,AE 与BC 的交点为F ,则CF 的长为( )A 、6B 、4C 、2D 、117.(云南昭通3分)如图所示,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点C′处,折痕为EF ,若∠EFC′=1250,那么∠ABE 的度数为( ) A .150B .200C .250D .30018.(福建三明4分)如图,在正方形纸片ABCD 中,E ,F 分别是AD ,BC 的中点,沿过点B 的直线折叠,使点C 落在EF 上,落点为N ,折痕交CD 边于点M ,BM 与EF 交于点P ,再展开.则下列结论中:①CM=DM;②∠ABN=30°;③AB 2=3CM 2;④△PMN 是等边三角形.正确的有( )A 、1个B 、2个C 、3个D 、4个19.(福建莆田4分)如图,在矩形ABCD 中,点E 在AB 边上,沿CE 折叠矩形ABCD ,使点B 落在AD 边上的点F 处,若AB=4,BC=5,则tan∠AFE 的值为 ( ) A .43 B .35 C .34 D .4520.(黑龙江省绥化3分)如图,在Rt△ABC 中,AB=CB ,BO⊥AC,把△ABC 折叠,使AB 落在AC 上,点B 与AC 上的点E 重合,展开后,折痕AD 交BO 于点F ,连接DE 、EF .下列结论:①tan∠ADB=2;②图中有4对全等三角形;③若将△DEF 沿EF 折叠,则点D 不一定落在AC 上;④BD=BF;⑤S 四边形DFOE =S △AOF ,上述结论中正确的个数是A 、1个B 、2个C 、3个D 、4个21.(湖南岳阳3分)如图,把一张长方形纸片ABCD沿对角线BD折叠,使C点落在E处,BE与AD相交于点F,下列结论:①BD=AD2+AB2;②△ABF≌△EDF;③DE EFAB AF=;④AD=BD•cos45°.其中正确的一组是A、①②B、②③C、①④D、③④二、填空题1.(重庆潼南4分)如图,在△ABC中,∠C=90°,点D在AC上,将△BCD沿着直线BD翻折,使点C落在斜边AB上的点E处,DC=5cm,则点D到斜边AB的距离是cm.2.(浙江绍兴5分)取一张矩形纸片按照图1、图2中的方法对折,并沿图3中过矩形顶点的斜线(虚线)剪开,把剪下的①这部分展开,平铺在桌面上.若平铺的这个图形是正六边形,则这张矩形纸片的宽和长之比为3.(浙江台州5分)点D、E分别在等边△ABC的边AB、BC上,将△BDE沿直线DE翻折,使点B落在B1处,DB1、EB1分别交边AC于点F、G.若∠ADF=80º,则∠CGE=.4.(广西贺州3分)把一张矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重合,折痕为EF.若BF=4,FC=2,则∠DEF的度数是_ .5.(广西贵港2分)如图所示,将两张等宽的长方形纸条交叉叠放,重叠部分是一个四边形ABCD,若AD=6cm,∠ABC=60°,则四边形ABCD的面积等于_ cm2.6.(湖北荆州4分)如图,双曲线xy 2(x >0)经过四边形OABC 的顶点A 、C , ∠ABC=90°,OC 平分OA 与x 轴正半轴的夹角,AB∥x 轴,将△ABC 沿AC 翻折 后得△AB′C,B′点落在OA 上,则四边形OABC 的面积是 .7.(湖南衡阳3分)如图所示,在△ABC 中,∠B=90°,AB=3,AC=5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为 .8.(湖南怀化3分)如图,∠A=30°,∠C′=60°,△ABC 与△A'B'C'关于直线l 对称,则∠B=9.(江苏南通3分)如图,在矩形纸片ABCD 中,AB =2cm ,点E 在 BC 上,且AE =CE .若将纸片沿AE 折叠,点B 恰好与AC 上的点B 1 重合,则AC = cm .10.(山东滨州4分)将矩形ABCD 沿AE 折叠,得到如图所示图形.若∠CED′=56°,则∠AED 的大小是 .11.(内蒙古包头3分)如图,把矩形纸片OABC 放入平面直角坐标系中,使OA ,OC 分别落在x 轴、y 轴上,连接AC ,将矩形纸片OABC 沿AC 折叠,使点B 落在点D 的位置,若B (1,2),则点D 的横坐标是 .12.(内蒙赤峰3分)如图,AD 是△ABC 的中线,∠ADC=60°,BC=6,把△ABC 沿直线AD 折叠,点C 落在C′处,连接BC′,那么BC′的长为 . 13.(四川广元5分)如图,M 为矩形纸片ABCD 的边AD 的中点,将 纸片沿BM 、CM 折叠,使点A 落在A 1处,点D 落在D 1处.若∠A 1MD 1 =40º,则∠BMC 的度数为 .14.(四川绵阳4分)如图,将长8 cm,宽4 cm的矩形纸片ABCD折叠,使点A与C重合,则折痕EF的长等于 cm.16.(贵州安顺4分)如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是.17.(浙江金华、丽水4分)如图,将一块直角三角板OAB放在平面直角坐标系中,B(2,0),∠AOB=60°,点A在第一象限,过点A的双曲线为kyx.在x轴上取一点P,过点P作直线OA的垂线l,以直线l为对称轴,线段OB经轴对称变换后的像是O´B´.(1)当点O´与点A重合时,点P的坐标是;(2)设P(t,0),当O´B´与双曲线有交点时,t的取值范围是.18.(重庆江津4分)如图,在平面直角坐标系中有一矩形ABCD,其中A(0,0),B (8,0),D (0,4),若将△ABC沿AC所在直线翻折,点B落在点E处.则E点的坐标是.三、解答题1.(贵州遵义10分)把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F重合(E、F 两点均在BD上),折痕分别为BH、DG.(1)求证:△BHE≌△DGF;(2)若AB=6cm,BC=8cm,求线段FG 的长.2.(黑龙江大庆7分)如图,ABCD是一张边AB长为2、边AD长为1的矩形纸片,沿过点B的折痕将A角翻折,使得点A落在边CD上的点A1处,折痕交边AD于点E.(1)求∠DA1E的大小;(2)求△A1BE的面积.3.(广东省7分)如图,直角梯形纸片ABCD中,AD//BC,∠A=90º,∠C=30º.折叠纸片使BC经过点D,点C落在点E处,BF是折痕,且BF=CF=8.(1)求∠BDF的度数;(2)求AB的长.4.(广东深圳8分)如图1,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD折叠,点C落在点C′的位置,BC′交AD于点G.(1)求证:AG=C′G;(2)如图2,再折叠一次,使点D与点A重合,得折痕EN,EN交AD于M,求EM的长.5. (四川南充8分)如图,点E 是矩形ABCD 中CD 边上一点,△BCE 沿BE 折叠为△BFE,点F 落在AD 上. (1)求证:△ABE∽△DFE(2)若sin∠DFE=13,求tan∠EBC 的值。